

1 **Falsifying causal hypotheses in time series models with conditional-independence tests**

2

3 Running header: falsifying time-series causal models

4

5 James T. Thorson^{1*}, Jennifer S. Bigman², Cole C. Monnahan¹, Lauren A. Rogers³

6

7 ¹ Resource Ecology and Fisheries Management, Alaska Fisheries Science Center, National

8 Marine Fisheries Service, NOAA

9 ² Office of Science and Technology, NMFS, Seattle, WA, USA

10 ³ Recruitment Process Program, Alaska Fisheries Science Center, NOAA, NMFS, Seattle,

11 Seattle, WA, USA

12 * Corresponding author: James.Thorson@noaa.gov

13

14 Keywords: structural causal model, time-series model, directional separation, d-sep, conditional

15 independence, dynamic structural equation model

16

17 **Data availability:**

18 Data for the pollock spawning phenology case study are from Rogers et al. (2025), available

19 online at https://github.com/larogers123/spawn_timing_catchability. Data for the Isle Royale are

20 from <https://www.isleroyalewolf.org/>, and we use the copy available in package *dsem*. Code to
21 reproduce case studies and the simulation experiment are available as an anonymized GitHub
22 (https://anonymous.4open.science/r/dsep_in_dsem-61FF/plot_histogram.R) and will be available
23 as a public GitHub repo with Zenodo for DOI upon acceptance. The d-separation test is
24 available in *dsem* as function *test_dsep*.

25 **Acknowledgements**

26 We thank J. Sullivan, B. Chasco, and two anonymous reviewers for helpful comments on an
27 earlier draft. We also thank G. Marchetti (the developer of R-package *ggm*) for allowing us to
28 copy necessary functions under open-source license, and W. van der Bijl for inspiration
29 regarding how to automate the d-sep test.

30 **Conflict of Interest**

31 None to declare

32 **Author contributions**

33 J. Thorson derived the statistical method, developed code, conducted the simulation and case
34 study analyses, and lead writing. C. Monnahan reviewed causal papers in ecology, wrote
35 portions of the Introduction and Discussion, and reviewed code. J. Bigman and L. Rogers wrote
36 portions of the Discussion, and L. Rogers curated data for the pollock case study. All authors
37 revised the manuscript.

38

39 **Abstract:**

40 1. Ecologists often use time-series models to approximate dynamics arising from density
41 dependence, species interactions, community synchrony, and other processes. Dynamic
42 structural equation models (DSEM) can represent simultaneous and lagged interactions
43 among variables with missing data, and therefore encompasses a wide family of analyses
44 (linear regression, vector autoregressive models, and dynamic factor analysis). However,
45 before interpreting a DSEM as a causal model, analysts should first test whether its
46 assumptions about conditional independence are inconsistent with available data (i.e.,
47 attempt to falsify the model).

48 2. In site-replicated and phylogenetic contexts, ecologists seek to falsify causal assumptions by
49 testing implied conditional-independence relationships using a directional-separation (“d-
50 sep”) test, but this has not been demonstrated using time-series analysis of ecological systems
51 involving simultaneous and lagged interactions. Here, we propose a time-series d-sep test
52 and use a simulation experiment and case studies to explore its performance.

53 3. The simulation confirms that this test results in a uniform p-value when using a correct
54 causal model, and a low p-value (i.e., a decision to reject a model) when the causal model is
55 incorrect. As expected, time-series that are short or have a large proportion of missing data
56 have less power to reject an incorrect model. In a previously published analysis involving
57 wolf-moose interactions in Isle Royale, the test supports top-down control but cannot
58 distinguish whether bottom-up control is supported. In a novel application involving pollock
59 in the Gulf of Alaska, the test supports a conceptual model where temperature drives
60 spawning phenology, which subsequently affects availability to a spawning survey.

61 4. We conclude that d-sep is a useful test to falsify the conditional-independence assumptions
62 of a time-series model. It is therefore complementary to other methods used to validate
63 causal inference (i.e., controlled experiments, ecological theory, and system knowledge).

64

65 **Introduction**

66 Ecologists study causality in natural systems using controlled experiments and the analysis of
67 observational data (Grace, 2024; Siegel & Dee, 2025). Developing a well-formed hypothesis is a
68 key first step, and causal analysis has been proposed as a useful scientific framework to confront
69 hypotheses with data (Grace & Irvine, 2020). Generating hypotheses is an iterative process of
70 building graphical causal networks (directed acyclical graphs; DAGs) of key variables in a
71 system independent of the data and prior to modeling, and this requires eliciting and representing
72 expert knowledge about ecological mechanisms (e.g., see Table 5 of Grace & Irvine, 2020).

73 Structural causal models (SCM) can then be used to estimate causal relationships by fitting
74 statistical models to graphical models (Pearl, 2009). This approach resolves well-known issues
75 with bias when making causal statements from predictive statistical models (Arif & MacNeil,
76 2022a), where the SCM forces explicit consideration of confounding factors (Byrnes & Dee,
77 2025). SCMs are widely used outside of ecology, and controlled experiments can be interpreted
78 as a variant of SCM where some variables (i.e., experimental treatments) are known *a priori* to
79 be independent of other variables. However, ecologists also use observational data for systems
80 that are not amenable to experimental manipulation, and these settings require validating causal
81 hypotheses to ensure unbiased causal estimates (Arif & MacNeil, 2022b; Siegel & Dee, 2025).
82 Thus, it is vital for analysts to be able to validate their causal models fitted to observational time-
83 series data to advance understanding of ecological mechanisms.

84 Time-series dynamics pose particular challenges, because interactions among variables may
85 be either simultaneous (e.g., occurring much faster than the time-step in available observations)
86 or lagged (e.g., where a variable in one observed time-interval affects another variable at a later
87 time). Lagged interactions result in temporal dependence, which violates a key statistical

88 assumption of the popular structural equation model (SEM; Pearl, 2012) framework for
89 estimating causal relationships and limits the practical application of SEM for time-series
90 analysis. Thorson et al. (2024) extended the SEM modeling framework to allow for correlated
91 observations including linear interactions among variables that include simultaneous and lagged
92 effects. This dynamic structural equation model (DSEM) framework is efficiently represented as
93 a Gaussian Markov random field (GMRF) and fitted as a generalized linear mixed model
94 (GLMM), as implemented in the ‘dsem’ package (Thorson et al., 2024) in the R statistical
95 environment (R Core Team, 2023). DSEM is computationally efficient, can account for missing
96 data, and encompasses a wide range of statistical analyses including linear models, errors-in-
97 variables, ARIMA models, dynamic factor analysis, structural vector autoregressive models, and
98 linear SCMs. However, it is not clear how an analyst could seek to determine whether a
99 hypothesized DSEM is consistent with available data, and potentially falsify models that are not.

100 In general, the best way to validate causal assumptions is by using controlled experiments to
101 confirm that variables are independent conditional upon fixed conditions. However, experiments
102 often cannot be run at the scale of a system (due to logistical or legal constraints). In these cases,
103 analysts might seek to determine whether hypothesized dynamics are inconsistent with available
104 data (i.e., falsify one or more hypotheses). For example, consider a trophic cascade, where we
105 might specify a DSEM in which predator X has an approximately linear effect on consumer Y
106 and consumer Y has a linear effect on producer Z . We write this as two causal paths: $X \rightarrow Y$ and
107 $Y \rightarrow Z$. In this DSEM, variation in predators is assumed to be independent of producers,
108 conditional upon a fixed value for consumers (i.e., $X \perp Z|Y$). We can therefore test this
109 conditional independence relationship as a regression ($Z = \beta_X X + \beta_Y Y + \epsilon$), and if the slope β_X
110 significantly departs from zero, then we can “reject” this component of DSEM as invalid. This

111 insight is formalized by the Shipley directional-separation (“d-sep”) test (Shipley, 2000), where
112 all conditional-independence (CI) relationships implied by a given DSEM are sequentially tested
113 and results are then combined in a single “omnibus” test. This Shipley d-sep test is widely used
114 in the ecological analysis of controlled experiments (Meziane & Shipley, 2001) and phylogenetic
115 comparative analysis (von Hardenberg & Gonzalez-Voyer, 2013), and has been extended to
116 multi-level models (Shipley, 2009). However, we are not aware of studies using the Shipley d-
117 sep test to falsify causal assumptions when analyzing time-series in ecology.

118 We therefore demonstrate using an extension of the Shipley d-sep test for ecological time-
119 series. We first summarize the d-sep test for structural equation models, and then discuss
120 modifications that are necessary for application to time-series models that include simultaneous
121 and lagged effects or when dealing with missing data. We then provide a simulation experiment
122 to determine whether the proposed test has good statistical performance (i.e., results in a uniform
123 distribution for p-values) when the model is correctly specified, and also how often it can reject
124 an incorrectly specified model given a mis-specified causal structure, varied time-series lengths,
125 and varied proportions of missing data. Finally, we use two real-world case studies to illustrate
126 the types of ecological inference that can be drawn from the time-series d-sep test. Results
127 suggest that the method performs well for simple (2-4 variable) models incorporating
128 simultaneous and lagged effects given the range of time-series that are common in population
129 dynamics (25-100 time points), and the method is freely available as function `test_dsep(.)` in
130 the R package *dsem* for future use.

131 **Methods**

132 The Shipley (or d-sep) test can be applied to a directed acyclic graph (DAG) representing a
133 structural causal model. It proceeds by:

134 1. identifying the set of conditional independence (a.k.a. directional separation or “d-sep”)
135 relationships that are implied by the DAG. This set depends upon an *a priori* ordering of
136 variables, but the number of relationships is invariant to ordering. To identify this set, the
137 algorithm identifies whether every pair of variables is directly linked by the DAG. If that
138 pair is not directly linked, the algorithm identifies the set of “conditioning variables” that (if
139 held constant) would result in that pair then being independent. That pair of variables and
140 the set of conditioning variables is then recorded as a “conditional independence
141 relationship”. We automate this step using code extracted from the R package *ggm*
142 (Marchetti, 2006);

143 2. fitting each d-separation relationship as a regression model, and extracting the p-value p_i
144 associated with rejecting the null hypothesis for each conditional independence relationship
145 from Step 1;

146 3. combining these p-values using Fisher’s formula, $C = -2 \log(\sum_{i=1}^N p_i)$, and calculating an
147 overall (a.k.a. “omnibus”) p-value representing the strength of evidence that the model is
148 incorrectly specified, under the assumption that C follows a chi-squared distribution with $2N$
149 degrees of freedom.

150 This d-sep test is specifically designed to identify whether a hypothesized causal structure is
151 more inconsistent with available data than would be expected by chance alone (i.e., falsify the
152 causal hypothesis). It is distinct from standard diagnostic tests (e.g., omnibus tests or visual
153 inspection of model residuals), which are designed to falsify the statistical assumptions of the
154 fitted model (e.g., the assumed distribution for residual or process errors, linearity,
155 homoskedasticity, etc.). To see this distinction, we note that standard diagnostic tests inspect the
156 goodness-of-fit for the included direct effects in the model, whereas the Shipley d-sep test

157 evaluates whether the effects that are constrained to zero (that is, the causal relationships the
 158 model assumes are absent) are indeed justifiably absent. Here, we focus on developing and
 159 exploring performance for the time-series extension of the d-sep test in isolation. Future
 160 research could explore the performance of a workflow that combines standard diagnostics and d-
 161 sep tests.

162 *Simultaneous and lagged effects in time-series structural equation models*
 163 We seek to generalize the d-sep test for application in time-series models that can include both
 164 simultaneous and lagged interactions among variables. Next, we briefly summarize dynamic
 165 structural equation models (DSEM). For a set of $j \in \{1, 2, \dots, J\}$ variables over $t \in \{1, 2, \dots, T\}$
 166 time intervals, we define a matrix of latent variables \mathbf{X} with dimension $T \times J$. DSEM then defines
 167 a structural vector-autoregressive (SVAR) process for row-vector \mathbf{x}_t containing x_{tj} for all variables in
 168 time t :

$$\mathbf{x}_t = \underbrace{\mathbf{B}_0 \mathbf{x}_t}_{\text{Simultaneous}} + \underbrace{\mathbf{B}_1 \mathbf{x}_{t-1}}_{\text{Lag-1}} + \underbrace{\dots}_{\text{Higher-order}} + \boldsymbol{\epsilon}_t \quad (1)$$

169 where \mathbf{B}_0 are simultaneous interactions among variables, \mathbf{B}_1 is lag-1 interactions, and the model can
 170 include any arbitrary lag up to $T - 1$ (indicated by ... in Eq. 1). We can then re-write this as a
 171 simultaneous equation model by defining a lower-triangle joint path matrix $\mathbf{P}_{\text{joint}}$ with dimension
 172 $JT \times JT$. For illustration when $T = 4$, this results in a joint path matrix:

$$\mathbf{P}_{\text{joint}} = \begin{bmatrix} \mathbf{B}_0 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{B}_1 & \mathbf{B}_0 & \mathbf{0} & \mathbf{0} \\ \dots & \mathbf{B}_1 & \mathbf{B}_0 & \mathbf{0} \\ \dots & \dots & \mathbf{B}_1 & \mathbf{B}_0 \end{bmatrix} \quad (2)$$

173 where ... again indicates the potential inclusion of higher-order lag matrices. This defines a
 174 simultaneous equation:

$$\text{vec}(\mathbf{X}) = \mathbf{P}_{\text{joint}} \text{vec}(\mathbf{X}) + \text{vec}(\mathbf{E}) \quad (3)$$

$$\text{vec}(\mathbf{E}) \sim \text{MVN}(\mathbf{0}, \mathbf{V}_{\text{joint}})$$

175 where \mathbf{E} is the $J \times T$ matrix of exogenous errors, $\mathbf{V}_{\text{joint}}$ is the $JT \times JT$ covariance for these errors
 176 (which is assumed to be block-diagonal, i.e., zero for any errors occurring in different times), and
 177 $\text{vec}(\mathbf{X})$ is the operator that stacks the J columns into a single vector of length JT . Conveniently,
 178 this simultaneous equation can be re-arranged as a Gaussian Markov random field where $\mathbf{Q} =$
 179 $(\mathbf{I} - \mathbf{P}_{\text{joint}}^t) \mathbf{V}_{\text{joint}}^{-1} (\mathbf{I} - \mathbf{P}_{\text{joint}})$ is the sparse precision (inverse-covariance) matrix. The probability
 180 density of this GMRF can then be rapidly evaluated using the sparse precision \mathbf{Q} , and it can be
 181 fitted efficiently using the Laplace approximation as a GLMM. The model is completed by
 182 defining a distribution for data matrix \mathbf{Y} with dimensions $T \times J$. For each column \mathbf{y}_j , the user
 183 can specify that measurements are without error (i.e., $\mathbf{y}_j = \mathbf{x}_j$) or can specify a link function and
 184 distribution, i.e., $y_{tj} \sim f_j(g_j^{-1}(x_{tj}), \theta_j)$ where $g_j^{-1}(x_{tj})$ is the inverse-link function, θ_j is the
 185 estimated variance for measurement errors, and f_j is the distribution for errors. In the following,
 186 we focus upon the case of no measurement errors (i.e., $\mathbf{y}_j = \mathbf{x}_j$), which then collapses to a
 187 “process error” model. Importantly, this process-error model can include missing values where
 188 $y_{tj} = \text{NA}$.

189 DSEM is specified using “arrow-and-lag” notation. For example, a one-headed arrow, $A \rightarrow$
 190 $B, 1$ indicates that variable A in time t affects B in time $t + 1$ and corresponds to parameter in
 191 the lag-1 interaction matrix \mathbf{B}_1 . In addition to restricting dynamics to a DSEM (i.e., linear
 192 interactions), in the following we make the following restrictions: (1) that exogenous covariance
 193 is diagonal; (2) that variables can be re-ordered such that simultaneous interaction matrix \mathbf{B}_0 is
 194 lower-triangular (i.e., a recursive graph); and (3) that there are no “latent variables” that are
 195 entirely missing observations. Future research could relax these restrictions using insights from
 196 ongoing research in causal discovery methods, e.g., using SVAR-FCI as developed for SVAR

197 models such as DSEM (Malinsky & Spirtes, 2018). In particular, assumption-3 (“no latent
 198 variables”) is a key assumption of our present work, and SVAR-FCI replaces this by applying
 199 “m-separation” to incorporate two-headed arrows that arise from marginalization across latent
 200 variables. M-separation was introduced by Richardson & Spirtes (2002) and applied to VARs by
 201 Eichler (2007). However, m-separation has not been discussed in recent ecological reviews of
 202 causal falsification (Arif & MacNeil, 2023; Grace, 2024), so we leave it as a topic for future
 203 extensions (but see preprint: Correia et al., 2025). Similarly, PCMCI+ allows nonlinear
 204 relationships among variables (Runge, 2022). We recommend that future research introduce
 205 both topics for ecological time-series analysis.

206 *Conditional independence in time-series modelling*

207 Using a DSEM with maximum lag $M = 1$ implies that the J variables \mathbf{x}_t in time t might depend
 208 upon \mathbf{x}_t but also \mathbf{x}_{t-1} . Therefore, the d-sep test involves testing conditional independence
 209 relationships among a set of $J(M + 1)$ pairwise relationships, representing each variable $j \in$
 210 $\{1, 2, \dots, J\}$ at each potential lag $m \in \{0, \dots, M\}$ where M is the maximum lag included in the
 211 model (see Table 1 for an overview of the time-series d-sep algorithm). This insight yields a
 212 further complication. Say for a maximum lag of $M = 1$, variable $x_{t,j}$ and x_{t+1,j^*} might be
 213 independent only when conditioning upon preceding states x_{t-1,j^*} . To see this, consider a
 214 bivariate time-series model with maximum lag $M = 1$:

$$\begin{aligned}
 A &= \beta_1 \text{lag}_1(A) + \epsilon_A \\
 B &= \beta_2 A + \beta_3 \text{lag}_1(B) + \epsilon_B
 \end{aligned} \tag{4A}$$

215 where $\text{lag}_1(A)$ indicates the lag-1 operator for variable A such that A has a simultaneous (lag-0)
 216 impact on B , and both A and B exhibit first-order autocorrelation (e.g., Gompertz density
 217 dependence). This is specified in arrow-and-lag notation as:

$$\begin{aligned}
& A \rightarrow A, 1 \\
& A \rightarrow B, 0 \\
& B \rightarrow B, 1
\end{aligned} \tag{4B}$$

218 As our later algorithm shows, this model implies two CI relationships (Fig. 1). The first implies
 219 that B_{t+1} is independent of the preceding A_t conditional upon fixed values for:
 220 1. A_{t-1} , because $A_t \leftarrow A_{t-1} \rightarrow B_{t-1} \rightarrow B_t \rightarrow B_{t+1}$ such that variation in A_{t-1} causes a
 221 correlation between A_t and B_{t+1} ; and
 222 2. B_t , because $A_t \rightarrow B_t \rightarrow B_{t+1}$, such that a fixed value for B_t blocks (a.k.a. controls for) the
 223 correlation between A_t and B_{t+1} ;
 224 3. A_{t+1} , because $A_t \rightarrow A_{t+1} \rightarrow B_{t+1}$, such that a fixed value for A_{t+1} blocks the correlation
 225 between A_t and B_{t+1} .

226 We can therefore test for this CI relationship by fitting an alternative time-series model:

$$\begin{aligned}
A &= \epsilon_A \\
B &= \beta_0 \text{lag}_1(A) + \beta_1 \text{lag}_2(A) + \beta_2 \text{lag}_1(B) + \beta_3 A + \epsilon_B
\end{aligned} \tag{5A}$$

227 and testing whether β_0 is significantly different from zero. This CI relationship is then specified
 228 in arrow-and-lag notation as:

$$\begin{aligned}
& A \rightarrow B, 1 \\
& A \rightarrow B, 2 \\
& B \rightarrow B, 1 \\
& A \rightarrow B, 0
\end{aligned} \tag{5B}$$

229 where the parameter in the first line corresponds to β_0 .
 230 This example therefore illustrates that we need to test for conditioning variables at lag-2
 231 when fitting a maximum lag $M = 1$, and in general we need to include conditioning variables for

232 M prior times given a maximum lag of M . In the case of $M = 0$ (i.e., no lagged effects), then we
233 can again ignore conditioning variables prior to the time of interest, and the protocol collapses to
234 the three steps in the standard d-sep test (see beginning of the Methods section).

235 To define conditional independence relationships in time-series models involving maximum
236 lag M and J variables, we therefore define a conditioning matrix \mathbf{A} with dimension
237 $J(M + 1) \times J(M + 1)$. For the case of maximum lag $M = 1$, we have:

$$\mathbf{A} = \begin{bmatrix} \mathbf{B}_0 & 0 & 0 \\ \mathbf{B}_1 & \mathbf{B}_0 & 0 \\ 0 & \mathbf{B}_1 & \mathbf{B}_0 \end{bmatrix} \quad (6)$$

238 where the first row and column are the conditioning (or “burn-in”) interval where conditioning
239 variables might arise, and we only test for CI relationships among the 2nd and 3rd rows and
240 columns. To do so, we first define all conditional independence relationships within that
241 conditioning matrix \mathbf{A} , in this case by copying functions from the R package *ggm*. However, we
242 only keep those that define an independent relationship between two variables that are both after
243 the $M = 1$ “burn-in” intervals, while still allowing conditioning variables to occur anywhere in
244 the matrix \mathbf{A} . We then iterate sequentially through each conditional independence relationship,
245 where we sequentially fit DSEM with that specified relationship, calculate the p-value for a two-
246 sided Wald test, and combine these using Fisher’s formula.

247 As further complication, we reiterate that DSEM can account for missing data (i.e., $y_{tj} =$
248 NA). In these instances, we impute missing data from the predictive distribution of random
249 effects (i.e., the precision matrix \mathbf{H} given available data and fixed effects), and then use these
250 imputed data as “fixed” for each CI test. We explored alternative options where we re-simulate
251 missing data independently for each CI relationships, or used a single imputed data set across all
252 CI relationships for a given d-sep test. This exploration suggested relatively little difference in

253 performance, and we show the former in the following. We note that imputing a single replicate
254 of missing data and using that in multiple CI tests will likely lead to correlated p-values, and
255 therefore a less sensitive omnibus test. Future studies could explore alternative strategies for
256 data-imputation to improve statistical efficiency.

257 *Simulation experiment*

258 To explore the likely performance of this proposed application of omnibus d-separation testing,
259 we first conduct a factorial simulation experiment. This involves 500 replicates of each
260 combination of the following levels:

- 261 1. *Three simulation models*: We simulate data from three different dynamic structural equation
262 models. The simplest (“sem”) has four variables and only simultaneous effects, where $A \rightarrow$
263 B , $A \rightarrow C$, $B \rightarrow D$, and $C \rightarrow D$. The intermediate (“dsem_simple”) involves two variables
264 with simultaneous and lagged effects, where $A \rightarrow B$, and an autoregressive process for both A
265 and B . The most complicated (“dsem_complex”) involves four variables, combining the
266 same simultaneous effects as the “sem” scenario, but also including first-order
267 autocorrelation for each variable. The intermediate “dsem_simple” corresponds to the
268 example discussed in the *Conditional independence in time-series modelling* section (Eq. 4);
- 269 2. *Three sample sizes*: We simulate time-series of length $T = \{25, 50, 100\}$, representing short,
270 medium, and long ecological data sets;
- 271 3. *Five levels of missing data*: We randomly exclude data for each combination of variable and
272 year, with probability $p_{\text{missing}} = \{0, 0.1, 0.2, 0.35, 0.5\}$;
- 273 4. *Two estimation models*: For each combination of simulation model, sample size, and missing
274 data, we fit DSEM either using the true model structure (“right”), or using a mis-specified
275 DSEM (“wrong”; see Fig. 2);

276 This design therefore involves $3 \times 3 \times 5 \times 2 \times 500 = 45,000$ applications of the time-series d-
277 sep test.

278 We assess two characteristics for the d-sep test in this experiment:

279 1. *Calibration*: A well-calibrated test will result in a uniform $U(0,1)$ distribution for p-values
280 when the simulation model matches the estimation model;

281 2. *Efficiency*: An efficient test will result in a large proportion of p-values that are close to zero
282 when the estimation model does not match the simulation model. Ideally, this p-value will
283 remain close to zero even when time-series are short, the simulation model is complicated,
284 and a large proportion of data are missing.

285 *Case study applications*

286 We also demonstrate the potential use of time-series d-sep via application to two real-world data
287 sets:

288 1. *Wolf-moose interactions on Isle Royale*: Building upon an analysis from Thorson et al.
289 (2024), we re-analyze a population census of wolves and moose on Isle Royale from 1959-
290 2019 (Vucetich & Peterson, 2012), where W and M are log-abundance of wolves and moose,
291 respectively. We fit a model with just Gompertz density dependence ($W \rightarrow W, 1$ and $M \rightarrow$
292 $M, 1$), adding bottom up interactions ($M \rightarrow W, 1$), adding top-down interactions ($W \rightarrow M, 1$),
293 or adding both;

294 2. *Spawning phenology and environment*: In a new example of DSEM, we use published data
295 representing spawning phenology for walleye pollock in the Gulf of Alaska from 1992-2021
296 and its relationship to survey availability (Rogers et al., 2025). This includes four variables,
297 representing sea surface temperature T , the average number of days between mean date of
298 spawning (as estimated from larval-derived hatch dates) and the mean date of a survey A , the

299 logit-transformed proportion of females $>30\text{cm}$ in a spawning or spent stage during the
300 spawning-grounds survey P , and the survey availability Q measured as log-ratio between the
301 surveyed biomass and predicted biomass where the latter is taken from a population
302 dynamics model fitted to the survey data without accounting for timing or temperature
303 (Monnahan et al., 2021). We explore three alternative models for these data. The first
304 (“temperature as driver”) views temperature as the driver of all other variables (i.e., $T \rightarrow A$,
305 $T \rightarrow P$, and $T \rightarrow Q$). The second (“availability regression”) views variables as independent
306 predictors of survey availability (i.e., $T \rightarrow Q$, $P \rightarrow Q$, and $A \rightarrow Q$). The third (“timing as
307 mediator”, described in Rogers et al. 2025) claims that temperature affects survey availability
308 via its mediating effect on spawning phenology (i.e., $T \rightarrow A$, $A \rightarrow P$, and $A \rightarrow Q$). Across all
309 three models, we also estimate first-order autoregression for each variable (i.e., $T \rightarrow T, 1$,
310 $A \rightarrow A, 1$, $P \rightarrow P, 1$, and $Q \rightarrow Q, 1$) and assume that variables are measured without error
311 (i.e., a process-error model)

312 In each case study, we record the p-value from the time-series d-sep test as well as the marginal
313 Akaike Information Criterion (AIC) for the fitted model. In the following, we use AIC as
314 additional information to compare among models that are not falsified using the proposed test.

315 **Results**

316 *Simulation experiment*

317 We first illustrate the performance (i.e., calibration and efficiency) of the proposed test across
318 simulation models and time-series lengths when data are complete (Fig. 3). In the simulation
319 model without lagged effects (Fig. 3 top row), the correct model has an approximately uniform
320 $U(0,1)$ distribution for p-values across all sample sizes indicating that the test is well calibrated.
321 Similarly, the incorrect model results in a p-value < 0.1 in nearly all replicates, indicating that

322 the test is statistically efficient across sample sizes. Moving to the two-variable model with lags
323 (Fig. 3 middle row), we see that the test is well calibrated across time-series lengths (i.e., the
324 correct model results in an approximately uniform distribution of p-values). However, it only
325 detects the mis-specification of an incorrect model (i.e., a p-value < 0.1) in 60% of the
326 replicates at low sample sizes ($T = 25$) and 80% of replicates at intermediate sizes ($T = 50$),
327 before attaining good performance for long time-series ($T = 100$). Finally, for the four-variable
328 model with lags (Fig. 3 bottom row), we see that the test is poorly calibrated (i.e., departs from a
329 $U(0,1)$ distribution) for short time-series and incorrectly identifies the model as mis-specified in
330 nearly 40% of replicates. It then becomes well calibrated as the time-series length increases.
331 Expanding this experiment across different levels of missing data (Fig. 4), we see that the simple
332 estimation model remains well calibrated across the level of missing data (Fig. 4 top row), but
333 that the efficiency drops as p_{missing} increases from 0 to 50%. A similar pattern holds for the
334 other simulation models (Fig. 4 middle and bottom rows). However, the decline in efficiency is
335 notable at a lower value of p_{missing} in the intermediate-complexity simulation model (Fig. 4
336 middle row), and the complex simulation model remains poorly calibrated across levels of
337 missing data for short sample sizes (Fig. 4 bottom-left panel, red bullets).

338 *Case studies*

339 We also use two real-world case studies to illustrate the types of ecological inference that are
340 feasible when using the proposed test to falsify hypotheses using time-series models. In the case
341 study involving predator-prey interactions of moose and wolves in Isle Royale (Fig. 5), we
342 explored four models corresponding to single-species (Gompertz) density dependence, adding
343 bottom-up or top-down interactions individually, and adding both interactions jointly. The test
344 then provides strong evidence ($p < 0.01$) that the “bottom-up” model is incorrect, weak

345 evidence ($p = 0.15$) that the model with only density dependence is incorrect, and no evidence
346 ($p > 0.9$) to reject the remaining two models. We therefore use AIC to conclude that the model
347 with top-down interactions is parsimonious ($\Delta AIC = 0$) and not falsifiable relative to the model
348 with both interactions ($\Delta AIC = 1.1$). In the case study involving spawning phenology and
349 survey availability for pollock in the Gulf of Alaska (Fig. 6), we explored three models
350 representing “temperature as driver”, “availability regression” or “timing as mediating effect”
351 hypotheses. The test provides strong evidence ($p < 0.01$) to falsify the first two models, but
352 fails to reject the phenology model ($p = 0.7$). We therefore conclude that this is the most
353 appropriate interpretation of those data given the proposed causal hypotheses.

354 **Discussion**

355 Conditional independence testing is an established practice in structural equation models and
356 phylogenetic path analysis. Here, we demonstrate its application to falsify causal hypothesis
357 regarding simultaneous and lagged interactions among ecological time using structural vector
358 autoregressive models like DSEM. Our simulation experiment confirms that the algorithm
359 proposed here is well calibrated, and that short time series ($T = 25$) can be sufficient for simple
360 structural models with complete data, but that longer time series ($T = 100$) are required as
361 model complexity increases. Similarly, the test efficiency drops as the proportion of missing
362 data increases towards $p_{\text{missing}} = 0.5$. Finally, the case studies illustrate that the test will retain
363 several candidate models in some cases (i.e., for the Isle Royale data set), such that assessing
364 model parsimony and multi-model averaging might be appropriate in these cases. In other cases
365 (e.g., involving pollock spawning phenology), the test provides quantitative support for the
366 ecological interpretation of observational data.

367 Here, we have restricted ourselves to small systems (scenarios involving 2-4 variables)
368 and few lags (simultaneous and first-order cross-lags). We do this because the limits of the test
369 are already evident at this small model size. For example, using 4-variables with first-order lags
370 and using short time series ($T = 25$), we already see poor calibration (i.e., rejecting the true
371 model above intended rates). To understand this, consider that $J = 4$ variables and one lag
372 involves up to $\frac{2J(2J+1)}{2} = 36$ conditional independence relationships to test. The number of CI
373 relationships therefore grows as the square of the number of variables, and the test seems to lose
374 power rapidly for sample sizes that are common when analyzing annualized dynamics.
375 Presumably this loss of statistical power is why previous simulation tests of d-sep in ecology
376 (e.g., in phylogenetic path analysis) have involved systems with < 5 variables (von Hardenberg
377 & Gonzalez-Voyer, 2013). In summary, the time-series d-separation test explored here was
378 unreliable when applied to models with many variables, particularly when time-series were
379 relatively short or had missing values.

380 Others have advocated that ecologists adopt a causal analysis framework, which is a
381 workflow for developing and quantifying DAGs and understanding causal linkages from
382 observational data (Arif & MacNeil, 2023; Grace & Irvine, 2020). Adopting this framework
383 could help mitigate biases associated with traditional statistical models (e.g., linear regression)
384 and understand causality. D-sep is one step in this workflow and broadly tests consistency
385 between DAGs and data, or whether the data support the DAG structure (i.e., configuration of
386 linkages) ('Step 2' in Figure 2 of Arif & MacNeil (2023), part of 'Step 3' in Figure 2 of Grace &
387 Irvine (2020)). The backdoor and frontdoor criteria are other steps in the workflow that identify
388 whether DAGs are susceptible to confounding variables, which introduce bias into the estimation
389 of parameters and misrepresent causal linkages (Arif & MacNeil, 2023; Byrnes & Dee, 2025;

390 Pearl, 2009). The backdoor and frontdoor criteria are unavailable for DSEM models but are
391 needed to advance our understanding of using DSEM to identify causal linkages among variables
392 from models fitted to time-series data with simultaneous and lagged interactions, as well as
393 missing data. Consequently, it will not be possible to follow all recommended steps in the causal
394 analysis framework, such as those in Arif and MacNeil (2023). Further, many correct DAGs will
395 fail a d-sep test for reasons including DAG complexity, time series length, and the presence of
396 missing data, as our simulation showed. When communicating the results from models where we
397 expect d-sep to be less reliable, analysts should take care to acknowledge the potential for biases
398 in parameter estimates due to model mis-specification, explain model assumptions, and be
399 explicit about the limits of causal inference (Grace & Irvine, 2020; Siegel & Dee, 2025).

400 We also note that d-sep is only testing for significant linear relationships among
401 variables, and therefore cannot detect nonlinear or state-dependent relationships (unless they can
402 be expressed using lagged linear relationships). We therefore recommend further cross-
403 comparison with nonlinear causal analysis, e.g., using “empirical dynamic modelling” EDM
404 (Munch et al., 2023). EDM has proven to be powerful in detecting nonlinear causal systems, as
405 validated via microcosm experiments and methods comparisons (Chang et al., 2022; Sugihara et
406 al., 2012). However, EDM also appears to be more informative with longer time series. We
407 therefore envision a workflow using linear models (e.g., d-sep tests for a DSEM) when time-
408 series are relatively short, and comparison with a nonlinear method for longer time-series. We
409 also encourage further work estimating a linear “skeleton” within EDM models, so that EDM
410 collapses to linear interactions when data are limited, but can express a wide range of nonlinear
411 systems when data are abundant. Both DSEM and EDM involve fitting a Gaussian process
412 model, so it seems like their statistical integration would be feasible in future statistical research.

413 Recent studies have pursued a rich vein of parallel line of research for “causal
414 discovery,” i.e., using observational data to identify what combination of one- and two-headed
415 arrows can be identified from available data. Starting with the FCI algorithm (Spirtes et al.,
416 2000), these causal-discovery algorithms typically start with a fully-connected causal model and
417 then proceed backwards by either (A) identifying pairs of variables that are conditionally
418 independent, or (B) triplets that have a specific structure. In particular, the SVAR-FCI algorithm
419 is applicable to the DSEM explored here (Malinsky & Spirtes, 2018), and provides many insights
420 (e.g., identifying two-headed arrows arising from latent variables) relative to the algorithm tested
421 here. Similarly, PCMCI+ incorporates nonlinear linkages among larger numbers of variables
422 (Runge, 2022). However, we believe that causal discovery involves a different goal than the one
423 addressed here: we instead start with one (or a small number of) causal hypotheses that are
424 derived from ecological knowledge, and then seek to falsify that specific hypothesis. For
425 scientists who have already developed hypotheses about system dynamics, we think that this
426 “falsification” step remains important and separate from parallel research regarding causal
427 discovery.

428 In summary, we recommend that analysts seek to falsify causal assumptions for time-series
429 models when they are intended for causal analysis. When developing an DSEM, we recommend
430 that only models with a priori ecological support that also pass the d-sep test be considered, and
431 that model parsimony or averaging then be considered for those models that are consistent with
432 data (i.e., pass the d-sep test). However, in models with 5+ variables and lagged dynamics, we
433 caution that d-sep appears to be poorly calibrated such that models may be erroneously rejected.
434 We therefore recommend ongoing research to integrate causal falsification and discovery into
435 ecological workflows.

436 **Works cited:**

437 Arif, S., & MacNeil, M. A. (2022a). Predictive models aren't for causal inference. *Ecology Letters*, 25(8), 1741–1745. <https://doi.org/10.1111/ele.14033>

438 Arif, S., & MacNeil, M. A. (2022b). Utilizing causal diagrams across quasi-experimental approaches. *Ecosphere*, 13(4), e4009. <https://doi.org/10.1002/ecs2.4009>

440 Arif, S., & MacNeil, M. A. (2023). Applying the structural causal model framework for observational causal inference in ecology. *Ecological Monographs*, 93(1), e1554. <https://doi.org/10.1002/ecm.1554>

442 Byrnes, J. E. K., & Dee, L. E. (2025). Causal Inference With Observational Data and Unobserved Confounding Variables. *Ecology Letters*, 28(1), e70023. <https://doi.org/10.1111/ele.70023>

444 Chang, C.-W., Munch, S. B., & Hsieh, C. (2022). Comments on identifying causal relationships in nonlinear dynamical systems via empirical mode decomposition. *Nature Communications*, 13(1), Article 1. <https://doi.org/10.1038/s41467-022-30359-8>

446 Correia, H. E., Dee, L. E., Byrnes, J. E. K., Fieberg, J., Fortin, M.-J., Glymour, C., Runge, J., Shipley, B., Shpitser, I., Siegel, K. J., Sugihara, G., Holle, B. von, & Ferraro, P. J. (2025). *Best practices for moving from correlation to causation in ecological research*. <https://ecoenvorxiv.org/repository/view/9361/>

448 Eichler, M. (2007). Granger causality and path diagrams for multivariate time series. *Journal of Econometrics*, 137(2), 334–353. <https://doi.org/10.1016/j.jeconom.2005.06.032>

450 Grace, J. B. (2024). An integrative paradigm for building causal knowledge. *Ecological Monographs*, 94(4), e1628. <https://doi.org/10.1002/ecm.1628>

458 Grace, J. B., & Irvine, K. M. (2020). Scientist's guide to developing explanatory statistical
459 models using causal analysis principles. *Ecology*, 101(4), e02962.
460 <https://doi.org/10.1002/ecy.2962>

461 Malinsky, D., & Spirtes, P. (2018). Causal Structure Learning from Multivariate Time Series in
462 Settings with Unmeasured Confounding. *Proceedings of 2018 ACM SIGKDD Workshop
463 on Causal Discovery*, 23–47. <https://proceedings.mlr.press/v92/malinsky18a.html>

464 Marchetti, G. M. (2006). Independencies induced from a graphical Markov model after
465 marginalization and conditioning: The R package ggm. *Journal of Statistical Software*,
466 15, 1–15.

467 Meziane, D., & Shipley, B. (2001). Direct and Indirect Relationships Between Specific Leaf
468 Area, Leaf Nitrogen and Leaf Gas Exchange. Effects of Irradiance and Nutrient Supply.
469 *Annals of Botany*, 88(5), 915–927. <https://doi.org/10.1006/anbo.2001.1536>

470 Monnahan, C. C., Dorn, M. W., Deary, A. L., Ferriss, B. E., Fissel, B. E., Honkalehto, T., Jones,
471 D. T., Levine, M., Rogers, L., & Shotwell, S. K. (2021). *Assessment of the Walleye
472 Pollock Stock in the Gulf of Alaska*.

473 Munch, S. B., Rogers, T. L., & Sugihara, G. (2023). Recent developments in empirical dynamic
474 modelling. *Methods in Ecology and Evolution*, 14(3), 732–745.
475 <https://doi.org/10.1111/2041-210X.13983>

476 Pearl, J. (2009). Causal inference in statistics: An overview. *Statistics Surveys*, 3, 96–146.
477 <https://doi.org/10.1214/09-SS057>

478 Pearl, J. (2012). The causal foundations of structural equation modeling. In R. H. Hoyle,
479 *Handbook of structural equation modeling* (pp. 68–91). Guilford press.

480 R Core Team. (2023). *R: A Language and Environment for Statistical Computing*. R Foundation
481 for Statistical Computing. <https://www.R-project.org/>

482 Richardson, T., & Spirtes, P. (2002). Ancestral graph Markov models. *The Annals of Statistics*,
483 30(4), 962–1030. <https://doi.org/10.1214/aos/1031689015>

484 Rogers, L. A., Monnahan, C. C., Williams, K., Jones, D. T., & Dorn, M. W. (2025). Climate-
485 driven changes in the timing of spawning and the availability of walleye pollock (*Gadus*
486 *chalcogrammus*) to assessment surveys in the Gulf of Alaska. *ICES Journal of Marine*
487 *Science*, 82(1), fsae005. <https://doi.org/10.1093/icesjms/fsae005>

488 Runge, J. (2022). *Discovering contemporaneous and lagged causal relations in autocorrelated*
489 *nonlinear time series datasets* (No. arXiv:2003.03685). arXiv.
490 <https://doi.org/10.48550/arXiv.2003.03685>

491 Shipley, B. (2000). A New Inferential Test for Path Models Based on Directed Acyclic Graphs.
492 *Structural Equation Modeling: A Multidisciplinary Journal*, 7(2), 206–218.
493 https://doi.org/10.1207/S15328007SEM0702_4

494 Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. *Ecology*,
495 90(2), 363–368. <https://doi.org/10.1890/08-1034.1>

496 Siegel, K., & Dee, L. E. (2025). Foundations and Future Directions for Causal Inference in
497 Ecological Research. *Ecology Letters*, 28(1), e70053. <https://doi.org/10.1111/ele.70053>

498 Spirtes, P., Glymour, C. N., & Scheines, R. (2000). *Causation, prediction, and search*. MIT
499 press. https://books.google.com/books?hl=en&lr=&id=vV-U09kCdRwC&oi=fnd&pg=PR9&dq=Causation,+Prediction,+and+Search&ots=DZ_Wp
500 [qwMqf&sig=5rMntPAIaTR0eWEhQMkWx1Y9OCr8](https://books.google.com/books?hl=en&lr=&id=vV-U09kCdRwC&oi=fnd&pg=PR9&dq=Causation,+Prediction,+and+Search&ots=DZ_Wp&qwMqf&sig=5rMntPAIaTR0eWEhQMkWx1Y9OCr8)

502 Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., & Munch, S. (2012). Detecting
503 Causality in Complex Ecosystems. *Science*, 338(6106), 496–500.

504 Thorson, J. T., Andrews III, A. G., Essington, T. E., & Large, S. I. (2024). Dynamic structural
505 equation models synthesize ecosystem dynamics constrained by ecological mechanisms.
506 *Methods in Ecology and Evolution*, 15(4), 744–755. <https://doi.org/10.1111/2041-210X.14289>

508 von Hardenberg, A., & Gonzalez-Voyer, A. (2013). Disentangling evolutionary cause-effect
509 relationships with phylogenetic confirmatory path analysis. *Evolution; International
510 Journal of Organic Evolution*, 67(2), 378–387. <https://doi.org/10.1111/j.1558-5646.2012.01790.x>

512 Vucetich, J. A., & Peterson, R. O. (2012). *The population biology of Isle Royale wolves and*
513 *moose: An overview*. www.isleroyalewolf.org

514

515

516 Table 1: Summarizing the steps required when extending the d-separation test for use in time-
517 series models that include both simultaneous and lagged relationships among variables.

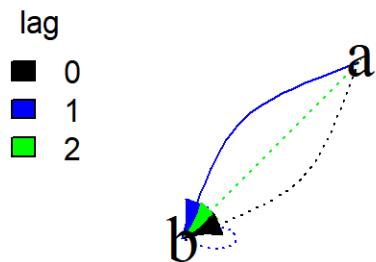
Number	Title	Description
1	Extract path matrix	Extract path matrix, including conditioning interval for maximum number of lags to define conditioning matrix A
2	Define conditional independence (CI) relationships	Use directional separation (“d-sep”) to define the set of CI relationships
3	Eliminate relationships	Eliminate duplicative CI relationships, and restrict target and predictor variables outside the initialization buffer, while allowing conditioning variables within the “burn-in” interval
4	Simulate missing data from predictive distribution	Simulate any missing data, either once across all CI tests or separately for each CI test
5	Fit CI relationships and combine p-values	Fit each CI relationship, record the p-value for each individual CI test, and combine them using Fisher’s formula

518

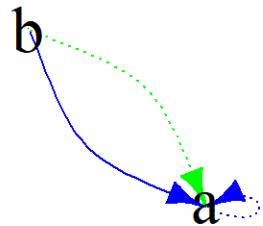
519

520 Fig 1: A visual depiction of the two conditional-independence relationships implied by the
 521 “dsem_simple” structural causal model DSEM, as calculated using conditioning matrix **A** (Eq.
 522 6). The CI relationship is shown with a solid line, while the conditioning variables are shown as
 523 dashed lines. Given a DSEM with maximum lag $M = 1$, the CI must condition upon a
 524 maximum of lag-2 relationships; e.g., the top CI relationship can be fitted as $b = \beta_0 \text{lag}_1(a) +$
 525 $\beta_1 a + \beta_2 \text{lag}_2(a) + \epsilon$ where we then test for the significance of the β_0 coefficient.

Conditional independence 1



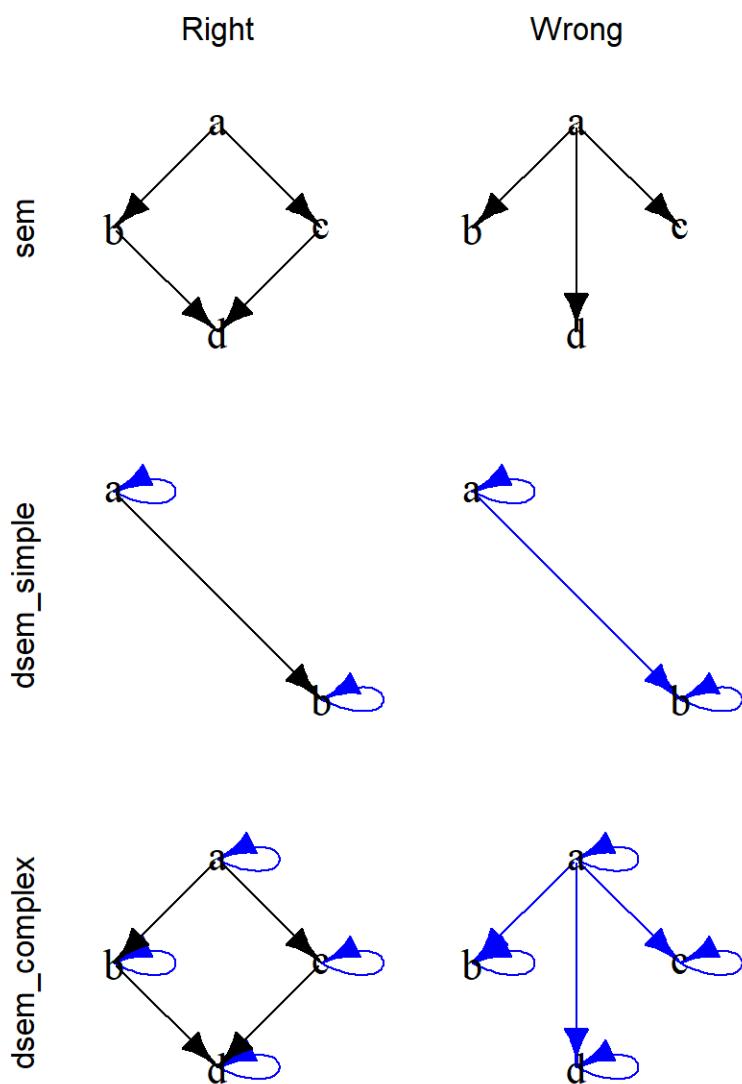
Conditional independence 2



526

527

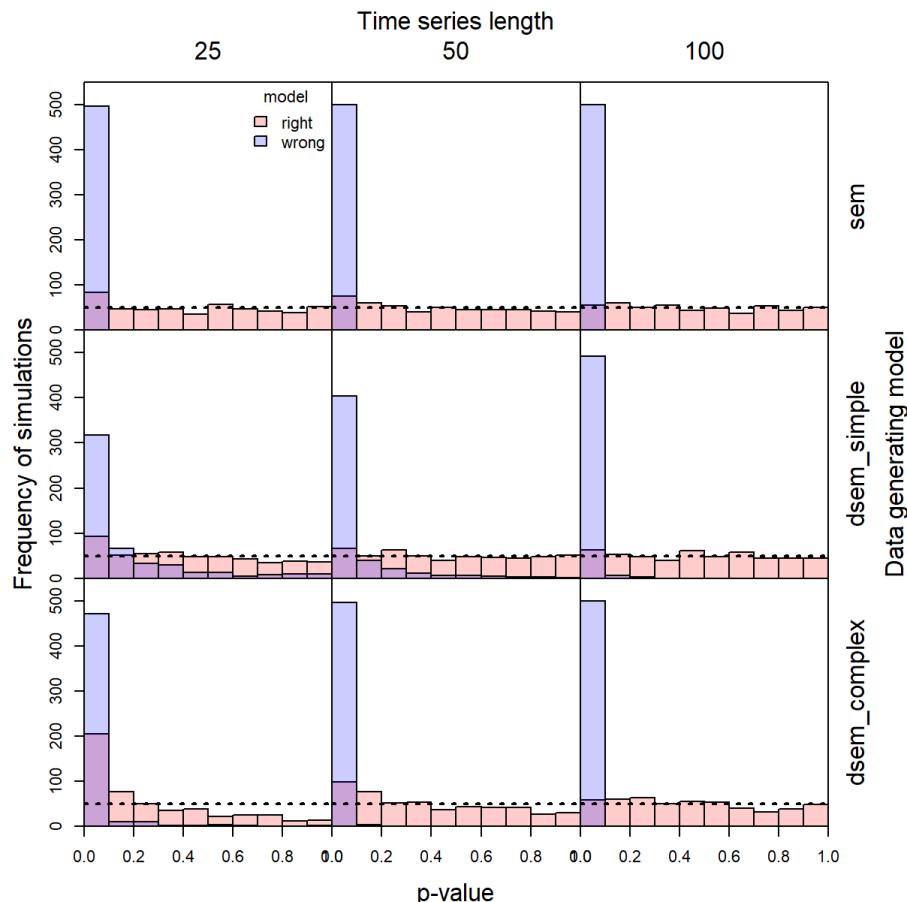
528 Fig. 2: The dynamic structural equation model (DSEM) used to simulate data (left column) in
 529 three simulation scenarios (rows), and the DSEM that is specified when intentionally fitting with
 530 a mismatched SCM (right column). In each DSEM, we show 2-4 time-series variables (labeled
 531 “a” through “d”), and causal paths showing either simultaneous effects (black arrows) or lag-1
 532 effects (blue arrows), where a blue arrow from a variable to itself (e.g., in the 2nd row) shows a
 533 first-order autoregressive effect.



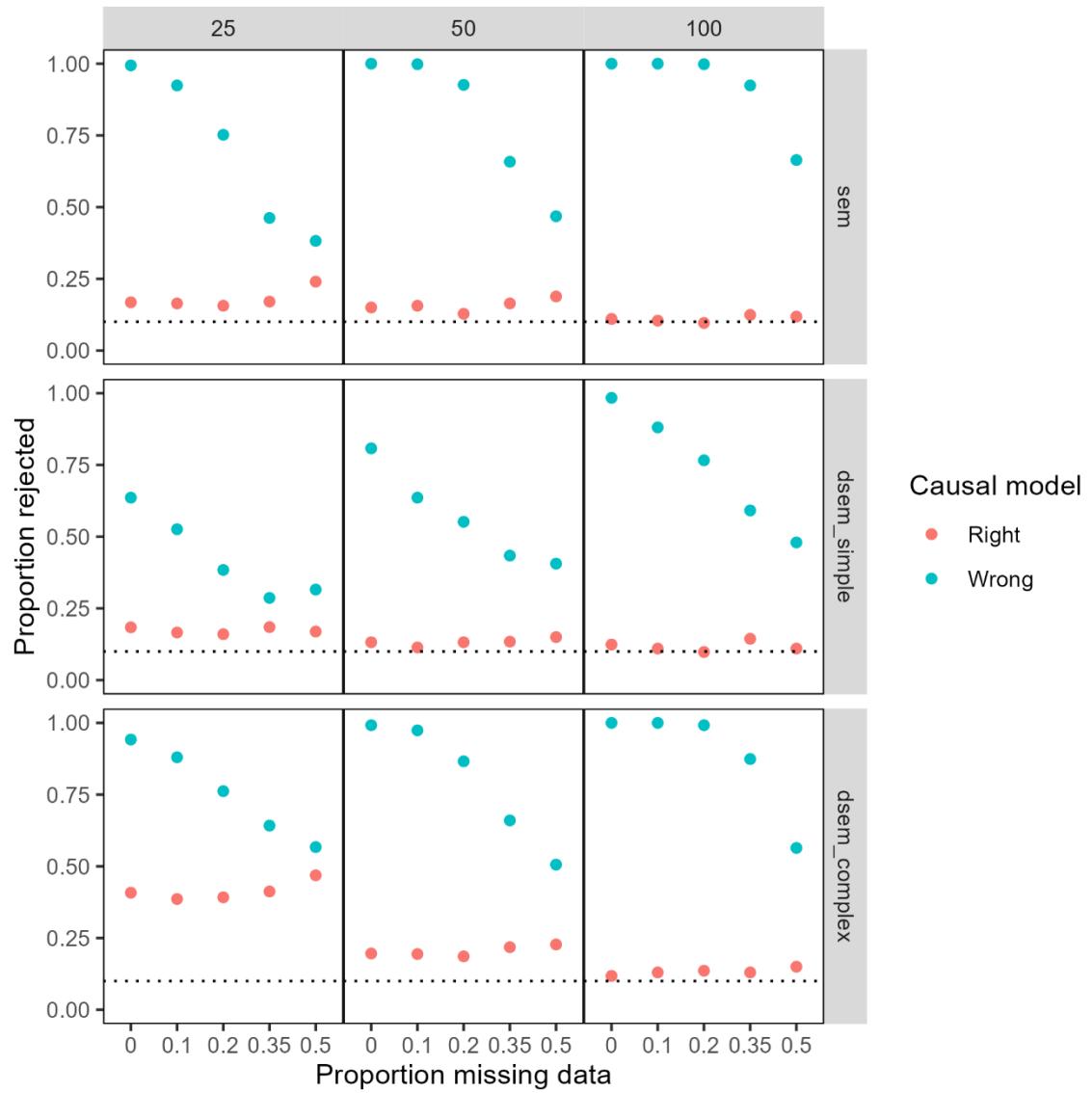
534

535

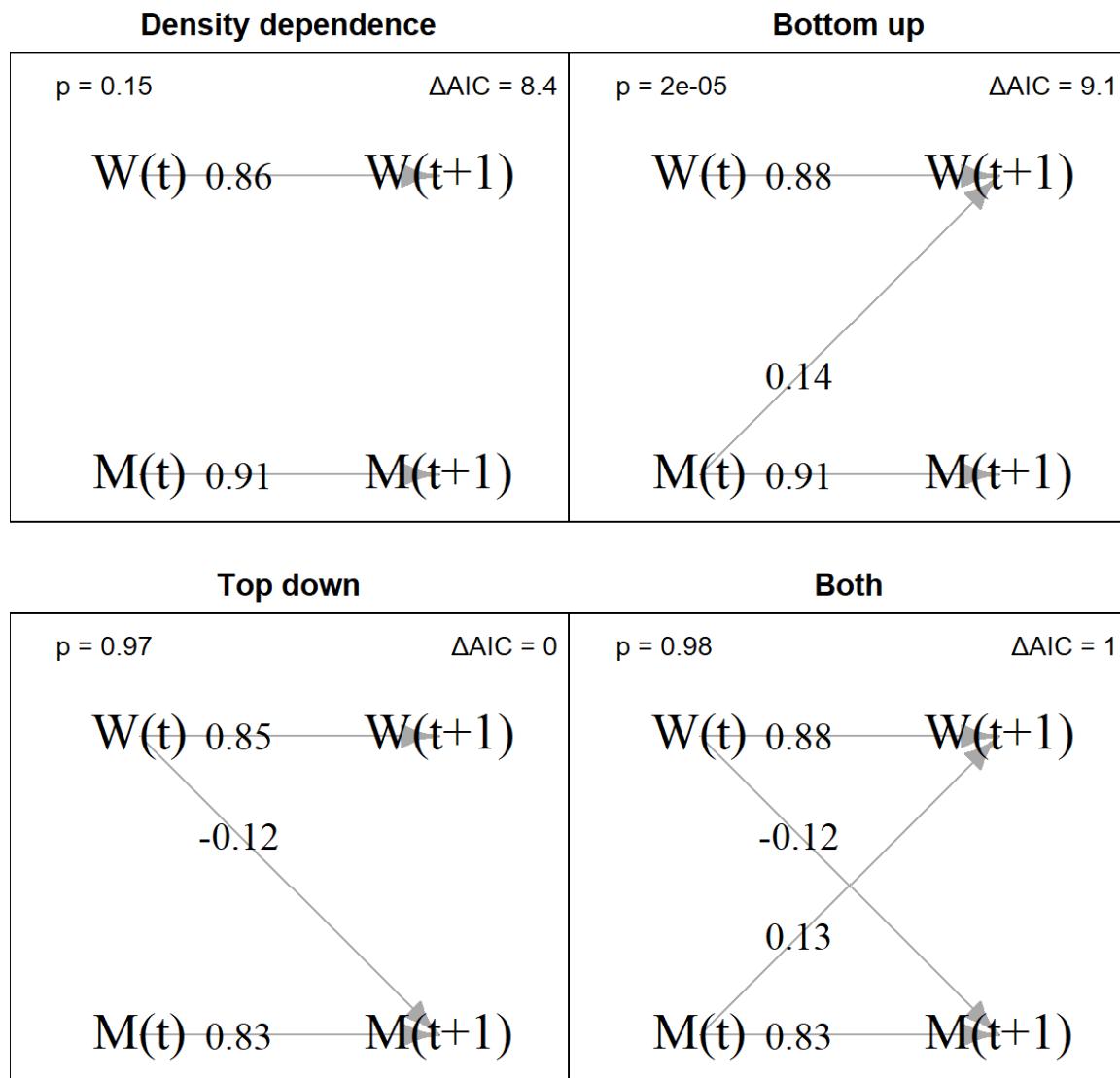
536 Fig. 3: Results from the simulation experiment showing the frequency of 500 replicates (y-axis)
 537 with a given p-value (x-axis) for a time-series d-separation test, while simulating time-series of
 538 length $T = \{25, 50, 100\}$ (columns) from three dynamic structural equation models DSEM
 539 (rows, see Fig. 1 left column). Simulated data were either fitted with the correct DSEM (red
 540 histogram, Fig. 1 left column) or wrong DSEM (blue histogram, Fig. 1 right column). A well-
 541 calibrated d-separation test will result in a p-value that follows a uniform $U(0,1)$ distribution
 542 (i.e., horizontal dashed line) when fitting the correct model, and an efficient test will result in a
 543 p-value that is close to zero when fitting a mis-specified model.



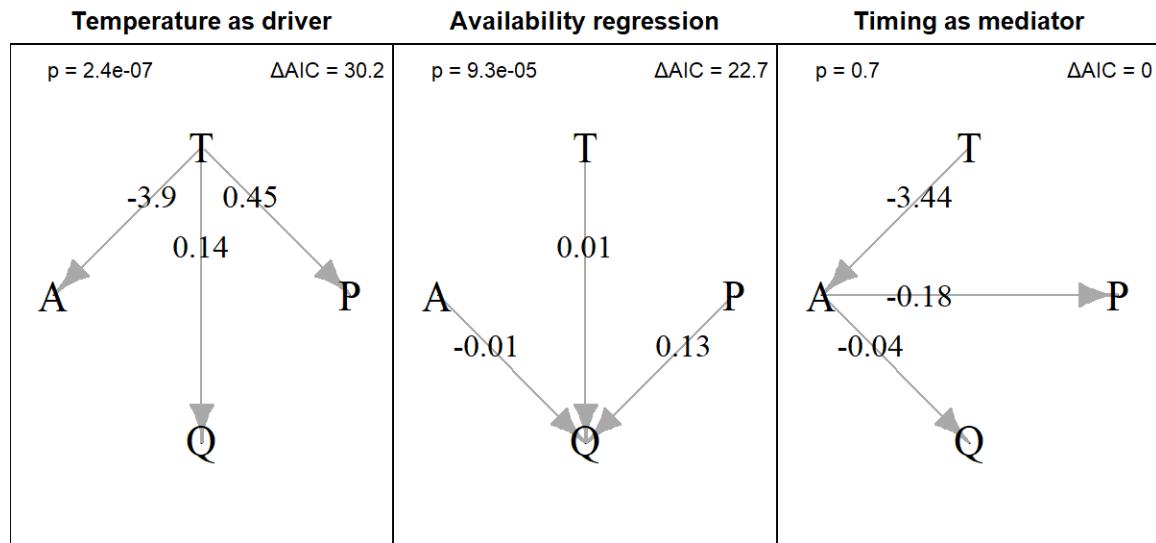
545 Fig. 4: Results from the simulation experiment when showing the proportion of simulation
 546 replicates with d-separation test resulting in $p < 0.1$ (y-axis) across five proportions of missing
 547 data $p_{\text{missing}} = \{0, 0.1, 0.2, 0.35, 0.5\}$ (x-axis), and across different time-series lengths
 548 (columns) and dynamic structural equation models DSEM (rows, see Fig. 3 caption for more
 549 details). A well-calibrated model will reject the test at a nominal 0.1 rate (horizontal dotted
 550 lines) when the DSEM causal assumptions are correct, and ideally will reject it at close to 1.0
 551 rate when the DSEM assumptions are mis-specified.



553 Fig. 5 – Estimated dynamic structural equation model showing a vector-autoregressive model
 554 fitting to data for wolf (W) and moose (M) log-abundance in Isle Royale 1959-2019 (Vucetich &
 555 Peterson, 2012). We compare a model assuming Gompertz density dependence (i.e., $W \rightarrow W, 1$
 556 and $M \rightarrow M, 1$), adding either bottom-up or top-down controls, or adding both jointly. For each
 557 model, we show the time-series d-sep test p-value (p, top-left corner) and the delta-marginal
 558 Akaike Information Criterion (top-right corner), where the most parsimonious model has $\Delta AIC =$
 559 0.



562 Fig. 6: Estimated dynamic structural equation model (DSEM) showing the estimated path
 563 coefficient between temperature T , the average number of days between mean date of spawning
 564 and the mean date of a survey on spawning grounds A , the logit-transformed proportion of
 565 females $>30\text{cm}$ in a spawning or spent stage during the spawning-grounds survey P , and the log-
 566 ratio between the surveyed biomass and predicted biomass given other data Q . We show three
 567 DSEMs (columns), either using temperature as an explanatory variable for all processes
 568 (“Temperature as driver”), using all variables to explain availability (“Availability regression”),
 569 or using survey timing as a mediating variable linking temperature to survey availability
 570 (“Timing as mediator”). We also show the time-series d-sep p-value (top left) and delta-
 571 marginal AIC (top-right) for each model.



572

573