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Abstract: 15 

Ecologists often use time-series models to approximate dynamics arising from density 16 

dependence, species interactions, community synchrony, and other processes.  Dynamic 17 

structural equation models can represent simultaneous and lagged interactions among variables 18 

with missing data, and therefore encompasses a wide family of analyses (linear regression, 19 

vector autoregressive models, and dynamic factor analysis).  However, their interpretation as 20 

structural causal models (i.e., counterfactual analysis) requires validating that the assumed 21 

dynamics are consistent with available data.  In site-replicated and phylogenetic contexts, 22 

ecologists validate causal assumptions by testing implied conditional-independence relationships 23 

(a directional-separation or “d-sep” test), but this has not been extended to include simultaneous 24 

and lagged effects in time-series contexts.  Here, we propose a time-series d-sep test and use a 25 

simulation experiment and case studies to explore its performance.  The simulation confirms that 26 

this test results in a uniform p-value when using a correct causal model, and a low p-value (i.e., a 27 

decision to reject a model) when the causal model is incorrect.  As expected, time-series that are 28 

short or have a large proportion of missing data then have less power to reject an incorrect 29 

model.  In a novel application involving pollock in the Gulf of Alaska, the test supports a 30 

conceptual model where temperature drives spawning phenology, which subsequently affects 31 

survey availability for a spawning survey.   In a previously published analysis involving wolf-32 

moose interactions in Isla Royale, the test supports top-down control but cannot distinguish 33 

whether bottom-up control is supported.  We conclude that d-sep is a useful test to evaluate the 34 

structural validity of a time-series model, allowing ecologists to make better causal inference 35 

about dynamical systems from correlated time series data.   36 

  37 



Introduction 38 

 Ecologists study causality in natural systems using controlled experiments and the analysis of 39 

observational data (Grace, 2024; Siegel & Dee, 2025). Developing a well-formed hypothesis is a 40 

key first step, and causal analysis have been proposed as a useful scientific framework to achieve 41 

this (Grace & Irvine, 2020).  Generating hypotheses is an iterative process of building graphical 42 

causal networks (directed acyclical graphs; DAGs) of key variables in a system independent of 43 

the data and prior to modeling, and this requires eliciting and representing expert knowledge 44 

about ecological mechanisms (e.g., see Table 5 of Grace & Irvine, 2020). Structural causal 45 

models (SCM) can then be used to estimate causal relationships by fitting statistical models to 46 

DAGs (Pearl, 2009), and resolves well-known issues with bias when making causal statements 47 

from predictive statistical models (Arif & MacNeil, 2022a) in particular when there are 48 

unobserved confounding variables (Byrnes & Dee, 2025). SCMs are widely used outside of 49 

ecology, and controlled experiments can be interpreted as a variant of SCM where some 50 

variables (i.e., experimental treatments) are known to be independent of others.  However, 51 

ecologists also use observational data for systems that are not amenable to experimental 52 

manipulation, and these settings require validating causal hypotheses to ensure unbiased causal 53 

estimates (Arif & MacNeil, 2022b; Siegel & Dee, 2025). Thus, to advance understanding of 54 

ecological mechanisms it is vital for analysts to be able to validate their causal models fitted to 55 

observational time-series data.  56 

 Time-series dynamics pose particular challenges, because interactions among variables may 57 

be either simultaneous (i.e., occurring much faster than the time-step in available observations) 58 

or lagged.  Lagged interactions result in temporal dependence, and dependence violates a key 59 

statistical assumption of the popular structural equation model (SEM; Pearl, 2012) statistical 60 



framework for estimating causal relationships.  This then limits practical application of SEM to 61 

time-series analysis. Thorson et al. (2024) extended the SEM modeling framework to allow for 62 

correlated observations and lagged effects. This dynamic structural equation model (DSEM) 63 

framework is efficiently represented as a Gaussian Markov random field and fitted as a 64 

generalized linear mixed model, as implemented in the ‘dsem’ package (Thorson et al., 2024) in 65 

the R statistical environment (R Core Team, 2023). DSEM encompasses a wide range of 66 

statistical analyses including linear models, errors-in-variables, ARIMA models, dynamic factor 67 

analysis, vector autoregressive models, and structural causal models. The DSEM framework 68 

allows analysts to test novel causal hypotheses due to its decreased restrictions on data necessary 69 

in a standard SEM, but it remains unclear how to validate them when fitted to (correlated) 70 

observational data.   71 

 In general, the best way to validate a SCM is by using controlled experiments to confirm that 72 

variables are independent conditional upon fixed conditions.  However, experiments often cannot 73 

be run at the scale of a system (due to logistical or legal constraints).  Validating a SCM using 74 

observational data generally involves testing whether the specified causal model is consistent 75 

with available data.  For example, consider a trophic cascade, where we might specify a SCM 76 

where predator 𝑋𝑋 affects consumer 𝑌𝑌 and consumer 𝑌𝑌 affects producer 𝑍𝑍.  We write this as two 77 

causal paths: 𝑋𝑋 → 𝑌𝑌 and 𝑌𝑌 → 𝑍𝑍.  In this SCM, variation in predators is assumed to be 78 

independent of producers, conditional upon a fixed value for consumers (i.e., 𝑍𝑍 ⊥ 𝑋𝑋|𝑌𝑌).  We can 79 

therefore test this conditional independence relationship as a regression (𝑍𝑍 = 𝛽𝛽𝑋𝑋𝑋𝑋 + 𝛽𝛽𝑌𝑌𝑌𝑌 + 𝜖𝜖), 80 

and if the slope 𝛽𝛽𝑋𝑋 significantly departs from zero, then we can “reject” this component of SCM 81 

as invalid.  This insight is formalized by the directional-separation (“d-sep”) test (Shipley, 2000), 82 

where all conditional-independence relationships implied by a given SCM are sequentially tested 83 



and results are then combined in a single “omnibus” test.  This d-sep test is widely used in the 84 

analysis of controlled experiments (Meziane & Shipley, 2001) and phylogenetic comparative 85 

analysis (von Hardenberg & Gonzalez-Voyer, 2013).  The test has previously been extended to 86 

multi-level models (Shipley, 2009), but has not to our knowledge been extended to time-series 87 

analysis involving a combination of simultaneous and lagged interactions among variables.   88 

 We therefore address this by extending d-sep tests to measure whether a proposed time-series 89 

structural model is consistent with available data.  To address this, we first summarize the d-sep 90 

test for path analysis, and then introduce modifications that are necessary for application to time-91 

series models that include simultaneous and lagged effects, or when dealing with missing data.  92 

We then provide a simulation experiment to determine whether the proposed test performs 93 

correctly (i.e., results in a uniform distribution for p-values) when the model is correctly 94 

specified, and also how often it can reject an incorrectly specified model given different 95 

simulation model structures, time-series lengths, and amounts of missing data.  Finally, we use 96 

two real-world case studies to illustrate the types of ecological inference that can be drawn from 97 

the time-series d-sep test.  Results suggest that the method performs well for simple (2-4 98 

variable) models incorporating simultaneous and lagged effects given the range of time-series 99 

that are common in population dynamics (25-100 time points), and the method is freely available 100 

as function `test_dsep(.)` in the R package dsem for future use.   101 

Methods 102 

The Shipley (or d-sep) test can be applied to a directed acyclic graph (DAG) representing a 103 

structural causal model.  It proceeds by: 104 

1. identifying the set of conditional independence (or “d-separation”) relationships that are 105 

implied by the DAG.  This set depends upon an a priori ordering of variables. Then for each 106 



unique pair of variables, it identifies whether those variables are directly linked by the DAG.  107 

If that pair is not directly linked, the algorithm identifies the set of “conditioning variables” 108 

that (if held constant) would result in that pair then being independent.  That pair of variables 109 

and the set of conditioning variables is then recorded as a “conditional independence 110 

relationship”.  This step can be automated, and we use package 𝑔𝑔𝑔𝑔𝑔𝑔 (Marchetti, 2006); 111 

2. fitting each d-separation relationship as a regression model, and extracting the p-value 𝑝𝑝𝑖𝑖 112 

associated with rejecting the null hypothesis for each conditional independence relationship 113 

from Step 1; 114 

3. combining these p-values using Fisher’s formula, 𝐶𝐶 = −2 log(∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1 ), and calculating an 115 

omnibus p-value under the assumption that  𝐶𝐶 follows a chi-squared distribution with 2𝑁𝑁 116 

degrees of freedom. 117 

We seek to generalize this method for application in time-series models that can include both 118 

simultaneous and lagged interactions among variables.   119 

Conditional independence in time-series modelling 120 

 Next, we briefly summarize dynamic structural equation models (DSEM).  For a set of 𝑗𝑗 ∈121 

{1,2, … 𝐽𝐽} variables over 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} times, we define a matrix of latent variables 𝐗𝐗 with 122 

dimension 𝑇𝑇 × 𝐽𝐽.  We can represent any set of simultaneous and lagged interactions by defining a 123 

path matrix 𝐏𝐏joint with dimension 𝐽𝐽𝑇𝑇 × 𝐽𝐽𝑇𝑇, and defining a simultaneous equation: 124 

vec(𝐗𝐗) = 𝐏𝐏jointvec(𝐗𝐗) + vec(𝐄𝐄) 125 

vec(𝐄𝐄)~MVN(𝟎𝟎,𝐕𝐕joint) 126 

where 𝐄𝐄 is the 𝐽𝐽 × 𝑇𝑇 matrix of exogenous errors, and 𝐕𝐕joint is the 𝐽𝐽𝑇𝑇 × 𝐽𝐽𝑇𝑇 covariance for these 127 

errors.  Usefully, this simultaneous equation can be re-arranged as a Gaussian Markov random 128 

field: 129 



vec(𝐗𝐗)~GMRF(𝟎𝟎,𝐐𝐐) 130 

where 𝐐𝐐 = (𝐈𝐈 − 𝐏𝐏joint𝑡𝑡 )𝐕𝐕joint−1 (𝐈𝐈 − 𝐏𝐏joint) is the sparse precision (inverse-covariance) matrix.  The 131 

probability density of this GMRF can then be rapidly evaluated using the sparse precision 𝐐𝐐, and 132 

it can be fitted efficiently using the Laplace approximation as a Generalized Linear Mixed Model 133 

(GLMM).   134 

 The joint path matrix 𝐏𝐏joint is formed by summing across simultaneous and lagged effects: 135 

𝐏𝐏joint = 𝐆𝐆0 ⊗ 𝐏𝐏0�����
Lag−0

+ 𝐆𝐆1 ⊗ 𝐏𝐏1�����
Lag−1

+ ⋯ 136 

Where 𝐏𝐏0 is the 𝐽𝐽 × 𝐽𝐽 matrix of simultaneous (lag-0) interactions, 𝐏𝐏1 is the 𝐽𝐽 × 𝐽𝐽 matrix of lag-1 137 

interactions, 𝐆𝐆0 is a 𝑇𝑇 × 𝑇𝑇 matrix representing the lag-0 operator (i.e., an identity matrix), 𝐆𝐆1 is a 138 

𝑇𝑇 × 𝑇𝑇 matrix representing the lag-1 operator (i.e., a matrix of 0s with a band of 1s one below the 139 

diagonal), ⊗ is the Kronecker product, and we only show lag-0 and lag-1 interactions for 140 

simplicity of presentation.  Similarly, we define the exogenous variance to only include 141 

simultaneous cross-correlations: 142 

𝐕𝐕joint = 𝐆𝐆0 ⊗ (𝐋𝐋𝑡𝑡𝐋𝐋) 143 

Where 𝐋𝐋 can include variances (diagonal elements) and covariances (off-diagonal elements), and 144 

represents the Cholesky (i.e., square root) of simultaneous exogenous covariance 𝐋𝐋𝑡𝑡𝐋𝐋.  The 145 

model is completed by defining a distribution for data matrix 𝐘𝐘 with dimensions 𝑇𝑇 × 𝐽𝐽.  For each 146 

column 𝐲𝐲𝑗𝑗, the user can specify that measurements are without error (i.e., 𝐲𝐲𝑗𝑗 = 𝐱𝐱𝑗𝑗) or can specify 147 

a link function and distribution (i.e., 𝑦𝑦𝑡𝑡𝑗𝑗~𝑓𝑓𝑗𝑗(𝑔𝑔𝑗𝑗−1(𝑥𝑥𝑡𝑡𝑗𝑗),𝜃𝜃𝑗𝑗) where 𝑔𝑔𝑗𝑗−1(𝑥𝑥𝑡𝑡𝑗𝑗) is the inverse-link 148 

function, 𝜃𝜃𝑗𝑗  is the estimated variance for measurement errors, and 𝑓𝑓𝑗𝑗 is the distribution for 149 

errors).  In the following, we focus upon the case of no measurement errors (i.e., 𝐲𝐲𝑗𝑗 = 𝐱𝐱𝑗𝑗), which 150 

then collapses to a “process error” model.   151 



 This model then implies that the 𝐽𝐽 variables 𝐱𝐱𝑡𝑡 in time 𝑡𝑡 might depend upon 𝐱𝐱𝑡𝑡 but also 𝐱𝐱𝑡𝑡−1 152 

in a model with a maximum lag of 𝑀𝑀 = 1, where we use an “arrow-and-lag” notation e.g., 𝐴𝐴 →153 

𝐵𝐵, 1 to indicate that variable 𝐴𝐴 in time 𝑡𝑡 affects 𝐵𝐵 in time 𝑡𝑡 + 1.  Therefore, the test for 154 

conditional dependence involves testing conditional independence relationships among a set of 155 

𝐽𝐽(𝑀𝑀 + 1) artificial variables, representing each variable 𝑗𝑗 at each potential lag 𝑔𝑔 ∈ {0, … ,𝑀𝑀} 156 

where 𝑀𝑀 is the maximum lag included in the model.  This insight yields a further complication.  157 

Say for a maximum lag of 𝑀𝑀 = 1, variable 𝑥𝑥𝑡𝑡,𝑗𝑗 and 𝑥𝑥𝑡𝑡+1,𝑗𝑗∗ might be independent only when 158 

conditioning upon preceding states 𝑥𝑥𝑡𝑡−1,𝑗𝑗∗ .  To see this, consider a bivariate time-series model 159 

where 𝐴𝐴 has a simultaneous (lag-0) impact on B, and both 𝐴𝐴 and 𝐵𝐵 exhibit first-order 160 

autocorrelation (e.g., Gompertz density dependence): 161 

𝐴𝐴 → 𝐵𝐵, 0 162 

𝐴𝐴 → 𝐴𝐴, 1 163 

𝐵𝐵 → 𝐵𝐵, 1 164 

This implies that 𝐵𝐵 is independent of the preceding 𝐴𝐴 (i.e., path 𝐴𝐴 → 𝐵𝐵, 1 is zero) conditional 165 

upon lag-2 𝐴𝐴 (i.e., path 𝐴𝐴 → 𝐵𝐵, 2), lag-0 𝐴𝐴 (i.e., path 𝐴𝐴 → 𝐵𝐵, 0), and autoregressive effects of B 166 

(i.e., path 𝐵𝐵 → 𝐵𝐵, 1).  This example therefore illustrates that for a maximum lag of 𝑀𝑀, we need to 167 

include conditioning variables for 𝑀𝑀 times prior to the window of interest.  In the case of 𝑀𝑀 = 0 168 

(i.e., no lagged effects), then we can again ignore conditioning variables prior to the time-of 169 

interest, and the protocol collapses to the three steps in the standard d-sep test (see beginning of 170 

the Methods section).   171 

 To define conditional independence relationships in time-series models involving lags, we 172 

therefore define a “conditioning interval” with conditioning matrix 𝐀𝐀.  For the case of maximum 173 

lag 𝑀𝑀 = 1, we have: 174 



𝐀𝐀 = �
𝐏𝐏0 0 0
𝐏𝐏1 𝐏𝐏0 0
0 𝐏𝐏1 𝐏𝐏0

� 175 

We then define all conditional-independent relationships within that conditioning matrix 𝐀𝐀, in 176 

this case using package ggm.  However, we only keep those that define an independence 177 

relationship between two variables that are both after the 𝑀𝑀 = 1 “burn-in” intervals, while still 178 

allowing conditioning variables to occur anywhere in the matrix.  We then fit DSEM to each 179 

conditional independence relationship independently, calculate the p-value for a two-sided Wald 180 

test, and combine these using Fisher’s formula.   181 

 As further complication, we note that DSEM can account for missing data (i.e., 𝑦𝑦𝑡𝑡𝑗𝑗 = NA).  182 

In these instances, we impute missing data from the predictive distribution of random effects 183 

(i.e., their precision matrix 𝐇𝐇 given available data and fixed effects), and then use these imputed 184 

data as “fixed” for each conditional-independence (CI) test.  We explored alternative options 185 

where we re-simulate missing data independently for each CI relationships, or used a single 186 

imputed data set across all CI relationships for a given d-sep test.  This exploration suggested 187 

relatively little difference in performance, and we show the former in the following (see Table 1 188 

for overview).   189 

Simulation experiment 190 

To explore the likely performance of this time-series d-sep test, we first conduct a factorial 191 

simulation experiment.  This involves 500 replicates of each combination of the following levels: 192 

1. Three simulation models:  We define three structural causal models.  The simplest “sem” has 193 

four variables and only simultaneous effects, where 𝐴𝐴 → 𝐵𝐵, 𝐴𝐴 → 𝐶𝐶, 𝐵𝐵 → 𝐷𝐷, and 𝐶𝐶 → 𝐷𝐷.  The 194 

intermediate involves two variables with simultaneous and lagged effects, where 𝐴𝐴 → 𝐵𝐵, and 195 

an autoregressive process for both 𝐴𝐴 and 𝐵𝐵. The most complicated involves four variables, 196 



combining the same simultaneous effects as the “sem” scenario, but also including first-order 197 

autocorrelation for each variable; 198 

2. Three sample sizes:  We simulate time-series of length 𝑇𝑇 = {25,50,100}, representing short, 199 

medium, and long ecological data sets; 200 

3. Five levels of missing data:  We randomly exclude data for each combination of variable and 201 

year, with probability 𝑝𝑝missing = {0,0.1,0.2,0.35,0.5}; 202 

4. Two estimation models:  For each combination of simulation model, sample size, and missing 203 

data, we fit DSEM either using the true model structure, or using a mis-specified structural 204 

model (see Fig. 1); 205 

This design therefore involves 3 × 3 × 5 × 2 × 500 = 45,000 applications of the time-series d-206 

sep test.   207 

 We assess two characteristics for the d-sep test in this experiment: 208 

1. Calibration:  A well-calibrated d-sep test will result in a uniform 𝑈𝑈(0,1) distribution for p-209 

values when the simulation model matches the estimation model; 210 

2. Efficiency:  An efficient d-sep test will result in a large proportion of p-values that are close 211 

to zero when the estimation model does not match the estimation model.  Ideally, this p-value 212 

will remain close to zero even when time-series are short, the simulation model is 213 

complicated, and a large proportion of data are missing.  214 

Case study applications 215 

We also demonstrate the potential use of time-series d-sep via application to two real-world data 216 

sets: 217 

1. Wolf-moose interactions on Isle Royale:  Building upon an analysis from Thorson et al. 218 

(2024), we re-analyze a population census of wolves and moose on Isle Royale from 1959-219 



2019 (Vucetich & Peterson, 2012), where 𝑊𝑊 and 𝑀𝑀 are log-abundance.  We fit a model with 220 

just Gompertz density dependence (𝑊𝑊 → 𝑊𝑊, 1 and 𝑀𝑀 → 𝑀𝑀, 1), adding bottom up interactions 221 

(𝑀𝑀 → 𝑊𝑊, 1), adding top-down interactions (𝑊𝑊 → 𝑀𝑀, 1), or adding both; 222 

2. Spawning phenology and climate:  In a new example of DSEM, we use published data 223 

representing spawning phenology for walleye pollock in the Gulf of Alaska from 1983-2023 224 

and its relationship to survey availability (Rogers et al., 2025).  This includes four variables, 225 

representing sea surface temperature 𝑇𝑇, the average number of days between mean date of 226 

spawning (as estimated from larval-derived hatch dates) and the mean date of a survey 𝐴𝐴, the 227 

logit-transformed proportion of females >30cm in a spawning or spent stage during the 228 

spawning-grounds survey 𝑃𝑃, and the log-ratio 𝑄𝑄 between the surveyed biomass and predicted 229 

biomass where the latter is taken from a population dynamics model fitted to the survey data 230 

without accounting for timing or temperature (Monnahan et al., 2023).  We explore three 231 

alternative models for these data.  The first (“temperature as driver”) views temperature as 232 

the driver of all other variables (i.e., 𝑇𝑇 → 𝐴𝐴, 𝑇𝑇 → 𝑃𝑃, and 𝑇𝑇 → 𝑄𝑄).  The second (“regression 233 

for availability”) views variables as independent predictors of survey availability (i.e., 𝑇𝑇 →234 

𝑄𝑄, 𝑃𝑃 → 𝑄𝑄, and 𝐴𝐴 → 𝑄𝑄).  The third (“phenology as mediating effect”, described in Rogers et 235 

al. 2025) claims that temperature affects survey availability via its mediating effect on 236 

spawning phenology (i.e. 𝑇𝑇 → 𝐴𝐴, 𝐴𝐴 → 𝑃𝑃, and 𝐴𝐴 → 𝑄𝑄).  Across all three models, we also 237 

estimate first-order autoregression for each variable (i.e., 𝑇𝑇 → 𝑇𝑇, 1, 𝐴𝐴 → 𝐴𝐴, 1, 𝑃𝑃 → 𝑃𝑃, 1, and 238 

𝑄𝑄 → 𝑄𝑄, 1) and assume that variables are measured without error (i.e., a process-error model)  239 

In each case study, we record the p-value from the time-series d-sep test as well as the marginal 240 

Akaike Information Criterion (AIC) for the fitted model.   241 

Results 242 



Simulation experiment 243 

We first illustrate the performance (i.e., calibration and efficiency) of the d-sep test across 244 

simulation models and time-series lengths when data are complete (Fig. 3).  In the simulation 245 

model without lagged effects (Fig. 3 top row), the correct model has an approximately uniform 246 

𝑈𝑈(0,1) distribution for p-values across all sample sizes indicating that the d-sep test is well 247 

calibrated.  Similarly, the incorrect model results in a p-value < 0.1 in nearly all replicates, 248 

indicating that the test is statistically efficient across sample sizes.  Moving to the two-variable 249 

model with lags (Fig. 3 middle row), we see that the correct model remains well calibrated across 250 

sample sizes, but that the incorrect model only detects the mis-specification (i.e., a p-value <251 

 0.1) in about 60% of the replicates at low sample sizes (𝑇𝑇 = 25), about 80% of replicates at 252 

intermediate sizes (𝑇𝑇 = 50), before attaining good performance for long time-series (𝑇𝑇 = 100).  253 

Finally, for the four-variable model with lags (Fig. 3 bottom row), we see that the test is poorly 254 

calibrated (i.e., departs from a 𝑈𝑈(0,1) distribution) for short time-series and incorrectly identifies 255 

the model as mis-specified in nearly 40% of replicates.  It then becomes well calibrated as the 256 

time-series length increases.  Expanding this experiment across different levels of missing data 257 

(Fig. 4), we see that the simple estimation model remains well calibrated across the level of 258 

missing data (Fig. 4 top row), but that the efficiency drops as 𝑝𝑝missing increases from 0 to 50%.  259 

A similar pattern holds for the other simulation models (Fig. 4 middle and bottom rows).  260 

However, the decline in efficiency is notable at a lower value of 𝑝𝑝missing in the intermediate-261 

complexity simulation model (Fig. 4 middle row), and the complex simulation model remains 262 

poorly calibrated across levels of missing data for short sample sizes (Fig. 4 bottom-left panel, 263 

red bullets).   264 

Case studies 265 



We also use two real-world case studies to illustrate the types of ecological inference that are 266 

feasible when using d-sep to validate time-series models.  In the case study involving predator-267 

prey interactions of moose and wolves in Isle Royale (Fig 5), we explored four models 268 

corresponding to single-species (Gompertz) density-dependence, adding bottom-up or top-down 269 

interactions individually, and adding both interactions jointly.  The d-sep test then provides 270 

strong evidence (𝑝𝑝 < 0.01) that the “bottom-up” model is incorrect, provides weak evidence 271 

(𝑝𝑝 = 0.15) that the model with only density dependence is incorrect, and similar weight-of-272 

evidence for the remaining models.  We therefore use AIC to conclude that the model with top-273 

down interactions is both validated and parsimonious relative to the model with both interactions 274 

(Δ𝐴𝐴𝐴𝐴𝐶𝐶 = 1.1).  In the case study involving spawning phenology and survey availability for 275 

pollock in the Gulf of Alaska (Fig. 6), we explored three models representing “temperature as 276 

driver”, “regression for availability” or “phenology as mediating effect” hypotheses.  The d-sep 277 

test provides strong evidence (𝑝𝑝 < 0.01) against the validity of the first two models, but fails to 278 

reject the third model (𝑝𝑝 = 0.7).  We therefore conclude that this is the most appropriate 279 

interpretation of those data given proposed hypotheses.    280 

Discussion 281 

Conditional independence (d-sep) testing is an established practice in structural equation models 282 

and phylogenetic path analysis, and we provide a novel extension to time-series models that 283 

include simultaneous and lagged interactions among variables.  Our simulation experiment 284 

confirms that the test is well calibrated, and that short time series (𝑇𝑇 = 25) can be sufficient for 285 

simple structural models but that longer time series (𝑇𝑇 = 100) are required as model complexity 286 

increases.  Similarly, the model is statistically efficient, but this efficiency drops as the 287 

proportion of missing data increases towards 𝑝𝑝missing = 0.5.  Finally, the case studies illustrate 288 



that d-sep will in some cases retain several candidate models (i.e., for the Isle Royale data set), 289 

such that model parsimony and multi-model averaging might be appropriate in these cases.   In 290 

other cases (e.g., involving pollock spawning phenology), the d-sep test provides quantitative 291 

support for the ecological interpretation observational data.   292 

 Despite this progress in developing d-sep for time-series models, we have restricted 293 

ourselves to scenarios involving 2-4 variables with simultaneous and first-order lags.  We do this 294 

because the limits of d-sep are already evident at this small model size.  For example, using 4-295 

variables with lags and using short time series (𝑇𝑇 = 25), we already see poor calibration (i.e., 296 

rejecting the true model above intended rates).  To understand this, consider that 𝐽𝐽 = 4 variables 297 

and one lag involves up to 2𝐽𝐽(2𝐽𝐽+1)
2

= 36 conditional independence relationships to test.  The 298 

number of CI relationships therefore grows as the square of the number of variables, and the d-299 

sep test seems to lose power rapidly for the sample sizes that are common when analyzing 300 

annualized dynamics.  Presumably this loss of statistical power is why previous simulation tests 301 

of d-sep (e.g., in phylogenetic path analysis) have involved systems with < 5 variables (von 302 

Hardenberg & Gonzalez-Voyer, 2013).  To address this limit, we therefore envision that analysts 303 

may choose to do some form of dimension reduction (e.g., dynamic factor analysis) on sets of 304 

variables to identify a reduced set of composite variables, and testing the SCM validity for that 305 

reduced set of variables.  This procedure ultimately “masks” any concern about causal inter-306 

relationships among variables that are being combined in a single composite variable, and 307 

therefore focuses statistical power on the remaining relationships of scientific interest.   308 

 We also note that d-sep is only test for significant linear relationships among variables, and 309 

therefore cannot detect nonlinear or state-dependent relationships (unless they can be expressed 310 

using lagged linear relationships).  We therefore recommend further cross-comparison with 311 



nonlinear causal analysis, e.g., using “empirical dynamic modelling” EDM (Munch et al., 2023).  312 

EDM has proven to be powerful in detecting nonlinear causal systems, as validated via 313 

microcosm experiments and methods comparisons (Chang et al., 2022; Sugihara et al., 2012).  314 

However, EDM also appears to be more informative with longer time series.  We therefore 315 

envision a workflow using linear models (e.g., d-sep tests for a DSEM) when time-series are 316 

relatively short, and comparison with a nonlinear method for longer time-series.  We also 317 

encourage further work estimating a linear “skeleton” within EDM models, so that EDM 318 

collapses to linear interactions when data are limited, but can express a wide range of nonlinear 319 

systems when data are abundant.  Both DSEM and EDM involve fitting a Gaussian process 320 

model, so it seems like their statistical integration would be feasible in future statistical research.   321 

 In summary, we recommend that d-separation be routinely tested for time-series models 322 

when they are intended as structural causal models.  When developing an SCM, we recommend 323 

that only models with a priori ecological support that also pass the d-sep test be considered, and 324 

that model parsimony or averaging then be considered for those models that are consistent with 325 

data (i.e., pass the d-sep test).  However, in models with 5+ variables and lagged dynamics, we 326 

caution that d-sep appears to be poorly calibrated such that models may be erroneously rejected.  327 

We therefore recommend ongoing research to refine methods for causal validation in ecological 328 

systems, including methods to integrate experimental and observation studies.  We hope that 329 

these validation methods will help to unleash the potential for SCM in ecological systems.   330 

Data availability: 331 

Data for the pollock spawning phenology case study are from Rogers et al. (2025), available 332 

online at https://github.com/larogers123/spawn_timing_catchability.  Data for the Isle Royale are 333 

from https://www.isleroyalewolf.org/, and we use the copy available in package dsem.  Code to 334 

https://github.com/larogers123/spawn_timing_catchability
https://www.isleroyalewolf.org/


reproduce case studies and the simulation experiment are available via GitHub 335 

(https://github.com/James-Thorson-NOAA/dsep_in_dsem).    336 
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Table 1: Summarizing the steps required when extending the d-separation test for use in time-399 

series models that include both simultaneous and lagged relationships among variables.   400 

Number Title Description 

1 Extract path matrix Extract path matrix, including initialization buffer for 

maximum number of lags 

2 Define conditional 

independence relationships 

Use “d-separation” to define the set of conditional 

independence (CI) relationships 

3 Eliminate relationships Filter CI relationships to eliminate duplicates, and 

restricting target and predictor variable to outside the 

initialization buffer (while allowing conditioning 

variables within the buffer) 

4 Simulate missing data from 

predictive distribution 

Simulate any missing data, either once across all CI 

tests or separately for each CI test 

5 Fit CI relationships and 

combine p-values 

Fit each CI relationship, recording the p-value for 

each individual CI test, and combining them using 

Fisher’s formula 

 401 

  402 



Fig. 1:  The structural causal model (SCM) used to simulate data (left column) in three 403 

simulation scenarios (rows), and the SCM that is specified when intentionally fitting with a 404 

mismatched SCM (right column).  In each SCM, we show 2-4 time-series variables (labeled “a” 405 

through “d”), and causal paths showing either simultaneous effects (black arrows) or lag-1 406 

effects (blue arrows), where a blue arrow from a variable to itself (e.g., in the 2nd row) shows a 407 

first-order autoregressive effect.   408 

 409 

  410 



Fig 2:  A visual depiction of the two conditional-independence (CI) relationships implied by the 411 

“dsem_simple” structural causal model SCM (e.g., 2nd row left column of Fig. 1), as calculated 412 

using conditioning matrix 𝐀𝐀 (see Methods for structure).  The CI relationship is shown with a 413 

solid line, while the conditioning variables are shown as dashed lines.  Given a time-series SCM 414 

with maximum lag 𝑀𝑀 = 1, the CI must condition upon a maximum of lag-2 relationships; e.g., 415 

the top CI relationship can be fitted as 𝑏𝑏 = 𝛽𝛽0lag(𝑎𝑎, 1) + 𝛽𝛽1𝑎𝑎 + 𝛽𝛽2lag(𝑎𝑎, 2) + ϵ where we then 416 

test for the significance of the 𝛽𝛽0 coefficient.   417 

 418 

  419 



Fig. 3:  Results from the simulation experiment showing the frequency of 500 replicates (y-axis) 420 

with a given p-value (x-axis) for a time-series d-separation test, while simulating time-series of 421 

length 𝑇𝑇 = {25,50,100} (columns) and using three structural causal models SCM (rows, see Fig. 422 

1 left column), and then refitting those simulated data with either the correct SCM (red 423 

histogram, Fig. 1 left column) or wrong SCM (blue histogram, Fig. 1 right column).  A well-424 

calibrated d-separation test will result in a p-value that follows a uniform 𝑈𝑈(0,1) distribution 425 

(i.e., horizontal dashed line) when fitting the correct model, and an efficient test will result in a 426 

p-value that is close to zero when fitting a mis-specified model.   427 

  428 



Fig. 4:  Results from the simulation experiment when showing the proportion of simulation 429 

replicates with d-separation test resulting in 𝑝𝑝 < 0.1 (y-axis) across five proportions of missing 430 

data 𝑝𝑝missing = {0, 0.1, 0.2, 0.35, 0.5} (x-axis), and across different time-series lengths (columns) 431 

and structural causal models SCMs (rows, see Fig. 3 caption for more details).  A well-calibrated 432 

model with reject the test at nominal 0.1 rate (black horizontal lines) when the SCM is correct, 433 

and ideally will reject it at close to 1.0 rate when the SCM is incorrect.   434 

  435 



Fig. 5 – Estimated SCM showing a vector-autoregressive model fitting to data for wolf (W) and 436 

moose (M) log-abundance in Isle Royale 1959-2019 (Vucetich & Peterson, 2012).   We compare 437 

a model with just Gompertz density dependence (i.e., 𝑊𝑊 → 𝑊𝑊, 1 and 𝑀𝑀 → 𝑀𝑀, 1), adding either 438 

bottom-up or top-down controls, or adding both jointly.  For each model, we show the time-439 

series d-sep test p-value (p, top-left corner) and the delta-marginal Akaike Information Criterion 440 

(top-right corner), where the most parsimonious model has ΔAIC = 0.   441 

 442 
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Fig. 6:  Estimated SCM showing the estimated path coefficient between temperature 𝑇𝑇, the 444 

average number of days between mean date of spawning and the mean date of a survey on 445 

spawning grounds 𝐴𝐴, the logit-transformed proportion of females >30cm in a spawning or spent 446 

stage during the spawning-grounds survey 𝑃𝑃, and the log-ratio between the surveyed biomass 447 

and predicted biomass given other data 𝑄𝑄.  We show three SCMs (columns), either using 448 

temperature as an explanatory variable for all processes (“Temperature as driver”), using all 449 

variables to explain availability (“Availability regression”), or using survey timing as a 450 

mediating variable linking temperature to survey availability (“Timing as mediator”).  We also 451 

show the time-series d-sep p-value (top left) and delta-marginal AIC (top-right) for each model.   452 
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