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Abstract 15 

It is a common knowledge that the probability of the fertilisation of a flower by its pollinator 16 

is a function of species abundances. However, this relation was rarely formalised for 17 

analysing pollination networks. In this opinion paper, a simple model borrowed from physical 18 

chemistry is introduced to formalise this functional dependence. This led to a well-known 19 

biochemical concept of affinity, which refers to the strength of the binding interaction of a 20 

protein to its ligand. This affinity is explained as the “attraction” or “fit” between the two 21 

molecules, and is attributed to complementarity or the precise matching of the protein's active 22 

site and the ligand's shape, charge, and hydrophobic or hydrophilic properties. Analogously, 23 

we can think of a complementarity between the pollinator and flower morphologies, the 24 

ability of a pollinator to locate the desirable flower, which might involve sophisticated 25 

behaviours and the use of memory. The protein-ligand affinity is considered to be crucial 26 

since it determines how effectively the metabolism functions. We can think in similar terms 27 

when analysing pollinator-flower interactions: affinity can define the effectiveness of a 28 

pollinating networks and give us new insights about its functional mechanisms. 29 

 30 
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 32 

Introduction 33 

Studies on pollination networks have seen rapid progress, particularly evident in the 34 

development of an array of quantitative tools of analysis based on graph and network theory 35 

(Dale 2017). These tools enabled to reveal several characteristics, the most salient of which 36 

are the low levels of connectance and the nested distribution of interactions, consistently 37 

repeating across various habitats and communities (Bascompte and Scheffer 2023; Lanuza et 38 

al. 2025). However, there are concerns that the achieved advances are not well connected 39 

with the key concepts of community ecology (Blüthgen and Staab 2024; Peralta et al. 2024). 40 

For example, the major structural characteristics of pollination networks, such as low 41 

connectance, nestedness, modularity and asymmetry, are being derived from the binary 42 

matrices which ignore the variability in the strength of interactions and abundances of both 43 

flower and pollinator species (Staniczenko et al. 2013). This is surprising since ignoring these 44 

variability can seriously deprive us from seeing clearly the place of ecological interactions in 45 

community processes (Blüthgen and Staab, 2024; Peralta et al. 2024). In fact, abundance 46 

distribution can have profound effects on species interaction networks, for example, it was 47 

shown that the resilience of a pollination network depends on the presence of abundant and 48 
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highly linked species (Winfree et al. 2014). Since the probability that a pollinator visits a 49 

flower is a function of their abundances (Vázquez et al. 2009), one can assume that the 50 

reciprocal is true too: logically, frequent encounters require numerous individuals, and vice 51 

versa. Yet this is not be always the case and the models that attempt to extrapolate species 52 

abundances from the frequency of their interactions appeared to be inaccurate and little 53 

reliable (Vizentin-Bugoni et al. 2014, Gardner et al. 2020). The importance of having 54 

abundance distribution data has been recently recognised in the guidelines of the European 55 

Database of Plant-Pollinator Networks (EuPPollNet, Lanuza et al. 2025), which requires the 56 

contributors to provide flower counts. Regretfully, this approach is too “phytocentric” as it 57 

does not request abundance distribution data for pollinators. 58 

 59 

The frequency of flower visits by pollinators depends not only on species abundances but 60 

also on other factors such as morphology (trait matching) and phenology (Peralta et al. 2024). 61 

Yet, while species abundance distribution types are remarkably consistent across ecosystems 62 

and communities (Ulrich et al. 2010), the other factors clearly depend on geographical, 63 

historical and phylogenetic contexts. Here I argue that we might expect important benefits 64 

from the inclusion of species abundance of both flowers and pollinators in the analyses of 65 

pollination networks. For this purpose, below I introduce a simple model of the dependence 66 

of interaction frequency on species abundance. The model is explained with the help of an 67 

illustrative example. Then the model is used to analyse a data set which does include species 68 

abundances of both pollinators and flowers collected independently from the data on the 69 

frequencies of their interactions (Vizentin-Bugoni et al. 2016). 70 

 71 

The data and their reanalyses 72 

Before the reanalysis proper, I introduce the model that links species abundances with 73 

interaction frequencies using an illustrative matrix. It is smaller than the real one yet retains 74 

its essential properties (next section). After introducing the key ideas, I proceed with the 75 

reanalysis of the above real matrix.  76 

 77 

The data set I reanalyse here is contributed by Vizentin‐Bugoni et al. (2016), downloadable 78 

from the website of IWB (Interaction Web Data Base, see also Supplementary Material). The 79 

authors conducted an intensive sampling in the Atlantic Rainforest from in SE Brazil (23°S, 80 

45°W) over 4–10 days per month for two years. Network or rather a subnetwork is 81 

represented by over 300 individuals of 9 hummingbird species and 83931 counted flowers of 82 
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55 plant species. Importantly, the distributions of both flowers and hummingbirds are known 83 

from independent sampling. 2793 interactions among 123 hummingbird-flower pairs were 84 

recorded. The data were organised in a network matrix (Table SI1 of Supplementary 85 

Information). The abundances in this matrix are standardised as densities (number of 86 

individuals per unit area). The new metrics (affinities) derived from the model were 87 

standardised by dividing by its maximum values and then presented graphically. 88 

 89 

An illustrative example 90 

The illustrative example includes only five pollinator and five flower species, and shows the 91 

same general characteristics and real network matrices (Table 1A).  92 

 93 

Table 1. Illustrative matrices of pollination network including pollinator and floral 94 
abundances (red font). A: raw data from the field; B: raw data in binary form; C: matrix of 95 
the same network with affinity values (kij). 96 

A       
Species Pollinators Poll_1 Poll_2 Poll_3 Poll_4 Poll_5 
Flowers Abundances 160 80 40 20 10 
Flor_1 1600  64 32  32 
Flor_2 800 128   16  
Flor_3 400 300  64   
Flor_4 200  10    
Flor_5 100 128     
       

B       
Species Pollinators Poll_1 Poll_2 Poll_3 Poll_4 Poll_5 
Flowers Abundances 160 80 40 20 10 
Flor_1 1600 0 1 1 0 1 
Flor_2 800 1 0 0 1 0 
Flor_3 400 1 0 1 0 0 
Flor_4 200 0 1 0 0 0 
Flor_5 100 1 0 0 0 0 
       

C       
Species Pollinators Poll_1 Poll_2 Poll_3 Poll_4 Poll_5 
Flowers Abundances  160 80 40 20 10 
Flor_1 1600 0 0.0005 0.0005 0 0.002 
Flor_2 800 0.0010 0 0 0.001 0 
Flor_3 400 0.0047 0 0.004 0 0 
Flor_4 200 0 0.0006 0 0 0 
Flor_5 100 0.0080 0 0 0 0 

 97 
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The matrix is “complete” in the sense that it is furnished with the abundance data both of 98 

pollinators and flowers (red font). The columns and rows represent the pollinators and the 99 

flower species, respectively. The frequency of interactions between pollinator-flower pairs 100 

are given in the cells. The empty cells show the absence of interactions. In the binary version 101 

of this matrix (Table 1B) empty cells are represented with 0-s and the links with 1, regardless 102 

of the frequency of interactions recorded). The metric usually calculated from the binary 103 

matrices is connectance. The modern software calculate connectance in a rather sophisticated 104 

way, but perhaps the simple original equation shows the idea of connectance equally well: 105 

 106 

C = L / (M * N),  107 

 108 

where C is connectance, L is the number of links (sum of cells with 1 in the matrix), M and N 109 

are the number of flower and pollinator species, respectively: C is simply the proportion of 110 

possible links between species that are realised. For our illustrative example, L = 9, M = 5 111 

and N = 5, consequently C = 9 / (5 * 5) = 0.36. 112 

 113 

The binary matrix (Table 1B), however, does not show the differences in the frequencies of 114 

interactions, whilst from the previous matrix (Table 1A) we can see that the interaction was 115 

recorded 300 times for the pair of Poll_1 – Flor_3, the minimum detected interactions 116 

frequency being equal to 10 for the pair of Poll_2 – Flor_4: the difference is 30-fold! In 117 

binary form we loss this information, as all non-zero frequencies are equated to 1.  118 

 119 

The great majority of real network matrices in open access data bases, unlike our illustrative 120 

example, lack species abundance data for pollinators and often for plants as well. We can 121 

only see what species are present in the network. But from the illustrative example we see 122 

that the difference between the most and least abundant species is 16, which is considerable. 123 

Thus, the matrices lacking abundance data deprive us opportunities to incorporate this 124 

variation in the analysis. 125 

 126 

In the real network matrix, the differences in interaction frequencies and species abundances 127 

are comparable or even more impressive (Table SI1): the most frequent interaction was 128 

recorded 198 times, the least equalled to 1, which means 198-fold difference. Likewise, the 129 

most abundant flower exceeded the least abundant one 5191 times! The difference is less but 130 

still dramatic in hummingbirds: the most abundant species exceeded the least abundant one 131 
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113 times. This is the extent of information lost when presenting the network without 132 

abundance data. This information, if the abundances are given in a matrix can be used in 133 

various ways, one such approach is described in the next section. 134 

 135 

Linking species abundances to the connectance in pollination networks 136 

The model is introduced below with the help of the same illustrative example matrix used in 137 

the previous section (Table 1C). The model is based on the common knowledge that the 138 

interaction frequency is a function of the abundances of participant species (Blüthgen and 139 

Staab, 2024; Vázquez et al. 2009). In the simplest form, this function can be presented as 140 

 141 

z = k * x * y,  142 

 143 

where x and y are flower and pollinator species abundances, respectively; z is the interaction 144 

frequency (“link strength”), and k is the constant of proportionality. This constant can be 145 

understood as the “affinity” between the species of a given interacting flower-pollinator pair. 146 

The term “affinity” is borrowed from biochemistry where it refers to the strength of the 147 

binding interaction of an enzyme to its substrate. In our model, the high values of kij mean 148 

high likelihood of interactions between a flower and its pollinator, and vice versa. The 149 

frequency of interactions thus will be high at high abundances of the interacting species and 150 

high values of their kij. The model allows for calculating the affinity for each pair of 151 

interacting species since all other variables are presented the matrix (Table 1A). Therefore: 152 

 153 

kij = zij / (xi * yj), 154 

 155 

which allows us to create a new matrix of affinities (Table 1C). We see that the kij values are 156 

generally small but vary considerably.  157 

 158 

How to distinguish “high” and “low” affinities? A reference value of kij could be introduced: 159 

 160 

kref = Ztot / (Xtot * Ytot),  161 

 162 

where Ztot, Xtot and Ytot are the totals of interaction occurrence, floral and pollinator 163 

abundances respectively. This value corresponds to a network where all flowers and all 164 
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pollinators are represented by a single species each. For our illustrative example kref = 0.0011. 165 

Naturally, some values of kij are more and others are less than the obtained kref (those more 166 

than kref are in bold font, Table 1C). 167 

 168 

The reference constant kref can be used as a metric of a network related to the connectance. 169 

Imagine a network and let us vary its connectance but keep kref on the same level. This is 170 

translated into the redistribution of interactions while their total frequency of occurrence 171 

remains the same; if the connectance level lowers, this would mean less species interacting 172 

but with increased frequency and vice versa. In a word, there is a sort of reciprocal 173 

complementarity between C and kref, and if we use both of these indices, we will know not 174 

only the species which interact, but also how strong (frequent) these interactions are as 175 

expressed by the affinity values. 176 

 177 

Figure 1. Affinities of pollinator-flower species pairs; The vertical axis shows standardised values of 178 
kij. The abundances are ranked in descending order, as indicated by the narrowing end of red 179 
(hummingbirds) and green (flowers) triangle arrows. The affinities are higher in the pairs made of less 180 
abundant “subordinate” species.  181 

 182 

 183 



8 
 

The real network  184 

The reanalysed matrix of the real network is furnished with species abundance data (Table 185 

SI1) and thus allows for performing all the above procedures to construct an affinity matrix 186 

with kij values for each flower-pollinator pair of species. Naturally, if no interaction is 187 

detected for a species pair, the affinity becomes equal to 0. Altogether, non-zero affinities 188 

were calculated for 123 species pairs. Then we calculated the value of kref for this matrix, 189 

which appeared to be equal to 0.0001. Nineteen out of 123 pairs showed affinity values 190 

below this reference level, while the maximum affinity was as high as 0.1050, which is over 191 

1000 times higher than the values of kref. The affinity matrix can be shown as a corresponding 192 

3D chart (Figure 1, the previous page), which reveals a trend that the highest affinities occur 193 

mostly at low species abundances. In other words, at high abundance of flower and pollinator 194 

species the affinity tends to be small, while at low affinities it tends to be large.  195 

 196 

The observed trend is in line with findings of Simmons et al. (2019) that hummingbird 197 

pollinators are generalised because they are abundant, but there was little evidence that 198 

hummingbirds are abundant because they are generalised. However, this study used a null 199 

model that assumed interaction neutrality (interaction probabilities defined by species relative 200 

abundances). Adding affinity to this model would be an interesting development.  201 

 202 

The concept of affinity introduced above can also complement to the studies on the 203 

asymmetry of interactions in pollination networks. For example, Vázquez et al. (2007) 204 

constructed a null model with species interactions occurring at random among individuals; 205 

This model was used to test the hypothesis that the observed asymmetry is a result of the 206 

unequal abundances of species. They found that asymmetry correlated with abundance, and 207 

that rare species contributed more to the asymmetry than the abundant ones. They concluded 208 

that abundance provides a sufficient explanation of the asymmetry structure in some 209 

networks, but suggests the role of additional factors in others – this “additional factor” can be 210 

the affinities between flowers and pollinators developed through coevolution. 211 

 212 

Discussion 213 

The presented model might be seen as a simplistic one, but I hope I have shown its potential 214 

analytical power. Certainly, the model is certainly open for adjustments, improvements and 215 

further sophistication. Importantly, the model can be used for individual species, small 216 
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subnetworks or large networks depending on the design of data collection: as long as the 217 

densities or relative abundances of target species or taxonomic groups are reliably known, the 218 

affinities can be calculated. In biochemistry and physiology, affinity refers to the strength of 219 

the interaction between a protein (enzyme, receptor) and its binding ligand (substrate, ion, 220 

transmitter, hormone, biologically active compound). In textbooks it is often explained as the 221 

“attraction” or “fit” between the two molecules, and is attributed to complementarity or the 222 

precise matching of the protein's active site and the ligand's shape, charge, and hydrophobic 223 

or hydrophilic properties. Analogously, we can think of a complementarity between the 224 

pollinator and flower morphologies, the ability of a pollinator to locate the desirable flower, 225 

which might involve sophisticated behaviours and the use of memory (Kandori and Ohsaki 226 

1996). The introduction of these details can enhance our understanding of pollinations 227 

networks. In metabolism, the protein-ligand affinity is considered to be crucial since it 228 

determines how effectively the metabolic reaction is catalysed or a regulatory act performed. 229 

We can think in similar terms when analysing pollinator-flower interactions: affinity can 230 

define the effectiveness of a pollinating interactions. 231 

 232 

A high affinity both between molecules and organisms must be a result of long evolutionary 233 

processes, and therefore the model presented above can facilitate an introduction of 234 

phylogenetic history in pollination networks. By the same token, high affinity can be 235 

indicative of specialised interactions among a few species and by this define the breadth of 236 

ecological niche (Junker et al. 2013). The niche concept has been thought to be underutilised 237 

in the analyses of pollination networks (Phillips et al. 2020). A new metrics based on affinity 238 

might facilitate the integration of the concept in the theory of pollination networks. 239 

Altogether, linking species abundance with interaction frequency has a potential to change 240 

the angle we see the network properties. The suggested reference constant can be used jointly 241 

with the connectance, and see it not as a binary distribution of “permitted” and “forbidden” 242 

links in a network. Rather, we can talk about the continuum of the probabilities of concrete 243 

interactions to occur in a three-dimensional continuum of species abundance, their interaction 244 

frequencies and affinities of interacting species.  245 

 246 

Knowing the affinity between concrete flower and pollinator species can be insightful in 247 

important instants. For example, a high affinity can be indicative of a long coevolution 248 

history of given species or groups, and thus help to introduce evolutionary history and 249 
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contribute to “phylogenetically informed network ecology sensu Peralta (2016). The 250 

presented model can also help examine whether the affinity of a specialist species is high 251 

towards its target, or whether a generalist species shows a moderate to low affinity to a wide 252 

range of interacting species, or whether common pollinators become generalists because of 253 

their abundance (sensu Simmons et al. 2016). 254 

 255 

Conclusions 256 

An introduction of species abundance data in pollination network analyses is possible with 257 

simple models, provided all necessary data are given. The model introduced here, despite its 258 

simplicity, can effectively connect species abundance distribution with the frequency of 259 

interactions. At the same time, it helps calculate an affinity of a given flower to its pollinator.  260 

 261 

Sampling separately and independently for plants, pollinators and their interactions certainly 262 

necessitates a coordinated cooperation among botanists and zoologists. The increased efforts 263 

to achieve this will pay off with the opening of new avenues for data analyses and ultimately 264 

the better understanding of pollination network structure and functions. 265 

 266 
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