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Abstract 
 
Metabarcoding has emerged as a critical tool in ecology and other scientific disciplines, 
facilitating species identification in diverse samples for biodiversity monitoring, community 
and microbiome analysis, dietary studies, and understanding species interactions. However, 
challenges arise from errors and artifacts introduced during laboratory processes such as 
PCR and sequencing. Manual inspection is impractical due to the vast amount of sequences, 
necessitating rapid algorithms to clean the data. Thorough bioinformatic data cleanup can 
reduce such mistakes by removal of low-quality sequences or such classified as non-fitting 
through alignments. However, in practice some anomalous sequences evade detection, 
while also normal sequences may be mistakenly removed. 
 
Deep neural networks (DNNs) offer a promising solution by recognizing complex DNA 
sequence patterns. In this study I present a new software MetAnoDe (Metabarcoding 
Anomaly Detection), featuring development of novel deep-learning LSTM and CNN models 
for independent application and use as an ensemble model. MetAnoDe employs an 
alignment-free approach that complements existing tools, enhancing data cleanup 
efficiency. Here, the three models were trained for bacterial 16S-V4 and plant ITS2 markers 
which can be readily reused in other studies. Cross-validation and real-world data testing 
demonstrate high accuracy. Optimal integration into pipelines can also streamline overall 
runtime, synergizing effectively with current alignment-based methods. It is further 
adaptable for other markers due to the software's automated model training capability. 
 
In conclusion, MetAnoDe enhances metabarcoding by efficiently identifying anomalous 
sequences. An integration of DNNs with traditional approaches enhances biodiversity 
estimates by reducing non-target sequence inclusion, ensuring more accurate and 
comprehensive results. 
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Introduction 
 
Metabarcoding has emerged as a vital tool in ecology and other scientific disciplines for 
assessing biodiversity (Cristescu, 2014; Hajibabaei, 2012; Taberlet et al., 2012). It is a 
molecular biology technique used to identify and quantify species within a complex sample 
based on DNA sequences (Deiner et al., 2017). It involves sequencing a specific region of 
DNA, typically a barcode gene (such as portions of the 16S rRNA gene for bacteria or the 
ITS2 rRNA gene for plants), from a mixed sample containing DNA from multiple taxa (Keller 
et al., 2015; Kozich et al., 2013). Metabarcoding is particularly useful in monitoring ancient 
and current biodiversity in environmental samples (like soil or water) (Deiner et al., 2017; 
Pedersen et al., 2015), assessing microbiomes (Kozich et al., 2013; Schmidt et al., 2013; 
Shanahan et al., 2021), studying diet composition through food or fecal analysis (Pompanon 
et al., 2012), ecological interactions (Bell et al., 2023) and various other ecological and 
biological applications. In general, metabarcoding follows a systematic workflow that begins 
with field sampling, followed by laboratory procedures, including amplicon library 
preparation and sequencing, resulting in raw amplicon sequencing reads (Zinger et al., 
2019). Subsequently, bioinformatic analyses are performed to bring such data into a 
meaningful format that allows scientific interpretation (Coissac et al., 2012; Zinger et al., 
2019).  
 
The strategy employed in bioinformatics processing is crucial for obtaining reliable results 
(Coissac et al., 2012; Hakimzadeh et al., 2024; Zinger et al., 2019). Despite substantial 
progress in developing pipelines to transform raw sequencing data into meaningful 
biological information, significant challenges remain that can introduce biases and affect 
estimates of diversity, community composition, and species interactions (Coissac et al., 
2012; Zinger et al., 2019). Sources of erroneous amplicon reads include sequencing and 
polymerase chain reaction (PCR) errors, PCR chimeras (cross-hybridization of DNA), off-
target and random PCR products, primer hybrids, and other less well understood issues 
(Zinger et al., 2019). While laboratory procedures, such as selecting low-error sequencing 
technologies or using proofreading polymerases, can mitigate these issues, they cannot 
entirely eliminate them. Current efforts to clean up raw data involve quality filtering or 
trimming, amplicon sequence variant (ASV) denoising or operational taxonomic unit (OTU) 
clustering, as well as the removal of singletons and chimeras (Hakimzadeh et al., 2024). All 
of these methods are either sequence quality-, abundance- or alignment-based, or a 
combination thereof, and might find anomalous artifacts using sequencer device statistics or 
inherent metrics or reference data. Although these approaches significantly improve final 
data quality, residual reads in the final processed data are not entirely of true target, or 
even biological, origin given the aforementioned challenges, or valid data might be wrongly 
removed given e.g. rare occurrences, misclustering or quality of references (Zinger et al., 
2019). 
 
In an ideal workflow, each read would undergo manual inspection to determine its 
trustworthiness. However, this process is extremely time-consuming and requires 
considerable expertise (Coissac et al., 2012). Manual inspection of a single sequence can 
take minutes to hours, depending on researchers' decisions, and is not always reproducible 
or consistent within and across studies. Considering that metabarcoding studies often 
involve millions of dereplicated reads (i.e., non-redundant sequences), complete manual 



verification becomes impractical (Bálint et al., 2016). While the aforementioned tools can 
reduce this number to few thousands up to hundreds of thousands of representative 
sequences to consider (Bálint et al., 2016), the volume remains daunting. Consequently, 
many studies either omit manual verification entirely or pragmatically inspect only the most 
abundant reads. This underscores the need for new algorithms that can rapidly identify 
anomalous sequences, ideally using approaches distinct from existing pipeline steps to 
detect sequences that current methods may miss or wrongly filter. 
 
Deep neural networks (DNNs) are advanced machine learning models composed of multiple 
trainable layers of interconnected nodes, designed to recognize patterns and make 
decisions from large datasets (Christin et al., 2019). The biological target amplicon in 
metabarcoding is usually well-defined by the primer sequences used during PCR, as well as 
by its overall layout due to evolutionary constraints (Valentini et al., 2009), even when 
sequence patterns are very complex, divergent between markers and taxonomic groups, 
and therefore may not be obvious. Such complex patterns are predestined to be modelled 
using DNNs. Leveraging DNN features, the aim of this study is to enhance metabarcoding 
data clean-up pipelines by automatically identifying and classifying anomalous reads. 
 
Here, I propose the new software MetAnoDe (Metabarcoding Anomaly Detection) using 
novel character-level ensemble DNNs consisting of two major models (Minar & Naher, 2018; 
Mohammed & Kora, 2023). The first model is a recurrent neural network (RNN), specifically 
a long-short term memory (LSTM) model, which focuses on the sequential patterns of DNA 
sequences (Shiri et al., 2023; Yu et al., 2019). The second model is a convolutional neural 
network (CNN), which examines the spatial characteristics of a given DNA sequence 
(Alzubaidi et al., 2021). These models were individually and collectively as an ensemble 
benchmarked for biological validity, computational runtime, and potential integration points 
within a typical metabarcoding data processing pipeline. This software was applied 
separately to two commonly used markers in metabarcoding: bacterial 16S-V4 and plant 
ITS2. Pre-trained models for these markers are available for reuse, though the tool is 
applicable to other markers as well, provided new training is conducted — a process that 
can be automated but may be computationally intensive. 
 
This tool is intended to complement existing alignment-, abundance- and quality-based 
approaches by applying machine learning predictions to detect and classify (or remove) 
anomalous sequences (Hakimzadeh et al., 2024). It can be integrated at various stages of a 
bioinformatic workflow. Ultimately, these classifications can assist researchers in making 
faster, more reliable decisions regarding sequence trustworthiness in large datasets, 
thereby enhancing the quality of metabarcoding data. 
 
Material and Methods 
 
Model data preparation 
 
Data for training and validation of the models was sourced from curated public databases to 
ensure the inclusion of valid biological sequences. Specifically, the ITS2 dataset derived from 
curated public dataset (Quaresma et al., 2024), while the 16S-V4 dataset was obtained from 
the SILVA database (Quast et al., 2013). Both datasets encompass a broad range of 



biological sources and bioregions, thereby enhancing the generality of the models. 
Reference sequences were trimmed to match the amplicon region of (Kozich et al., 2013) for 
16S-V4 and (Sickel et al., 2015) for ITS2, ensuring priming consistency and amplicon 
comparability. Sequences that did not fully span the amplicon region or were full-length 
duplicates on the sequence level were removed. 
 
To create a balanced dataset for each marker for training and validation of models, the 
following datasets were generated and labelled with corresponding classes: 

1. Class 0 sequences (positive target amplicons): 
All remaining sequences from the database were labelled as true biological target 
sequences. Further, to account for variability not covered in the database, additional 
sequences with random low-substitution (1 %) or insertion-deletion (indel, 1 %) 
variations were generated from the original database sequences. These were 
combined with the original sequences to form Class 0 sequences. 

2. Class 1 and 2 sequences (simulated errors):  
High-substitution rate sequences (10%) and high-indel rate sequences (10%), 
simulating PCR or sequencing errors, were generated each in equal amounts to the 
Class 0 sequences. These constituted Class 1 and Class 2 sequences, respectively. 

3. Class 3 sequences (chimeras): 
Chimeric sequences were created by merging parts of two randomly chosen 
sequences from the original database, forming Class 3 sequences also in equal 
amounts to the Class 0 sequences. Merged parts consktuted at least 1/4 up to 3/4 
each of the original sequences from the beginning and end of a sequence, 
respeckvely.  

4. Class N sequences (known off-target products): 
The here developed somware allows to also model further sequence classes if 
provided. This allows classifying known off-target products. For bacterial 16S-V4, 
mitochondrial and plaskd 16S sequences were included as Class 4 and Class 5 
sequences, respeckvely. For plant ITS2, fungal ITS2 sequences from the UNITE 
database (Nilsson et al., 2019) were included as Class 4 sequences. Class 4 or 5 
sequences were each upscaled to match the amount of Class 0 sequences. This 
upscaling involved generakng addikonal sequences with low subsktukon and indel 
variakons as described for Class 0 sequences. 

 
The complete workflow is visually outlined in Figure 1. After generating the separate 
datasets, sequences from all classes were concatenated, shuffled twice, and split into 75% 
training data and 25% cross-validation data. This process ensured a robust and 
comprehensive training dataset capable of improving model performance and accuracy in 
detecting anomalous sequences. 
 
 
 



 
 
Figure 1: Workflow of MetAnoDe with the two possible pathways: left (light grey) side 
represents the training of new models, as here applied to ITS2 and 16S-V4. If pre-trained 
models are available, the right pathway (dark grey) is executed making predictions for query 
sequences. Pre-processing steps that need to be conducted prior to MetAnoDe application 
are highlighted in italic. Numbers represent volume of sequences used as input for the 
individual steps.  
 
 



Model training 
 
For model training and validation, Python 3.9 was used along with several essential 
modules: TensorFlow (2.16.1), Keras (3.3.3), Pandas (2.2.1), NumPy (1.23.5), Scikit-learn 
(1.4.2), BioPython (1.78), Matplotlib (3.8.4), and Keras-Tuner (1.4.7). The following 
procedure was applied independently for each marker: 
 
Data preparation: Sequences in the training and validation sets were tokenized and 
encoded at the character level using tokens defined from the full, i.e. train and validation, 
dataset. The resulting sequences were end-padded with zeros and reshaped to match the 
requirements of the CNN and LSTM input layers. 
 
Model architectures: The architecture of the CNN, LSTM, and ensemble models is illustrated 
in Figure 2. In all models, dropout layers were included to prevent overfitting and enhance 
the generalizability of the models. Sparse categorical cross-entropy was utilized as the loss 
function, and L2 activation regularization was applied. For the ensemble model, the output 
layers of the LSTM and CNN models were concatenated. Fully connected layers were then 
added to form an ensemble model. 
 
Hyperparameter tuning: Hyperparameter tuning for the LSTM and CNN models was 
conducted using a hyperband search as implemented in keras-tuner (Li et al., 2018). Optimal 
model parameters were chosen based on validation accuracy.  
 
Technical cross-validation: Models were evaluated in their performing by calculating 
accuracy, precision and recall of predictions in the validation set.  
 
Training of the 16S and ITS2 models was executed on an Ubuntu 24.04 system equipped 
with a Ryzen 7 (16-core) CPU, 64 GB RAM, and a GEFORCE 4070TiS GPU, utilizing the GPU 
for processing in TensorFlow. Training and validation code was also tested for compatibility 
on Ubuntu 24.04 and MacOSX 12.3 without GPU support using a smaller test set. 
 

 
Figure 2: Layers of the individual models as defined in Tensorflow and Keras. All three models 
are used for predictions.  



 
 
Independent real data prediction and manual validation 
 
For the ITS2 and 16S-V4 markers, several own studies listed in Table 1 were selected based 
on the amplicon and sequencing strategy used and their compatibility with the models, their 
public availability, and their diverse biological contexts, geographical bioregions, and input 
material types. This selection aimed to test the generalizability of the method. Bacterial 16S-
V4 sequencing libraries were prepared according to (Kozich et al., 2013), while plant ITS2 
sequencing libraries were generated following (Sickel et al., 2015). Data obtained from other 
library preparation strategies might be equally used, given usage of the same primers as 
well as adapter and primer trimming. All data was sequenced either on Illumina MiSeq or 
HiSeq devices. More details are provided in the respective publications of studies and library 
generation. From each of these studies, 20 random samples were chosen for predictions. 
Data from these subsets were processed according to the pipeline outlined by (S. D. 
Leonhardt et al., 2022)(https://github.com/chiras/metabarcoding_pipeline) utilizing mainly 
VSEARCH (Rognes et al., 2016). 
 
 
Table 1: Data origins that were used for real data prediction.  
 

Marker Sample type Geographic origin Reference 
Bacterial 16S-V4 soil Ecuador (Garcia et al., 2024) 
Bacterial 16S-V4 flower & phylosphere Germany (Gaube et al., 2021) 
Bacterial 16S-V4 frog skin & faeces Caribbean (F. Leonhardt et al., 2023) 
Bacterial 16S-V4 bee nests Germany (S. D. Leonhardt et al., 2022) 
Bacterial 16S-V4 wasp guts Italy (Ronchetti et al., 2022) 
Bacterial 16S-V4 peat swamp soil Malaysia (Too et al., 2018) 
Bacterial 16S-V4 soil Tanzania (Vogel et al., 2023)  
Bacterial 16S-V4 bee guts, nests & pollen Germany (Voulgari-Kokota et al., 2019) 
Bacterial 16S-V4 bee guts Germany (Weinhold et al., 2024) 
Plant ITS2  honey, pollen Brazil (Martins et al., 2023)  
Plant ITS2  bee nests Germany (Peters et al., 2022) 
Plant ITS2  pollen USA (Vaudo et al., 2020)  
Plant ITS2  gut contents Tanzania (Mayr et al., 2021) 
Plant ITS2  pollen Ecuador (Villagómez et al., 2024) 
Plant ITS2  bee nests Australia (Wilson et al., 2021) 
Plant ITS2  gut contents Germany (König et al., 2022) 

 
Predictions were conducted at various stages of the metabarcoding pipeline (Figure 1) to 
determine the optimal integration point for the new tool within existing workflows. This 
approach aimed to evaluate the overlap and exclusivity between MetAnoDe classifications 
and those generated by alignment-based filtering methods. Additionally, it assessed 
whether applying MetAnoDe early in the pipeline would enhance the quality of subsequent 
processing steps and reduce overall runtime, or if it would be sufficient to apply MetAnoDe 
only to the final, fully processed data. 
 

https://github.com/chiras/metabarcoding_pipeline


Finally, sequences underwent manual inspection using BLAST (Altschul et al., 1990) against 
the NCBI GenBank database (excluding environmental samples) (Benson et al., 2018). 
Classifications were validated by examining their taxonomy and alignments, as well as 
verifying the integrity of the underlying GenBank records. This inspection was applied to the 
classifications from all three models after VSEARCH merging, quality filtering and 
dereplication (Figure 1: insertion point 1), as well as the entire VSEARCH data analysis 
pipeline without MetAnoDe. Classifications from all four approaches were evaluated as 
valid, non-critical, or critical. Valid classifications were those confirmed through manual 
inspection. Non-critical classifications were those where anomalies were correctly 
identified, i.e., sequences flagged for removal, but not with the correct anomaly class. 
Critical classifications referred to instances where anomalous sequences were incorrectly 
classified as valid targets or valid sequences were incorrectly flagged for removal. 
 
The optimal insertion points for the models were evaluated by examining the runtime of the 
entire pipeline when the models were applied at different stages. Computationally intensive 
tasks, such as denoising, can significantly benefit from a reduced number of sequences, 
making early-stage identification of anomalous sequences advantageous for reducing 
runtime (Coissac et al., 2012). Conversely, an increase in the number of sequences 
processed by the deep-learning models can lengthen their prediction runtime. 
 
Results 
 
Technical cross-validation 
 
Overall, all models achieved high validation accuracy, exceeding 90% for both markers. 
Fungal sequences in the ITS2 models were predicted perfectly. However, predictions for 
mitochondria and plastid sequences as off-targets in 16S were less precise (low as 0.77) or 
with lower recall values (low as 0.71), respectively. During technical validation, individual 
models performed slightly better than the ensemble. 
 
Table 2: Cross-validation results of all three models overall and for the individual classes.  Within 
each cell, values are ordered as Ensemble | LSTM | CNN. Support indicates the sample size used for 
cross-validation.  
 
Model Class Precision Recall F1-Score Support 

16S 0 positive 0.91 | 0.94 | 0.96 0.94 | 0.97 | 0.97 0.92 | 0.96 | 0.97 120,347 | 120,347 | 362,050 
 1 high substitution 0.89 | 0.99 | 0.98 0.92 | 0.96 | 0.98 0.90 | 0.97 | 0.98 120,720 | 120,720 | 361,678 
 2 high indel 0.94 | 0.97 | 0.98 0.94 | 0.98 | 0.99 0.94 | 0.98 | 0.99 120,502 | 120,502 | 361,896 
 3 chimera 1.00 | 0.98 | 0.99 0.94 | 0.96 | 0.97 0.97 | 0.98 | 0.98 120,157 | 120,157 | 362,241 
 4 mitochondria 0.80 | 0.77 | 0.78 0.93 | 1.00 | 0.98 0.86 | 0.87 | 0.87 120,478 | 120,478 | 361,920 
 5 plastids 0.92 | 0.99 | 0.98 0.76 | 0.71 | 0.72 0.83 | 0.83 | 0.83 120,649 | 120,649 | 361,749 
 Overall validation accuracy 0.90 | 0.93 | 0.94 722,853 | 722,853 | 2,171,534 
      

Model Class Precision Recall F1-Score Support 
ITS2 0 positive 0.81 | 0.84 | 0.82 0.89 | 0.96 | 0.87 0.85 | 0.90 | 0.85 103,355 | 103,355 | 310,598 

 1 high substitution 0.86 | 0.96 | 0.88 0.90 | 0.96 | 0.93 0.88 | 0.96 | 0.91 103,646 | 103,646 | 310,308 
 2 high indel 0.98 | 0.98 | 0.98 0.92 | 0.96 | 0.95 0.95 | 0.97 | 0.96 104,014 | 104,014 | 309,940 
 3 chimera 0.96 | 0.98 | 0.96 0.88 | 0.86 | 0.88 0.92 | 0.91 | 0.92 103,478 | 103,478 | 310,476 
 4 fungi 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 1.00 | 1.00 | 1.00 103,538 | 103,538 | 310,416 
 Overall validation accuracy 0.92 | 0.95 | 0.93 518,031 | 518,031 | 1,551,738 

 



Independent real data prediction and manual validation 
 
Predictions for the 16S independent dataset showed that none of the sequences were 
critically misclassified by the three deep-learning models, whereas the standard VSEARCH 
pipeline misclassified 8% of the sequences critically. Regarding non-critical classifications, 
the ensemble, LSTM, and CNN models had wrong assignment rates of 12.8%, 23.2%, and 
24.0%, respectively, compared to 18.4% for VSEARCH. Keep in mind that these results 
represent proportions of unique read numbers, not reflecting their abundances. 
 
It's important to note that the values reported for VSEARCH were obtained using an 
extended reference database that included mitochondrial and plastid sequences, which 
need to be removed in subsequent steps. Using a database that does not include such 
references resulted in an additional 23.2%, leading to a total of 31.2% critical errors. 
 
For the ITS2 independent dataset, critical mistakes were observed across all methods: 6% 
for the Ensemble, LSTM, and CNN models, and 7% for VSEARCH. Non-critical errors rates 
were also nearly identical, with the Ensemble and LSTM models each at 11% and the CNN 
and VSEARCH methods both at 12%. In contrast to the cross-validation, during independent 
validation, the ensemble model outperformed the individual models for the 16S marker and 
classified with equal quality for ITS2. Overlap between errors in classifications of models and 
VSEARCH ranged between 35% and 60%. Overall overlap in all predicted classifications 
between the ensemble and VSEARCH was 78.4%. 
 
 

  
 
Figure 3: Manual validation results with real metabarcoding data for 16S-V4 (left), ITS2 (right). 
Critical errors are considered such that lead to either to missing to remove anomalous sequences or 
incorrect filtering of valid sequencing. Non-critical errors are considered such that detect an anomaly 
but not the correct class of anomaly. In 16S-V4, BMP-DB indicates that a follow-up taxonomic 
classification against a reference database that includes bacterial, mitochondrial and plastid 
sequences has been applied additionally to Figure 1 in the standard metabarcoding pipeline to 
classify off-targets. The same applies to B-DB, where Mitochondria and Plastids are not included. For 
ITS2, only a plant database was used.  
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Insertion point 
 
Overall, there was a runtime improvement in both datasets (16S: 5.1%, ITS2: 3.4% when 
applying the models before denoising instead of after. There was no runtime difference in 
total runtime applying the models before or after chimeric filtering.  
 
Discussion 
 
In this manuscript, I introduce a novel workflow and software designed for identifying and 
classifying anomalous sequences in metabarcoding data using deep-learning models. The 
software offers two distinct pathways that can be executed either independently or 
concurrently with a single command. If only data predictions are required (i.e., utilizing pre-
trained models provided or previously generated), no further training is necessary. This 
ensures fast and reliable processing, typically completing within minutes with high accuracy. 
In cases where no pre-existing model covers the target region, training can be conducted 
seamlessly within the same software environment. Detailed instructions on executing the 
software via the command line are provided in the corresponding dedicated sections below. 
 
To the best of my knowledge, no other workflow or software has been proposed to date 
that addresses the detection of anomalous metabarcoding reads using deep-learning 
methodologies, e.g., see a recent review of available methods (Hakimzadeh et al., 2024). 
The approach is alignment-free and independent of sequencing quality statistics, providing a 
complementary perspective on data compared to existing tools. 
 
Validation 

The technical cross-validation reported very high accuracy, precision, and recall overall and 
for individual classes. Consequently, errors and artifacts simulated here, as well as off-target 
products, were detected and classified with high confidence. The validation using true 
target metabarcoding data, i.e., the independent validation, performed slightly less well but 
still maintained high accuracy. This slight decrease might be due to the fact that the data 
used for cross-validation was generated using random distributions for errors, indels, and 
chimeras, which may not entirely reflect real PCR and sequencing errors and artifacts 
(Schirmer et al., 2015). Additionally, non-functional copies of ribosomal DNA and 
pseudogenes were not included in training as a separate class and might fall out of patterns 
of random degradation (Porter & Hajibabaei, 2021). 

For the 16S data, all mistakes made by the deep-learning models were non-critical, meaning 
anomalies were identified but not always correctly classified. In the ITS2 dataset, mistakes 
were comparable in frequency to those made by current alignment-based methods. It is 
noteworthy that mistakes (both critical and non-critical) often affected different sequences 
between VSEARCH (Rognes et al., 2016) and the models, highlighting the complementary 
nature of these approaches. This suggests that combining deep-learning and alignment-
based methods can provide more comprehensive detection of anomalous sequences. 
Comparing the models, the ensemble performed significantly better on the 16S data than 
the other models, indicating it might be the best choice for sequence filtering. 



Overall, this investigation confirms that a significant number of anomalous sequences, 
ranging from 25 to 30%, are not detected by classical methods. As a result, many non-target 
sequences are being included in biodiversity estimates and analyses that lack a thorough 
follow-up sequence analysis of residuals. This underscores the importance of identifying 
such anomalies, where the proposed deep-learning models can make a valuable 
contribution to identifying potential targets for removal. 

Insertion points and runtime 
 
Overall, I observed small runtime benefits when applying the models prior to denoising the 
data, but no significant difference when applied before or after chimera filtering. This is 
likely because denoising is a highly computationally intensive task, whereas chimera filtering 
is much less so, and thus a reduced data volume has a more substantial impact on runtime 
on the first. However, for early-stage application of the models (e.g., stages 1 and 2 in Figure 
1) to achieve runtime benefits, it is necessary to directly remove anomalous sequences by 
the model, not just flag them (optional parameters). This approach is similar to current 
alignment methodologies that involve direct removal and might be suitable for fully 
automated workflows. Given that all methods, both alignment-based and deep-learning, 
have inherent flaws, it may be advisable to work with flagged sequences when working with 
new data, followed by their subsequent inspection and potential removal. This corresponds 
to a flagging only insertion at point 3 in Figure 1, where only the residual sequences that 
have passed all previous filters are considered for deep-learning predictions. Subsequently, 
flagged sequences can be manually inspected within this comparatively smaller volume of 
final sequences. 
 
Predictions using pre-trained models 
 
Predictions can be promptly generated using the pre-trained models available in the 
repository. This corresponds to the dark grey workflow in Figure 1. Adapter as well as primer 
sequences however need to be removed from data prior to analysis to match the model, as 
this varies between different amplicon library generation strategies. The software is called 
by the command line, requiring only the inclusion of the pre-trained models alongside the 
query data.  
 
python mb_anomaly.py -query <query.fasta> -p <model_name> 
 
By default, the software retains all sequences in the query data but annotates them based 
on their classification from each of the three models in the output. However, an option for 
sequence removal is also available. Additional customizable options can be explored by 
running the script without additional arguments. The software generates two output files 
stored in the 'predictions' subfolder: a comma-separated file (CSV) presenting classification 
results in tabular format, and a second file containing flagged sequences (or a subset if 
removal is opted) in FASTA format. 
 
All dependencies, as specified above, need to be installed for proper execution of the code. 
Installation guidelines for these dependencies are provided in the repository. The script 
supports both GPU and CPU data processing, with notable runtime improvements 



achievable when utilizing GPUs. The reported predictions were conducted on Ubuntu 24.04 
with GPU support, but have also been tested on Ubuntu 24.04 and MacOSX 12.3 without 
GPU support. 
 
Predictions with other target regions and new training of models 
 
The workflow is entirely automated and can be adapted for different target regions, 
however necessitating complete training of models from scratch in such cases. In case no 
pre-trained model is specified, every required component of the light grey workflow 
depicted in Figure 1 is executed, encompassing data pre-processing, hyperparameter 
optimization, and final model generation. Milestones are set during execution, allowing to 
skip parts in case they are already present when needed. 
 
To initiate the process, correctly trimmed and deduplicated reference sequences must be 
provided using the parameter -db <ref.fasta>. Optionally, multiple known off-target 
amplicon regions can be incorporated using -ot <ot1.fasta>,<ot2.fasta>,<ot3.fasta>[,...], 
ensuring each type is included separately in the model. A designated model name must be 
specified to consolidate all pertinent models and parameters.  
 
An illustrative example of the software's call that involves both training models on new data 
and predicting query data in a unified execution: 
 
python mb_anomaly.py -query <query.fasta> \ 
 -p <model_name> \ 
 -db <ref.fasta> \ 
 -ot <ot1.fasta>,<ot2.fasta>,<ot3.fasta> 
 
Once a model is trained, it can be reused for new data by specifying the corresponding 
model name. The script supports both GPU and CPU processing; however, it is important to 
note that CPU processing significantly extends the duration of model training. Therefore, for 
efficient training, GPU utilization is strongly recommended here. There is no strict limit on 
the number of reference sequences and their lengths or off-target classes that can be 
incorporated. However, the memory required for encoding and training could potentially be 
a constraint depending on the available hardware resources. 
 
Conclusions 
 
In conclusion, the introduced workflow and software effectively identify and classify 
anomalous sequences in metabarcoding data using deep-learning models. With high 
validation accuracy, these models offer a complementary perspective to existing alignment-
based methods. Ultimately, the deep-learning models, in synergy with traditional methods, 
can significantly enhance the detection of anomalous sequences, reducing the inclusion of 
non-target sequences in biodiversity estimates. This approach underscores the importance 
of integrating multiple methods for a comprehensive analysis, where deep-learning models 
add substantial value by identifying potential targets for removal. 
 
Acknowledgments 
 



I appreciate funding by the LMU Munich by the Excellence Fonds (number VIII.2/bk 865104-
8) providing necessary means for this study.  
 
Data and code availability 
 
All code and data as used for this study is available on GitHub 
(https://github.com/chiras/MetAnoDe). Raw metabarcoding data is obtainable from the 
individual studies as listed in Table 1. Processed data at the stages investigated in this study 
are included in the repository.  
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