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Abstract: 39 

1. Ecologists often use time-series models to approximate dynamics arising from density 40 

dependence, species interactions, community synchrony, and other processes.  Dynamic 41 

structural equation models (DSEM) can represent simultaneous and lagged interactions 42 

among variables with missing data, and therefore encompasses a wide family of analyses 43 

(linear regression, vector autoregressive models, and dynamic factor analysis).  However, 44 

before interpreting a DSEM as a causal model, analysts should first test whether its 45 

assumptions about conditional independence are inconsistent with available data (i.e., 46 

attempt to falsify the model).   47 

2. In site-replicated and phylogenetic contexts, ecologists seek to falsify causal assumptions by 48 

testing implied conditional-independence relationships using a directional-separation (“d-49 

sep”) test, but this has not been demonstrated using time-series analysis of ecological systems 50 

involving simultaneous and lagged interactions.  Here, we propose a time-series d-sep test 51 

and use a simulation experiment and case studies to explore its performance.   52 

3. The simulation confirms that this test results in a uniform p-value when using a correct 53 

causal model, and a low p-value (i.e., a decision to reject a model) when the causal model is 54 

incorrect.  As expected, time-series that are short or have a large proportion of missing data 55 

have less power to reject an incorrect model.  In a previously published analysis involving 56 

wolf-moose interactions in Isle Royale, the test supports top-down control but cannot 57 

distinguish whether bottom-up control is supported.  In a novel application involving pollock 58 

in the Gulf of Alaska, the test supports a conceptual model where temperature drives 59 

spawning phenology, which subsequently affects availability to a spawning survey.    60 



4. We conclude that d-sep is a useful test to falsify the conditional-independence assumptions 61 

of a time-series model.  It is therefore complementary to other methods used to validate 62 

causal inference (i.e., controlled experiments, ecological theory, and system knowledge).   63 

  64 



Introduction 65 

 Ecologists study causality in natural systems using controlled experiments and the analysis of 66 

observational data (Grace, 2024; Siegel & Dee, 2025). Developing a well-formed hypothesis is a 67 

key first step, and causal analysis has been proposed as a useful scientific framework to confront 68 

hypotheses with data (Grace & Irvine, 2020).  Generating hypotheses is an iterative process of 69 

building graphical causal networks (directed acyclical graphs; DAGs) of key variables in a 70 

system independent of the data and prior to modeling, and this requires eliciting and representing 71 

expert knowledge about ecological mechanisms (e.g., see Table 5 of Grace & Irvine, 2020). 72 

Structural causal models (SCM) can then be used to estimate causal relationships by fitting 73 

statistical models to graphical models (Pearl, 2009). This approach resolves well-known issues 74 

with bias when making causal statements from predictive statistical models (Arif & MacNeil, 75 

2022a), where the SCM forces explicit consideration of confounding factors (Byrnes & Dee, 76 

2025). SCMs are widely used outside of ecology, and controlled experiments can be interpreted 77 

as a variant of SCM where some variables (i.e., experimental treatments) are known a priori to 78 

be independent of other variables.  However, ecologists also use observational data for systems 79 

that are not amenable to experimental manipulation, and these settings require validating causal 80 

hypotheses to ensure unbiased causal estimates (Arif & MacNeil, 2022b; Siegel & Dee, 2025). 81 

Thus, it is vital for analysts to be able to validate their causal models fitted to observational time-82 

series data to advance understanding of ecological mechanisms.  83 

 Time-series dynamics pose particular challenges, because interactions among variables may 84 

be either simultaneous (e.g., occurring much faster than the time-step in available observations) 85 

or lagged (e.g., where a variable in one observed time-interval affects another variable at a later 86 

time).  Lagged interactions result in temporal dependence, which violates a key statistical 87 



assumption of the popular structural equation model (SEM; Pearl, 2012) framework for 88 

estimating causal relationships and limits the practical application of SEM for time-series 89 

analysis. Thorson et al. (2024) extended the SEM modeling framework to allow for correlated 90 

observations including linear interactions among variables that include simultaneous and lagged 91 

effects. This dynamic structural equation model (DSEM) framework is efficiently represented as 92 

a Gaussian Markov random field (GMRF) and fitted as a generalized linear mixed model 93 

(GLMM), as implemented in the ‘dsem’ package (Thorson et al., 2024) in the R statistical 94 

environment (R Core Team, 2023). DSEM is computationally efficient, can account for missing 95 

data, and encompasses a wide range of statistical analyses including linear models, errors-in-96 

variables, ARIMA models, dynamic factor analysis, structural vector autoregressive models, and 97 

linear SCMs. However, it is not clear how an analyst could seek to determine whether a 98 

hypothesized DSEM is consistent with available data, and potentially falsify models that are not.   99 

 In general, the best way to validate causal assumptions is by using controlled experiments to 100 

confirm that variables are independent conditional upon fixed conditions.  However, experiments 101 

often cannot be run at the scale of a system (due to logistical or legal constraints).  In these cases, 102 

analysts might seek to determine whether hypothesized dynamics are inconsistent with available 103 

data (i.e., falsify one or more hypotheses).  For example, consider a trophic cascade, where we 104 

might specify a DSEM in which predator 𝑋 has an approximately linear effect on consumer 𝑌 105 

and consumer 𝑌 has a linear effect on producer 𝑍.  We write this as two causal paths: 𝑋 → 𝑌 and 106 

𝑌 → 𝑍.  In this DSEM, variation in predators is assumed to be independent of producers, 107 

conditional upon a fixed value for consumers (i.e., 𝑋 ⊥ 𝑍|𝑌).  We can therefore test this 108 

conditional independence relationship as a regression (𝑍 = 𝛽𝑋𝑋 + 𝛽𝑌𝑌 + 𝜖), and if the slope 𝛽𝑋 109 

significantly departs from zero, then we can “reject” this component of DSEM as invalid.  This 110 



insight is formalized by the Shipley directional-separation (“d-sep”) test (Shipley, 2000), where 111 

all conditional-independence (CI) relationships implied by a given DSEM are sequentially tested 112 

and results are then combined in a single “omnibus” test.  This Shipley d-sep test is widely used 113 

in the ecological analysis of controlled experiments (Meziane & Shipley, 2001) and phylogenetic 114 

comparative analysis (von Hardenberg & Gonzalez-Voyer, 2013), and has been extended to 115 

multi-level models (Shipley, 2009).  However, we are not aware of studies using the Shipley d-116 

sep test to falsify causal assumptions when analyzing time-series in ecology.   117 

 We therefore demonstrate using an extension of the Shipley d-sep test for ecological time-118 

series.  We first summarize the d-sep test for structural equation models, and then discuss 119 

modifications that are necessary for application to time-series models that include simultaneous 120 

and lagged effects or when dealing with missing data.  We then provide a simulation experiment 121 

to determine whether the proposed test has good statistical performance (i.e., results in a uniform 122 

distribution for p-values) when the model is correctly specified, and also how often it can reject 123 

an incorrectly specified model given a mis-specified causal structure, varied time-series lengths, 124 

and varied proportions of missing data.  Finally, we use two real-world case studies to illustrate 125 

the types of ecological inference that can be drawn from the time-series d-sep test.  Results 126 

suggest that the method performs well for simple (2-4 variable) models incorporating 127 

simultaneous and lagged effects given the range of time-series that are common in population 128 

dynamics (25-100 time points), and the method is freely available as function `test_dsep(.)` in 129 

the R package dsem for future use.   130 

Methods 131 

The Shipley (or d-sep) test can be applied to a directed acyclic graph (DAG) representing a 132 

structural causal model.  It proceeds by: 133 



1. identifying the set of conditional independence (a.k.a. directional separation or “d-sep”) 134 

relationships that are implied by the DAG.  This set depends upon an a priori ordering of 135 

variables, but the number of relationships is invariant to ordering. To identify this set, the 136 

algorithm identifies whether every pair of variables is directly linked by the DAG.  If that 137 

pair is not directly linked, the algorithm identifies the set of “conditioning variables” that (if 138 

held constant) would result in that pair then being independent.  That pair of variables and 139 

the set of conditioning variables is then recorded as a “conditional independence 140 

relationship”.  We automate this step using code extracted from the R package 𝑔𝑔𝑚 141 

(Marchetti, 2006); 142 

2. fitting each d-separation relationship as a regression model, and extracting the p-value 𝑝𝑖 143 

associated with rejecting the null hypothesis for each conditional independence relationship 144 

from Step 1; 145 

3. combining these p-values using Fisher’s formula, 𝐶 = −2 log(∑ 𝑝𝑖
𝑁
𝑖=1 ), and calculating an 146 

overall (a.k.a. “omnibus”) p-value representing the strength of evidence that the model is 147 

incorrectly specified, under the assumption that 𝐶 follows a chi-squared distribution with 2𝑁 148 

degrees of freedom. 149 

This d-sep test is specifically designed to identify whether a hypothesized causal structure is 150 

more inconsistent with available data than would be expected by chance alone (i.e., falsify the 151 

causal hypothesis).  It is distinct from standard diagnostic tests (e.g., omnibus tests or visual 152 

inspection of model residuals), which are designed to falsify the statistical assumptions of the 153 

fitted model (e.g., the assumed distribution for residual or process errors, linearity, 154 

homoskedasticity, etc.).  To see this distinction, we note that standard diagnostic tests inspect the 155 

goodness-of-fit for the included direct effects in the model, whereas the Shipley 𝑑-sep test 156 



evaluates whether the effects that are constrained to zero (that is, the causal relationships the 157 

model assumes are absent) are indeed justifiably absent.  Here, we focus on developing and 158 

exploring performance for the time-series extension of the d-sep test in isolation.  Future 159 

research could explore the performance of a workflow that combines standard diagnostics and d-160 

sep tests.   161 

Simultaneous and lagged effects in time-series structural equation models 162 

We seek to generalize the d-sep test for application in time-series models that can include both 163 

simultaneous and lagged interactions among variables.  Next, we briefly summarize dynamic 164 

structural equation models (DSEM).  For a set of 𝑗 ∈ {1,2, … 𝐽} variables over 𝑡 ∈ {1,2, … , 𝑇} 165 

time intervals, we define a matrix of latent variables 𝐗 with dimension 𝑇 × 𝐽.  DSEM then defines 166 

a structural vector-autoregressive (SVAR) process for row-vector 𝐱𝑡 containing 𝑥𝑡𝑗 for all variables in 167 

time 𝑡: 168 

𝐱𝑡 = 𝐁0𝐱𝑡⏟
Simultaneous

+ 𝐁1𝐱𝑡−1⏟    
Lag−1

+ …⏟
Higher−order

+ 𝛜𝑡 (1) 

where 𝐁0 are simultaneous interactions among variables, 𝐁1 is lag-1 interactions, and the model can 169 

include any arbitrary lag up to 𝑇 − 1 (indicated by … in Eq. 1).  We can then re-write this as a 170 

simultaneous equation model by defining a lower-triangle joint path matrix 𝐏joint with dimension 171 

𝐽𝑇 × 𝐽𝑇.  For illustration when 𝑇 = 4, this results in a joint path matrix: 172 

𝐏joint = [

𝐁0 𝟎 𝟎 𝟎
𝐁1 𝐁0 𝟎 𝟎
… 𝐁1 𝐁0 𝟎
… … 𝐁1 𝐁0

] (2) 

where … again indicates the potential inclusion of higher-order lag matrices.  This defines a 173 

simultaneous equation: 174 

vec(𝐗) = 𝐏jointvec(𝐗) + vec(𝐄) (3) 



vec(𝐄)~MVN(𝟎, 𝐕joint) 

where 𝐄 is the 𝐽 × 𝑇 matrix of exogenous errors, 𝐕joint is the 𝐽𝑇 × 𝐽𝑇 covariance for these errors 175 

(which is assumed to be block-diagonal, i.e., zero for any errors occurring in different times), and 176 

vec(𝐗) is the operator that stacks the 𝐽 columns into a single vector of length 𝐽𝑇.  Conveniently, 177 

this simultaneous equation can be re-arranged as a Gaussian Markov random field where 𝐐 =178 

(𝐈 − 𝐏joint
𝑡 )𝐕joint

−1 (𝐈 − 𝐏joint) is the sparse precision (inverse-covariance) matrix.  The probability 179 

density of this GMRF can then be rapidly evaluated using the sparse precision 𝐐, and it can be 180 

fitted efficiently using the Laplace approximation as a GLMM.  The model is completed by 181 

defining a distribution for data matrix 𝐘 with dimensions 𝑇 × 𝐽.  For each column 𝐲𝑗, the user 182 

can specify that measurements are without error (i.e., 𝐲𝑗 = 𝐱𝑗) or can specify a link function and 183 

distribution, i.e., 𝑦𝑡𝑗~𝑓𝑗(𝑔𝑗
−1(𝑥𝑡𝑗), 𝜃𝑗) where 𝑔𝑗

−1(𝑥𝑡𝑗) is the inverse-link function, 𝜃𝑗 is the 184 

estimated variance for measurement errors, and 𝑓𝑗 is the distribution for errors.  In the following, 185 

we focus upon the case of no measurement errors (i.e., 𝐲𝑗 = 𝐱𝑗), which then collapses to a 186 

“process error” model.  Importantly, this process-error model can include missing values where 187 

𝑦𝑡𝑗 = NA.   188 

 DSEM is specified using “arrow-and-lag” notation.  For example, a one-headed arrow, 𝐴 →189 

𝐵, 1 indicates that variable 𝐴 in time 𝑡 affects 𝐵 in time 𝑡 + 1 and corresponds to parameter in 190 

the lag-1 interaction matrix 𝐁1.  In addition to restricting dynamics to a DSEM (i.e., linear 191 

interactions), in the following we make the following restrictions:  (1) that exogenous covariance 192 

is diagonal; (2) that variables can be re-ordered such that simultaneous interaction matrix 𝐁0 is 193 

lower-triangle (i.e., a recursive graph); and (3) that there are no “latent variables” that are 194 

entirely missing observations.  Future research could relax these restrictions using insights from 195 

ongoing research in causal discovery methods, e.g., using SVAR-FCI as developed for SVAR 196 



models such as DSEM (Malinsky & Spirtes, 2018).  In particular, assumption-3 (“no latent 197 

variables”) is a key assumption of our present work, and SVAR-FCI replaces this by applying 198 

“m-separation” to incorporate two-headed arrows that arise from marginalization across latent 199 

variables.  M-separation was introduced by Richardson & Spirtes (2002) and applied to VARs by 200 

Eichler (2007).  However, m-separation has not been discussed in recent ecological reviews of 201 

causal falsification (Arif & MacNeil, 2023; Grace, 2024), so we leave it as a topic for future 202 

extensions (but see preprint: Correia et al., 2025).  Similarly, PCMCI+ allows nonlinear 203 

relationships among variables (Runge, 2022).  We recommend that future research introduce 204 

both topics for ecological time-series analysis.     205 

Conditional independence in time-series modelling 206 

Using a DSEM with maximum lag 𝑀 = 1 implies that the 𝐽 variables 𝐱𝑡 in time 𝑡 might depend 207 

upon 𝐱𝑡 but also 𝐱𝑡−1.  Therefore, the d-sep test involves testing conditional independence 208 

relationships among a set of 𝐽(𝑀 + 1) pairwise relationships, representing each variable 𝑗 ∈209 

{1,2, … , 𝐽} at each potential lag 𝑚 ∈ {0,… ,𝑀} where 𝑀 is the maximum lag included in the 210 

model (see Table 1 for an overview of the time-series d-sep algorithm).  This insight yields a 211 

further complication.  Say for a maximum lag of 𝑀 = 1, variable 𝑥𝑡,𝑗 and 𝑥𝑡+1,𝑗∗ might be 212 

independent only when conditioning upon preceding states 𝑥𝑡−1,𝑗∗ .  To see this, consider a 213 

bivariate time-series model with maximum lag 𝑀 = 1: 214 

𝐴 = 𝛽1lag1(𝐴) + 𝜖𝐴 

𝐵 = 𝛽2𝐴 + 𝛽3lag1(𝐵) + 𝜖𝐵 

(4A) 

where lag1(𝐴) indicates the lag-1 operator for variable 𝐴 such that 𝐴 has a simultaneous (lag-0) 215 

impact on B, and both 𝐴 and 𝐵 exhibit first-order autocorrelation (e.g., Gompertz density 216 

dependence).  This is specified in arrow-and-lag notation as: 217 



𝐴 → 𝐴, 1 

𝐴 → 𝐵, 0 

𝐵 → 𝐵, 1 

(4B) 

As our later algorithm shows, this model implies two CI relationships (Fig. 1).  The first implies 218 

that 𝐵𝑡+1 is independent of the preceding 𝐴𝑡 conditional upon fixed values for: 219 

1. 𝐴𝑡−1, because 𝐴𝑡 ← 𝐴𝑡−1 → 𝐵𝑡−1 → 𝐵𝑡 → 𝐵𝑡+1 such that variation in 𝐴𝑡−1 causes a 220 

correlation between 𝐴𝑡 and 𝐵𝑡+1; and  221 

2. 𝐵𝑡, because 𝐴𝑡 → 𝐵𝑡 → 𝐵𝑡+1, such that a fixed value for 𝐵𝑡 blocks (a.k.a. controls for) the 222 

correlation between 𝐴𝑡 and 𝐵𝑡+1; 223 

3. 𝐴𝑡+1, because 𝐴𝑡 → 𝐴𝑡+1 → 𝐵𝑡+1, such that a fixed value for 𝐴𝑡+1 blocks the correlation 224 

between 𝐴𝑡 and 𝐵𝑡+1. 225 

We can therefore test for this CI relationship by fitting an alternative time-series model: 226 

𝐴 = 𝜖𝐴 

𝐵 = 𝛽0lag1(𝐴) + 𝛽1lag2(𝐴) + 𝛽2lag1(𝐵) + 𝛽3𝐴 + 𝜖𝐵 

(5A) 

and testing whether 𝛽0 is significantly different from zero.  This CI relationship is then specified 227 

in arrow-and-lag notation as: 228 

𝐴 → 𝐵, 1  

𝐴 → 𝐵, 2 

𝐵 → 𝐵, 1 

𝐴 → 𝐵, 0 

(5B) 

where the parameter in the first line corresponds to 𝛽0.   229 

 This example therefore illustrates that we need to test for conditioning variables at lag-2 230 

when fitting a maximum lag 𝑀 = 1, and in general we need to include conditioning variables for 231 



𝑀 prior times given a maximum lag of 𝑀.  In the case of 𝑀 = 0 (i.e., no lagged effects), then we 232 

can again ignore conditioning variables prior to the time of interest, and the protocol collapses to 233 

the three steps in the standard d-sep test (see beginning of the Methods section).   234 

 To define conditional independence relationships in time-series models involving maximum 235 

lag 𝑀 and 𝐽 variables, we therefore define a conditioning matrix 𝐀 with dimension 236 

𝐽(𝑀 + 1) × 𝐽(𝑀 + 1).  For the case of maximum lag 𝑀 = 1, we have: 237 

𝐀 = [

𝐁0 0 0
𝐁1 𝐁0 0
0 𝐁1 𝐁0

] (6) 

where the first row and column are the conditioning (or “burn-in”) interval where conditioning 238 

variables might arise, and we only test for CI relationships among the 2nd and 3rd rows and 239 

columns.  To do so, we first define all conditional independence relationships within that 240 

conditioning matrix 𝐀, in this case by copying functions from the R package ggm.  However, we 241 

only keep those that define an independent relationship between two variables that are both after 242 

the 𝑀 = 1 “burn-in” intervals, while still allowing conditioning variables to occur anywhere in 243 

the matrix 𝐀.  We then iterate sequentially through each conditional independence relationship, 244 

where we sequentially fit DSEM with that specified relationship, calculate the p-value for a two-245 

sided Wald test, and combine these using Fisher’s formula.   246 

 As further complication, we reiterate that DSEM can account for missing data (i.e., 𝑦𝑡𝑗 =247 

NA).  In these instances, we impute missing data from the predictive distribution of random 248 

effects (i.e., the precision matrix 𝐇 given available data and fixed effects), and then use these 249 

imputed data as “fixed” for each CI test.  We explored alternative options where we re-simulate 250 

missing data independently for each CI relationships, or used a single imputed data set across all 251 

CI relationships for a given d-sep test.  This exploration suggested relatively little difference in 252 



performance, and we show the former in the following.  We note that imputing a single replicate 253 

of missing data and using that in multiple CI tests will likely lead to correlated p-values, and 254 

therefore a less sensitive omnibus test.  Future studies could explore alternative strategies for 255 

data-imputation to improve statistical efficiency.   256 

Simulation experiment 257 

To explore the likely performance of this proposed application of omnibus d-separation testing, 258 

we first conduct a factorial simulation experiment.  This involves 500 replicates of each 259 

combination of the following levels: 260 

1. Three simulation models: We simulate data from three different dynamic structural equation 261 

models.  The simplest (“sem”) has four variables and only simultaneous effects, where 𝐴 →262 

𝐵, 𝐴 → 𝐶, 𝐵 → 𝐷, and 𝐶 → 𝐷.  The intermediate (“dsem_simple”) involves two variables 263 

with simultaneous and lagged effects, where 𝐴 → 𝐵, and an autoregressive process for both 𝐴 264 

and 𝐵. The most complicated (“dsem_complex”) involves four variables, combining the 265 

same simultaneous effects as the “sem” scenario, but also including first-order 266 

autocorrelation for each variable.  The intermediate “dsem_simple” corresponds to the 267 

example discussed in the Conditional independence in time-series modelling section (Eq. 4); 268 

2. Three sample sizes:  We simulate time-series of length 𝑇 = {25, 50, 100}, representing short, 269 

medium, and long ecological data sets; 270 

3. Five levels of missing data:  We randomly exclude data for each combination of variable and 271 

year, with probability 𝑝missing = {0, 0.1, 0.2, 0.35, 0.5}; 272 

4. Two estimation models:  For each combination of simulation model, sample size, and missing 273 

data, we fit DSEM either using the true model structure (“right”), or using a mis-specified 274 

DSEM (“wrong”; see Fig. 2); 275 



This design therefore involves 3 × 3 × 5 × 2 × 500 = 45,000 applications of the time-series d-276 

sep test.   277 

 We assess two characteristics for the d-sep test in this experiment: 278 

1. Calibration: A well-calibrated test will result in a uniform 𝑈(0,1) distribution for p-values 279 

when the simulation model matches the estimation model; 280 

2. Efficiency:  An efficient test will result in a large proportion of p-values that are close to zero 281 

when the estimation model does not match the simulation model.  Ideally, this p-value will 282 

remain close to zero even when time-series are short, the simulation model is complicated, 283 

and a large proportion of data are missing.  284 

Case study applications 285 

We also demonstrate the potential use of time-series d-sep via application to two real-world data 286 

sets: 287 

1. Wolf-moose interactions on Isle Royale:  Building upon an analysis from Thorson et al. 288 

(2024), we re-analyze a population census of wolves and moose on Isle Royale from 1959-289 

2019 (Vucetich & Peterson, 2012), where 𝑊 and 𝑀 are log-abundance of wolves and moose, 290 

respectively.  We fit a model with just Gompertz density dependence (𝑊 → 𝑊, 1 and 𝑀 →291 

𝑀, 1), adding bottom up interactions (𝑀 → 𝑊, 1), adding top-down interactions (𝑊 → 𝑀, 1), 292 

or adding both; 293 

2. Spawning phenology and environment:  In a new example of DSEM, we use published data 294 

representing spawning phenology for walleye pollock in the Gulf of Alaska from 1992-2021 295 

and its relationship to survey availability (Rogers et al., 2025).  This includes four variables, 296 

representing sea surface temperature 𝑇, the average number of days between mean date of 297 

spawning (as estimated from larval-derived hatch dates) and the mean date of a survey 𝐴, the 298 



logit-transformed proportion of females >30cm in a spawning or spent stage during the 299 

spawning-grounds survey 𝑃, and the survey availability 𝑄 measured as log-ratio between the 300 

surveyed biomass and predicted biomass where the latter is taken from a population 301 

dynamics model fitted to the survey data without accounting for timing or temperature 302 

(Monnahan et al., 2021).  We explore three alternative models for these data.  The first 303 

(“temperature as driver”) views temperature as the driver of all other variables (i.e., 𝑇 → 𝐴, 304 

𝑇 → 𝑃, and 𝑇 → 𝑄).  The second (“availability regression”) views variables as independent 305 

predictors of survey availability (i.e., 𝑇 → 𝑄, 𝑃 → 𝑄, and 𝐴 → 𝑄).  The third (“timing as 306 

mediator”, described in Rogers et al. 2025) claims that temperature affects survey availability 307 

via its mediating effect on spawning phenology (i.e., 𝑇 → 𝐴, 𝐴 → 𝑃, and 𝐴 → 𝑄).  Across all 308 

three models, we also estimate first-order autoregression for each variable (i.e., 𝑇 → 𝑇, 1, 309 

𝐴 → 𝐴, 1, 𝑃 → 𝑃, 1, and 𝑄 → 𝑄, 1) and assume that variables are measured without error 310 

(i.e., a process-error model)  311 

In each case study, we record the p-value from the time-series d-sep test as well as the marginal 312 

Akaike Information Criterion (AIC) for the fitted model.  In the following, we use AIC as 313 

additional information to compare among models that are not falsified using the proposed test.   314 

Results 315 

Simulation experiment 316 

We first illustrate the performance (i.e., calibration and efficiency) of the proposed test across 317 

simulation models and time-series lengths when data are complete (Fig. 3).  In the simulation 318 

model without lagged effects (Fig. 3 top row), the correct model has an approximately uniform 319 

𝑈(0,1) distribution for p-values across all sample sizes indicating that the test is well calibrated.  320 

Similarly, the incorrect model results in a p-value < 0.1 in nearly all replicates, indicating that 321 



the test is statistically efficient across sample sizes.  Moving to the two-variable model with lags 322 

(Fig. 3 middle row), we see that the test is well calibrated across time-series lengths (i.e., the 323 

correct model results in an approximately uniform distribution of p-values).  However, it only 324 

detects the mis-specification of an incorrect model (i.e., a p-value <  0.1) in 60% of the 325 

replicates at low sample sizes (𝑇 = 25) and 80% of replicates at intermediate sizes (𝑇 = 50), 326 

before attaining good performance for long time-series (𝑇 = 100).  Finally, for the four-variable 327 

model with lags (Fig. 3 bottom row), we see that the test is poorly calibrated (i.e., departs from a 328 

𝑈(0,1) distribution) for short time-series and incorrectly identifies the model as mis-specified in 329 

nearly 40% of replicates.  It then becomes well calibrated as the time-series length increases.  330 

Expanding this experiment across different levels of missing data (Fig. 4), we see that the simple 331 

estimation model remains well calibrated across the level of missing data (Fig. 4 top row), but 332 

that the efficiency drops as 𝑝missing increases from 0 to 50%.  A similar pattern holds for the 333 

other simulation models (Fig. 4 middle and bottom rows).  However, the decline in efficiency is 334 

notable at a lower value of 𝑝missing in the intermediate-complexity simulation model (Fig. 4 335 

middle row), and the complex simulation model remains poorly calibrated across levels of 336 

missing data for short sample sizes (Fig. 4 bottom-left panel, red bullets).   337 

Case studies 338 

We also use two real-world case studies to illustrate the types of ecological inference that are 339 

feasible when using the proposed test to falsify hypotheses using time-series models.  In the case 340 

study involving predator-prey interactions of moose and wolves in Isle Royale (Fig. 5), we 341 

explored four models corresponding to single-species (Gompertz) density dependence, adding 342 

bottom-up or top-down interactions individually, and adding both interactions jointly.  The test 343 

then provides strong evidence (𝑝 < 0.01) that the “bottom-up” model is incorrect, weak 344 



evidence (𝑝 = 0.15) that the model with only density dependence is incorrect, and no evidence 345 

(𝑝 > 0.9) to reject the remaining two models.  We therefore use AIC to conclude that the model 346 

with top-down interactions is parsimonious (Δ𝐴𝐼𝐶 = 0) and not falsifiable relative to the model 347 

with both interactions (Δ𝐴𝐼𝐶 = 1.1).  In the case study involving spawning phenology and 348 

survey availability for pollock in the Gulf of Alaska (Fig. 6), we explored three models 349 

representing “temperature as driver”, “availability regression” or “timing as mediating effect” 350 

hypotheses.  The test provides strong evidence (𝑝 < 0.01) to falsify the first two models, but 351 

fails to reject the phenology model (𝑝 = 0.7).  We therefore conclude that this is the most 352 

appropriate interpretation of those data given the proposed causal hypotheses.    353 

Discussion 354 

Conditional independence testing is an established practice in structural equation models and 355 

phylogenetic path analysis.  Here, we demonstrate its application to falsify causal hypothesis 356 

regarding simultaneous and lagged interactions among ecological time using structural vector 357 

autoregressive models like DSEM.  Our simulation experiment confirms that the algorithm 358 

proposed here is well calibrated, and that short time series (𝑇 = 25) can be sufficient for simple 359 

structural models with complete data, but that longer time series (𝑇 = 100) are required as 360 

model complexity increases.  Similarly, the test efficiency drops as the proportion of missing 361 

data increases towards 𝑝missing = 0.5.  Finally, the case studies illustrate that the test will retain 362 

several candidate models in some cases (i.e., for the Isle Royale data set), such that assessing 363 

model parsimony and multi-model averaging might be appropriate in these cases.  In other cases 364 

(e.g., involving pollock spawning phenology), the test provides quantitative support for the 365 

ecological interpretation of observational data.   366 



 Here, we have restricted ourselves to small systems (scenarios involving 2-4 variables) 367 

and few lags (simultaneous and first-order cross-lags).  We do this because the limits of the test 368 

are already evident at this small model size.  For example, using 4-variables with first-order lags 369 

and using short time series (𝑇 = 25), we already see poor calibration (i.e., rejecting the true 370 

model above intended rates).  To understand this, consider that 𝐽 = 4 variables and one lag 371 

involves up to 
2𝐽(2𝐽+1)

2
= 36 conditional independence relationships to test.  The number of CI 372 

relationships therefore grows as the square of the number of variables, and the test seems to lose 373 

power rapidly for sample sizes that are common when analyzing annualized dynamics.  374 

Presumably this loss of statistical power is why previous simulation tests of d-sep in ecology 375 

(e.g., in phylogenetic path analysis) have involved systems with < 5 variables (von Hardenberg 376 

& Gonzalez-Voyer, 2013).  In summary, the time-series d-separation test explored here was 377 

unreliable when applied to models with many variables, particularly when time-series were 378 

relatively short or had missing values.   379 

Others have advocated that ecologists adopt a causal analysis framework, which is a 380 

workflow for developing and quantifying DAGs and understanding causal linkages from 381 

observational data (Arif & MacNeil, 2023; Grace & Irvine, 2020).  Adopting this framework 382 

could help mitigate biases associated with traditional statistical models (e.g., linear regression) 383 

and understand causality. D-sep is one step in this workflow and broadly tests consistency 384 

between DAGs and data, or whether the data support the DAG structure (i.e., configuration of 385 

linkages) (‘Step 2’ in Figure 2 of Arif & MacNeil (2023), part of ‘Step 3’ in Figure 2 of Grace & 386 

Irvine (2020)). The backdoor and frontdoor criteria are other steps in the workflow that identify 387 

whether DAGs are susceptible to confounding variables, which introduce bias into the estimation 388 

of parameters and misrepresent causal linkages (Arif & MacNeil, 2023; Byrnes & Dee, 2025; 389 



Pearl, 2009). The backdoor and frontdoor criteria are unavailable for DSEM models but are 390 

needed to advance our understanding of using DSEM to identify causal linkages among variables 391 

from models fitted to time-series data with simultaneous and lagged interactions, as well as 392 

missing data. Consequently, it will not be possible to follow all recommended steps in the causal 393 

analysis framework, such as those in Arif and MacNeil (2023). Further, many correct DAGs will 394 

fail a d-sep test for reasons including DAG complexity, time series length, and the presence of 395 

missing data, as our simulation showed. When communicating the results from models where we 396 

expect d-sep to be less reliable, analysts should take care to acknowledge the potential for biases 397 

in parameter estimates due to model mis-specification, explain model assumptions, and be 398 

explicit about the limits of causal inference (Grace & Irvine, 2020; Siegel & Dee, 2025). 399 

  We also note that d-sep is only testing for significant linear relationships among 400 

variables, and therefore cannot detect nonlinear or state-dependent relationships (unless they can 401 

be expressed using lagged linear relationships).  We therefore recommend further cross-402 

comparison with nonlinear causal analysis, e.g., using “empirical dynamic modelling” EDM 403 

(Munch et al., 2023).  EDM has proven to be powerful in detecting nonlinear causal systems, as 404 

validated via microcosm experiments and methods comparisons (Chang et al., 2022; Sugihara et 405 

al., 2012).  However, EDM also appears to be more informative with longer time series.  We 406 

therefore envision a workflow using linear models (e.g., d-sep tests for a DSEM) when time-407 

series are relatively short, and comparison with a nonlinear method for longer time-series.  We 408 

also encourage further work estimating a linear “skeleton” within EDM models, so that EDM 409 

collapses to linear interactions when data are limited, but can express a wide range of nonlinear 410 

systems when data are abundant.  Both DSEM and EDM involve fitting a Gaussian process 411 

model, so it seems like their statistical integration would be feasible in future statistical research.   412 



Recent studies have pursued a rich vein of parallel line of research for “causal 413 

discovery,” i.e., using observational data to identify what combination of one- and two-headed 414 

arrows can be identified from available data.  Starting with the FCI algorithm (Spirtes et al., 415 

2000), these causal-discovery algorithms typically start with a fully-connected causal model and 416 

then proceed backwards by either (A) identifying pairs of variables that are conditionally 417 

independent, or (B) triplets that have a specific structure.  In particular, the SVAR-FCI algorithm 418 

is applicable to the DSEM explored here (Malinsky & Spirtes, 2018), and provides many insights 419 

(e.g., identifying two-headed arrows arising from latent variables) relative to the algorithm tested 420 

here.  Similarly, PCMCI+ incorporates nonlinear linkages among larger numbers of variables 421 

(Runge, 2022).  However, we believe that causal discovery involves a different goal than the one 422 

addressed here: we instead start with one (or a small number of) causal hypotheses that are 423 

derived from ecological knowledge, and then seek to falsify that specific hypothesis.  For 424 

scientists who have already developed hypotheses about system dynamics, we think that this 425 

“falsification” step remains important and separate from parallel research regarding causal 426 

discovery.   427 

 In summary, we recommend that analysts seek to falsify causal assumptions for time-series 428 

models when they are intended for causal analysis.  When developing an DSEM, we recommend 429 

that only models with a priori ecological support that also pass the d-sep test be considered, and 430 

that model parsimony or averaging then be considered for those models that are consistent with 431 

data (i.e., pass the d-sep test).  However, in models with 5+ variables and lagged dynamics, we 432 

caution that d-sep appears to be poorly calibrated such that models may be erroneously rejected.  433 

We therefore recommend ongoing research to integrate causal falsification and discovery into 434 

ecological workflows.   435 
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Table 1: Summarizing the steps required when extending the d-separation test for use in time-516 

series models that include both simultaneous and lagged relationships among variables.   517 

Number Title Description 

1 Extract path matrix Extract path matrix, including conditioning interval 

for maximum number of lags to define conditioning 

matrix 𝐀 

2 Define conditional 

independence (CI) 

relationships 

Use directional separation (“d-sep”) to define the set 

of CI relationships 

3 Eliminate relationships Eliminate duplicative CI relationships, and restrict 

target and predictor variables outside the 

initialization buffer, while allowing conditioning 

variables within the “burn-in” interval  

4 Simulate missing data from 

predictive distribution 

Simulate any missing data, either once across all CI 

tests or separately for each CI test 

5 Fit CI relationships and 

combine p-values 

Fit each CI relationship, record the p-value for each 

individual CI test, and combine them using Fisher’s 

formula 

 518 

  519 



Fig 1:  A visual depiction of the two conditional-independence relationships implied by the 520 

“dsem_simple” structural causal model DSEM, as calculated using conditioning matrix 𝐀 (Eq. 521 

6).  The CI relationship is shown with a solid line, while the conditioning variables are shown as 522 

dashed lines.  Given a DSEM with maximum lag 𝑀 = 1, the CI must condition upon a 523 

maximum of lag-2 relationships; e.g., the top CI relationship can be fitted as 𝑏 = 𝛽0lag1(𝑎) +524 

𝛽1𝑎 + 𝛽2lag2(𝑎) + ϵ where we then test for the significance of the 𝛽0 coefficient.   525 

 526 

  527 



Fig. 2:  The dynamic structural equation model (DSEM) used to simulate data (left column) in 528 

three simulation scenarios (rows), and the DSEM that is specified when intentionally fitting with 529 

a mismatched SCM (right column).  In each DSEM, we show 2-4 time-series variables (labeled 530 

“a” through “d”), and causal paths showing either simultaneous effects (black arrows) or lag-1 531 

effects (blue arrows), where a blue arrow from a variable to itself (e.g., in the 2nd row) shows a 532 

first-order autoregressive effect.   533 
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Fig. 3:  Results from the simulation experiment showing the frequency of 500 replicates (y-axis) 536 

with a given p-value (x-axis) for a time-series d-separation test, while simulating time-series of 537 

length 𝑇 = {25, 50, 100} (columns) from three dynamic structural equation models DSEM 538 

(rows, see Fig. 1 left column). Simulated data were either fitted with the correct DSEM (red 539 

histogram, Fig. 1 left column) or wrong DSEM (blue histogram, Fig. 1 right column).  A well-540 

calibrated d-separation test will result in a p-value that follows a uniform 𝑈(0,1) distribution 541 

(i.e., horizontal dashed line) when fitting the correct model, and an efficient test will result in a 542 

p-value that is close to zero when fitting a mis-specified model.   543 

  544 



Fig. 4:  Results from the simulation experiment when showing the proportion of simulation 545 

replicates with d-separation test resulting in 𝑝 < 0.1 (y-axis) across five proportions of missing 546 

data 𝑝missing = {0, 0.1, 0.2, 0.35, 0.5} (x-axis), and across different time-series lengths  547 

(columns) and dynamic structural equation models DSEM (rows, see Fig. 3 caption for more 548 

details).  A well-calibrated model will reject the test at a nominal 0.1 rate (horizontal dotted 549 

lines) when the DSEM causal assumptions are correct, and ideally will reject it at close to 1.0 550 

rate when the DSEM assumptions are mis-specified.   551 

  552 



Fig. 5 – Estimated dynamic structural equation model showing a vector-autoregressive model 553 

fitting to data for wolf (𝑊) and moose (𝑀) log-abundance in Isle Royale 1959-2019 (Vucetich & 554 

Peterson, 2012).  We compare a model assuming Gompertz density dependence (i.e., 𝑊 →𝑊,1 555 

and 𝑀 → 𝑀, 1), adding either bottom-up or top-down controls, or adding both jointly.  For each 556 

model, we show the time-series d-sep test p-value (p, top-left corner) and the delta-marginal 557 

Akaike Information Criterion (top-right corner), where the most parsimonious model has ΔAIC =558 

0.   559 

 560 
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Fig. 6:  Estimated dynamic structural equation model (DSEM) showing the estimated path 562 

coefficient between temperature 𝑇, the average number of days between mean date of spawning 563 

and the mean date of a survey on spawning grounds 𝐴, the logit-transformed proportion of 564 

females >30cm in a spawning or spent stage during the spawning-grounds survey 𝑃, and the log-565 

ratio between the surveyed biomass and predicted biomass given other data 𝑄.  We show three 566 

DSEMs (columns), either using temperature as an explanatory variable for all processes 567 

(“Temperature as driver”), using all variables to explain availability (“Availability regression”), 568 

or using survey timing as a mediating variable linking temperature to survey availability 569 

(“Timing as mediator”).  We also show the time-series d-sep p-value (top left) and delta-570 

marginal AIC (top-right) for each model.   571 
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