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Abstract8

1. Willig et al. (Methods in Ecology and Evolution, 15, 868–885, 2024) cautioned that unequal9

sampling effort and pseudoreplication can bias the characterisation of species phenology using10

circular statistics. Borrowing concepts from rarefaction, they proposed bootstrapping to control11

for time-varying marginal totals that arise from unequal sampling effort over time.12

2. This study extends their cautionary notes to regressions of phenological time series, where boot-13

strapping can be replaced by various built-in functionalities of generalised linear mixed-effect14

models. I further take this opportunity to borrow a key innovation in model-based ordination15

and joint species distribution modelling — generalised linear latent variable models (GLLVM)16

— to illustrate its ability in extracting more information out of multispecies phenological data17

beyond circular statistics.18

3. Synthesis: With sampling-bias adjustment, GLLVMs, or regressions in general, are robust19

predictive and inferential tools that enrich our phenological understandings in conjunction with20

circular statistics for hypothesis testing.21
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Introduction22

A recent paper by Willig et al. (2024) highlighted how statistical analyses of phenological data could23

be biased by unequal sampling effort and pseudoreplication. When sampling events differ systemat-24

ically in marginal totals (i.e., total number of observations per time point), they showed that circular25

statistics used to characterise periodic time series can lead to misleading conclusions. For unbiased26

circular statistics of uniformity (i.e., whether phenology is spread across or concentrated within cer-27

tain periods), they proposed bootstrapping to fix marginal totals across time — a concept similar to28

rarefaction. After controlling for marginal totals, the resulting proportional quantities of phenology29

may display an opposite circular pattern compared to the raw counts. This cautionary advice is timely30

as ecologists are increasingly reliant on heterogeneous observations, such as herbarium specimens, to31

address climate-induced phenological changes in data-poor regions (Davis et al., 2022).32

However, bootstrapping is not necessary for time-series regressions. Instead, regressions using33

generalised linear mixed-effect modelling (GLMM) have build-in functionalities to account for sam-34

pling effort and pseudoreplication in multiple ways: likelihood (“distribution family”), offset, covari-35

ate and/or random-effect structure (Bolker et al., 2009; Zuur et al., 2009). While circular statistics36

aim to test whether phenology is uniform or modal (Landler et al., 2020), regressions aim to predict37

phenological quantities at a given time (Fidino & Magle, 2017). Both goals are complementary. My38

aim is therefore to extend Willig et al. (2024)’s message to regressions of phenology (or time series39

in general) for completeness. I further take this opportunity to leverage a recently development in40

GLMM — generalised linear latent variable models (GLLVMs; Hui et al., 2015; Niku et al., 2019) —41

to characterise species’ temporal niche (Zurell et al., 2024) using an accessible R package, glmmTMB42

(Brooks et al., 2017).43

A regression recipe for phenology44

Consider a measured quantity of phenology Yt observed over discrete time step t. In ecology, Yt45

usually do not have Normal error distributions and can either be skewed continuous (e.g., leaf-litter46

biomass) or discrete (e.g., number of reproductive individuals). Willig et al. (2024) added that phe-47

nological data often contain pseudoreplication (e.g., repeated sampling from the same individuals),48

sampling bias (e.g., towards more abundant species) and unequal sampling effort (e.g., different total49
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number of individuals sampled at each t). Fortunately, both non-Gaussian responses and sampling50

issues can be flexibly accommodated by GLMM.51

Using the same data from Willig et al. (2024), I re-analysed the reproductive phenologies of five52

Amazonian bat species in a single GLMM to demonstrate its ability to account for unequal sampling53

effort and provide novel insights. Let Yjt be the total number of pregnant female individuals in bat54

species j at time t, our basic GLMM can be:55

Yjt ∼ Binomial
(
N jt , p jt

)
logit

(
p jt

)
= η jt = f (Month-specific variables, Species-specific coefficients) , (1)

where N jt is the total sample size of species j that could vary across time t. A binomial GLMM56

therefore accounts for marginal totals as Willig et al. (2024) have alluded to. For dealing with unequal57

sampling effort that is continuous (e.g., plot size or observation duration), including an offset term58

could standardise the linear predictor to amount per area or per time (e.g., leaf-litter mass per area59

or number of pollinator per hour; Warton et al., 2015). Alternatively, including a proxy of sampling60

bias (e.g., distance from road) as a predictor will also allow us to “zero out” the bias by setting the61

predictor to zero when making predictions (Warton et al., 2013). Here I will only focus on accounting62

for sampling effort by explicitly stating trial sizes via a binomial GLMM.63

With sampling effort being controlled, the next step is to model the proportion of pregnant fe-64

males of species j at time t, p jt . With the canonical logit link function, our linear predictor η jt65

includes month-specific variables and species-specific coefficients to predict species phenology by66

month (Equation 1). There are various options to formulate the model, including autoregressive67

model (Hyndman & Athanasopoulos, 2021) and Fourier-based cosinor rhythmometry (Fidino & Ma-68

gle, 2017; Lai et al., 2025). Instead of reiterating these approaches, here I introduce a formulation69

with GLLVM — a class of GLMM that has become increasingly popular in joint species distribu-70

tion modelling (JSDM) due to its ability to infer multiple species’ spatial niches while accounting for71

their non-independence (Niku et al., 2021), but remains underused in phenological studies. Applying72

GLLVM to multivariate time series represents the characterisation of species’ temporal niche from73

their joint phenologies. Our linear predictor is thus:74

η jt = α0 +αt +β0 j +
K

∑
k

Xtkβ jk +
M

∑
m

Ztmθ jm , (2)
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where α0, αt and β0 j are the overall fixed intercept, month-specific random intercepts and species-75

specific random intercepts, respectively; they capture the community-, month- and species-average76

reproduction. The predictors Xtk represent measured monthly variables, such as precipitation and77

temperature. When these abiotic variables are available, we could explain monthly phenology with78

species’ environmental responses, β jk. Lastly, the latent component contains month-specific latent79

variable Ztm that accounts for unmeasured or missing predictors, while θ jm captures species’ re-80

sponses to these latent month variables. Similar to JSDM, Ztm and θ jm are interpretable as month81

factors and species loadings in an ordination, allowing us to infer species’ temporal niche as their82

affinities to particular months (Zurell et al., 2024).83

When monthly environments are not available (as in this study), Equation 2 reduces to a pure84

latent variable model (Hui, 2016):85

η jt = α0 +αt +β0 j +
M

∑
m

Ztmθ jm , (3)

which resembles unconstrained ordination of species in a latent temporal space based on their phe-86

nology. The next decision is how many latent dimensions to use. I fitted Equation 3 to Willig et87

al. (2024)’s dataset using two latent dimensions (M = 2) for three reasons: (i) two is the minimum88

number of axes to visualise ordination in a conventional sense, (ii) a larger number would quickly89

move us away from parsimony since there are only five species and twelve months, and (iii) the two90

leading latent dimensions are relatable to Fourier decomposition of time series with a single annual91

periodicity (see Appendix S1 in Supporting Information).92

The GLLVM was fitted with the glmmTMB v1.1.10 package (Brooks et al., 2017) in R v4.3.3 (R93

Core Team, 2024). The model’s formula syntax was94

cbind(Pregnant, Not_pregnant) ~95

1 + (1 | month) + (1 | species) + rr(species + 0 | month, d = 2)96

which maps directly to Equation 3 (see also Table S1). Note that the same could also be achieved with97

the gllvm package (Niku et al., 2019). Using the latent species loadings θ jm, I then calculated two98

types of species–species associations (direct-and-indirect vs. direct-only) across months following99

Hui (2016) and Popovic et al. (2019) to demonstrate the additional insight about resource partitioning100

that GLLVM provides.101
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Results and Discussions102

Controlling for unequal sampling effort across months, the binomial GLLVM predictions (Fig. 1a)103

compared favourably to the observed proportions and modalities in Willig et al. (2024, see their104

Fig. 4). More interestingly, the model-based ordination (Fig. 1b) clustered species by their phenology105

similarly to the original conclusion in Willig and Presley (2023). The first latent dimension distin-106

guishes the dry season (July–September) from other months, separating two species (Artibeus litura-107

tus and Glossophaga soricina) with peak pregnancy during drier months from the rest. The second108

latent dimension somewhat distinguishes earlier months from later months, suggesting a plant pheno-109

logical gradient from floral nectar to fruit availability; this is evident in the separation of nectarivore110

Glossophaga soricina from the remaining fruigivores.111
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Figure 1: (a) Predicted proportion of pregnant females, p, across months. Lines with different letters
and colours denote individual species. (b) Model-based ordination of species and months in two-
dimensional latent space. Letters denote species and corresponding to panel a, while numbers denote
month. Species key: A = Artibeus lituratus, B = A. planirostris, C = Carollia brevicauda, D =
C. perspicillata, E = Glossophaga soricina.

Regressions also provide two additional insights unavailable from circular statistics. After con-112

trolling for marginal totals, the random intercepts (αt and β0 j) in GLLVM further standardise the113

phenological ordination by month and species average reproduction (Hui et al., 2015). This is im-114

portant to ensure that species–species associations only reflect their joint temporal fluctuations, rather115

than a mixture of both temporal fluctuations and overall abundance or fecundity (though one may drop116

the random intercepts if the goal is to capture both as a life-history whole). Another nuance lies in117

the antagonistic associations among three frugivorous bats (Fig. 2b) despite their positive correlations118
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in phenology (Fig. 2a). This suggests that species that cooccur temporally due to shared resource119

preferences (positive correlations in Fig. 2a) may in fact be competing directly (negative precisions120

in Fig. 2b). I will be brief about direct vs. indirect associations here and refer to Popovic et al. (2019)121

for further discussions. A related question is whether independent bootstrapping per species (as in122

Willig et al., 2024) is valid when species phenologies are correlated.123
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Figure 2: Opposite pairwise species associations revealed by direct-and-indirect associations (a) ver-
sus direct-only associations (b), which were calculated as correlations and precisions respectively
(Popovic et al., 2019). See Fig. 1 for species key.

Here I have only touched the minimum capabilities of GLLVM for phenology. The basic re-124

gression recipe could include more ingredients, including environmental or anthropogenic predictors,125

additional random effects to account for other sources of pseudoreplication (e.g., spatial autocorrela-126

tion), an offset term to standardise phenology by area, or proxy covariates to adjust for preferential127

sampling (see Table S1 for details). Furthermore, GLLVM can combine predictor components from128

other regression tools, such as autoregression and cosinor rhythmometry (Hyndman & Athanasopou-129

los, 2021; Lai et al., 2025), provided that informed decisions are made to avoid overfitting. To better130

connect regressions to circular statistics, it is worth exploring the von Mises distribution (Godoy et al.,131

2009; Graves et al., 2024) available in some GLMM packages in R (e.g., brms; Bürkner, 2021). These132

are accessible solutions to most if not all issues listed in Willig et al. (2024), at least for predictive133

and inferential purposes, and will enable ecologists to properly accelerate phenological studies using134

unconventional data from herbaria (Davis et al., 2022) and citizen science (Binley & Bennett, 2023).135
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