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Abstract   14 

The probability of flower fertilization by its pollinator is widely recognized as being 15 
influenced by species abundances. However, this relationship has rarely been formalized for 16 
the analysis of pollination networks. In this study, I introduce a simple model, adapted from 17 
physical chemistry, to formalize this functional dependence. This approach draws upon the 18 
well-established biochemical concept of affinity, which quantifies the strength of the binding 19 
interaction between a protein and its ligand. Affinity, in this context, is explained as the 20 
"attraction" or "fit" between two molecules, stemming from their complementarity in shape, 21 
charge, and hydrophobic or hydrophilic properties. Analogously, pollinator-flower 22 
interactions can be conceptualized through the complementarity of their morphologies, as 23 
well as the pollinator's ability to locate and recognize the desired flower, often involving 24 
complex behaviors and memory utilization. Just as protein-ligand binding affinity is critical 25 
for metabolic efficiency, the affinity within pollination networks can determine the 26 
effectiveness of flower-pollinator interactions, offering novel insights into their functional 27 
mechanisms. 28 

 29 

Keywords: Abundance, Affinity, Interaction, Pollination network 30 

 31 

Introduction 32 

Studies on pollination networks have advanced rapidly, particularly through the development 33 

of a wide range of quantitative analytical tools based on graph and network theory (Dale, 34 

2017). These tools have uncovered several key characteristics, most notably the low levels of 35 

connectance and the nested distribution of interactions, patterns that are consistently observed 36 

across diverse habitats and communities (Bascompte & Scheffer, 2023; Lanuza et al., 2025). 37 

However, concerns have been raised about the disconnect between these advancements and 38 

foundational concepts in community ecology (Blüthgen & Staab, 2024; Peralta et al., 2024). 39 

For instance, the primary structural features of pollination networks — such as low 40 

connectance, nestedness, modularity, and asymmetry — are often derived from binary 41 

matrices that disregard variability in interaction strength and species abundances for both 42 

flowers and pollinators (Staniczenko et al., 2013). Overlooking this variability may 43 

significantly hinder our ability to fully understand the role of ecological interactions in 44 

community processes (Blüthgen & Staab, 2024; Peralta et al., 2024). In fact, abundance 45 

distribution has profound effects on species interaction networks. For example, studies have 46 

demonstrated that the resilience of a pollination network depends on the presence of abundant 47 

and highly connected species (Winfree et al., 2014). Since the probability of a pollinator 48 

visiting a flower is a function of their respective abundances (Vázquez et al., 2009), one 49 
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might also assume the reverse to be true: logically, frequent encounters require numerous 50 

individuals, and vice versa. However, this is not always the case, and models attempting to 51 

extrapolate species abundances from interaction frequencies have often proven inaccurate 52 

and unreliable (Vizentin-Bugoni et al., 2014; Gardner et al., 2020). The importance of 53 

incorporating abundance distribution data has recently been acknowledged in the guidelines 54 

of the European Database of Plant-Pollinator Networks (EuPPollNet, Lanuza et al., 2025), 55 

which now requires contributors to report flower counts. Unfortunately, this approach 56 

remains overly “phytocentric,” as it fails to mandate abundance distribution data for 57 

pollinators. 58 

 59 

The frequency of pollinators visiting flowers is influenced not only by species abundances 60 

but also by additional factors such as weather, morphology (trait matching), and phenology 61 

(Peralta et al., 2024). While species abundance distribution patterns are remarkably consistent 62 

across ecosystems and communities (Ulrich et al., 2010), these additional factors are shaped 63 

by geographical, historical, and phylogenetic contexts. This highlights the importance of 64 

understanding abundance data. In this study, I propose that incorporating the abundances of 65 

both flowers and pollinators into the analysis of pollination networks could offer significant 66 

benefits. To demonstrate this, I introduce a simple model examining the dependence of 67 

interaction frequency on species abundance. The model is accompanied by an illustrative 68 

example and applied to a dataset that includes independently collected abundance data for 69 

both pollinators and flowers, along with interaction frequency data (Vizentin-Bugoni et al., 70 

2016). 71 

 72 

The data and their analysis 73 

Before proceeding with the reanalysis, I introduce the model that links species abundances to 74 

interaction frequencies using an illustrative matrix. While smaller than the actual dataset, this 75 

matrix retains its essential properties (see the next section). After presenting the key concepts, 76 

I move on to the reanalysis of the real matrix. 77 

 78 

The dataset reanalyzed in this study was contributed by Vizentin‐Bugoni et al. (2016) and is 79 

available for download from the Interaction Web Database (IWB; see also Supplementary 80 

Material). The authors conducted intensive sampling in the Atlantic Rainforest of 81 

southeastern Brazil (23°S, 45°W) over a period of 4–10 days per month for two years. The 82 

network, or rather a subnetwork, comprises over 300 individuals of 9 hummingbird species 83 
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and 83,931 counted flowers of 55 plant species. Crucially, the distributions of both flowers 84 

and hummingbirds were determined through independent sampling. A total of 2,793 85 

interactions among 123 hummingbird-flower pairs were recorded. These data were organized 86 

into a network matrix (Table SI1 in the Supplementary Information), where abundances were 87 

standardized as densities (number of individuals per unit area). Metrics derived from the 88 

model (affinities) were standardized by dividing each by its maximum value and 89 

subsequently presented graphically. 90 

 91 

An illustrative example 92 

The illustrative example consists of five pollinator species and five flower species, 93 

demonstrating the same general characteristics as those observed in real network matrices 94 

(Table 1A). 95 

 96 

Table 1. Illustrative matrices of pollination network including pollinator and floral 97 
abundances (highlighted in red font). A: raw data from the field; B: raw data in binary form  98 

A       
Species Pollinators Poll_1 Poll_2 Poll_3 Poll_4 Poll_5 
Flowers Abundances 160 80 40 20 10 
Flor_1 1600  64 32  32 
Flor_2 800 128   16  
Flor_3 400 300  64   
Flor_4 200  10    
Flor_5 100 128     
       

B       
Species Pollinators Poll_1 Poll_2 Poll_3 Poll_4 Poll_5 
Flowers Abundances 160 80 40 20 10 
Flor_1 1600 0 1 1 0 1 
Flor_2 800 1 0 0 1 0 
Flor_3 400 1 0 1 0 0 
Flor_4 200 0 1 0 0 0 
Flor_5 100 1 0 0 0 0 

 99 

The matrix is considered “complete” as it includes abundance data for both pollinators and 100 

flowers (highlighted in red font). The columns and rows represent pollinator and flower 101 

species, respectively, while the cells indicate the frequency of interactions between 102 

pollinator-flower pairs. Empty cells signify the absence of interactions. In the binary version 103 

of this matrix (Table 1B), empty cells are represented by 0s, while cells with interactions are 104 

represented by 1s, regardless of the recorded interaction frequency. 105 
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 106 

A commonly calculated metric from binary matrices is connectance. Although modern 107 

software computes connectance in a more sophisticated manner, the original, simpler 108 

equation conveys the concept effectively: 109 

 110 

C = L / (M * N), 111 

 112 

where C represents connectance, L is the number of links (the sum of cells with a value of 1 113 

in the binary matrix), M and N are the numbers of flower and pollinator species, respectively. 114 

Connectance is simply the proportion of potential links between species that are realized. In 115 

the illustrative example, L = 9, M = 5 and N = 5, resulting in C = 9 / (5 * 5) = 0.36. 116 

 117 

The binary matrix (Table 1B), however, fails to capture the strong differences in interaction 118 

frequencies. For instance, in the original matrix (Table 1A), the interaction frequency 119 

between Poll_1 and Flor_3 was recorded 300 times, whereas the minimum frequency, 120 

observed between Poll_2 and Flor_4, was only 10 — a 30-fold difference! In binary form, 121 

this critical information is lost, as all non-zero frequencies are reduced to a value of 1. 122 

 123 

The majority of real network matrices available in open-access databases, unlike the 124 

illustrative example, lack species abundance data for both pollinators and plants. These 125 

matrices often only indicate which species are present within the network. However, the 126 

illustrative example highlights that the abundance of the most common species exceeds that 127 

of the least common species by a factor of 16 — a substantial difference. Matrices lacking 128 

abundance data, therefore, limit our ability to account for such variation in analyses. 129 

 130 

In the real network matrix, differences in interaction frequencies and species abundances are 131 

equally, if not more, striking (Table SI1). The most frequent interaction was recorded 198 132 

times, while the least frequent interaction occurred only once — a 198-fold difference. 133 

Similarly, the most abundant flower species was 5,191 times more abundant than the least 134 

abundant one. Though less extreme, the disparity among hummingbird species remains 135 

significant: the most abundant species was 113 times more numerous than the least abundant. 136 

These figures show the substantial loss of information when networks are presented without 137 

abundance data. However, when abundances are incorporated into the matrix, this 138 
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information can be utilized in various ways — one such approach is described in the next 139 

section. 140 

 141 

Linking species abundances to the connectance in pollination networks 142 

The model is introduced using the same illustrative example matrix as in the previous section 143 

(Table 1A). It is built on the widely accepted premise that interaction frequency is a function 144 

of the abundances of the participating species (Blüthgen & Staab, 2024; Vázquez et al., 145 

2009). In its simplest form, this relationship can be expressed as: 146 

 147 

z = k * x * y,  148 

 149 

where x and y represent the abundances of flower and pollinator species, respectively; z 150 

denotes the interaction frequency (“link strength”); and k is the constant of proportionality. 151 

This constant, termed “affinity,” is adapted from biochemistry, where it describes the strength 152 

of the binding interaction between an enzyme and its substrate. Within this model, high k 153 

values indicate a high likelihood of interaction between a flower-pollinator pair, while low 154 

values suggest weaker interactions. Consequently, interaction frequencies will be high when 155 

the abundances of the interacting species and their k values are also high. The model enables 156 

the calculation of interaction affinities for each species pair, as all other variables are 157 

provided in the matrix (Table 1A). This is achieved using the equation: 158 

 159 

k = z / (x * y), 160 

 161 

which allows for the creation of a new matrix of affinities (Table 2). The k values are 162 

generally small but exhibit considerable variation. 163 

 164 

Table 2. An affinity matrix resulted from the illustrative example (Table 1A) showing the 165 

interaction affinity values (k). Pollinator and floral abundances are highlighted in red font) 166 

Species Pollinators Poll_1 Poll_2 Poll_3 Poll_4 Poll_5 
Flowers Abundances  160 80 40 20 10 
Flor_1 1600 0 0.0005 0.0005 0 0.002 
Flor_2 800 0.0010 0 0 0.001 0 
Flor_3 400 0.0047 0 0.004 0 0 
Flor_4 200 0 0.0006 0 0 0 
Flor_5 100 0.0080 0 0 0 0 

 167 
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How can “high” and “low” affinities be distinguished? A reference value of k can be 168 

introduced: 169 

 170 

kref = Ztot / (Xtot * Ytot),  171 

 172 

where Ztot, Xtot and Ytot are the totals of interaction occurrences, floral abundances, and 173 

pollinator abundances, respectively. This reference value corresponds to a hypothetical 174 

network where all flowers and pollinators are represented by a single species each. For the 175 

illustrative example, kref = 0.0011. Naturally, some k values will exceed kref, while others will 176 

fall below it (values greater than kref are highlighted in bold in Table 2). 177 

 178 

The reference constant kref can also serve as a network metric that is closely tied to 179 

connectance. Consider a network where connectance is varied, while kref remains constant. 180 

This would correspond to a redistribution of interactions, such that their total frequency of 181 

occurrence remains unchanged. A decrease in connectance would imply fewer species are 182 

interacting, but with increased interaction frequency, and vice versa. In essence, there exists a 183 

certain reciprocity between C (connectance) and kref. By using both indices, we gain insight 184 

not only into which species interact, but also into the strength (or frequency) of these 185 

interactions, as expressed by the interaction affinity values. 186 

 187 

The reanalyzed matrix of the real network includes species abundance data (Table SI1), 188 

enabling the application of all previously described procedures to construct an affinity matrix 189 

with kref values for each flower-pollinator species pair. Naturally, if no interaction is observed 190 

for a species pair, the affinity is equal to 0. In total, non-zero interaction affinities were 191 

calculated for 123 species pairs. The reference value kref for this matrix was determined to be 192 

0.0001. Of the 123 pairs, 19 showed interaction affinity values below this reference level, 193 

while the maximum affinity reached 0.1050 — more than 1,000 times higher than kref. The 194 

affinity matrix can be visualized as a corresponding 3D chart (Figure 1, next page), which 195 

reveals a trend: the highest affinities tend to occur at low species abundances. Conversely, at 196 

high abundances of both flower and pollinator species, interaction affinities are generally 197 

smaller. 198 

 199 

This observed trend aligns with the findings of Simmons et al. (2019), who reported that 200 

hummingbird pollinators are generalized because they are abundant, but found little evidence 201 
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that they are abundant because they are generalized. However, that study employed a null 202 

model assuming interaction neutrality, where interaction probabilities were defined solely by 203 

species relative abundances. Incorporating interaction affinity into this model would 204 

represent an intriguing future development. 205 

 206 

Figure 1. Affinities of pollinator-flower species pairs; The vertical axis shows standardized values of 207 
k (interaction affinities). The abundances are ranked in descending order, as indicated by the 208 
narrowing end of red (hummingbirds) and green (flowers) triangle arrows close to the horizontal axes. 209 
The affinities appear to be higher in the pairs made of less abundant “subordinate” species.  210 

 211 

The concept of interaction affinity introduced here can also enhance studies on the 212 

asymmetry of interactions within pollination networks. For example, Vázquez et al. (2007) 213 

developed a null model in which species interactions occurred randomly among individuals. 214 

This model was used to test the hypothesis that the observed asymmetry arises from the 215 

unequal abundances of species. Their findings revealed that asymmetry correlated with 216 

abundance, with rare species contributing more to the asymmetry than abundant ones. They 217 

concluded that while abundance provides a sufficient explanation for the asymmetry structure 218 

in certain networks, additional factors likely play a role in others. One such “additional 219 
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factor” could be the affinities between flowers and pollinators, which may have evolved 220 

through coevolution. 221 

  222 

Discussion 223 

The presented model may appear simplistic, but I hope to have demonstrated its significant 224 

analytical potential. Undoubtedly, the model is open to adjustments, improvements, and 225 

further refinement. Crucially, it can be applied to individual species, small subnetworks, or 226 

large networks, depending on the design of data collection. As long as the densities or relative 227 

abundances of the target species or taxonomic groups are reliably known, interaction 228 

affinities can be calculated. 229 

 230 

In biochemistry and physiology, binding affinity refers to the strength of the interaction 231 

between a protein (enzyme, receptor) and its binding ligand (substrate, ion, transmitter, 232 

hormone, or other biologically active compound). Textbooks often describe this affinity as 233 

the “attraction” or “fit” between the two molecules, attributed to complementarity — precise 234 

matching of the protein's active site and the ligand's shape, charge, and hydrophobic or 235 

hydrophilic properties. Similarly, pollination networks can be understood through the lens of 236 

complementarity between pollinator and flower morphologies, as well as the ability of 237 

pollinators to locate and recognize desirable flowers. This process may involve complex 238 

behaviors and the use of memory (Kandori & Ohsaki, 1996). Incorporating such details can 239 

deepen our understanding of pollination networks. 240 

 241 

In metabolism, the binding affinity between a protein and its ligand is considered crucial, as it 242 

determines how effectively metabolic reactions are catalyzed or regulatory processes are 243 

performed. Similarly, in pollination networks, interaction affinity can define the effectiveness 244 

of flower-pollinator interactions, providing novel insights into their functional mechanisms. 245 

 246 

A high interaction affinity among organisms is likely the result of long evolutionary 247 

processes. Consequently, the model presented here has the potential to facilitate the 248 

incorporation of phylogenetic history into the study of pollination networks. Similarly, high 249 

interaction affinity may signal specialized relationships among a limited number of species, 250 

thereby helping to define the breadth of ecological niches (Junker et al., 2013). The concept 251 

of ecological niches has been considered underutilized in the analysis of pollination networks 252 
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(Phillips et al., 2020). Metrics derived from interaction affinity could promote the integration 253 

of this concept into the theoretical framework of pollination networks. 254 

 255 

Altogether, linking species abundance with interaction frequency has the potential to 256 

transform our understanding of network properties. The proposed reference constant, used 257 

alongside connectance, shifts the perspective from binary categorizations of “permitted” and 258 

“forbidden” links to a continuum of probabilities for specific interactions. This approach 259 

situates interactions in a three-dimensional framework encompassing species abundances, 260 

their interaction frequencies, and the affinities between interacting species. 261 

 262 

Understanding interaction affinity between specific flower and pollinator species can yield 263 

valuable insights. For instance, high interaction affinity may reflect a long coevolutionary 264 

history between particular species or groups, helping to introduce evolutionary perspectives 265 

and advance “phylogenetically informed network ecology” (sensu Peralta, 2016). 266 

Additionally, the model can explore whether a specialist species exhibits high interaction 267 

affinity with its target, whether a generalist species has moderate to low affinity across a 268 

broad range of interactions, or whether common pollinators become generalists as a result of 269 

their abundance (sensu Simmons et al., 2016). 270 

 271 

Conclusions 272 

The integration of species abundance data into pollination network analyses is achievable 273 

through the use of simple models, provided that all necessary data are available. The model 274 

presented here, despite its simplicity, effectively links species abundance distributions to the 275 

frequency of interactions. Moreover, it facilitates the calculation of interaction affinity for 276 

specific flower-pollinator pairs. 277 

 278 

The independent and separate sampling of plants, pollinators, and their interactions requires 279 

close collaboration between botanists and zoologists. The additional effort necessary to 280 

achieve this coordination will undoubtedly be rewarded, as it opens new pathways for data 281 

analysis and ultimately deepens our understanding of the structure and functioning of 282 

pollination networks. 283 
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Supplementary Material 353 

 354 

Table S1. A pollination network matrix from Brazilian Atlantic Forest including pollinator 355 
and floral abundances (highlighted in red font). The matrix is derived from data of Vizentin‐356 
Bugoni et al. (2016), downloadable from the website of IWB (Interaction Web DatBase, 357 
http://www.ecologia.ib.usp.br/iwdb/html/vizentin-bugoni_et_al_2016.html). 358 

Species Hummingbirds Pe Tg Cr Ff La Sl Av Lc Em 

Flowers Abundances 86.923 78.462 66.923 21.538 20 13.077 8.462 5.385 0.769 

Ery_spe 57102 107 137 95 0 0 0 1 5 1 

Psy_lei 8704 0 2 0 0 0 0 1 0 0 

Fuc_reg 5485 6 5 15 0 0 0 0 0 0 

Ing_ses 2265 44 32 198 41 23 0 8 2 0 

Spi_riv 1980 0 74 102 4 0 0 0 5 0 

Nid_ino 1005 36 0 2 0 0 0 0 0 0 

Lan_cam 600 1 0 0 0 0 26 0 0 0 

Man_cor 591 50 0 0 0 0 0 0 0 0 

Mac_rub 568 6 33 2 0 1 6 30 0 0 

Nid_lon 446 11 0 0 0 0 0 0 0 0 

Bes_lon 445 9 19 0 0 0 0 0 0 0 

Nid_pro 378 31 0 0 0 0 0 0 0 0 

Nem_flu 373 36 0 0 0 0 0 0 0 0 

Vri_car 359 16 0 0 0 0 0 0 0 0 

Nem_fri 339 4 18 0 0 0 0 0 0 0 

Nem_gre 300 15 0 0 0 0 0 0 0 0 

Can_pan 289 14 68 18 1 0 0 0 0 0 

Als_ino 280 30 0 0 0 2 18 0 0 0 

Sip_con 189 22 1 0 0 0 0 0 0 0 

Sin_coo 179 35 0 0 0 0 0 0 0 0 

Cal_ruf 162 1 22 60 0 0 0 0 0 0 

Sip_lau 159 4 0 0 0 0 0 0 0 0 

Sin_ela 158 7 0 0 0 9 0 0 0 0 

Sin_gla 146 4 0 0 0 0 0 0 0 0 

Aph_col 120 18 0 0 0 0 0 0 0 0 

Til_str 114 1 3 1 0 0 1 0 0 0 

Vri_inc 110 22 0 0 0 0 0 0 0 0 

Aec_dis 106 18 95 6 0 0 2 0 0 0 

Pyr_ven 91 17 1 0 0 1 0 0 0 0 

Jus_sp2 67 5 0 0 0 0 0 0 0 0 

Vri_inf 65 9 0 0 0 0 0 0 0 0 

Jus_sp1 64 7 0 0 0 0 0 0 0 0 

Cen_cor 62 23 0 0 0 0 0 0 0 0 

Til_sp 60 2 4 1 0 0 0 0 0 0 

Psi_dic 56 1 1 53 1 10 0 1 0 0 

Nid_rut 52 20 0 1 0 0 0 0 0 0 

Sip_lon 49 7 0 0 0 0 0 0 0 0 
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Table S1 continued 
Species Hummingbirds Pe Tg Cr Ff La Sl Av Lc Em 

Plants Abundances 86.923 78.462 66.923 21.538 20 13.077 8.462 5.385 0.769 

Aec_gam 41 1 6 15 0 0 0 0 0 0 

Bil_amo 38 36 0 0 0 0 0 0 0 0 

Til_gem 30 2 12 2 0 1 1 0 0 0 

Can_per 29 65 0 0 0 0 0 0 0 0 

Nem_ser 26 5 1 4 0 0 0 0 0 0 

Vri_sp 24 20 0 0 0 0 0 0 0 0 

Wit_sup 23 55 77 0 0 0 0 0 0 0 

Aec_van 22 95 132 0 0 0 0 0 0 0 

Edm_lin 22 53 26 0 0 0 0 0 0 0 

Aph_lon 21 31 0 0 0 0 0 0 0 0 

Aec_org 19 15 21 1 0 0 0 0 0 0 

Aec_nud 19 12 24 0 0 0 0 0 0 0 

Nem_mac 19 22 0 0 0 0 0 0 0 0 

Men_sp 18 2 0 14 0 0 0 16 0 0 

Mut_spe 18 62 0 0 0 14 0 0 0 0 

Vri_ery 17 17 0 0 0 0 0 0 0 0 

Vri_sim 16 24 0 0 0 0 0 0 0 0 

Til_dur 11 1 0 0 0 0 0 0 0 0 

 359 

 360 


