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from https://www.isleroyalewolf.org/, and we use the copy available in package dsem. Code to

reproduce case studies and the simulation experiment are available as an anonymized GitHub

(https://anonymous.4open.science/r/dsep_in_dsem-61FF/plot histogram.R) and will be available

as a public GitHub repo with Zenodo for DOI upon acceptance. The d-separation test is

available in dsem as function test dsep.
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Abstract:

Ecologists often use time-series models to approximate dynamics arising from density
dependence, species interactions, community synchrony, and other processes. Dynamic
structural equation models (DSEM) can represent simultaneous and lagged interactions
among variables with missing data, and therefore encompasses a wide family of analyses
(linear regression, vector autoregressive models, and dynamic factor analysis). However,
before interpreting a DSEM as a causal model, analysts should first test whether its
assumptions about conditional independence are inconsistent with available data (i.e.,
attempt to falsify the model).

In site-replicated and phylogenetic contexts, ecologists seek to falsify causal assumptions by
testing implied conditional-independence relationships using a directional-separation (“‘d-
sep”) test, but this has not been demonstrated using time-series analysis of ecological systems
involving simultaneous and lagged interactions. Here, we propose a time-series d-sep test
and use a simulation experiment and case studies to explore its performance.

The simulation confirms that this test results in a uniform p-value when using a correct
causal model, and a low p-value (i.e., a decision to reject a model) when the causal model is
incorrect. As expected, time-series that are short or have a large proportion of missing data
have less power to reject an incorrect model. In a previously published analysis involving
wolf-moose interactions in Isle Royale, the test supports top-down control but cannot
distinguish whether bottom-up control is supported. In a novel application involving pollock
in the Gulf of Alaska, the test supports a conceptual model where temperature drives

spawning phenology, which subsequently affects availability to a spawning survey.
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4. We conclude that d-sep is a useful test to falsify the conditional-independence assumptions
of a time-series model. It is therefore complementary to other methods used to validate

causal inference (i.e., controlled experiments, ecological theory, and system knowledge).
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Introduction

Ecologists study causality in natural systems using controlled experiments and the analysis of
observational data (Grace, 2024; Siegel & Dee, 2025). Developing a well-formed hypothesis is a
key first step, and causal analysis has been proposed as a useful scientific framework to confront
hypotheses with data (Grace & Irvine, 2020). Generating hypotheses is an iterative process of
building graphical causal networks (directed acyclical graphs; DAGs) of key variables in a
system independent of the data and prior to modeling, and this requires eliciting and representing
expert knowledge about ecological mechanisms (e.g., see Table 5 of Grace & Irvine, 2020).
Structural causal models (SCM) can then be used to estimate causal relationships by fitting
statistical models to graphical models (Pearl, 2009). This approach resolves well-known issues
with bias when making causal statements from predictive statistical models (Arif & MacNeil,
2022a), where the SCM forces explicit consideration of confounding factors (Byrnes & Dee,
2025). SCMs are widely used outside of ecology, and controlled experiments can be interpreted
as a variant of SCM where some variables (i.e., experimental treatments) are known a priori to
be independent of other variables. However, ecologists also use observational data for systems
that are not amenable to experimental manipulation, and these settings require validating causal
hypotheses to ensure unbiased causal estimates (Arif & MacNeil, 2022b; Siegel & Dee, 2025).
Thus, it is vital for analysts to be able to validate their causal models fitted to observational time-
series data to advance understanding of ecological mechanisms.

Time-series dynamics pose particular challenges, because interactions among variables may
be either simultaneous (e.g., occurring much faster than the time-step in available observations)
or lagged (e.g., where a variable in one observed time-interval affects another variable at a later

time). Lagged interactions result in temporal dependence, which violates a key statistical
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assumption of the popular structural equation model (SEM; Pearl, 2012) framework for
estimating causal relationships and limits the practical application of SEM for time-series
analysis. Thorson et al. (2024) extended the SEM modeling framework to allow for correlated
observations including linear interactions among variables that include simultaneous and lagged
effects. This dynamic structural equation model (DSEM) framework is efficiently represented as
a Gaussian Markov random field (GMRF) and fitted as a generalized linear mixed model
(GLMM), as implemented in the ‘dsem’ package (Thorson et al., 2024) in the R statistical
environment (R Core Team, 2023). DSEM is computationally efficient, can account for missing
data, and encompasses a wide range of statistical analyses including linear models, errors-in-
variables, ARIMA models, dynamic factor analysis, structural vector autoregressive models, and
linear SCMs. However, it is not clear how an analyst could seek to determine whether a
hypothesized DSEM is consistent with available data, and potentially falsify models that are not.
In general, the best way to validate causal assumptions is by using controlled experiments to
confirm that variables are independent conditional upon fixed conditions. However, experiments
often cannot be run at the scale of a system (due to logistical or legal constraints). In these cases,
analysts might seek to determine whether hypothesized dynamics are inconsistent with available
data (i.e., falsify one or more hypotheses). For example, consider a trophic cascade, where we
might specify a DSEM in which predator X has an approximately linear effect on consumer Y
and consumer Y has a linear effect on producer Z. We write this as two causal paths: X — Y and
Y = Z. In this DSEM, variation in predators is assumed to be independent of producers,
conditional upon a fixed value for consumers (i.e., X L Z|Y). We can therefore test this
conditional independence relationship as a regression (Z = SxX + LyY + €), and if the slope Sy

significantly departs from zero, then we can “reject” this component of DSEM as invalid. This
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insight is formalized by the Shipley directional-separation (“d-sep”) test (Shipley, 2000), where
all conditional-independence (CI) relationships implied by a given DSEM are sequentially tested
and results are then combined in a single “omnibus” test. This Shipley d-sep test is widely used
in the ecological analysis of controlled experiments (Meziane & Shipley, 2001) and phylogenetic
comparative analysis (von Hardenberg & Gonzalez-Voyer, 2013), and has been extended to
multi-level models (Shipley, 2009). However, we are not aware of studies using the Shipley d-
sep test to falsify causal assumptions when analyzing time-series in ecology.

We therefore demonstrate using an extension of the Shipley d-sep test for ecological time-
series. We first summarize the d-sep test for structural equation models, and then discuss
modifications that are necessary for application to time-series models that include simultaneous
and lagged effects or when dealing with missing data. We then provide a simulation experiment
to determine whether the proposed test has good statistical performance (i.e., results in a uniform
distribution for p-values) when the model is correctly specified, and also how often it can reject
an incorrectly specified model given a mis-specified causal structure, varied time-series lengths,
and varied proportions of missing data. Finally, we use two real-world case studies to illustrate
the types of ecological inference that can be drawn from the time-series d-sep test. Results
suggest that the method performs well for simple (2-4 variable) models incorporating
simultaneous and lagged effects given the range of time-series that are common in population
dynamics (25-100 time points), and the method is freely available as function “test dsep(.)" in
the R package dsem for future use.

Methods
The Shipley (or d-sep) test can be applied to a directed acyclic graph (DAG) representing a

structural causal model. It proceeds by:
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1. identifying the set of conditional independence (a.k.a. directional separation or “d-sep”)
relationships that are implied by the DAG. This set depends upon an a priori ordering of
variables, but the number of relationships is invariant to ordering. To identify this set, the
algorithm identifies whether every pair of variables is directly linked by the DAG. If that
pair is not directly linked, the algorithm identifies the set of “conditioning variables” that (if
held constant) would result in that pair then being independent. That pair of variables and
the set of conditioning variables is then recorded as a “conditional independence
relationship”. We automate this step using code extracted from the R package ggm
(Marchetti, 2006);

2. fitting each d-separation relationship as a regression model, and extracting the p-value p;
associated with rejecting the null hypothesis for each conditional independence relationship
from Step 1;

3. combining these p-values using Fisher’s formula, C = —2log(3N_, p;), and calculating an
overall (a.k.a. “omnibus”) p-value representing the strength of evidence that the model is
incorrectly specified, under the assumption that C follows a chi-squared distribution with 2N
degrees of freedom.

This d-sep test is specifically designed to identify whether a hypothesized causal structure is

more inconsistent with available data than would be expected by chance alone (i.e., falsify the

causal hypothesis). It is distinct from standard diagnostic tests (e.g., omnibus tests or visual
inspection of model residuals), which are designed to falsify the statistical assumptions of the
fitted model (e.g., the assumed distribution for residual or process errors, linearity,
homoskedasticity, etc.). To see this distinction, we note that standard diagnostic tests inspect the

goodness-of-fit for the included direct effects in the model, whereas the Shipley d-sep test
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evaluates whether the effects that are constrained to zero (that is, the causal relationships the
model assumes are absent) are indeed justifiably absent. Here, we focus on developing and
exploring performance for the time-series extension of the d-sep test in isolation. Future
research could explore the performance of a workflow that combines standard diagnostics and d-
sep tests.

Simultaneous and lagged effects in time-series structural equation models

We seek to generalize the d-sep test for application in time-series models that can include both
simultaneous and lagged interactions among variables. Next, we briefly summarize dynamic
structural equation models (DSEM). For a setof j € {1,2, ...J} variables over t € {1,2, ..., T}
time intervals, we define a matrix of latent variables X with dimension T X /. DSEM then defines

a structural vector-autoregressive (SVAR) process for row-vector X; containing x,; for all variables in

time t:
Xt = Boxt + let—l + + Et
e igher” (1
Simultaneous Lag-1 Higher—order

where B, are simultaneous interactions among variables, B; is lag-1 interactions, and the model can

include any arbitrary lag up to T — 1 (indicated by ... in Eq. 1). We can then re-write this as a

simultaneous equation model by defining a lower-triangle joint path matrix Pj4;n, with dimension

JT X JT. For illustration when T = 4, this results in a joint path matrix:

B, 0 0 O
IB, B, 0 o0

Pjoint - B1 BO 0 (2)
B, B,

where ... again indicates the potential inclusion of higher-order lag matrices. This defines a
simultaneous equation:

vec(X) = Pjpintvec(X) + vec(E) 3)
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vec(E)~MVN(0, Vigint)

where E is the /] X T matrix of exogenous errors, Vjgin is the JT X JT covariance for these errors
(which is assumed to be block-diagonal, i.e., zero for any errors occurring in different times), and
vec(X) is the operator that stacks the J columns into a single vector of length JT. Conveniently,
this simultaneous equation can be re-arranged as a Gaussian Markov random field where Q =
(I- Pj";,int)Vj;ilnt(l — Pjoint) 1s the sparse precision (inverse-covariance) matrix. The probability
density of this GMRF can then be rapidly evaluated using the sparse precision Q, and it can be
fitted efficiently using the Laplace approximation as a GLMM. The model is completed by
defining a distribution for data matrix Y with dimensions T X J. For each column y;, the user
can specify that measurements are without error (i.e., y¥; = X;) or can specify a link function and
distribution, i.e., y¢;~£j (g ' (x¢;), 6;) where g7 *(x¢;) is the inverse-link function, 6; is the
estimated variance for measurement errors, and f; is the distribution for errors. In the following,
we focus upon the case of no measurement errors (i.€., y; = X;), which then collapses to a
“process error” model. Importantly, this process-error model can include missing values where
yej = NA.

DSEM is specified using “arrow-and-lag” notation. For example, a one-headed arrow, A —
B, 1 indicates that variable A in time t affects B in time ¢t + 1 and corresponds to parameter in
the lag-1 interaction matrix B;. In addition to restricting dynamics to a DSEM (i.e., linear
interactions), in the following we make the following restrictions: (1) that exogenous covariance
is diagonal; (2) that variables can be re-ordered such that simultaneous interaction matrix By, is
lower-triangle (i.e., a recursive graph); and (3) that there are no “latent variables” that are
entirely missing observations. Future research could relax these restrictions using insights from

ongoing research in causal discovery methods, e.g., using SVAR-FCI as developed for SVAR
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models such as DSEM (Malinsky & Spirtes, 2018). In particular, assumption-3 (“no latent
variables™) is a key assumption of our present work, and SVAR-FCI replaces this by applying
“m-separation” to incorporate two-headed arrows that arise from marginalization across latent
variables. M-separation was introduced by Richardson & Spirtes (2002) and applied to VARs by
Eichler (2007). However, m-separation has not been discussed in recent ecological reviews of
causal falsification (Arif & MacNeil, 2023; Grace, 2024), so we leave it as a topic for future
extensions (but see preprint: Correia et al., 2025). Similarly, PCMCI+ allows nonlinear
relationships among variables (Runge, 2022). We recommend that future research introduce
both topics for ecological time-series analysis.

Conditional independence in time-series modelling

Using a DSEM with maximum lag M = 1 implies that the ] variables X, in time t might depend
upon X, but also x,_;. Therefore, the d-sep test involves testing conditional independence
relationships among a set of /(M + 1) pairwise relationships, representing each variable j €
{1,2, ..., ]} at each potential lag m € {0, ..., M} where M is the maximum lag included in the
model (see Table 1 for an overview of the time-series d-sep algorithm). This insight yields a

further complication. Say for a maximum lag of M = 1, variable x; ; and x;,, ;- might be
independent only when conditioning upon preceding states x;_q j+. To see this, consider a

bivariate time-series model with maximum lag M = 1:

A = pilag,(A4) + ¢4
(4A)
B = B,A + pslag,(B) + €
where lag; (A) indicates the lag-1 operator for variable A such that A has a simultaneous (lag-0)

impact on B, and both A and B exhibit first-order autocorrelation (e.g., Gompertz density

dependence). This is specified in arrow-and-lag notation as:



A- A1

A-B,0 (4B)

B-B,1
218  As our later algorithm shows, this model implies two CI relationships (Fig. 1). The first implies
219  that B;,4 is independent of the preceding A; conditional upon fixed values for:
220 1. A;_q,because A; « A;_1 = B;_1 = B; = B, such that variation in A;_; causes a
221 correlation between A; and B;,q; and
222 2. B, because A; = B; = B;,1, such that a fixed value for B, blocks (a.k.a. controls for) the
223 correlation between A; and By, q;
224 3. Ayyq,because A; = A;ypq = Beiq, such that a fixed value for A, blocks the correlation
225 between A; and B, 4.
226 We can therefore test for this CI relationship by fitting an alternative time-series model:

A=¢y
(5A)
B = Bolag, (A) + p1lag,(4) + Blag,(B) + BsA + €5

227  and testing whether [, is significantly different from zero. This CI relationship is then specified
228  in arrow-and-lag notation as:

A-B,1

A—-B,?2

(5B)

B - B,1

A-B,0
229  where the parameter in the first line corresponds to fy.

230 This example therefore illustrates that we need to test for conditioning variables at lag-2

231 when fitting a maximum lag M = 1, and in general we need to include conditioning variables for
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M prior times given a maximum lag of M. In the case of M = 0 (i.e., no lagged effects), then we
can again ignore conditioning variables prior to the time of interest, and the protocol collapses to
the three steps in the standard d-sep test (see beginning of the Methods section).

To define conditional independence relationships in time-series models involving maximum
lag M and ] variables, we therefore define a conditioning matrix A with dimension

J(M + 1) X J(M + 1). For the case of maximum lag M = 1, we have:

B, 0 0O
0 B; B,

where the first row and column are the conditioning (or “burn-in”) interval where conditioning
variables might arise, and we only test for CI relationships among the 2™ and 3™ rows and
columns. To do so, we first define all conditional independence relationships within that
conditioning matrix A, in this case by copying functions from the R package ggm. However, we
only keep those that define an independent relationship between two variables that are both after
the M = 1 “burn-in” intervals, while still allowing conditioning variables to occur anywhere in
the matrix A. We then iterate sequentially through each conditional independence relationship,
where we sequentially fit DSEM with that specified relationship, calculate the p-value for a two-
sided Wald test, and combine these using Fisher’s formula.

As further complication, we reiterate that DSEM can account for missing data (i.e., y;; =
NA). In these instances, we impute missing data from the predictive distribution of random
effects (i.e., the precision matrix H given available data and fixed effects), and then use these
imputed data as “fixed” for each CI test. We explored alternative options where we re-simulate
missing data independently for each CI relationships, or used a single imputed data set across all

ClI relationships for a given d-sep test. This exploration suggested relatively little difference in
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performance, and we show the former in the following. We note that imputing a single replicate

of missing data and using that in multiple CI tests will likely lead to correlated p-values, and

therefore a less sensitive omnibus test. Future studies could explore alternative strategies for

data-imputation to improve statistical efficiency.

Simulation experiment

To explore the likely performance of this proposed application of omnibus d-separation testing,

we first conduct a factorial simulation experiment. This involves 500 replicates of each

combination of the following levels:

1.

3.

Three simulation models: We simulate data from three different dynamic structural equation
models. The simplest (“sem”) has four variables and only simultaneous effects, where A —
B,A— C,B - D,and C - D. The intermediate (“dsem_simple”) involves two variables
with simultaneous and lagged effects, where A — B, and an autoregressive process for both A
and B. The most complicated (“dsem_complex”) involves four variables, combining the
same simultaneous effects as the “sem” scenario, but also including first-order
autocorrelation for each variable. The intermediate “dsem_simple” corresponds to the
example discussed in the Conditional independence in time-series modelling section (Eq. 4);
Three sample sizes: We simulate time-series of length T = {25, 50, 100}, representing short,
medium, and long ecological data sets;

Five levels of missing data: We randomly exclude data for each combination of variable and
year, with probability ppissing = {0, 0.1, 0.2, 0.35, 0.5};

Two estimation models: For each combination of simulation model, sample size, and missing
data, we fit DSEM either using the true model structure (“right”), or using a mis-specified

DSEM (“wrong”; see Fig. 2);
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This design therefore involves 3 X 3 X 5 X 2 X 500 = 45,000 applications of the time-series d-

sep test.

We assess two characteristics for the d-sep test in this experiment:

Calibration: A well-calibrated test will result in a uniform U(0,1) distribution for p-values
when the simulation model matches the estimation model;

Efficiency: An efficient test will result in a large proportion of p-values that are close to zero
when the estimation model does not match the simulation model. Ideally, this p-value will
remain close to zero even when time-series are short, the simulation model is complicated,

and a large proportion of data are missing.

Case study applications

We also demonstrate the potential use of time-series d-sep via application to two real-world data

sets:

1.

Wolf-moose interactions on Isle Royale: Building upon an analysis from Thorson et al.
(2024), we re-analyze a population census of wolves and moose on Isle Royale from 1959-
2019 (Vucetich & Peterson, 2012), where W and M are log-abundance of wolves and moose,
respectively. We fit a model with just Gompertz density dependence (W — W,1 and M —
M, 1), adding bottom up interactions (M — W, 1), adding top-down interactions (W — M, 1),
or adding both;

Spawning phenology and environment: In a new example of DSEM, we use published data
representing spawning phenology for walleye pollock in the Gulf of Alaska from 1992-2021
and its relationship to survey availability (Rogers et al., 2025). This includes four variables,
representing sea surface temperature T, the average number of days between mean date of

spawning (as estimated from larval-derived hatch dates) and the mean date of a survey A, the
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logit-transformed proportion of females >30cm in a spawning or spent stage during the
spawning-grounds survey P, and the survey availability Q measured as log-ratio between the
surveyed biomass and predicted biomass where the latter is taken from a population
dynamics model fitted to the survey data without accounting for timing or temperature
(Monnahan et al., 2021). We explore three alternative models for these data. The first
(“temperature as driver”) views temperature as the driver of all other variables (i.e., T — A,
T - P,and T = Q). The second (“availability regression”) views variables as independent
predictors of survey availability (i.e., T = Q, P = @, and A — Q). The third (“timing as
mediator”, described in Rogers et al. 2025) claims that temperature affects survey availability
via its mediating effect on spawning phenology (i.e., T - A, A - P,and A — Q). Across all
three models, we also estimate first-order autoregression for each variable (i.e., T = T, 1,
A—- A1, P—-P,1,and Q = Q, 1) and assume that variables are measured without error
(i.e., a process-error model)

In each case study, we record the p-value from the time-series d-sep test as well as the marginal

Akaike Information Criterion (AIC) for the fitted model. In the following, we use AIC as

additional information to compare among models that are not falsified using the proposed test.

Results

Simulation experiment

We first illustrate the performance (i.e., calibration and efficiency) of the proposed test across

simulation models and time-series lengths when data are complete (Fig. 3). In the simulation

model without lagged effects (Fig. 3 top row), the correct model has an approximately uniform

U(0,1) distribution for p-values across all sample sizes indicating that the test is well calibrated.

Similarly, the incorrect model results in a p-value < 0.1 in nearly all replicates, indicating that
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the test is statistically efficient across sample sizes. Moving to the two-variable model with lags
(Fig. 3 middle row), we see that the test is well calibrated across time-series lengths (i.e., the
correct model results in an approximately uniform distribution of p-values). However, it only
detects the mis-specification of an incorrect model (i.e., a p-value < 0.1) in 60% of the
replicates at low sample sizes (T = 25) and 80% of replicates at intermediate sizes (T = 50),
before attaining good performance for long time-series (T = 100). Finally, for the four-variable
model with lags (Fig. 3 bottom row), we see that the test is poorly calibrated (i.e., departs from a
U(0,1) distribution) for short time-series and incorrectly identifies the model as mis-specified in
nearly 40% of replicates. It then becomes well calibrated as the time-series length increases.
Expanding this experiment across different levels of missing data (Fig. 4), we see that the simple
estimation model remains well calibrated across the level of missing data (Fig. 4 top row), but

that the efficiency drops as ppm;ssing increases from 0 to 50%. A similar pattern holds for the

other simulation models (Fig. 4 middle and bottom rows). However, the decline in efficiency is
notable at a lower value of ppjssing in the intermediate-complexity simulation model (Fig. 4
middle row), and the complex simulation model remains poorly calibrated across levels of
missing data for short sample sizes (Fig. 4 bottom-left panel, red bullets).

Case studies

We also use two real-world case studies to illustrate the types of ecological inference that are
feasible when using the proposed test to falsify hypotheses using time-series models. In the case
study involving predator-prey interactions of moose and wolves in Isle Royale (Fig. 5), we
explored four models corresponding to single-species (Gompertz) density dependence, adding
bottom-up or top-down interactions individually, and adding both interactions jointly. The test

then provides strong evidence (p < 0.01) that the “bottom-up” model is incorrect, weak
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evidence (p = 0.15) that the model with only density dependence is incorrect, and no evidence
(p > 0.9) to reject the remaining two models. We therefore use AIC to conclude that the model
with top-down interactions is parsimonious (AAIC = 0) and not falsifiable relative to the model
with both interactions (AAIC = 1.1). In the case study involving spawning phenology and
survey availability for pollock in the Gulf of Alaska (Fig. 6), we explored three models
representing “temperature as driver”, “availability regression” or “timing as mediating effect”
hypotheses. The test provides strong evidence (p < 0.01) to falsify the first two models, but
fails to reject the phenology model (p = 0.7). We therefore conclude that this is the most
appropriate interpretation of those data given the proposed causal hypotheses.

Discussion

Conditional independence testing is an established practice in structural equation models and
phylogenetic path analysis. Here, we demonstrate its application to falsify causal hypothesis
regarding simultaneous and lagged interactions among ecological time using structural vector
autoregressive models like DSEM. Our simulation experiment confirms that the algorithm
proposed here is well calibrated, and that short time series (T = 25) can be sufficient for simple
structural models with complete data, but that longer time series (T = 100) are required as

model complexity increases. Similarly, the test efficiency drops as the proportion of missing

data increases towards ppjssing = 0.5. Finally, the case studies illustrate that the test will retain

several candidate models in some cases (i.e., for the Isle Royale data set), such that assessing
model parsimony and multi-model averaging might be appropriate in these cases. In other cases
(e.g., involving pollock spawning phenology), the test provides quantitative support for the

ecological interpretation of observational data.
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Here, we have restricted ourselves to small systems (scenarios involving 2-4 variables)
and few lags (simultaneous and first-order cross-lags). We do this because the limits of the test
are already evident at this small model size. For example, using 4-variables with first-order lags
and using short time series (T = 25), we already see poor calibration (i.e., rejecting the true

model above intended rates). To understand this, consider that | = 4 variables and one lag

= 36 conditional independence relationships to test. The number of CI

. 2J(2]+1
involves up to %

relationships therefore grows as the square of the number of variables, and the test seems to lose
power rapidly for sample sizes that are common when analyzing annualized dynamics.
Presumably this loss of statistical power is why previous simulation tests of d-sep in ecology
(e.g., in phylogenetic path analysis) have involved systems with < 5 variables (von Hardenberg
& Gonzalez-Voyer, 2013). In summary, the time-series d-separation test explored here was
unreliable when applied to models with many variables, particularly when time-series were

relatively short or had missing values.

Others have advocated that ecologists adopt a causal analysis framework, which is a
workflow for developing and quantifying DAGs and understanding causal linkages from
observational data (Arif & MacNeil, 2023; Grace & Irvine, 2020). Adopting this framework
could help mitigate biases associated with traditional statistical models (e.g., linear regression)
and understand causality. D-sep is one step in this workflow and broadly tests consistency
between DAGs and data, or whether the data support the DAG structure (i.e., configuration of
linkages) (‘Step 2’ in Figure 2 of Arif & MacNeil (2023), part of ‘Step 3’ in Figure 2 of Grace &
Irvine (2020)). The backdoor and frontdoor criteria are other steps in the workflow that identify
whether DAGs are susceptible to confounding variables, which introduce bias into the estimation

of parameters and misrepresent causal linkages (Arif & MacNeil, 2023; Byrnes & Dee, 2025;
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Pearl, 2009). The backdoor and frontdoor criteria are unavailable for DSEM models but are
needed to advance our understanding of using DSEM to identify causal linkages among variables
from models fitted to time-series data with simultaneous and lagged interactions, as well as
missing data. Consequently, it will not be possible to follow all recommended steps in the causal
analysis framework, such as those in Arif and MacNeil (2023). Further, many correct DAGs will
fail a d-sep test for reasons including DAG complexity, time series length, and the presence of
missing data, as our simulation showed. When communicating the results from models where we
expect d-sep to be less reliable, analysts should take care to acknowledge the potential for biases
in parameter estimates due to model mis-specification, explain model assumptions, and be

explicit about the limits of causal inference (Grace & Irvine, 2020; Siegel & Dee, 2025).

We also note that d-sep is only testing for significant linear relationships among
variables, and therefore cannot detect nonlinear or state-dependent relationships (unless they can
be expressed using lagged linear relationships). We therefore recommend further cross-
comparison with nonlinear causal analysis, e.g., using “empirical dynamic modelling” EDM
(Munch et al., 2023). EDM has proven to be powerful in detecting nonlinear causal systems, as
validated via microcosm experiments and methods comparisons (Chang et al., 2022; Sugihara et
al., 2012). However, EDM also appears to be more informative with longer time series. We
therefore envision a workflow using linear models (e.g., d-sep tests for a DSEM) when time-
series are relatively short, and comparison with a nonlinear method for longer time-series. We
also encourage further work estimating a linear “skeleton” within EDM models, so that EDM
collapses to linear interactions when data are limited, but can express a wide range of nonlinear
systems when data are abundant. Both DSEM and EDM involve fitting a Gaussian process

model, so it seems like their statistical integration would be feasible in future statistical research.
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Recent studies have pursued a rich vein of parallel line of research for “causal
discovery,” i.e., using observational data to identify what combination of one- and two-headed
arrows can be identified from available data. Starting with the FCI algorithm (Spirtes et al.,
2000), these causal-discovery algorithms typically start with a fully-connected causal model and
then proceed backwards by either (A) identifying pairs of variables that are conditionally
independent, or (B) triplets that have a specific structure. In particular, the SVAR-FCI algorithm
is applicable to the DSEM explored here (Malinsky & Spirtes, 2018), and provides many insights
(e.g., identifying two-headed arrows arising from latent variables) relative to the algorithm tested
here. Similarly, PCMCI+ incorporates nonlinear linkages among larger numbers of variables
(Runge, 2022). However, we believe that causal discovery involves a different goal than the one
addressed here: we instead start with one (or a small number of) causal hypotheses that are
derived from ecological knowledge, and then seek to falsify that specific hypothesis. For
scientists who have already developed hypotheses about system dynamics, we think that this
“falsification” step remains important and separate from parallel research regarding causal

discovery.

In summary, we recommend that analysts seek to falsify causal assumptions for time-series
models when they are intended for causal analysis. When developing an DSEM, we recommend
that only models with a priori ecological support that also pass the d-sep test be considered, and
that model parsimony or averaging then be considered for those models that are consistent with
data (i.e., pass the d-sep test). However, in models with 5+ variables and lagged dynamics, we
caution that d-sep appears to be poorly calibrated such that models may be erroneously rejected.
We therefore recommend ongoing research to integrate causal falsification and discovery into

ecological workflows.
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516  Table 1: Summarizing the steps required when extending the d-separation test for use in time-

517  series models that include both simultaneous and lagged relationships among variables.

Number Title Description

1 Extract path matrix Extract path matrix, including conditioning interval

for maximum number of lags to define conditioning

matrix A
2 Define conditional Use directional separation (“d-sep”) to define the set
independence (CI) of CI relationships
relationships
3 Eliminate relationships Eliminate duplicative CI relationships, and restrict
target and predictor variables outside the
initialization buffer, while allowing conditioning
variables within the “burn-in” interval
4 Simulate missing data from  Simulate any missing data, either once across all CI
predictive distribution tests or separately for each CI test
5 Fit CI relationships and Fit each CI relationship, record the p-value for each
combine p-values individual CI test, and combine them using Fisher’s

formula

518

519



520 Fig 1: A visual depiction of the two conditional-independence relationships implied by the

521  “dsem_simple” structural causal model DSEM, as calculated using conditioning matrix A (Eq.
522 6). The CI relationship is shown with a solid line, while the conditioning variables are shown as
523  dashed lines. Given a DSEM with maximum lag M = 1, the CI must condition upon a

524  maximum of lag-2 relationships; e.g., the top CI relationship can be fitted as b = Sylag,(a) +

525  Bia + B,lag,(a) + € where we then test for the significance of the 8, coefficient.

Conditional independence 1

Conditional independence 2

526
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Fig. 2: The dynamic structural equation model (DSEM) used to simulate data (left column) in
three simulation scenarios (rows), and the DSEM that is specified when intentionally fitting with
a mismatched SCM (right column). In each DSEM, we show 2-4 time-series variables (labeled
“a” through “d”), and causal paths showing either simultaneous effects (black arrows) or lag-1
effects (blue arrows), where a blue arrow from a variable to itself (e.g., in the 2" row) shows a

first-order autoregressive effect.

Right Wrong

sem

ple

dsem_sim

plex

dsem_com



536  Fig. 3: Results from the simulation experiment showing the frequency of 500 replicates (y-axis)
537  with a given p-value (x-axis) for a time-series d-separation test, while simulating time-series of
538 length T = {25,50,100} (columns) from three dynamic structural equation models DSEM

539  (rows, see Fig. 1 left column). Simulated data were either fitted with the correct DSEM (red

540  histogram, Fig. 1 left column) or wrong DSEM (blue histogram, Fig. 1 right column). A well-
541  calibrated d-separation test will result in a p-value that follows a uniform U(0,1) distribution
542  (i.e., horizontal dashed line) when fitting the correct model, and an efficient test will result in a

543  p-value that is close to zero when fitting a mis-specified model.
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545  Fig. 4: Results from the simulation experiment when showing the proportion of simulation
546  replicates with d-separation test resulting in p < 0.1 (y-axis) across five proportions of missing
547  data ppissing = {0, 0.1, 0.2, 0.35, 0.5} (x-axis), and across different time-series lengths

548  (columns) and dynamic structural equation models DSEM (rows, see Fig. 3 caption for more
549  details). A well-calibrated model will reject the test at a nominal 0.1 rate (horizontal dotted
550 lines) when the DSEM causal assumptions are correct, and ideally will reject it at close to 1.0

551  rate when the DSEM assumptions are mis-specified.
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Fig. 5 — Estimated dynamic structural equation model showing a vector-autoregressive model
fitting to data for wolf (W) and moose (M) log-abundance in Isle Royale 1959-2019 (Vucetich &
Peterson, 2012). We compare a model assuming Gompertz density dependence (i.e., W - W, 1
and M — M, 1), adding either bottom-up or top-down controls, or adding both jointly. For each
model, we show the time-series d-sep test p-value (p, top-left corner) and the delta-marginal

Akaike Information Criterion (top-right corner), where the most parsimonious model has AAIC =

0.
Density dependence Bottom up
p=0.15 AAIC=84| p=2e05 AAIC =91
Wt)o086— Wit+1) W(t) 088 Wit+1)
014
M(t) 0.91 M(t+1) M(t) 0.91 M(t+1)
Top down Both
p=097 AMC=0| p=098 AAIC =1
W(t) 085 Wit+1) W(t) 088 Wit+1)
-0:12 -0:12
013
M(t) 0.83 M¢t+1) M(t) 0.83 M¢t+1)




561



562

563

564

565

566

567

568

569

570

571

572

573

Fig. 6: Estimated dynamic structural equation model (DSEM) showing the estimated path

coefficient between temperature T, the average number of days between mean date of spawning

and the mean date of a survey on spawning grounds A, the logit-transformed proportion of

females >30cm in a spawning or spent stage during the spawning-grounds survey P, and the log-

ratio between the surveyed biomass and predicted biomass given other data Q. We show three

DSEMs (columns), either using temperature as an explanatory variable for all processes

(“Temperature as driver”), using all variables to explain availability (‘“Availability regression”),

or using survey timing as a mediating variable linking temperature to survey availability

(“Timing as mediator”). We also show the time-series d-sep p-value (top left) and delta-

marginal AIC (top-right) for each model.
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