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Abstract1

Flowers and their pollinators represent a bipartite interaction system, whose links are hy-2

pothesised to be related to species traits. To explore whether we can predict the weight of3

this link, i.e. the frequency of interactions, in an validation network, we analysed 14 studies4

of pollinator-flower visitation network from around the world.5

We used information on species abundances, their traits and their phylogenetic (for plants)6

or taxonomic (for animals) position as predictors of interaction frequency, and fitted different7

statistical modelling approaches. We expected to see prediction quality on validation data to8

decay with spatial and temporal distance to the training networks. Similarly, we expect that9

changes in pollinator or plant composition will negatively affect predictive performance.10

Using the best-predicting modelling approach (randomForest), we indeed see a slight decay11

in predictive quality with plant and pollinator compositional distance. Temporal distance12

played little role, although predictions for one year ahead (or back) were better than across13

the season or across multiple years.14

The overall predictive power of our models was low (Spearman’s 𝜌 ≈ 0.4), suggesting15

a very noisy system. Also, the most important predictor was abundance, as revealed by a16

parameter-free benchmark model that only used the cross-product of abundances to predict17

interaction frequency. Trait and phylogenetic information did not substantially improve18

predictive performance beyond abundance-based predictions. Across all studies, we failed to19

confirm a substantial contribution of ecological characteristics to pollinator-flower interaction20

frequency.21

One reason why predictions were relatively poor is that sampling effort is not standardised,22

and thus networks differed substantially in the observed number of interactions, network23

size, and interaction density. Also the pooling of networks across space or across time may24

have diluted preferences in the data, reducing their explanatory value. Finally, the majority25

of species in each network are rare, and the interaction information they provide may be26

much less relevant that that of common species.27

At present, we conclude that the frequencies of interactions are very difficult to predict,28

and using traits we cannot really do better than simply using abundance information.29

Keywords:30

flower visitation, machine learning, pollination, prediction, trait-matching31

1 Introduction32

Many ecological phenomena exhibit strong variability, resulting in low proportions of explained33

variance, and poor predictive performance of statistical as well as process models (Doak et al.34

2008; Mouquet et al. 2015). Aggregate phenomena, such as biomass or species richness, average35

out the variability observed at the level of species, populations and individuals, making them more36

reliable targets for ecological research. But researchers in evolution, conservation and ecology are37

particularly interested in individual- and population-level processes. In pollination ecology, for38

some plant species, and many of the pollinators, understanding which species they interact with39

is relevant: rare plant species (Robson 2013; Rodger et al. 2021) or species of commercial interest40

(Klein et al. 2007; Ollerton et al. 2011; Winfree et al. 2018) may crucially depend on these specific41

interactions to overcome pollen limitation. We want to understand why certain pollinators only42

visit particular plants, regardless even of how important the interaction is for the species’ fitness.43

The tools to achieve understanding include causal explanation, generalisation, and testing44

(Pickett et al. 2007). Thus, by attempting to predict interactions we test our causal explanations45

of observed interactions, generalising these explanations by testing them on a number of dif-46

ferent study systems. Being able to predict interactions allows us to test our understanding of47
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the processes governing interactions, and such understanding paves the way for any applica-48

tion including management and conservation of biodiversity in natural and human-dominated49

ecosystems (Peralta et al. 2024).50

Species interact with other species in different frequencies that vary by orders of magnitude,51

and such differences may strongly determine (although are not the same as) interaction strengths52

(the ecological impact of one species on another: Berlow et al. 2004). Thus, considering quantitative53

interactions gives us more information about the ecological processes we want to understand,54

and in that sense prediction of links alone represents a limited gain in understanding. Either way,55

it is unclear how well we may be able to predict the frequency of interactions for such networks.56

We are aware of only two previous studies that attempted to predict interaction frequency,57

Pichler et al. (2019) and Benadi et al. (2022), and both are technical studies that test approaches in58

simulations and on a single exemplary data set. These results suggest that species abundances59

play an important role for observed interaction frequency: if species interact according to their60

relative abundances (𝑝𝑖 for flower 𝑖 and 𝑝𝑗 for pollinator 𝑗 , each computed as the observed divided61

by the total number of interactions 𝑛), the expected frequency 𝑛𝑝𝑖𝑝𝑗 for any given link was close62

to the observed data in these studies. Note that this implies that rare species will be observed63

much less, infusing the data with false missing links.64

When attempting to predict interactions, we should start by attempting to predict links: the65

presence–absence of each pairwise species interaction—who interacts with whom. For plant-66

pollinator networks, links within a network can be predicted moderately well, with AUC values67

of around 0.7 for the best models on simulated data (Terry & Lewis 2020). Yet, predicting the68

presence or absence of links between species differs from predicting the actual frequency of those69

interactions: how many times each pair of species interacts. Predictive interpolation of links (i.e.70

within networks) is also substantially easier than extrapolating links of new networks, i.e. when71

both plants and pollinator composition changes. This problem becomes even larger for interaction72

frequency, when not merely the existence but the intensity of an interaction is to be estimated for73

new sites or times.74

Network ecologists assume causal links between species traits and species interactions. That75

is, interactions are not entirely idiosyncratic and species-specific, but rather interactions are76

more likely when traits match, or indeed absent for “forbidden” trait combinations (reviewed77

in González-Varo & Traveset 2016). In consequence, a model that is able to represent the causal78

drivers of pollinator interactions through the use of traits and abundances should be able to79

predict well to other sites even with different plant and pollinator species. The key challenge is to80

identify which traits are relevant. Pollinators use vision and scent to judge a flower’s attractiveness,81

yet ecologists primarily measure easily accessible characteristics, such as body size and flower82

morphology. To date, we have no comprehensive way to assess biochemical trait-matching, let83

alone a data base with estimates for more than a handful of pollinator species. If scent- and84

vision-related traits are phylogenetically conserved to some degree, one can use phylogenetic85

relatedness as surrogate of the missing traits (Smith 2010, but see van der Niet & Johnson 2012).86

That is the idea behind augmenting the measured traits with phylogenetic eigenvectors, which in87

their combination represent “latent” (= unobserved) traits within a branch of the phylogeny.88

A strong test of prediction requires fitting (training) the models and then testing them with89

an independent data set. Such independence increases with spatial or temporal distance to the90

training data. When fitting a model to a set of networks, it is arguably more challenging to predict91

a network at the same site a few years into the future, or at a very different site, than to networks92

within the training space or time. Indeed, a model’s predictive ability should decrease with spatial93

or temporal distance between training and test data. This distance decay of predictive ability94
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comes from the heterogeneous distribution of species in time and space, which causes training95

and test communities to become increasingly different with distance. We may hypothesise that96

across space, plant turnover may drive predictability: plants depend strongly on soil, climate and97

management, and hence may change substantially across sites, but much less over the years (but98

well over the course of a season). On the other hand, pollinator variability may drive predictability99

across time, as their abundance fluctuates from year to year, while they can fly and may thus seek100

out whatever their preferred floral resources are even across larger spatial scales. Thus, testing101

our ability to predict interactions depends on the availability of datasets that can be split into102

training data and (independent) test data.103

In this study we explore 14 previously published studies of plant-pollinator networks to104

explore the connection between compositional distance and predictability. We theorise that plants105

and pollinators interact as a function of their respective abundances and the match of their106

interaction traits. A statistical model can learn which trait or trait combinations are important for107

interactions, and hence predict unobserved interactions based on these traits. If true, we can thus108

expect that (i) abundances determine the basic interaction frequency, such that the cross-product109

of relative abundances should give a good indication of observed frequencies. We hypothesise110

(ii) that this basic frequency is increased when flowers and pollinators exhibit matching traits,111

and reduced if they do not, leading to traits improving frequency predictions. As a result, we112

expect (iii) to see predictions to networks comprising similar species being more successful than113

to those with a very different set of plants and/or pollinators. Temporal and spatial distance are114

thus merely proxies for species compositional distances.115

In the following, we outline the data included in our database, the methods used to analyse116

and predict plant–pollinator interactions, and the within-study analysis of predictive quality.117

Although dozens of publications report plant-pollinator networks (for example, Terry & Lewis118

2020, used 48 of them), our hypotheses required strict inclusion criteria: quantitative networks119

replicated in space and/or time, with sufficient information to allow construction of phylogenetic120

or at least taxonomic trees (to construct latent traits, see Methods). Also, our focus is the prediction121

of interaction frequency, not merely occurrence of a pollination event as in most previous studies122

on predicting pollination interactions (e.g. Terry & Lewis 2020; Sydenham et al. 2022, 2024). We123

analysed each case study separately but present the trends across studies.124

2 Methods125

We first describe which kind of data we assembled for each case study (interaction networks, traits,126

abundances, phylogeny and taxonomy), before outlining the methods used for modelling them.127

Then we detail the training and validation strategy (using spatial and temporal cross-validation128

on data pooled over the respective other dimension). We close on a short description of each129

contributing study and the specific cross-validation setting.130

2.1 Predictor variables131

Abundance. The relative abundances of species are widely hypothesized to influence the probability132

of interaction. Most simply, more abundant species are hypothesized to interact with one another133

more frequenlty than rare species. Abundances may or may not be sampled independently of the134

network itself (“external abundances”), and they are rarely reported. Such external abundances135

are more common for plants (e.g. vegetation transects) than pollinators (e.g. sweep-net transects).136

We used external abundances as predictor whenever available, and network-based abundances (i.e.137
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sum of observed interactions per species) otherwise. Species recorded in networks but missing in138

external abundances were set to an external abundance of 1 (i.e. the lowest possible value).139

Interaction traits. Specific interaction relevant traits are hypothesized to influence the formation140

of interactions between species and their probabilities. For example, morphological interaction141

traits that match, such as species morphology (e.g. length of proboscis or corolla) or olfactory142

or visual cues (floral scent and colour, petal markings) are hypothesized to promote interaction143

formation. Nevertheless, it is challenging to compute a match between traits, e.g. what shape a144

bee must have to be able to access the nectar of a flower. As a consequence, traits reported are145

typically those that are easy to measure (and match morphology), not necessarily those most146

important for an interaction (floral bouquet, scent sensitivities, colour perception).147

Latent traits. In addition to the traits provided by the authors of the respective studies, we tried148

to construct latent traits based on the phylogeny or taxonomy of the species recorded. The idea is149

that the position of a species in the phylogenetic tree may imply the value of a trait relevant for150

the interaction. Thus, for each study we constructed the phylogenetic relationship of the plants151

based on U.PhyloMaker (Jin 2023) and the instructions on its github pages.1 For pollinators, no152

such reliable source is available across the invertebrate orders (as the data also include arachnids153

and vertebrates), and hence we here construct a tree based on taxonomic relationships. We154

resolved synonyms, and referenced phylogeny/taxonomy, using taxize (Chamberlain et al. 2020).155

We plotted the resulting trees (using phytools: Revell 2024) and checked for correctness. Then we156

decomposed them into phylogenetic eigenvectors (using MPSEM: Guenard & Legendre 2022), of157

which there are one fewer than species in the tree.158

The data to analyse thus consist of the observed number of interactions between plant A and159

pollinator B, and the abundances, traits and phylogenetic eigenvectors of plants and pollinators,160

respectively. Convenience functions in tapnet (make tapnet and tapnet2df) ensures that all161

traits, abundances and network names are matched correctly before converting everything into a162

long-format data set for analysis with machine- and deep-learning tools.163

2.2 Method to predict interaction frequency164

We investigated three types of predictive approaches: baseline predictions based only on network165

size and abundances (base 1 and 2, respectively); predictions based on an explicitly defined166

trait-matching approach (Benadi et al. 2022, “tapnet”); and predictions based on three different167

machine/deep-learning approaches previously used for similar tasks (Pichler et al. 2019; Terry &168

Lewis 2020).169

The simplest baseline (base 1) gives every interaction the same probability, i.e. 𝑁 ⋅ 𝑃(�̂�𝑖𝑗 ) =170

𝑁/(𝑛𝑚),2 where �̂� (size 𝑛 × 𝑚) is the predicted network, with 𝑁 interactions observed between171

𝑛 plant and 𝑚 pollinator species. Baseline 2 predicts interactions based on abundances, i.e. as172

cross-product of the abundance vector 𝑎𝑛 for plants and 𝑎𝑚 for pollinators: 𝑁 2
⋅ 𝑃(�̂�𝑖𝑗 ) = 𝑎

⊺
𝑛𝑎𝑚.3173

Note that base 2 contains information about the network whenever no external abundances are174

available, because it uses marginal totals (see also Discussion).175

The “tapnet” approach (Benadi et al. 2022) uses abundances in the same way as baseline 2, but176

adds a probability based on trait matching of pre-specified trait pairs (e.g. length of proboscis and177

corolla), as well as a trait match of latent traits constructed from a linear combination of (a few)178

phylogenetic eigenvectors. The optimisation of this latent trait-pair increases exponentially with179

1https://github.com/jinyizju/U.PhyloMaker
2This means, the 𝑁 interactions are spread evenly across all 𝑛𝑚 cells of the matrix. Since 𝑃 is a probability, it has to

be multiplied with 𝑁 to give us the expected interactions.
3Since 𝑎𝑛 and 𝑎𝑚 are divided by 𝑁 to give a fraction, we need to multiply 𝑃 with 𝑁

2 to give us expectations.
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the number of eigenvectors considered and thus had to be confined to the first 5. Also, tapnet is180

limited in the number of networks used for training and thus cannot use all training networks in181

some cases (see case study descriptions). The model is available as R-package tapnet, version 0.6182

(Dormann & Benadi 2023).183

The machine- and deep-learning approaches comprise random forest (see also Pichler et al.184

2019; Ornai & Keasar 2020; Sydenham et al. 2022; Benadi et al. 2022), extreme gradient boosting,185

and a neural network, all implemented as R packages. Specifically, we used: (1) ranger, version186

0.16.0 (Wright & Ziegler 2017), with default settings. (2) Extreme gradient boosting, using xgboost187

package, version 1.7.7.1 (Chen et al. 2024), with hyper-parameter training of nrounds (200, 1200,188

2000), max depth (1, 2, 3, 5), eta (0.01, 0.001, 0.0001) and gamma (0, 1, 10), using a Poisson-likelihood189

and defaults otherwise. We tuned xgboost on the first training subset of each study and used the190

resulting settings for all other training runs. (3) A neural network (a fully connected multi-layer191

perceptron: MLP) assuming a Poisson likelihood was fitted using cito, version 1.1 (Amesoeder et al.192

2023), which internally calls the torch framework; hyper-parameter tuning included the number193

of nodes in the first of two hidden layers (20-150 nodes in steps of 10), a regularisation with194

lambda betwen 0.00001 and 0.01, an elastic net tuning alpha between 0 and 1, a batch size between195

500 and 3000; and a learning rate on a log scale betwen 10
−6 and 10

−3, with 200 epochs and a196

selu activation function. Within these limits, 150 tuning combinations were randomly selected197

and the resulting best hyper-parameter was used for fitting the MLP. As for extreme gradient198

boosting, the MLP was tuned on the first training subset per study. We do not present the MLP in199

the results, because it failed to provide reasonable predictions for many case studies, largely due200

to an insufficient sample size.201

Other approaches were excluded mainly because they predicted links but not interactions (e.g.202

Eklöf et al. 2013; Elmasri et al. 2020; Klomberg et al. 2022; Young et al. 2021); these approaches are203

reviewed in Terry & Lewis (2020). Brousseau et al. (2018) used a GAM, which makes it necessary to204

pre-select phylogenetic eigenvectors to avoid unidentifiability of the model. Also, it is less flexible205

than the machine-learning approaches used and performed worse in an earlier study (Benadi et al.206

2022). The approach of Crea et al. (2015) was not included because it predicts interactions only207

from the perspective of one group, not both.208

2.3 Training and validation209

Each study required different training and validation decisions for the cross-validation. We explain210

here the general strategy behind these decisions, and in the case study description below we give211

the details for each case study.212

We fitted the models and made predictions separately for each study. We split the available data213

into training and test networks. When both temporal and spatially replicated networks were avail-214

able, we pooled them across the dimension not under consideration using bipartite::frame2webs215

(Dormann et al. 2008). That is, we combined networks across time for spatial prediction, and216

we combined networks across sites for temporal prediction. We acknowledge that this dilutes217

possible signals at the network level, but otherwise we would be left with too small and incomplete218

networks for the training phase (see Table 1 for resulting average network dimensions).219

Depending on the number of networks available, we used a subset for training, from which220

we made predictions for all other networks. For example, for 8 networks in total, we would use 4221

for training, predicting the other 4. Then, we swapped the training/validation data, repeated the222

procedure to finally obtained 8 validation points. When the number of networks was much larger,223

instead of this two-fold cross-validation we used a three-fold validation, fitting one third of the224
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networks and predicting the remaining two thirds (see Table 1).225

We evaluated the quality of the prediction by calculating the correlation between predicted226

and observed interaction frequency (using Spearman’s 𝜌) and the normalised Nash-Sutcliffe227

efficiency (NNSE), because other measures such as root mean squared error (RMSE), median228

absolute difference (MAD: Gauss 1816) and (negative binomial) log-likelihood depend on the229

number of data points and their absolute values, making results less comparable among different230

case studies. The normalised Nash-Sutcliffe efficiency compares the squared error of a prediction231

to that of the squared error of a reference, in our case the mean of observed frequencies. An NNSE232

> 0.5 indicates that the model has skill, i.e. it predicts better than the mean of the data.233

2.4 Temporal and compositional distance234

For each case study we computed the distances in time between the mean of training networks235

and each validation network. Thus, if a study comprised 4 years and the first two were used for236

training, then the distance of networks of years 3 and 4 would be 1.5 and 2.5 years, respectively.237

We would need to calculate spatial distance differently, as case studies included two types of238

designs: altitudinal gradients, where elevational distance is more relevant than geographical239

distance, and multi-site studies, where geographic distance could be appropriately computed.240

Each type of spatial study contributed too few studies to allow for a meta-analysis of either spatial241

or elevational distance.242

Furthermore, we computed the compositional distance between all networks as Bray-Curtis243

distance of their abundances, separately for plants and pollinators. We averaged abundances244

for the training data and computed the Bray-Curtis distance between each network and mean245

training abundance. We used these distances to assess whether plants and/or pollinators determine246

prediction quality.247

2.5 Statistical analysis of study-level results248

Since we had the original cross-validation results from all case studies, we were able to run an249

“individual-participant level meta-analysis” (as it is referred to in medicine: Riley et al. 2010; and250

known in psychology more vaguely as “integrative data analysis”: Curran & Hussong 2009). Thus,251

we did not aggregate the data per case study to an effect size, as in a conventional meta-analysis,252

but kept the individual validation results and analysed them as raw data. For this analysis we253

used a mixed-effects model with study ID as random effect, and distance in time or composition254

as univariate predictor (representing our respective hypothesis), with a third-order polynomial255

effect to account for non-linear effects.256

2.6 Analysis of case studies combined257

If observed or phylogenetic latent traits are relevant for plant–pollinator interactions (our hypoth-258

esis ii), we should be able to train a model also across all studies on the species-level information.259

To do so, we combined all data from all studies into a single data set for a large general analysis260

(akin to Pichler et al. 2019). Since several studies did not provide external abundances, and no261

trait was reported for either plants or pollinators for more than 20% of the species, we could only262

use phylogenetic eigenvectors as predictors for this general analysis.263

Specifically, we combined all plant taxa (798) into a single large phylogeny in the same way264

as described above for the case studies. The pollinator taxa (2469) were combined into a large265
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taxonomy, which was converted into a pseudo-phylogeny, as described above. Each pseudo-266

phylogeny was then used to compute 𝑁 − 1 orthogonal phylogenetic eigenvectors, which were267

combined with the 89,968 network links representing 194,125 observed pairwise interactions in268

513 networks.269

Since every study used a different sampling intensity, we standardised the frequency of270

observations per study to yield the same interaction density of 10−5 interactions/link (which is the271

median interaction density observed in all studies; we tried the maximum density of 0.1, which272

yielded slightly poorer cross-validation errors). To do so, for each study, we divided the observed273

interactions by the total number of interactions (making them sum to 1), then multiplied it by the274

number of observed links (to give each the average study weight) and by 10
−5. In this way, each275

data set had the same expected interaction density, i.e. the same weight per observed link.276

For the analysis, we did a 14-fold block cross-validation, omitting each study in turn from277

the training data and using them as test data. We computed Spearman’s 𝜌 and normalised Nash-278

Sutcliffe efficiency for comparability with the per-study analyses. As modelling approach we279

again used random forest, but with a larger “minimal bucket size” of 10 (default: 1) and a maximal280

tree depth of 20 (default: unlimited) to reduce overfitting and computation time.281

2.7 Case studies282

We analysed 14 pollination network case studies (detailed below and summarised in Table 1),283

which differed widely in the number of interactions, number of networks and number of species.284

For example, networks analysed had between 20 and 4070 observed interactions, between 26 and285

178 plants, and between 14 and 929 pollinators. While most studies contributed fewer than 10286

networks, some featured well over 50 up to even 117 networks. As a result, the data basis on287

which we fitted the models varied hugely among case studies.288

For prediction, typically externally observed abundances were available only for plants (only289

one study also estimated pollinator abundances independently of the networks; several studies did290

not provide independent plant abundances). For prediction, we substituted those missing external291

abundances by marginal sums of the observed networks, inevitably leaking some information from292

the test network to the prediction model. Our results must therefore be regarded as somewhat293

optimistically biased.294

Some studies were spatio-temporal, so that they contributed to both types of analyses.295

2.7.1 Case study Bartomeus et al. (2008)296

Bartomeus et al. (2008) studied the change in the structure of plant-pollinator networks under297

the influence of two invasive plant species in the Mediterranean coastal scrublands of the Cap298

de Creus Natural Park (Catalonia, Spain). A total of 1227 interaction between 32 plant and 119299

pollinator species were recorded in six networks. Two 50 m × 50 m plots (with and without300

invasive plant species) were established at six sites in the early stages of invasion so that these301

plots had similar plant species diversity. External abundance for plant species was calculated302

using the point intercept method in four parallel transects of 50 m at each site. There is, however,303

no external abundance for pollinators, so we use marginal totals of the interaction networks. Plant304

species traits were collected by the authors from the literature and included colour, morphology,305

shape and inflorescence type.306

We used two types of cross-validation in space. First, we combined the paired plots of each307

site, producing six networks with the following average properties: 𝑛 = 11.5, 𝑚 = 42.17, and308

𝑁 = 204.5. We then selected the three northwest plots for training and each of the remaining309
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Table 1: Total number (and mean per network) of interactions, pollinators and plants, number of
networks used in analysis, and number of cross-validations they resulted in. Last column indicates
which external abundances were reported and hence used in analysis. Note that mean network
properties differ between spatial and temporal aggregation of the underlying data.

Case study # Interactions # Plants # Pollinators webs CVs ext. abund.
temporal:
Benadi et al. (2014) 10144 (2100.8) 119 (46.8) 409 (153.4) 5 5 plants
CaraDonna et al. (2017) 28473 (677.9) 45 (9.2) 89 (20.0) 42 42 plants
Chacoff et al. (2018) 7501 (1173.8) 59 (36.2) 196 (82.7) 6 12 plants
Kaiser-Bunbury et al. (2017) 12235 (1529.4) 38 (18.8) 144 (56.6) 8 8 plants
Minachilis et al. (2023) 2779 (926.3) 151 (98.0) 335 (186.3) 3 6 plants
Olito & Fox (2015) 914 (101.6) 43 (13.9) 118 (26.8) 9 9 plants
Resasco et al. (2021) 3386 (41.8) 39 (7.0) 245 (14.1) 81 324 plants
Roswell et al. (2019) 20344 (4068.8) 111 (56) 161 (91.4) 5 6 –
Winfree et al. (2007) 474 (118.5) 45 (15.75) 75 (30.75) 4 4 plants
spatial:
Bartomeus et al. (2008) 1227 (204.5) 32 (11.5) 119 (42.2) 6 6 plants
Benadi et al. (2014) 10144 (1690.7) 119 (45.3) 408 (148.3) 6 6 plants
Chacoff et al. (2018) 7501 (182.8) 59 (14.5) 196 (33.8) 4 4 plants
Kaiser-Bunbury et al. (2017) 12235 (1529.4) 38 (16.0) 144 (55.4) 8 8 plants
Minachilis et al. (2023) 2779 (277.9) 151 (33.7) 335 (74.5) 10 10 plants
Rakosy et al. (2022) 1177 (235.4) 33 (11.8) 62 (27) 5 6 plants
Roswell et al. (2019) 20344 (2543) 111 (32.6) 161 (69.6) 8 15 –
Tinoco et al. (2017) 7672 (2557.3) 32 (19.3) 14 (9.7) 3 6 –
Weiner et al. (2014) 97318 (832) 178 (10.6) 929 (48.5) 117 234 plants
Winfree et al. (2007) 474 (148.3) 45 (23) 75 (39.7) 3 6 plants
Winfree et al. (2014) 484 (37.2) 26 (4.8) 57 (14.3) 13 65 plants, pollinators
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three for testing. Then we repeat this procedure, swapping the training and testing plots. We then310

end up with six validations of different spatial distances to the mean of the training data.311

2.7.2 Case study Benadi et al. (2014)312

Benadi et al. (2014) report on the phenology and interactions of plant and pollinator communities313

along an altitudinal gradient in the National Park Berchtesgaden, located in the German Alps.314

Six sites on grasslands at altitudes between 950 m and 2020 m a.s.l. were sampled from May to315

September 2010, whenever possible once per week. On each sampling date, flower abundances316

(flower counts) were sampled on each site. In total, 10144 interactions (1716 binary links) were317

recorded between 119 plant and 408 pollinator species, aggregated into six and five networks318

for spatial and temporal analysis, respectively. Diameter of flowers for all plant species was319

measured. Thus, the training information included external abundance of plants but marginal320

totals of animals as abundances, one morphological trait for plants (flower size), and all the321

phylogenetic/taxonomic eigenvectors for both plants and animals as predictors. Predictions made322

to pollinator abundances are based on the observed validation networks. We acknowledge that323

this may yield optimistic prediction estimates.324

To analyse the correlation between networks over time, we divided the interactions for each325

month. This resulted in a total of five matrices. We used the first two of the chronologically ordered326

networks to train the models, and then tested the predictions with the last three networks. For327

the spatial analysis, we aggregated the interactions into six matrices representing the altitudinal328

gradient. The training set consisted of the networks from the three lowest altitudes, while the329

models’ predictions were tested with the networks from the three highest altitudes. For both330

analyses, the networks in the training and test sets were swapped, and the process was repeated331

to ensure a comprehensive evaluation of model performance. As a result, we performed five332

cross-validations for the temporal analysis and six for the spatial analysis.333

2.7.3 Case study CaraDonna et al. (2017)334

CaraDonna et al. (2017) investigated the within-season temporal turnover of plant-pollinator335

interactions in a subalpine ecosystem in the Western Colorado Rocky Mountains (USA) near the336

Rocky Mountain Biological Laboratory. The study area can be described as a mosaic of wet and337

dry meadows intermixed with aspen and conifer forest; it is snow covered for much of the year,338

with a short summer growing season of 3–5 months (May–September). Interactions between339

plants and pollinators were recorded in dry meadows at weekly intervals for the majority of three340

summers. In total, 28959 interactions were recorded between 45 plant species and 89 pollinator341

taxa, resulting in 42 weekly networks (n = 12 in 2013, 15 in 2014, 15 in 2015). External abundance342

data was recorded for flowers at weekly intervals. Plant and pollinator trait data (functional nectar343

depth and pollinator proboscis length) were measured (or estimated) for most species.344

For temporal cross-validation, we fitted the models to the 21 first networks and predicted to345

the 21 other, and than switched training and testing, yielding 42 cross-validations.346

2.7.4 Case study Chacoff et al. (2018)347

Chacoff et al. (2018) report plant-pollinator networks from four xeric shrubland sites, ca. 50 km348

north of Mendoza city (Argentina), two sites sampled weekly during the flowering seasons of six349

consecutive years and the other two sites sampled only the first year. In total, 7501 interactions350

were recorded, for 59 plants and 196 pollinators in total, across 14 networks. External abundance351
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was recorded for flowers (Vázquez et al. 2022), and a range of flower and animal traits are available352

for most species (nine plant traits describing dimensions of the flower, nine pollinator traits related353

to head and body dimensions: Lomascolo et al. 2022). Missing traits were imputed using traits354

and phylogenetic eigenvectors (but not abundances or species names) based on 10 randomForest355

imputations (using R’s mice-package: van Buuren & Groothuis-Oudshoorn 2011). Thus, the356

training used information of external abundances of plants but marginal totals of animals as357

abundances, all traits and the phylogenetic/taxonomic eigenvectors as predictors. Accordingly,358

predictions were made to pollinator abundances as based on the observed validation networks.359

We acknowledge that this procedure may yield optimistic prediction estimates.360

We used two-fold cross-validation in space for the first year of the study, by fitting the models361

to two adjacent sites for training and another two for training. This procedure yielded four362

validations of different spatial distance to the mean of the training data.363

For three-fold temporal cross-validation (only sites 1 and 4) we used two adjacent years (i.e.364

{1,2}, {3,4} or {5,6}) for training, and the other four years for validation. This procedure yielded365

twelve validations of different temporal distance to the mean training data.366

2.7.5 Case study Kaiser-Bunbury et al. (2017)367

Kaiser-Bunbury et al. (2017) report on plant-pollinator networks from eight sites on Mahé, Sey-368

chelles, assessed eight times at roughly monthly intervals, covering an entire flowering season.369

The data from the exotic plant removal treatment was included in this analysis but ignored. In370

total, 12235 interactions were recorded, for 38 plants and 144 pollinators, across 64 networks.371

External flower abundance data were available, but no traits. Thus, training used external abun-372

dances for flowers and marginal totals of the interaction network for pollinators as abundances,373

and phylogenetic/taxonomic eigenvectors as predictors. Accordingly, predictions were made to374

abundances as based on the observed validation networks and their external flower abundances.375

For spatial cross-validation, we first summed all networks within a site across the 8 sampling376

times, yielding a total of 8 networks. Of those, we used the north-western four site for training377

and each of the south-eastern for testing; then we swapped training and testing. This yielded378

eight validations of different spatial distance to the mean of the training data.379

The same strategy was used for temporal cross-validation: all networks were summed across380

space, yielding one for each of the eight time periods. The first four were used to training, the381

other for validation, then vice versa. Again, this yielded eight validations of different temporal382

distance to the mean training data.383

2.7.6 Case study Minachilis et al. (2023)384

Minachilis et al. (2023) report on pollination networks sampled in Mt. Olympus, Greece. Ten385

sites were sampled covering the major vegetation zones of Mt Olympus (scrub, forests and alpine386

meadows). Species interactions were recorded by hand netting insects visiting flowering plants in387

2013, 2014, 2016. Some sites were sampled less often, when harsh weather conditions made them388

inaccessible. In total, 2779 interactions (1281 binary links) were recorded between 151 plant and389

335 pollinator species, across 30 networks. Plant abundance was estimated as the average number390

of flower or inflorescences per m2 per site (average of flower counts in twenty five quadrats of 1391

m2 per site). The training information included external abundance of plants but marginal totals392

of animals as abundances and all the phylogenetic/taxonomic eigenvectors for both plants and393

animals as predictors. No morphological trait data was available.394
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For temporal cross-validation, data from all sites were pooled to yield three networks, each395

representing a year. We fitted the models to each year separately, predicting to the other two in396

turn, yielding six predictions.397

For spatial cross-validation, we pooled the three years’ of data for each of the 10 sites and398

trained the model on 5 sites, predicting to each of the other. This yielded 10 predictions for399

validation.400

2.7.7 Case study Olito & Fox (2015)401

Olito & Fox (2015) studied how species abundance, phenology, and morphology predict both402

network structural metrics and specific pairwise interactions in plant-pollinator networks. The403

study assembled plant–pollinator networks in a contiguous low-alpine meadow on the east face404

of Mt Murray in the Canadian Rockies in Kananaskis Country, Alberta, during summer 2010.405

The interactions, when an insect visitor was observed contacting floral reproductive structures,406

were recorded in a square 1-ha plot located at 2350–2410 m elevation on every day that weather407

conditions were suitable for pollinator flight, from the day of first flowering, until killing frosts408

occurred and pollinators were no longer observed (24 June 2010–26 August 2010, a total of 32409

sampling days). The authors documented 914 interactions between 42 flowering plant species410

and 118 insect species, across 9 networks. External plant abundance was estimated using floral411

density measured per square meter in five 1 m2-quadrats randomly placed in transects, while412

pollinator species abundances were not independently estimated. Functional trait information for413

plants and pollinators was not included in the study, but phylogenetic information for plants and414

taxonomic data for pollinators were integrated as eigenvectors in the analysis.415

For the temporal cross-validation, with nine networks representing one per week, we fitted416

the models using the first four networks and predicted to each of the others five networks, yielding417

9 predictions. The networks in the training and test sets were then swapped, and the process was418

repeated to ensure comprehensive evaluation of model performance.419

2.7.8 Case study Rakosy et al. (2022)420

Rakosy et al. (2022) studied how anthropogenic changes impact the diversity, composition, and421

structure of plant-pollinator networks in semi-natural grasslands in the Opawskie Mountains,422

located along the Poland-Czech Republic border. Their study was conducted at five grassland423

sites within a matrix landscape characterized by mesic, acidic soils and similar altitudes. They424

established 10 transects per site (with one pasture limited to 6 transects), each measuring 30 ×425

2 m. Transects were placed with a minimum distance of 30 m between them, and towards the426

nearest field margins. Over the course of the study, 33 plant species were recorded interacting427

1,177 times with 62 pollinator species, across 5 networks. In each transect, they visually estimated428

the percent cover of flowers/inflorescences of each plant species. Then, external plant abundance429

was provided, but no information about pollinator abundance and functional traits of both trophic430

levels was included.431

With five networks representing each site, the spatial analysis used two networks to train432

the models and evaluated the predictive performance using the remaining three networks. By433

swapping the networks in the training and test sets and repeating the process, the analysis434

conducted a total of six cross-validations for each model.435
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2.7.9 Case study Resasco et al. (2021)436

Resasco et al. (2021) recorded plant-pollinator interactions over five years (2015–2019) in a437

subalpine meadow of the Colorado Rocky Mountains (40°01’48”N, 105°32’26”W). Observations438

spanned approximately 16 to 18 weeks each year, beginning after snowmelt in late May to early439

June and continuing until late September. The study site comprised six plots at a similar elevation440

(2962–2978 m), five with a size of 30 × 2 m2 and one with 20 × 2 m2. A total of 3386 interactions were441

recorded among 39 plant species and 245 pollinators across 6 spatial and 81 temporal networks,442

respectively.443

Plant-centred sampling was carried out in the mornings between 08:00 and 12:00 in good444

weather, with a 15-minute survey of all flowers for visitors. In addition, the number of flower445

units of each plant species (i.e. external abundance) was measured weekly in the six plots, while446

the external abundance of pollinators was not measured. Two weekly networks were removed447

while preparing the data (week 17 in 2016 and week 17 in 2019), as they were too small (only448

one plant or pollinator in a network). Plant and pollinator phenological traits (mean start (day of449

the year) of flowering/flying activity, mean end (day of the year) of flowering/flying activity and450

mean duration (in days) of flowering/flying activity were included. Lastly, phylogenetic data for451

plants and taxonomic classifications for pollinators were included as eigenvectors in the analysis.452

For spatial analysis, we pooled the data into six interaction networks, one per site. These453

networks were then grouped into three pairs. For each pair, we trained the model on the two454

networks and made predictions on the remaining four, resulting in a total of 9 cross-validations.455

For the temporal analysis we applied five-fold temporal cross-validation, fitting the models to all456

16-18 networks of a given year and predicting to all networks in the other years, yielding a total457

of 324 cross-validations.458

2.7.10 Case study Roswell et al. (2019)459

Roswell et al. (2019) collected the data for a study that sought to distinguish between the floral460

use and preference of male and female bees of the same species. This study took place in eight461

semi-natural meadows (sites) in New Jersey, where most of the flower species are native of the462

eastern United States. A total of 20344 interactions were recorded between 111 plant and 161463

pollinator species across 33 networks.464

Each site was sampled on 5 separate equally spaced sampling rounds between June 6 and465

Aug 20, 2016. Each sampling round consisted of three consecutive days of sampling when the466

weather was sunny and without precipitation. On each day, bees were netted during a minimum467

of six (but often more) 30-minute periods with short breaks in between, beginning in the morning468

and continuing until pollinator activity slowed sometime in the afternoon, but honey bees were469

not collected. No external observations of plant and bee abundances were made, but data on470

intertegular distance of pollinators was provided. In addition, phylogenetic and taxonomic trees471

are added to the models as eigenvectors.472

For the temporal analysis, we aggregated the interactions in five interaction networks, each473

corresponding to a distinct sampling round. The first three rounds were used to train the models,474

while the last two rounds were used to test predictive performance. For the spatial analysis, the475

training set consisted of five networks from the southern sites, while the test set included three476

networks from the northern sites. In both procedures, the process was repeated by swapping the477

training and testing sets, resulting in six cross-validation runs for the temporal analysis and 15478

cross-validation runs for the spatial analysis.479
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2.7.11 Case study Tinoco et al. (2017)480

In their 2017 study, Tinoco et al. (2017) investigated the impact of resource availability and481

hummingbird morphology on hummingbird specialization. To this end, the researchers conducted482

measurements of resource availability, species traits, and hummingbird specialization over two483

years in three habitat types (forest, shrub vegetation, and cattle ranch) in the western Andes484

of Azuay (Ecuador). They conducted five surveys, with the first four occurring in February and485

August and the fifth in December. The available data are pooled over these five surveys, yielding486

three networks, recording 7672 interactions among 32 flower species and 14 hummingbirds. In each487

habitat type, a 2.2-km transect was established, with sampling points every 200 m. Hummingbirds488

were captured to measure the body mass and total bill length of males. Furthermore, three plots489

of 200 m × 5 m were established in each habitat type to measure nectar production and nectar490

sugar content as plant traits. The visits of the hummingbirds to the plants were recorded in these491

same plots, and a network was assembled by habitat type.492

For spatial cross-validation, we fitted the models to the network of each of the three sites493

separately, predicting to the other two in turn, yielding a total of 6 predictions.494

2.7.12 Case study Weiner et al. (2014)495

Weiner et al. (2014) report on 119 plant-pollinator networks from three regions in Germany.496

We excluded two networks from one of the regions (AEG 8 and 13) because they were heavily497

infested by rape pollen beetle Brassicogethes aeneus from an adjacent oil seed rape field, with over498

80,000 individuals in a single network. In total, 𝑁 =61,902 (plus 416,558 from the two excluded499

networks) interactions were recorded, for 𝑛 = 178 plants and 𝑚 = 929 pollinators, across 117500

networks. External abundance were recorded for flowers only, and no traits were available. Thus,501

the training used information of external abundances of plants but marginal totals of animals as502

abundances, all traits and the phylogenetic/taxonomic eigenvectors as predictors. Accordingly,503

predictions were made to pollinator abundances as based on the observed validation networks.504

We acknowledge that this may yield optimistic prediction estimates.505

We used three-fold cross-validation in space, by employing approximately 40 networks of506

each region for training and each network of the other two regions for training. Each region507

was once used for training, and hence each region was also used twice for validation, yielding508

234 validation points of different spatial distance to the mean of the training data. Tapnet could509

only be trained on a random subset of four networks per site, due to optimisation constraints. Its510

predictive ability will thus likely be underestimated.511

2.7.13 Case study of Winfree et al. (2007)512

Winfree et al. (2007) investigated the effects of human land use on pollinators (bees; Hymenoptera:513

Apiformes) at both landscape and local scales in the Pinelands Biosphere Reserve, southern New514

Jersey (USA). Plant-pollinator interactions (excluding honeybees) were recorded across 40 study515

sites, though ten were excluded from our analysis due to insufficient data. In total, 474 interactions516

were documented, involving 45 plant species and 75 pollinator species. These interactions were517

structured into three spatial and four temporal networks for analysis. All sites were within the518

same ecoregion, sharing similar elevation (0–63 m), geologic history, and soil type.519

Each site was surveyed using a 110 m × 10 m transect, sampled four times during peak bee520

activity (April 14–August 14, 2003). Pollinators were hand-netted during two 30-minute sessions521

per sampling event. In addition, external floral abundance was assessed at each site, but external522
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pollinator abundance was not recorded. On the other hand, pollinator intertegular distance is523

provided, but no information on functional traits is available in this study. Finally, phylogenetic524

information for plants and taxonomic data for pollinators were included as eigenvectors in the525

analysis.526

For the temporal analysis, interactions were pooled into four matrices, each representing a527

different sampling round. The algorithm was trained using the matrices from the first two rounds528

and tested on the remaining two, and vice versa, resulting in a total of four cross-validations. For529

the spatial analysis, interactions from the 30 sites were grouped into three networks based on530

their spatial distribution. Each network was used to train the model while predictions were made531

on the remaining two, leading to a total of six cross-validations.532

2.7.14 Case study of Winfree et al. (2014)533

Winfree et al. (2014) studied the relationship between species linkage in pollinator networks534

and species persistence across a gradient of human disturbance in 13 sites surrounding native535

deciduous forests in New Jersey, USA. These sites span a steep gradient of land-use intensity,536

and data were collected on 424 interactions involving 26 plant species and 57 pollinator species,537

divided in 13 interaction networks. Pollinators were collected on the flower using hand-netting538

methods, with bees sampled for 60 minutes in each plot. At each site, data were collected in a 0.5539

ha plot on four separate occasions, with sampling rounds spaced 9–13 days apart between April540

10 and June 1, 2006. The sites, separated by at least 3 km, were sampled only under conditions541

suitable for pollinator activity: sunny or partly cloudy days, temperatures above 14°C, and wind542

speeds no greater than 2 m/s.543

External plant abundance was assessed by counting flowers in 100 quadrats per plot, while544

plants with clustered small flowers were counted by clusters. External pollinator abundance was545

measured using pan-trapping, deployed for 2 hours during the first two sampling rounds and546

4 hours in the final two rounds This dataset includes intertegular disctances as functional trait547

information for pollinator species but lacks such data for plants species. Additionally, eigenvectors548

are generated using phylogenetic information for plants and taxonomic information for pollinators549

For the spatial analysis, interactions were pooled into 13 matrices, one per site. These matrices550

were then grouped into six sets based on spatial distribution—one group containing three matrices551

and the remaining five groups containing two matrices each. Each network group was used to552

train the model while predictions were made on the remaining networks, leading to a total of 65553

cross-validations, allowing us to compare the predictions of each model with the empirical data554

across different spatial distances.555

3 Results556

3.1 Prediction methods557

Across the methods compared for prediction, randomForest performed on average best (Fig. 1). For558

temporal validation, the best method, randomForest, achieved a correlation between prediction559

and observation of 𝜌 = 0.42, and for spatial validation 𝜌 = 0.27.4 In space, all methods were560

very similar in predictive power to the abundance-only base 2, suggesting that little information561

4We do not show results for the deep neural network, as its performance was extremely variable and on average
poor in the first few case studies we analysed, probably due to the still relatively small sample sizes. Investing much
more time to fine tune this method may yield much better fits, so we do not want to give the impression that it is an
unsuitable method.
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Figure 1: Predictive performance of three methods (ranger as implementation of randomForest,
tapnet and XGboost) and two baseline models in temporal (left) and spatial (right) cross-validation.
Correlation between prediction and observation measured as Spearman’s 𝜌. (Note that the pure
abundance-based baseline 2 has considerable skill compared to predicting a constant number of
interactions (base 1).)

beyond what was coded for in the species abundances was successfully harnessed for prediction.562

In time, however, randomForest and XGboost slightly surpassed base 2 (and tapnet), indicating563

information beyond abundance enhances model predictive ability. In consequence, below we564

present results only for randomForest.565

3.2 Predictions validated in time566

Prediction quality of interaction frequency in time was weakly and non-linearly related to temporal567

distance between training and test data (quadratic time effect= −0.87 ± 0.31, 𝑃 = 0.0071; Fig. 2568

left). The initial increase from poor predictability of 𝜌 ≈ 0.25 within a season to a moderate569

𝜌 ≈ 0.4 from one year to the other represents the “return of skill” (as it is called in atmospheric570

forecasting: Guo et al. 2012) for temporal predictions into the same season in the next or previous571

year. This effect of seasonal phenology decreased quickly with time, disappearing by year two.572

Datasets also varied in their predictability, but much less so than the residual variance (variance573

estimates: 0.0079 vs 0.0565, respectively). The dataset contributing most validation points, Resasco574

et al. (2021), is also the one with the smallest networks (Table 1), explaining to some extent its575

large scatter.576

In the temporal prediction setting, the majority of case studies exhibit a decrease of skill577

with increasing differences in community composition. However, distance in plant community578

composition had no detectable effect on skill (comparison with intercept-only model: 𝑝 = 0.1089),579

being masked by the large residual variation (variance between data sets: 0.0081; residual variance:580

0.066).581

The effect of distance in pollinator composition was broadly similar to that of plant community582

composition. Here a significant trend could be detected (𝑃 < 0.001), showing a loss of skill only583

for substantially different communities (Bray-Curtis distance > 0.8; Fig. 3 right).584

16



-0.5

0.0

0.5

1.0

0 1 2 3 4

distance in time [years]

c
o
rr

e
la

tio
n
 c

o
e
ffi

c
ie

n
t 
ρ

dataset

Benadi

CaraDonna

Chacoff

KaiserBunbury

Minachilis

Olito

Resasco

Roswell

Winfree2007

Figure 2: Effect of temporal distance between training and test data on prediction skill of ran-
domForest models. Colours represent different data sets, black line is prediction from non-linear
random-intercept model across all data sets. Ribbons around regression are 95%-confidence inter-
vals. Note that a distance of, say, 1.5 years may arise from training on two years and predicting to
a third year: the average distance between the training and test data is then 1.5 years.
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Figure 3: Effect of distance of community composition (left: plants; right: pollinators) between
training and test data on temporal prediction skill of randomForest models. Colours represent
different data sets, black line in pollinator plot is fit of non-linear random-intercept model across
all data sets. Ribbons around regression are 95%-confidence intervals (for significant relationship
only).
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Figure 4: Effect of distance of community composition (left: plants; right: pollinators) between
training and test data on spatial prediction skill of randomForest models. Colours represent
different data sets, black solid/dotted line is fit of non-linear random-intercept model across all
data sets. Ribbons around regression are 95%-confidence intervals (for significant trends only).

3.3 Predictions validated in space585

As for temporal predictions, randomForest provided the best predictions (by a very slight margin:586

Fig. 1 right), and so we use those results only for testing effects of compositional distances on587

predictability.588

We could not meaningfully evaluate the effect of spatial distance on predictability, as half589

of the studies were conducted along on elevational gradients, where horizontal distance is not590

very informative of differences in environmental conditions. The other half of studies provide too591

few data to reliably make any statement and hence we refrained from an analysis of the spatial592

distance effect.593

For predictability in space we find the opposite pattern as for predictability in time with594

respect to the effect of plant and pollinator community composition Fig. 4). Prediction quality595

decreased weakly but significantly (𝑃 < 0.001) with plant community composition, once the596

Bray-Curtis distance is above approximately 0.75 (Fig. 4 left). In contrast, no significant effect597

could be discovered for the effect of pollinator community turnover (Fig. 4 right).598

3.4 Analysis of all case studies combined599

In 14-fold or leave-one-study-out cross-validation, interaction density of a link was very poorly600

predicted (�̄� = 0.10 ± 0.096, not significantly different from 0). This means that the random601

forest trained on all but one study had virtually no skill. We thus refrained from analysing and602

interpreting variable importances.603

4 Discussion604

Predictions of interaction frequency in pollination networks remain a challenge. Across the605

14 studies we used in spatial or temporal cross-validation, predictability was low to moderate.606

Consistently, it was the knowledge of the abundances in the target networks, collected either inde-607

pendently or computed as sum of observed interactions in the network itself, that did practically608

all of the prediction (base 2 in Fig. 1). In other words, the traits and phylogenetic eigenvectors609

used as additional predictors were of very limited use (in contrast for example to Vizentin-Bugoni610
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et al. 2014). While pollinators are typically slightly less specialised than for example herbivores611

(Fontaine et al. 2009), it is still disquieting that we failed to detect clear and strong signals from612

traits and trait matching.613

4.1 Prediction methods614

This study is, to date, the largest attempt in predicting frequency of network interactions in615

ecology, yet we failed to achieve reliable predictions. Using cutting edge machine- and deep-616

learning approaches did not improve on a simple abundance-based prediction (base 2), and also617

the dedicated “tapnet” approach, which tries to match plant and pollinator traits explicitly, did618

not perform any better (or worse) than random forest or extreme gradient boosting. While we619

analysed hundreds of thousands of flower visitation events across the 14 studies, for any given620

study, sample size was typically “only” in the hundreds to thousands per network, for dozens to621

hundreds of plant and pollinator species (Table 1). This may be the reason for the unsatisfactory622

performance of deep neural networks, which were dropped from reporting here due to their623

erratic and, on average, poor performance (see supplementary material).624

The consistently moderate performance of all modelling approaches, and their lack of improv-625

ing on abundance-only predictions, suggests that the information provided by easy-to-measure626

traits and trait-substituting phylogenetic eigenvectors is not specific enough to describe the627

actual mechanisms of flower selection by pollinators. Scent and vision in particular are virtually628

inaccessible for these thousands of species, yet of demonstrated importance for flower-pollinator629

interactions (Junker et al. 2010; Renoult et al. 2015; Kantsa et al. 2018). We suggest that such trait630

information, rather than larger data sets (Lanuza et al. 2025) and fancier methods, may lead to631

improved predictions in the future.632

4.2 Trait-moderated interactions?633

It is a long-standing discussion, which role plant and pollinator traits play in pollination networks634

(Stang et al. 2007; Vázquez et al. 2009; Burkle et al. 2013; Maruyama et al. 2014; Vizentin-Bugoni et al.635

2014; Olito & Fox 2015; CaraDonna et al. 2017; Weinstein & Graham 2017). The clear and obvious636

adaptations of some flowers to animal pollination (from corolla shape, style and pollen placement,637

to floral patterns and nectar chemistry: Willmer 2011) is blurred by observations of supposedly638

extremely specialised pollinators acting much more generalistically (lepidoptera with extremely639

long proboscis visiting open flowers; oil-collecting bees also visiting other flowers for pollen and640

nectar: Stefanescu & Traveset 2009; Schäffler & Dötterl 2011), and by non-specialised pollinators641

being able to access specialised flowers (by force: bumble bees; by small size: Meliponini; by642

hovering: chiffchaff on Anagyris foetida: Ortega-Olivencia et al. 2005).643

Flower visitation does not imply pollination (e.g. Wilson & Thomson 1991; Mayfield et al.644

2001). It may well be that, from a plant’s perspective, a substantial amount of nectar and pollen645

production is wasted on ineffective pollinator, but the few effective pollinator visits justify this646

investment. The trait-matching pollination ecologists discuss may be highly adaptive in both647

plants and pollinators, yet not be readily detectable from patterns of flower visitation alone. In648

this case, flower visitation would primarily depend on availability, matching our findings that649

abundance (of flowers and pollinators) is of large importance (compare base 1 and 2), while trait650

and phylogenetic information does not substantially improve on abundance-only predictions651

(compare base 2 with all other model types).652
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4.3 Frequency vs missing links653

In a seminal analysis of methods to identify missing links in ecological networks, Terry & Lewis654

(2020) report moderate to good success in predicting links within networks (AUC-values of around655

0.7). That is a rather different task, as it takes a given network and tries to work out which656

links within that network are missing, based on network structure and sampling coverage. Our657

ambition was to predict interaction frequencies in a new network, of which external abundances658

of the participating species as well as their (observed and phylogenetic latent) traits are known.659

Arguably, this is a more difficult task, comparable to an extrapolation. It is thus not surprising to660

find our models’ predictive performance to be inferior to theirs.661

Since Terry & Lewis (2020) used quantitative networks (as did we), the abundances of all662

species can be roughly inferred from the data of each network. Their version of an abundance-only663

prediction (our base 2, their “sample size” model) performed similar to two of their approaches664

for pollination networks, but worse than the two best (connectance and matching-centrality).665

Neither of these two is applicable to our setting, regrettably, as they require information from the666

test network itself, which is what we want to predict. Note that this is a difference in their aim,667

no deficit of their study.668

Another recent development is the attempt to pool many network observations across studies,669

and thereby generate a “meta-network” (Devoto et al. 2014). This approach overcomes the potential670

small-sample size limitations of each individual study. When we implemented this approach, it671

showed very little predictive skill for random forest or deep learning. A more fine-grained method672

may be able to discover more signal in the phylogenies, but it is unlikely to yield convincing and673

substantial predictive power. The obvious ecological problem is that such meta-networks lack674

information of phenological and indeed geographic co-occurrence. While trait-matching may675

transfer from one continent to another, the geographic separation of species must be included as676

forbidden links as well.677

4.4 Prediction based on network-derived abundances678

For our predictions we used externally recorded abundances whenever available (see Table 1).679

These were recorded along transects near to where network interactions were sampled. How-680

ever, only one study (Winfree et al. 2014) also provided information on external abundances of681

pollinators, and several did not report flower abundances either. In these cases, we used the sum682

of observed interactions in the network as stand-in for abundances. However, if abundances683

are a consequence of network interactions, then this approach becomes circular, as we predict684

interactions based on abundances that are the consequence of interactions (Fort et al. 2016). We685

acknowledge this flaw in our logic, yet if this effect were strong, it should improve our ability to686

predict interactions, which clearly is poor even with network-based abundances.687

The studies of Roswell et al. (2019) and Weiner et al. (2014) did not provide information on688

flower abundance, yet they do not exhibit improved predictions in Figs. 2 to 4. That is to say: for689

these studies, the potential circularity in the use of abundances does not seem to be a problem690

worth going into.691

4.5 Community compositional effects on prediction692

It may be tempting to interpret the difference between the non-significant effect of plant commu-693

nity composition on prediction skill and the significant effect of pollinator community composition694

(Fig. 3). However, we regard this as spurious, as the effect is exactly the other way around in the695
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spatial setting (Fig. 4, and it is only non-significant for normalised Nash-Sutcliffe efficiency (see696

supplementary material, Fig. A3 and A4).697

The dominant role of abundance as predictor of interactions is in line with simulations of698

Yahaya et al. (2024), who find specialisation to increase with floral resources. And it is only with699

high specialisation that we can hope to achieve predictive power beyond the effect of abundance.700

However, we regard the evidence from our synthesis as not particularly supportive of such a701

strong role of traits.702

4.6 Interaction density, sampling intensity, and pooling of networks703

Pollinator-flower interactions are recorded following different traditions and protocols. The704

resulting networks will thus also differ, as function of both methodology and sampling intensity705

(Novella-Fernandez et al. 2019; Brimacombe et al. 2023). Analyses across all data set may thus706

suffer from false-negative errors. That would explain the poor performance of our analysis across707

all data sets pooled, but it does not explain the low skill within each study (Figs 1-4).708

Our methodological decision to pool networks either across sites or times to yield sufficiently709

dense networks may well have washed out differences in specialisation, phenological signals or710

spatial differences (as argued and shown in CaraDonna et al. 2021; Schwarz et al. 2020). For small711

networks, noise levels are very high and possibly unsuitable for the kind of analysis performed712

here. Future analyses will have to show whether data aggregation reduced prediction skill and713

thereby explain our failure to predict network interaction frequencies.714

4.7 Outlook715

There are several hypotheses our study did not investigate, which could form the basis of further716

investigations. For example, the majority of plants and pollinators are rare. So maybe it would be717

optimistic to expect high predictability for those species. In contrast, common pollinators may718

be competing more for floral resources so that for them the presence of a competitor may be a719

relevant predictor, not only the traits and abundances.720

For now, however, we suggest to assume that network interaction frequencies are primarily721

driven by the abundance of its participants, with little generalisable signal of species traits, and722

instead a very high stochasticity in the recorded interactions.v Also, we hope to encourage more723

studies in the future to provide a similar data quality to allow extending and quantitatively724

summarising the emerging results725
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Stout, J.C., Sutter, L., Švara, E.M., Świerszcz, S., Thompson, A., Traveset, A., Trefflich, A., Tropek,836
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A Results for normalised Nash-Sutcliffe efficiency (NNSE)974

In some fields of environmental science, particularly hydrology, predictive quality of a model is975

assessed relative to the skill of assuming a constant prediction would be. This is called, after their976

inventors, the Nash-Sutcliffe model efficiency NSE and is computed as:977

NSE = 1 −

∑ (�̂�𝑖 − 𝑦𝑖)
2

∑ (�̂�𝑖 −
̄
�̂�)

2

(1)

In words, NSE is one minus the mean squared error of a prediction divided by the mean squared978

error of fitting just an intercept (or grand mean). NSE ranges between −∞ (entirely unsuitable)979

and 1 (for a perfect model), but is frequently normalised to [0, 1]:980

NNSE =

1

2 − 𝑁𝑆𝐸

, (2)

with 0.5 indicating same predictive skill as an intercept-only model, larger values indicating better981

than random skill, and values below 0.5 lack of predictive skill.982

While not particularly common in ecology, NNSE has the same advantage as a correlation983

coefficient, namely that it can be compared across the different studies, unlike the (𝑦-value-984

dependent) RMSE or (sample-size dependent) log-likelihood.985

We repeat here the same analyses and figures as presented for Spearman’s 𝜌 in the main text.986

Overall, results are qualitatively similar, but the lack of predictive skill is even more visible987

for NNSE.988

A.1 Prediction method comparison989

For temporal prediction, all models performed poorer than the grand average (which is identical990

to base 1). For spatial prediction, all model types were similar to the grand average reference, and991

base 2 and tapnet ever so slightly improved on it; no model was better than base 2 here (Fig A1).992
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Figure A1: Predictive performance of three methods (ranger as implementation of randomForest,
tapnet and XGboost) and two baseline models in temporal (left) and spatial (right) cross-validation.
Values are normalised Nash-Sutcliffe efficiency, where a value < 0.5 indicate no skill in prediction.
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Figure A2: Effect of temporal distance between training and test data on prediction skill of random
forest models, measured as normalised Nash-Sutcliffe efficiency. Colours represent different data
sets, lines around regression are 95%-confidence intervals. Dotted black line is prediction from
non-linear random-intercept model across all data sets (being not significantly related to temporal
distance).

A.2 Random forest prediction in time993

There was no detectable effect of temporal distance on predictive ability (Fig. A2), in contrast to994

the hump-shaped pattern we found for Spearman’s 𝜌 (Fig. 2).995

Both plant and pollinator community compositional distance had a significant negative effect996

on the normalised Nash-Sutcliffe efficiency (Fig. A3), yet few studies had values above 0.5 (Kaiser-997

Bunburry, Roswell), and the qualitative picture is similar to the pattern described in the main text998

for Spearman’s 𝜌 (Fig. 3).999

A.3 Random forest prediction in space1000

As for time, also in space compositional distance affected predictive skill negatively (Fig. A4). That1001

effect was significant for plant community composition, but not so for pollinator composition.1002

While the shape of the best-fitting polynomial was different, the trend downwards was similar to1003

the results presented in the main text (Fig. 4).1004

A.4 Analysis of all data sets combined1005

Combining all studies and using random forest for predicting to the held-out study, yielded a1006

normalised Nash-Sutcliffe efficiency of 0.498 ± 0.021, which is not significantly different from the1007

no-skill reference of 0.5.1008

29



0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75 1.00

distance in plant community composition

n
o
rm

a
lis

e
d
 N

a
s
h
-S

u
tc

lif
fe

 e
ffi

c
ie

n
c
y dataset

Benadi

CaraDonna

Chacoff

KaiserBunbury

Minachilis

Olito

Resasco

Roswell

Winfree2007

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8 1.0

distance in pollinator community composition
c
o
rr

e
la

tio
n
 c

o
e
ffi

c
ie

n
t 
ρ

dataset

Benadi

CaraDonna

Chacoff

KaiserBunbury

Minachilis

Olito

Resasco

Roswell

Winfree2007

Figure A3: Effect of distance of community composition (left: plants; right: pollinators) between
training and test data on temporal prediction skill (measured as normalised Nash-Sutcliffe effi-
ciency) of randomForest models. Colours represent different data sets, black line is fit of non-linear
random-intercept model across all data sets. Ribbons around regression are 95%-confidence inter-
vals.
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Figure A4: Effect of distance of community composition (left: plants; right: pollinators) between
training and test data on spatial prediction skill (measured as normalised Nash-Sutcliffe efficiency)
of randomForest models. Colours represent different data sets, black line is fit of non-linear
random-intercept model across all data sets; dotted line indicates no significant relationship.
Ribbons around regression are 95%-confidence intervals
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B Explorative analysis of Kaiser-Bunbury et al. (2017)1009

This section presents the preliminary analyses of the 8 replicated networks at each of 8 sites of1010

Kaiser-Bunbury et al. (2017). The point was to trial different methods and analyses before applying1011

them consistently to all other studies.1012

B.1 XGBoost hyper-parameter search1013

The hyper-parameter search, based on the first four networks in the pooled-sites analysis, yielded1014

the following settings: max.depth = 3, eta = 0.01, nrounds=2000 and gamma=1. These were used for1015

all spatial and temporal validation settings of this data set. The resulting setting was substantially1016

better than a previous best guess.51017

B.2 MLP hyper-parameter search1018

The hyper-parameter search, based on the first four networks in the pooled-sites analysis, yielded1019

the following settings: loss=“poisson”, batchsize=2000, epochs=200, lambda=0.01, alpha=0.47, lr =1020

0.0001, activation = “selu”, hidden=c(20, 2). These were used for all spatial and temporal validation1021

settings of this data set. Note that the number of nodes is rather small for this analysis. The1022

resulting setting was substantially better than a previous best guess.1023

B.3 Validation score analysis1024

Although we pre-selected log-likelihood (𝓁 ) and median absolute difference (MAD) as indicators1025

of model performance, we additionally computed others (see Methods). The correlation among1026

these performance measures differed between temporal and spatial predictions (Table A1). The1027

log-likelihood 𝓁 was least correlated with the others, while MAD and dr were well correlated with1028

the other measures. Using both 𝓁 and MAD thus seems to cover most ways in which prediction1029

errors can be assessed.1030

Table A1: Correlation (Pearson’s 𝑟) between different measures of prediction quality. Upper
triangle is prediction in time, lower triangle in space. Measures are log-likelihood (𝓁 ), median
absolute difference (MAD), root mean squared error (RMSE), Spearman’s correlation coefficient
𝜌, Nash-Sutcliffe efficiency (𝑟NE) and Willmott’s discrepancy 𝑑𝑟 . All correlations are significant
(𝑝 < 0.05), strong ones are highlighted.

ell MAD RMSE 𝜌 𝑟NE 𝑑𝑟

ell 1.000 -0.523 -0.465 0.542 0.481 0.529
MAD −0.529 1 0.668 −0.870 −0.744 −0.930
RMSE −0.592 0.550 1 −0.499 −0.755 −0.681

𝜌 0.530 −0.838 −0.480 1 0.692 0.932
𝑟NE 0.282 −0.587 −0.339 0.671 1 0.870
𝑑𝑟 0.441 −0.814 −0.468 0.925 0.756 1

B.4 Compositional analysis1031

We compute the compositional distance between all networks (for time and space separately). For1032

time, the range of Bray-Curtis distances between the plants of any two networks was 0.20-0.44,1033

and for pollinators 0.25-0.46. Thus, composition did not vary that much, despite the exotic plant1034

removal treatment, sharing more than 50% of species of plants and pollinators.1035

5Thanks go to cito package maintainer Maximilian Pichler for helping us with this hyper-parameter optimisation!
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Figure A5: Quality of temporal predictions, as measured by log-likelihood (more is better). Left:
The effect of prediction method. Base 1 refers to predicting a constant interaction intensity across
the network, base 2 is predicted by abundances only. DNN is the neural network. Each box is
computed from eight cross-validation values. Right: Predictions become better as more months
pass between the training and the test data.

Distances showed a similar pattern for plants and pollinators, i.e. when two networks were1036

similar in plant composition, they were also similar in pollinator composition (𝑟 = 0.79). That1037

means, if we interpret a compositional effect, it should not differ dramatically between plants and1038

pollinators.1039

B.4.1 Temporal analysis1040

The analysis show a clear effect of the method on prediction quality, as well as an effect of distance1041

in time (Table A2, Fig. A5).1042

In terms of methods, the neural network (“DNN”) performed poorly, and indeed worse than1043

the parameter-free abundance-only base 2. Random forest (“ranger”), XGboost and tapnet were1044

very similar, with slight advantages for the machine-learning approaches.1045

It is not obvious, how to explain the better predictions to data sets further apart in time1046

(Fig. A5, right). The only interpretation to offer is that the statistical models overfit the data, i.e.1047

interpret some phylogenetic signal where in fact there is only noise. Since networks further apart1048

in time have fewer overlapping species, this overfitting has less effect than predicting to similarly1049

composed plant or pollinator communities in the nearer future or past. However, there is no1050

indication in the analysis that this is a correct interpretation, since neither distance in plant nor1051

Table A2: ANOVA-result for cross-validation in time, using log-likelihood 𝓁 as measure of predic-
tion quality. Significant effects are indicated by bold-printed 𝑝-values. The model’s 𝑅2

= 0.46. See
Fig. A5 for effects.

𝓁 Df Sum Sq Mean Sq F value Pr(>F)
method 5 153447 30689 5.468 0.0007
Dtime 1 91473 91473 16.299 0.0002
Dlower 1 7473 7473 1.332 0.2556
Dhigher 1 21307 21307 3.797 0.0586
Residuals 39 218873 5612
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Table A3: ANOVA-result for cross-validation in time, using MAD as measure of prediction quality.
Significant effects are indicated by bold-printed 𝑝-values. The model’s 𝑅2

= 0.94. See Fig. A6 for
effects.

MAD Df Sum Sq Mean Sq F value Pr(>F)
method 5 15.39 3.08 153.439 0.0000
Dtime 1 0.02 0.02 0.916 0.3443
Dlower 1 0.02 0.02 0.760 0.3887
Dhigher 1 0.09 0.09 4.563 0.0390
Residuals 39 0.78 0.02

0.0

0.5

1.0

1.5

2.0

base1 base2 DNN ranger tapnet XGBoost
prediction model

pr
ed

ic
tio

n 
er

ro
r 

[m
ed

ia
n 

ab
so

lu
te

 d
iff

er
en

ce
]

0.0

0.5

1.0

1.5

2.0

0.325 0.350 0.375 0.400 0.425
distance in pollinator community

pr
ed

ic
tio

n 
er

ro
r 

(M
A

D
)

Figure A6: Quality of temporal predictions, as measured by MAD (less is better). Left: The effect
of prediction method. Right: Predictions tend to have less error as pollinator communities differ
more between training and test data. Note that higher MAD values are due to base 1 and DNN,
which also drive this insignificant trend.

pollinator community yields a significant effect (Table A2).1052

For the alternative measure of prediction quality, the median absolute difference (MAD), the1053

results point towards an effect of pollinator composition, although this is not significant (Table A3).1054

Again, DNN performed poorly, while tapnet had the lowest prediction error, slightly better than1055

XGboost.1056

B.4.2 Spatial analysis1057

The results for predictions in space are by and large similar to those in time (Tables A4, A5,1058

Figs. A7, A8). Again the DNN had substantial difficulty in predicting well. The effect of space was1059

practically absent. Plant similarity modified this pattern a bit, but there are too few data points to1060

make this a consistent effect (Fig. A7, right).1061

For MAD, only the method could be detected as significant effect (Table A5, Fig. A8). As for1062

time, DNNs were not able to predict well.1063

B.4.3 Compositional distances in time and space1064

Distances in time were not at all related to distances in composition of either plant or pollinator1065

communities (𝑟 = 0, Fig. A9, left).1066

For spatial cross-validation, the picture was slightly different (Fig. A9, right) . Here, there was1067
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Table A4: ANOVA-result for cross-validation in space, using log-likelihood as measure of prediction
quality. Significant effects are indicated by bold-printed 𝑝-values. The model’s 𝑅2

= 0.93. See
Fig. A7 for effects.

𝓁 Df Sum Sq Mean Sq F value Pr(>F)
method 5 125214 25043 33.62 0.0000
Dspace 1 8 8 0.01 0.9186
Dlower 1 490 490 0.66 0.4265
Dhigher 1 7293 7293 9.79 0.0051
method:Dspace 5 1793 359 0.48 0.7861
method:Dlower 5 1075 215 0.29 0.9140
method:Dhigher 5 1010 202 0.27 0.9238
Dspace:Dlower 1 243235 243235 326.57 0.0000
Dspace:Dhigher 1 89150 89150 119.70 0.0000
Dlower:Dhigher 1 664 664 0.89 0.3560
Residuals 21 15641 745
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Figure A7: Quality of spatial predictions, as measured by log-likelihood (more is better). Left:
The effect of prediction method. Right: The significant interaction between spatial distance and
compositional distance of plants.

still no correlation of spatial distance with the dissimilarity of the plant community (𝑟 = 0.012),1068

but pollinator communities were surprisingly less dissimilar the farther they were apart. Or, to1069

get rid of the double negative: Pollinator communities were more similar, the farther the sites1070

were apart (𝑟 = −0.48, 𝑝 < 0.001).1071

B.5 Analysis of common species only1072

Restricting the predictions to only the most common species substantially improved temporal1073

prediction quality. This is particularly noticeable for the NNSE, which is always and often much1074

higher than the no-skill threshold of 0.5 (Fig. A10). However, the best performing model was1075

base2 (NNSE > 0.9, all others < 0.8), indicating that abundance alone was responsible, not trait1076

information or alike.1077

B.6 Conclusions for further analyses1078

Judging from these analyses, base 1 and 2 make for a good set of reference analyses.1079
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Table A5: ANOVA-result for cross-validation in space, using MAD as measure of prediction quality.
Significant effects are indicated by bold-printed 𝑝-values. The model’s 𝑅2

= 0.85. See Fig. A7 for
effects.

MAD Df Sum Sq Mean Sq F value Pr(>F)
method 5 23.54 4.71 51.84 0.0000
Dspace 1 0.05 0.05 0.50 0.4840
Dlower 1 0.54 0.54 5.96 0.0193
Dhigher 1 0.03 0.03 0.32 0.5743
Residuals 39 3.54 0.09
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Figure A8: Quality of spatial predictions by different methods, as measured by MAD (less is better).

The neural network does not improve prediction beyond base 2. Unless a way to improve on1080

this performance can be found, the machine-learning approaches are preferable. (It is a common1081

phenomenon, that neural networks excel on visual data, but not on tabular data such as these.)1082

So, DNN could be dropped from the analysis without loss of maximal prediction quality.1083

Tapnet did well, being slightly worse in the predictions in terms of log-likehood, but slightly1084

better than ML in MAD. Note, however, that even there the MAD-score of base 2 was at least1085

as good (Fig. 1 left, 3 left, 4). Given the considerable longer runtimes, tapnet could be dropped1086

without loss of maximal prediction quality.1087

This leaves us with baselines 1 and 2, random forest and extreme gradient boosting as the1088

four methods to run further predictions with.1089
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Figure A9: Distances in time (left, in months) and space (right, in geographic degrees) between
the training and test networks, compared to the compositional Bray-Curtis distances in the plant
(black dots) and pollinator (white dots) communities.
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Figure A10: Effect of prediction method on RMSE (left) and normalised Nash-Sutcliffe efficiency
(right) based only on the most common plant and pollinator species.
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C Preparing data for analysis1090

Data preparation for the analysis within each study has to follow several steps.1091

Homogenisation of species names All elements of the analyses are linked through the names1092

of the species. Thus, these have to be perfectly identical in all data: the trait data, the1093

external abundances and the network (row and column names). Suggestion: Use the Latin1094

binomial with an underscore (“ ”) as unique identifier. If a species is only known at genus,1095

family or order level, use that with a unique number, e.g. “Diptera 3” or so.1096

Species taxonomy and trait table Provide two tables, one for plants, one for pollinators, of1097

the species name, genus, family and order along with any trait data (each of these being a1098

column). This is the input to working out the phylogeny and taxonomy using R’s taxize.1099

Thus, you may have to go back to this table to change names, if GBIF uses a different1100

synonym. Maybe add another column, “original name” whenever that happens, so that we1101

keep both the original data and the renaming.1102

Network names All networks will eventually form a list of networks. This list can be named,1103

but in the analysis it will (typically) be referred to by position in the list (i.e. network 1:8).1104

If there is a logic to the networks, e.g. years 1:8 or sites from north to south, then please1105

organise the networks in that sequence (which makes it easier for splitting into training1106

and testing data).1107

Abundance vectors per network If you provide external abundance data, these will eventually1108

be transformed into a named vector, i.e. one such named vector per plant and pollinator per1109

network. Make sure the data are prepared in tables such that such a vector can be computed1110

easily.1111

Using make tapnet to guarantee correct format In the R package “tapnet”, the function1112

make tapnet pulls together all the above information and makes a single “tapnet” object1113

of it. Doing so, it checks that names are identical and so forth. Thus, in the end of the1114

data preparation, please use make tapnet to ensure everything is organised well. This is a1115

moment of great frustration! I repeatedly found myself cursing the computer because I was1116

sure I did everything correctly – only to find I did not. There is a glitch in make tapnet,1117

if you have a single trait and only for one of the groups. In this case, make tapnet will1118

complain of a missing trait in the other group. Please simply invent a trait for that other1119

group, e.g. just assign a value of 1 to each species and call the trait “fakeTrait” or so.1120

C.1 Details in R1121

C.1.1 Phylogeny, taxonomy1122

For plants, a global phylogeny can be produced using “U.PhyloMaker” (which has to be installed1123

from github) like so:1124

#devtools : : instal l gi thub (” j inyizju /U. PhyloMaker” )1125

l ibrary (”U. PhyloMaker” )1126

# plant megatree and genus/ family f i l e from here :1127

# https : / / github .com/megatrees / plant 20221117 / blob /main/ plant megatree . tre1128

megatreePlants <− read . tree ( ” . . / plant megatree . tre ” )1129

genlistPlants <− read . csv ( ” . . / plant genus list . csv ” )1130

plantResult <− phylo . maker( plantSpeciesList , megatreePlants , genlistPlants ,1131
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nodes . type = 1 , scenario = 3) # takes a minute or two1132

s tr ( plantResult )1133

You have to download the megatree and the genus/family tree (or use the one downloaded on1134

googleDrive).1135

This process may identify species not in the phylogeny, e.g. due to spelling mistakes. Please1136

fix this!1137

Plot the resulting tree (e.g. into a long PDF) and check that all species were correctly placed!1138

l ibrary (ape )1139

l ibrary ( phytools )1140

plantPhylo <− plantResult$phylo1141

1142

pdf ( f i l e =”MyData plantPhylogeny . pdf ” , height=15, width=8)1143

par (mar=c (1 ,1 ,1 ,1 ) )1144

plot ( plantPhylo , cex=0.5) # node labels uninformative1145

dev . off ( )1146

For pollinators, no global phylogeny is available, so we resort to using only their taxonomy to1147

make a pseudo-phylogenetic tree.1148

l ibrary ( taxize )1149

pollinatorsUnique <− sort ( unique ( pollSpeciesList$Species ) )1150

1151

ac <− c lass i f i ca t ion ( pollinatorsUnique , db = ” gbif ” , return id = TRUE, rows = 1 )1152

# ac = Animal c lass i f i ca t ion ( l i s t ) .1153

( labelsMissingInDatabase <− which ( ! sapply ( ac , i s . data . frame ) ) )1154

Again, this will lead to many unidentified species, which you have to handle one by one manually!1155

There are many lines of code in the dataPrep4Weiner2011.R-file demonstrating what such manual1156

adaptations can look like.1157

polltree <− class2tree ( ac , check = T) # rewrites labels !1158

# correct names : class2tree uses the lowest level label in ac ;1159

# this l ine puts the name of ac back into the t ip label1160

polltree$phylo$tip . label <− polltree$names1161

1162

pdf ( f i l e =”myData pollTaxonomy . pdf ” , height=50, width=8)1163

par (mar=c (0 ,0 ,0 ,0 ) )1164

plot ( polltree , show. node . label=T, cex=0.5)1165

dev . off ( )1166

Check the resulting pseudo-phylogeny! You probably have to go back and re-assign species to1167

different families, if the classification got it wrong, as in these examples:1168

# Checks based on taxonomy plot :1169

#Zygoptera ! ! outgroup1170

ac$”Zygoptera” <− c lass i f i ca t ion (” Libel lul idae ” , db = ” gbif ” , return id = TRUE, rows = NA)[ [1] ]1171

#Cryptinae cf . Glyphicnemis , Acari ! ! Bivalvia1172

ac$”Cryptinae cf . Glyphicnemis” <− c lass i f i ca t ion (” Ichneumonidae” , db = ” gbif ” ,1173

return id = TRUE, rows = 1)[[1]]1174

ac$”Cryptinae” <− c lass i f i ca t ion (” Ichneumonidae” , db = ” gbif ” , return id = TRUE, rows = 1)[[1]]1175

ac$”Acari ” <− c lass i f i ca t ion (” Trombidiformes ” , db = ” gbif ” , return id = TRUE, rows = NA)[ [1] ]1176
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C.1.2 Interactions into list of networks1177

This process is greatly facilitated by the frame2webs-function in bipartite. If your interactions1178

are in a long list of plant A interacting with pollinator B 𝑥 times in site 𝑠, this looks like:1179

l ibrary ( bipart i te )1180

network . l i s t <− frame2webs( dats , varnames=c (”A” , ”B” , ” s i t e ” , ”x ” ) )1181

That is surprisingly painless!1182

C.1.3 External abundances1183

Here you have to write rather case-specific code! Below is an example for a list of networks for a1184

site called “AEG”. It loops through all networks, then checks in the abundance table blub for the1185

plant species with the right name for that row and puts it into a named vector. That vector is then1186

put into a list itself. If a species is in the network, but not the species list, it sets its abundance to 1.1187

blub <− rbind ( plantSpeciesList1 , plantSpeciesList2 , plantSpeciesList3 )1188

options (”warn”=0) # turns a l l warnings into errors !1189

abunsListAEG <− l i s t ( )1190

for ( i in seq along (names(network . l i s t .AEG) ) ){1191

plantNames <− at tr (network . l i s t .AEG[[ i ] ] , ”dimnames” ) $Plant1192

# get a l l species for that plot :1193

perPlot <− blub[blub$EP ID == names(network . l i s t .AEG)[ i ] & blub$Species %in% plantNames , ]1194

# get maximal f lo ra l coverage for each specis1195

abunsPlot <− tapply ( perPlot$Flowering unit , perPlot$Species , max)1196

i f ( length (rownames(network . l i s t .AEG[[ i ] ] ) ) != length ( abunsPlot ) ) {1197

abunsPlot <− c ( abunsPlot , rep (1 , length ( se td i f f (plantNames , names( abunsPlot ) ) ) ) )1198

#adds abundance of 1 ( equivalent to 1% cover ) for plants missing in external abundances1199

nAP <− length ( abunsPlot )1200

nNew <− length ( se td i f f (plantNames , names( abunsPlot ) ) )1201

names( abunsPlot ) [ (nAP−nNew+1):nAP] <− se td i f f (plantNames , names( abunsPlot ) )1202

}1203

abunsListAEG[[ i ]] <− abunsPlot1204

}1205

abunsListAEG1206

C.1.4 Check using make tapnet1207

With all the above successfully sorted (after days of hard work and tearing out your hair for all1208

the mistakes in the tables), only two steps remain: check that everything is nicely aligned and1209

named, and convert it to the data actually required for the analysis.1210

AEG tapnet <− make tapnet ( tree high = pollPhylo ,1211

tree low=plantPhylo ,1212

networks = network . l i s t .AEG,1213

abun low = NULL,1214

abun high=NULL,1215

use . a l l .pems = T)1216

1217

# check when error :1218

for ( i in 1:39){1219

i f (sum( ! ( rownames(network . l i s t .AEG[[ i ] ] ) %in% sort ( plantPhylo$tip . label ) ) ) ) stop ( )1220

i f (sum( ! ( colnames (network . l i s t .AEG[[ i ] ] ) %in% sort ( pollPhylo$tip . label ) ) ) ) stop ( )1221
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}1222

rownames(network . l i s t .AEG[[ i ] ] ) %in% sort ( plantPhylo$tip . label )1223

colnames (network . l i s t .AEG[[ i ] ] ) %in% sort ( pollPhylo$tip . label )1224

1225

save (AEG tapnet , HEG tapnet , SEG tapnet , f i l e =”Weiner networksAHSEG. Rdata ” )1226

1227

# AND FINALLY:1228

WeinerAEG full <− tapnet2df (AEG tapnet )1229

# . . .1230

save (WeinerAEG full , WeinerHEG full , WeinerSEG full , f i l e =”Weiner tapnets full . RData” )1231

The analysis will use both the actual tapnet object (e.g. to get the networks as such) and the1232

“full” data frame created in the last step. (This is because the methods require different formats,1233

e.g. base 1 and 2 and tapnet want the tapnet-object, while machine learning is fine with the table.)1234

C.2 Predictive analysis1235

The analysis itself is then carried out in a different file in the “analysis” folder, e.g. Weineranalysis.R.1236
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