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Abstract 33 

Some species exhibit physiological and behavioral plasticity to survive adverse periods, such as changing 34 

climates or reduced food availability. Yet, during extreme climatic events the mechanisms to respond to 35 

these adverse periods may not be sufficient, potentially driving local population extinctions. We studied 36 

the population dynamics of a common degu (Octodon degus) population in central Chile using a 12-year 37 

long dataset (2009-2020) and investigated what environmental factors affected recruitment, survival 38 

and population growth. Our study period also coincided with a decade-long megadrought, allowing us to 39 

examine how this extreme climatic event contributed to the observed local extinction of this population 40 

in 2020. We used Pradel’s capture–mark–recapture (CMR) modeling framework to assess what factors 41 

influence population parameters. We analyzed two seasons: the breeding season, which aligns with the 42 

austral winter and coincides with the mating, gestation and lactation period, and the nonbreeding 43 

season spanning austral spring, summer, and fall, which coincides with offspring care. We found that 44 

survival and recruitment varied by year, season, and sex. Female survival was higher during the breeding 45 

season than in the nonbreeding season whereas male survival was higher in the nonbreeding season. 46 

Recruitment primarily occurred during the breeding season and was higher for males. Population 47 

growth was positive from 2009 to 2019. When incorporating environmental covariates, season, and sex, 48 

we found that survival was primarily driven by gross primary production, and recruitment by seasonality 49 

and gross primary production. We suggest that a year with very low gross primary production, induced 50 

by a decade-long megadrought contributed to the local extinction of this population. Our results provide 51 

important insight into which populations may be vulnerable to population declines in face of a changing 52 

climate, or instead, will be resilient to forecasted climate change. 53 

Keywords: Local extinction, population crash, mammal, population dynamics, human-induced climate 54 

change, extreme climatic event, semi-arid environment, drought 55 
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Introduction 56 

Human-induced climate change and extreme climatic events are both driving adaptation and 57 

contributing to the extinction of current-day populations and species (Maclean and Wilson 2011; 58 

McLaughlin et al. 2002; Thomas et al. 2004; Urban 2015; Patrício et al. 2019). Sometimes, local 59 

extinctions are linked to the consequences of single, widespread factors such as marine heat waves 60 

(Montie and Thomsen 2023; Thomsen et al. 2019), El Niño Southern Oscillation (ENSO) events (Kelt, 61 

Wilson, and Konno 2005), or extended droughts (Ehrlich et al. 1980; Facka et al. 2010; Trape 2009). In 62 

some species, local extinctions are associated with a combination of perturbations, such as food 63 

reduction, anthropogenic factors, predation, climate change (Sergio et al. 2022), and climatic or 64 

environmental changes leading to habitat loss (Munday 2004; McLaughlin et al. 2002) or food depletion 65 

(Durance and Ormerod 2010; Epps et al. 2004). Overall, factors affecting vulnerability to climate change 66 

include exposure to or intrinsic sensitivity to changes in climatic conditions due to physiological or life-67 

history constraints (Beever et al. 2011; 2010), such as reaching critical thermal maxima in ectothermic 68 

species (Sinervo et al. 2010), as well as habitat requirements and specialized feeding habits (Moritz and 69 

Agudo 2013). However, climate change remains a primary driver of most local extinctions by reducing 70 

food availability (Cahill et al. 2013).  71 

Food availability is influenced by a myriad of environmental conditions that are projected to change. The 72 

anticipated worldwide temperature rise and increased variability in precipitation might negatively affect 73 

plant growth and productivity (Zhang et al. 2022; Gherardi and Sala 2015). Changes in precipitation and 74 

evaporative demand may result in increased drought severity (Vicente-Serrano et al. 2020). Drought 75 

effects include reduced annual plant production, stem growth, and leaf area index (Krishnan et al. 2006), 76 

or even vegetation die-off after extreme events (He et al. 2018). Droughts and heatwaves may be 77 

particularly severe in arid and semi-arid ecosystems (IPCC 2014) and climate change may affect species 78 

inhabiting those environments (Srivathsa et al. 2019; Polyakov et al. 2021).  79 



 

4 
 

We aimed to examine the impacts of a prolonged extreme climatic event (Grant et al. 2017), a decade-80 

long megadrought termed the Central Chile Megadrought (Garreaud et al. 2020), on the population 81 

dynamics of a group-living and colonial rodent, the common degu (Octodon degus) (Ebensperger et al. 82 

2014; 2021). Degus are small, diurnal, semi-fossorial social rodents that are endemic to Chile and inhabit 83 

semi-arid environments. Degus form social groups consisting of on average two other (range: 1-8) 84 

related and unrelated adult males and females (Ebensperger et al. 2004; Hayes et al. 2009; Davis et al. 85 

2016; Hayes et al. 2019). Degus are considered annual, plural breeders. They mate in June, give birth in 86 

late August to early September after a relatively long gestation period, and communally rear their 87 

precocial offspring in October (Ebensperger, Veloso, and Wallem 2002; Ebensperger, Hurtado, and León 88 

2007; Ebensperger and Hurtado 2005a). They occasionally produce second, smaller sized litters in early 89 

austral summer, but secondary litters are relatively uncommon (Meserve et al. 1995; Ebensperger et al. 90 

2013). The degus exhibit a unique life history as they do not live long (the majority of adults do not 91 

survive to their second year (Ebensperger et al. 2009; 2011)) and wean six offspring on average (Long 92 

and Ebensperger 2010). Favorable ecological conditions for degus include abundant precipitation 93 

(Meserve et al. 2011; Ebensperger et al. 2014; Previtali et al. 2010) and high food abundance 94 

(Ebensperger et al. 2021; 2014), particularly a high abundance of green low fibre annual herbs 95 

(Bozinovic 1995). Deviations from these conditions pose significant challenges to degus. Degus have a 96 

low tolerance to heat stress (Kenagy et al. 2004) and may be constrained to forage in areas with shrub 97 

vegetation to avoid direct exposure to intense solar radiation (Lagos et al. 1995; Kenagy et al. 2004). 98 

Recently, we reported that per-female fecundity rate declines at relatively low degu densities (i.e., 99 

implying a population-level Allee effect), that this effect is more likely whenever low food conditions 100 

prevail, and that group size tracks population density (i.e., when population size is low, group size is also 101 

small) (Ebensperger et al. 2025). The implication is that group-living may not buffer low population 102 

density conditions, especially under the harshest of climatic conditions.  103 
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Our objectives were three-fold: we aimed to investigate 1) the demography and population dynamics of 104 

a degu population using a dataset that ran from 2009 to 2020, 2) what environmental factors affected 105 

population parameters and, 3) the factors that potentially caused or contributed to the local extinction 106 

of this population in 2020. Although the IUCN red list status classifies degus as  ‘Least Concern’ (Roach 107 

2016), it remains unclear why some populations are able to survive through adverse events while others 108 

experience local extinction. Examining what environmental factors affected the population dynamics of 109 

this population helps to identify which populations are most vulnerable to forecasted climate change 110 

and aids in developing strategies to mitigate future local extinctions from happening. 111 

We developed a priori hypotheses addressing population demographics, the influence of environmental 112 

factors on survival and recruitment rates, and what factors could have contributed to the local 113 

extinction of this population. We hypothesized that survival and recruitment fluctuate with year, season, 114 

and sex. Particularly, we predicted that survival and recruitment rates increase in years with favorable 115 

conditions, in the breeding season when preferred food is abundant, and that rates differed per sex. 116 

Furthermore, we hypothesized that survival and recruitment are positively associated with weather 117 

conditions that enhance plant growth and thus, food availability (Table 1). Specifically, we predicted that 118 

survival and recruitment would be 1) negatively influenced by conditions characterized by relatively high 119 

and more variable ambient temperatures due to their negative effects on food availability. Additionally, 120 

2) we predicted degu survival and recruitment to increase with increasing mean rainfall and decreasing 121 

precipitation variability due to the positive effects of these conditions on food availability. We further 122 

predicted 3) positive effects of high mean and low variance in precipitation during the previous season 123 

because of the lag in plant growth after precipitation events, and 4) a positive influence of increased 124 

precipitation, especially during “El Niño” events, which can enhance resource availability through 125 

increased primary productivity. Often, “El Niño” events result in population growth among rodent 126 

populations that inhabit semi-arid and arid environments (Armas et al. 2016), including degus in 127 
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northern Chile (Previtali et al. 2010). Finally, we hypothesized that the adverse effects of the Central 128 

Chile Megadrought, such as reduced precipitation, resulted in lower food availability and decreased 129 

survival and recruitment rates over time, ultimately resulting in the population’s local extinction.  130 

Table 1. Predicted effects of climatic variables on apparent survival and recruitment of a central Chile 
degu population. The last four variables were excluded due to multicollinearity.  

Variables and their abbreviations used in figures and tables effect on 
survival 

effect on 
recruitment 

Coefficient of Variation (CV) in ambient temperature (T_CV)  - - 

Total seasonal precipitation (P) + + 

Coefficient of variation in precipitation (P_CV) - - 

Total seasonal precipitation from the previous season (P_lag) + + 

Coefficient of variation in seasonal precipitation from the previous 
season (P_CV_lag) 

- - 

Gross Primary Production (GPP) per season + + 

El Niño Index (ONI) as the 3-month sea surface temperature 
average  

+ + 

   

Average Ambient Temperature (T) - 0 

Maximum Ambient Temperature (T_max) 0 - 

Leaf Area Index (LAI) per season + + 

Evapotranspiration (ET) per season + + 
 

 131 

Methods 132 

Data collection 133 

This study was conducted at Estación Experimental Rinconada de Maipú (German Greve Silva 134 

Experimental Station), a field station of the Universidad de Chile (henceforth, Rinconada, 33º 23’ S, 70º 135 

31’ W, altitude 495 m; Fig. 1). The total area examined was 2–3 ha and did not vary between years of 136 

the study. The predominant climate is Mediterranean with dry, warm summers and cold, wet winters. 137 

Vegetation consists mostly of grass and scattered shrubs that covered around 14% of the field site 138 

(Ebensperger and Hurtado 2005a). This field site is located closer to the southern most limit of degus’ 139 

distribution, where range limits are defined by too wet conditions in the south and too dry in the north 140 
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to support their main food sources (Contreras, Torres-Mura, and Yáñez 1987; Woods and Boraker 1975; 141 

Cadenillas and D’Elía 2021a; 2021b).   142 

Figure 1. A map of the location of our field site at Estación Experimental Rinconada de Maipú 

(German Greve Silva Experimental Station), a field station of the Universidad de Chile (33º 23’ S, 70º 

31’ W, altitude 495 m) with images of the field site during the breeding (top right panel) and 

nonbreeding (bottom right panel) season. The breeding season (mating/early gestation) corresponds 

to the austral winter, while the nonbreeding season (offspring care) corresponds to the austral spring, 

summer, and beginning of fall.

 

From 2009 to 2020, we monitored a degu population at Rinconada using capture-mark-recapture (CMR) 143 

approaches. We trapped degus twice a year: in austral fall (May – early July) and spring (late August – 144 

early November) (SM1). We live-trapped degus at each burrow system (mean ± SD = 40.2 ± 2.6 burrow 145 

systems/season/year) by placing 10 Tomahawk traps (Tomahawk model 201, Tomahawk Live Trap 146 

Company, Hazelhurst, WI) around burrow openings. Burrow systems are groups of interconnected 147 

burrow openings from which individuals emerge during daytime and return to at nighttime (Fulk 1976). 148 
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Across years, which burrow systems monitored differed, but we used approximately the same number 149 

of traps (396.5 ± 20.3 traps/season/year). The area trapped across study years was 2.1 ± 1.7 ha (mean ± 150 

SD). Traps were opened and baited with rolled oats one hour prior to sunrise and closed one hour after 151 

sunrise to ensure that captures occurred at or near the home burrows of the individuals. Upon first 152 

capture, animals were fitted with ear tags (Monel 1005-1, National Band and Tag Co. Newport, KY) for 153 

individual identification. On the first and all subsequent captures, we recorded animal ID, burrow 154 

number, sex, reproductive and lactation status of adult females, and body mass (g). We noted 55 155 

occurrences where we were certain that an individual had died, as we found the carcasses. We have no 156 

reliable information regarding dispersal.  157 

We chose two one-month trapping windows, one in June during the austral fall (Julian date 154 to 184 158 

calculated from January first each year) that corresponds with the mating season and one in October 159 

during the austral spring (Julian date 279 to 309) that matches late lactation and offspring care. Most 160 

juveniles are born in austral spring in the months of September through October (Ebensperger et al. 161 

2013), so our trapping window of October mainly represents juvenile emergence and the majority of 162 

juveniles are therefore captured in the breeding season interval from austral fall to spring. We chose a 163 

30-day window to allow for a similar trapping effort over the years. We trapped degus on mean ± SD = 164 

20.8 ± 5.2 days ranging from 5 (in fall 2020 due to COVID-19 restrictions) to 26 days (in spring 2014) 165 

during each 30-day period (SM1). In total, we had 24 trapping windows.  166 

For the environmental covariates, we selected two periods. We selected the austral winter spanning 167 

from June to September. During this time, the region experiences most precipitation, the lowest 168 

temperatures, and an increase in food availability. This period also aligns with the mating season and 169 

the gestation period for females, hereafter termed the breeding season. We selected the 8-month 170 

period from October to May as the other period representing austral spring through summer and fall. 171 
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During this period, there is a decline in food availability, almost no rain, and the highest temperatures 172 

are recorded. This period includes the ending of offspring care, hereafter termed nonbreeding season.  173 

We used temperature and precipitation records from 1975-2020 from the Pudahuel weather station 174 

(33°23’S, 70°47’W), the closest located weather station to the field site (see SM2 for the long-term trend 175 

of the weather variables). From these records, we obtained the following variables for the two seasons: 176 

average ambient temperature (T in °C) as the mean of monthly temperatures, coefficient of variation 177 

(CV) of ambient temperature (T_CV), the maximum ambient temperature during the season (T_max in 178 

°C), total cumulative amount of precipitation (P in mm) as the sum of monthly precipitation, the CV of 179 

precipitation (P_CV), a one-season lag in total precipitation (P_lag in mm) and CV (P_CV_lag) of 180 

precipitation due to the potential effect of precipitation in the previous season on plant growth (see 181 

Table SM3 for the descriptive statistics for all environmental covariates per season during our study 182 

period). 183 

To examine different aspects of vegetation at our field site location (-33.475, -70.833), we used land 184 

surface data products retrieved from the Moderate Resolution Imaging Spectroradiometers (MODIS) 185 

(Salomonson et al. 1989) onboard Terra and Aqua satellites (https://modis.gsfc.nasa.gov/). The 186 

combined Terra and Aqua datasets, available at a temporal resolution of eight days and a spatial 187 

resolution of 500 m, for the pixel containing the study location, were retrieved using the Land Processes 188 

Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/) AppEEARS tool (AppEEARS Team 189 

2020). These include gross primary productivity (GPP in kgC/m²/8day, MOD17A2HGF Version 6.1) 190 

(Running and Zhao 2021), evapotranspiration (ET in kg/m²/8day, MOD16A2GF Version 6.1) (Running et 191 

al. 2021), and Leaf Area Index (LAI in m²/m², MCD15A2H Version 6.1) (Myneni, Knyazikhin, and Park 192 

2021). Evapotranspiration includes both evaporation and transpiration and indicates the effect of soil 193 

moisture, which is important for the seed base. Leaf Area Index quantifies the amount of leaf material in 194 

a canopy and indicates food availability. Gross primary production quantifies the total influx of carbon 195 

https://modis.gsfc.nasa.gov/
https://lpdaac.usgs.gov/
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into an ecosystem through the photosynthetic fixation of CO₂ and represents biomass production, and, 196 

indirectly, supports vegetation activity while partially contributing to evapotranspiration through 197 

transpiration. 198 

We included the El Niño Index (ONI) value based on studies across multiple organisms reporting 199 

population declines (Cahill et al. 2013) or increases (Armas et al. 2016) linked to the El Niño-Southern 200 

Oscillation (ENSO). This index accounts for regional temperature and precipitation oscillations caused by 201 

El Niño conditions, characterized by average sea-surface temperatures in the Pacific Ocean that exceed 202 

0.5°C for three consecutive months. In contrast, La Niña occurs when the average sea-surface 203 

temperature is 0.5°C below average for three consecutive months. The ONI values were obtained from 204 

the National Oceanic and Atmospheric Administration (NOAA)  Climate Prediction Center 205 

(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php).  206 

Data analysis and modeling 207 

We used a survival – recruitment parameterization of Pradel’s temporal symmetry capture–mark–208 

recapture (CMR) modeling framework (Pradel 1996; Nichols 2016; Williams, Nichols, and Conroy 2002) 209 

to estimate and model demographic parameters, and to test for the influence of climatic covariates on 210 

these parameters. This modeling framework estimates capture probabilities (pt), apparent survival (ϕt) 211 

and recruitment rates (ft). For completeness, pt is the probability that a marked animal, alive and present 212 

in the sampled population is captured at sampling occasion t; ϕt is the apparent survival probability 213 

(probability that an animal alive at sampling occasion t survives to time t + 1 and remains in the 214 

population), and ft is the number of new recruits between t and t + 1, per individuals in the population at 215 

sampling occasion t. The realized population growth rate λt is then calculated as a derived parameter, 216 

representing the sum of time-specific survival and recruitment rates (i.e., λt = ϕt + ft).  217 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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To discern seasonal, annual, and sex-specific variation in demographic rates, we first modeled φ, ƒ, and p 218 

as constant parameters with season, year, and sex as singular, additive (‘+’), and interactive (‘:’, two-way 219 

only) effects. To assess the impact of climatic covariates on survival and recruitment rates, we allowed 220 

these rates to be affected by climate covariate(s) alone, as well as additively and interactively by season 221 

and year. Due to high variability in environmental covariates among years, we also ran the models with 222 

climate covariate(s), season, and sex (excluding year). We checked for collinearity among environmental 223 

covariates and discarded variables with Pearson correlation coefficients of -0.5 ≤ r ≥ 0.5 (SM4). We 224 

retained the following environmental covariates per season for the final analyses: the coefficient of 225 

variation of mean ambient temperature (T_CV), the cumulative amount of seasonal precipitation (P), the 226 

CV of precipitation (P_CV), the one-season lag in the cumulative amount of precipitation (P_lag), one-227 

season lag in the CV of precipitation (P_CV_lag), gross primary production (GPP), and the El Niño index 228 

(ONI). We scaled all our quantitative variables by mean-centering and scaling by the standard deviation. 229 

Marked degus that were confirmed dead (i.e., 55 individuals whose carcasses were recovered) were 230 

censored.   231 

We performed Pradel’s mark-recapture analyses in the program MARK (White and Burnham 1999) using 232 

the ‘RMark’ package (Laake 2013) for the R computing environment (R Core Team 2021). We used an 233 

information-theoretic approach with AICc (Akaike Information Criterion corrected for small samples) as a 234 

measure of model parsimony, considering the model with the lowest AICc as the best model, while 235 

models with ∆AICc ≤ 2 were assumed equally plausible and are discussed in the main text. In the 236 

supplementary material, we included the covariate effects on demographic parameters from models 237 

with ∆AICc > 2, provided that the 95% confidence intervals for regression (or beta) coefficients did not 238 

overlap zero. We specified time intervals between austral fall and spring sampling occasions in months, 239 

implying that estimates of all demographic parameters were monthly rates. Unless otherwise stated, we 240 
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report mean ± SE for observed metrics and point estimates with 95% confidence intervals for model 241 

parameters.  242 

Results 243 

From 2009 to 2019, we captured 2,547 individuals a total of 14,526 times (7,662 captures of 1,254 244 

females and 6,864 captures of 1,293 males, including both adults and juveniles). During the entire study 245 

period, we trapped fewer degus (167 females and 232 males) in the austral fall (June) than in the austral 246 

spring (October) trapping window (1087 females and 1061 males). On average 141 (± 25.6 SE) degus 247 

were trapped each year with fewer degus trapped in the austral fall (61.0 ± 10.7) compared to the 248 

austral spring (221.5 ± 38.2). In 2020, we set traps, but no degus were captured, indicating the degu 249 

population had either gone locally extinct or was reduced to very low numbers. Observations made by 250 

one of us (LDH) and technicians in 2023 and 2024 confirmed that burrow systems within our original 251 

study area were inactive and that only a few active systems remained in the immediate areas outside the 252 

study area.   253 

Population demographics 254 

The overall monthly apparent survival was 0.88 ± 0.01 (Fig. 2a). However, virtually all well-supported 255 

models without climatic covariates included year, season, and sex effects on apparent survival and 256 

recruitment rate suggesting that both survival and recruitment covaried with these factors (Table 2A, Fig. 257 

2). Degus survived better during the breeding than during the nonbreeding season, and females 258 

experienced better survival than males (Fig. 2a). Compared with 2009, survival was higher in 2010, in 259 

2012 through 2015, and in 2017 (Fig. 2b). The monthly recruitment rate varied by year, season, and sex 260 

(Fig. 2c). As expected, monthly recruitment rate was higher during the breeding than during the 261 

nonbreeding season and was lower for females compared with males, particularly in the nonbreeding 262 

season (Fig. 2d). Recruitment was higher in 2011 but lower in 2019 compared with 2009 (Fig. 2d). A 263 
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competing model (∆AICc < 2) differed primarily in model structure for capture probability. Capture 264 

probability varied among years, with lower capture probabilities in 2012 compared to 2009; capture 265 

probabilities through all other years were similar to that recorded in 2009 (Table 2A, Fig. 3a). The 266 

monthly realized population growth rate (λ) ranged from 0.79 ± 0.02 in the nonbreeding season of 2009 267 

to 1.62 ± 0.06 in the breeding season of 2011 and varied on average from 1.40 ± 0.03 during the 268 

breeding season to 0.84 ± 0.01 during the nonbreeding season. The overall annual growth rate was 1.13 269 

± 0.07 (Fig. 3b).  270 

 271 
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Table 2. Model comparison statistics testing for (A) the effect of year, season, time (as discrete 

variable), and sex on apparent survival (φ), capture probability (p), and recruitment rate (ƒ) of a degu 

population in central Chile between 2009 and 2020. Model comparison statistics testing for (B) the 

effect of season, sex, and the selected environmental covariates on apparent survival (φ) and 

recruitment rate (ƒ). Only the top five models are presented for each part. K represent the total 

number of parameters in a model, Akaike Information Criterion corrected for small sample size (AICc), 

the difference in AICc value from the best-supported model (∆AICc), and the relative model 

probability (weight) for the five best-supported models are presented. Additive effects are indicated 

by a “+,” and additive and interactive effects are indicated by “:”. Models were ranked based on the 

AICc values, and the most parsimonious model is indicated by bold type face, while equally plausible 

models with ∆AICc ≤ 2 are indicated in italic type face. The climatic covariates GPP is the mean of 

seasonal gross primary production and P_lag is the cumulative amount of precipitation from the 

previous season.  

Φ p ƒ K AICc ∆AICc weight 

A. Models without climatic covariates     

year + season:sex year year + season:sex 39 17439.70 0.00 0.27 

year + season + sex time + sex year + season:sex 50 17439.75 0.05 0.26 

year + season:sex year + sex year + season:sex 40 17440.96 1.26 0.14 

year + season + sex time year + season:sex 49 17441.84 2.14 0.09 

year + season + sex time + sex year:season + sex 58 17442.56 2.86 0.07 

       

B.  Models with climatic covariates excluding year     

GPP:season + sex time + sex GPP + season 31 17529.09 0.00 0.83 

GPP:season time + sex GPP + season + sex 31 17532.35 3.26 0.16 

GPP:season + sex time + sex P_lag + season + sex 32 17539.91 10.82 0.00 

GPP:season + sex time GPP + season 30 17545.35 16.26 0.00 

GPP:season + sex time P_lag:season + sex 32 17548.94 19.85 0.00 

 

 272 

 273 
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Figure 2. Estimates of monthly survival and recruitment rates for a degu population at Estación 

Experimental Rinconada de Maipú, Chile, from 2009-2020 based on the most parsimonious model in 

Table 2A. The left-hand panels show a) apparent survival (φ) and c) recruitment rate (ƒ) for females in 

purple and males in green for the breeding (B) and nonbreeding (NB) season. Error bars represent 

95% confidence intervals. The right-hand panels show the regression parameter (beta estimates) with 

the 95% CI for b) survival, and d) recruitment. The reference values are females and the nonbreeding 

season, and ‘NB:Males’ corresponds to the interaction between season and sex. The breeding season 

(mating/early gestation) corresponds to the austral winter, while the nonbreeding season (offspring 

care) corresponds to the austral spring, summer, and beginning of fall.  

 

 274 

 275 



 

16 
 

Figure 3. Estimates of capture probability and realized population growth parameters for a degu 

population at Estación Experimental Rinconada de Maipú, Chile, from 2009-2020 based on the most 

parsimonious model in Table 2A. The panels show a) capture probability (p), and b) monthly estimate 

of realized population growth (λ) for each year of the study. The data point in spring 2019 is missing, 

because degus did not enter our traps in the fall of 2020, and so there is no interval from spring 

season 2019 until the next season. Error bars in blue represent 95% confidence intervals.  

 

 276 

Effects of environmental covariates on population demographics 277 

When examining the models with environmental covariates, year, season and sex, we found that the 278 

cumulative amount of precipitation had a significant effect on survival; all top models incorporated 279 

precipitation either as an additive effect or as an interaction with season (SM5). Year and sex also 280 

affected survival probability. Recruitment was affected by variability in precipitation during the previous 281 

season, which was supported by two other models with a ∆AICc < 2 from the most parsimonious model, 282 

indicating that these models are equally supported (Table SM5.1). We observed high interannual 283 

variation in survival/recruitment and environmental covariates (SM5); therefore, we excluded year as 284 
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fixed factor to better examine how seasonal differences in environmental covariates affected survival and 285 

recruitment.  286 

The model selection routine used with environmental covariates, season, and sex (excluding year) 287 

revealed that the most supported covariate CMR model was driven by the effect of gross primary 288 

production on survival and recruitment (Table 2B; Fig. 4; model #146 Table SM6.3). Similar to our model 289 

results where we excluded environmental covariates, survival covaried with season. Survival was higher 290 

in the breeding season and although sex is included in the top model, survival did not vary with sex (Fig. 291 

4a). Survival increased with higher gross primary production in the nonbreeding season (Fig. 4b). 292 

Although survival decreased with higher gross primary production in the breeding season (Fig. 4a), it has 293 

little effect on survival. Overall, gross primary production has a positive effect on survival independent of 294 

season (slope of 0.45). Likewise, recruitment increased with higher gross primary production and varied 295 

with season (Fig. 4c, Table 2B), with higher recruitment occurring during the breeding season (Fig. 4d).  296 

Other environmental variables also influenced survival and recruitment, but these results were based on 297 

multivariate models that demonstrated the lowest ∆AICc from the top model but no weight and a ∆AICc > 298 

2 (Table 2B and Table SM6.3). We found that all environmental variables influenced survival (Table 299 

SM7.1, Fig. SM7.1). Most covariates, except CV in temperature, lag in precipitation, and gross primary 300 

production, positively influenced survival. The covariates, CV in the cumulative amount of precipitation, 301 

lag in CV in precipitation and gross primary productivity showed an effect in the opposite direction than 302 

what we predicted. We also found that the cumulative amount of precipitation (without and with a one-303 

season lag), variability in precipitation and gross primary production increased recruitment, while higher 304 

variability in precipitation during the previous season negatively affected recruitment, and the CV in 305 

temperature and the El Niño index did not influence recruitment (Table SM7.1, Fig. SM7.2). The CV in 306 

precipitation was the only covariate that showed an opposite effect on recruitment from what we 307 

predicted.  308 
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The analysis of the effect of individual climatic covariates (univariate models) indicated that all covariates 309 

affected survival (Table SM6, Fig. SM8.1). Most covariates positively influenced survival, except for the 310 

CV in temperature and the El Niño index. The covariates, CV in the cumulative amount of precipitation, 311 

lag in CV in precipitation and the El Niño index showed an effect in the opposite direction than what we 312 

predicted. The univariate models similarly indicated that most environmental covariates affected 313 

recruitment. The CV in temperature, cumulative amount of precipitation, CV of precipitation during the 314 

previous season, and gross primary production positively influenced recruitment (Fig. SM8.1), whereas El 315 

Niño index and CV in precipitation negatively affected recruitment (Fig. SM8.1). The lag in precipitation 316 

did not affect recruitment. The covariates, CV in temperature, lag in CV in temperature, and the El Niño 317 

index showed an effect in the opposite direction than what we predicted, although the effect is small.  318 
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Figure 4. Survival and recruitment results in a degu population at Estación Experimental Rinconada de 

Maipú, Chile, based on the most parsimonious model including climatic covariates, season, and sex, in 

Table 2B. A) Survival is mainly driven by gross primary production (GPP) and is higher in the 

nonbreeding season with more GPP. B) Survival is significantly affected by GPP, season, and the 

interaction between GPP and season (GPP:Nonbreeding) but does not vary by sex. C) Recruitment is 

higher with more GPP and in the breeding season. D) Recruitment is significantly affected by GPP and 

season. The reference values in panels c and d are females and the breeding season. The breeding 

season (mating/early gestation) corresponds to the austral winter, while the nonbreeding season 

(offspring care) corresponds to the austral spring, summer, and beginning of fall. Females are shown in 

purple and males in green.  
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 319 

Factors contributing to the population’s local extinction 320 

To determine which environmental covariates contributed to the local extinction of our study 321 

population, we visualized the yearly and monthly trend of the included environmental variables (Fig. 5). 322 

Gross primary productivity showed a decline in 2019, the year before the population crash (Fig. 5). We 323 

observed that gross primary productivity was much lower during most of 2019 (cumulative amount of 324 

GPP of 159.85 gCm2 and average GPP of 0.84gCm2versus a total of 329.71 and average 1.86 gCm2 across 325 

all study years, excluding 2019) but particularly during the breeding season (91.2 gCm2 and average 0.75 326 

gCm2in 2019 versus 245.04 and average 2.01 gCm2across all study years, excluding 2019) compared to 327 

other years of our study (Fig. 5). Furthermore, the variation in precipitation was relatively higher in 2019 328 
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compared to the other study years and the long-term average together with a lower-than-average 329 

amount of precipitation, suggests that there were very few months with precipitation in 2019 (Fig. 5). 330 

The CV in temperature followed average trends and changes in average ocean temperature in 2019 were 331 

intermediate (Fig. 5).  332 

 333 
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Figure 5. The included environmental variables per year and month. The year 2019 is highlighted in 

blue to demonstrate which environmental variables contributed to a population crash in the degu 

population at Rinconada, Chile in 2020. Horizontal dotted lines are the long-term average, except for 

the cumulative amount of precipitation (P) as the long-term average of 245 mm fell outside of the 

precipitation range from 2009-2019, so we use the average for the study period. The grey rectangle 

corresponds to the period from June to October, which includes the mating season, gestation, and 

early lactation (breeding season). The coefficient of variation (CV) in temperature and precipitation is 

provided by year as we did not have daily measures. ONI = El Niño Index. 
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Discussion 334 

We used a 12-year long dataset of mark-recapture data to investigate the population demographics and 335 

environmental factors influencing demographic parameters and population dynamics of a degu 336 

population in central Chile that went locally extinct in 2020. We found that survival varied by year, 337 

season, and sex, similar to what was observed in a northern-central Chile degu population (Previtali et al. 338 

2010). Recruitment varied seasonally and annually. Capture probability varied by year, and population 339 

growth was on average positive. When we included environmental covariates (excluding year), we found 340 

that survival was affected by gross primary production, while seasonality and gross primary production 341 

influenced recruitment. Therefore, food availability affected the population dynamics of degus, 342 

supporting the conclusion that an extreme and prolonged drought was a main driver of the local 343 

extinction of this population.  344 

We found an interaction between season and sex in survival and recruitment. These interactions 345 

may reflect sex-specific differences in reproduction costs. Males experience greater reproductive costs in 346 

the austral fall due to the mating season, during which they compete with other males for access to 347 

females (Ebensperger and Hurtado 2005b; Soto-Gamboa, Villalón, and Bozinovic 2005; Ebensperger et 348 

al. 2019). For females, the austral winter and spring are energetically more demanding because they 349 

produce large, precocial young, with their gestation period lasting around three months (Woods and 350 

Boraker 1975). In years of high food availability, females can have a postpartum estrus, leading to a 351 

second litter emerging in early austral summer (Ebensperger et al. 2013; Meserve et al. 1995). The 352 

presence of second litters could also explain the seasonal difference in recruitment; degus breed 353 

primarily during austral winter, with first litters born in late August/September, so primary recruitment 354 

occurs in the breeding season. The limited recruitment that occurs in the nonbreeding season (austral 355 

spring, summer, and fall) can be explained by those second litters born in early summer, by juveniles 356 

born during the breeding season but not marked by the observers until the following year, and by 357 
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immigration. Immigration and dispersal are more important drivers of group dynamics than adult fidelity 358 

and offspring philopatry in our study population (Ebensperger et al. 2009; Quirici et al. 2010). In 359 

summary, the interplay between seasonal demands and sex-specific reproductive costs significantly 360 

influences survival and recruitment patterns, highlighting the complex ecological dynamics that shape 361 

population dynamics in degus.  362 

Density-independent factors influencing population dynamics 363 

Gross primary production was the main driver of survival, particularly in the nonbreeding season, and of 364 

recruitment, particularly in the breeding season. Thus, food availability has a great impact on degu’ 365 

population dynamics and contributed to the population crash in this population. We hypothesize that 366 

lower than average amount of precipitation resulted in reduced primary productivity, and that plant 367 

cover was reduced due to water deficits, soil nutrient depletion (Gutierrez and Whitford 1987), or a 368 

change in the plant community or plant quality (Gutiérrez and Meserve 2003). For example, koalas 369 

(Phascolarctos cinereus) experienced a population decline after a drought that caused water stress and 370 

the disappearance of edible leaves (Gordon, Brown, and Pulsford 1988). The preferred food of degus, 371 

green low fibre annual herbs (Bozinovic 1995), are most abundant during the austral winter and spring 372 

(i.e., the breeding season). However, the fact that primary productivity was almost absent in the 2019 373 

breeding season (Fig. 5) emphasizes that food was unavailable for the degus. In summer, when these 374 

herbs are absent, degus shift their range to include shrubs (Quirici et al. 2010) and individuals consume 375 

lower-quality food sources, such as the foliage, seeds, and conductive tissue of shrubs (Quirici et al. 376 

2010; Ebensperger and Hurtado 2005a). Our study site was also characterized by only 14% shrub 377 

coverage (Ebensperger and Hurtado 2005a). Such conditions likely limit opportunities to forage under 378 

shade, exposing foraging degus to a greater risk of heat-stress, while degus show low tolerance to heat 379 

stress (Kenagy et al. 2004), if they attempt to compensate for reduced energy intake by spending more 380 

time foraging under particularly harsh environmental conditions (Caraco 1980). During the summer 381 
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months, degus show a bimodal activity pattern, foraging and remaining active right after dawn and right 382 

before dusk (Kenagy et al. 2002; Bacigalupe et al. 2003), thereby retreating into their burrows during the 383 

hottest times of the day. Degus remain active aboveground whenever they can forage under shrub 384 

covered microhabitats (Bacigalupe et al. 2003), implying that the scarce availability of shrub cover in our 385 

study population further increased the risk of local extinction. Degus demonstrate physiological plasticity 386 

by minimizing total energy expenditure (Bozinovic et al. 2004), recycling micronutrients via coprophagy 387 

(Kenagy, Veloso, and Bozinovic 1999), and conserving water in the dry and hot summer months (Ardiles 388 

et al. 2013; Bozinovic et al. 2003). Our result that gross primary production affects survival and 389 

recruitment indicates that physiological and behavioral plasticity does not buffer degus from low food 390 

availability throughout the year. Therefore, primary productivity provides essential food and shade for 391 

the degus. Subsequent research could use biophysical ecology to forecast the species’ response to 392 

climate change (Briscoe et al. 2023).   393 

 In contrast to our prediction that the CV in temperature and El Niño index would negatively and 394 

positively, respectively, affect survival and recruitment, these covariates showed a small effect on 395 

survival and did not influence recruitment. Furthermore, our results indicate that recruitment is strongly 396 

driven by seasonality and the biology of the species than by environmental covariates. Variability in 397 

temperature most likely does not influence degus as they are a semifossorial species, where they can 398 

retreat into their burrows during harsher conditions. We noted that El Niño conditions occurred in 2009 399 

and 2015 and La Niña conditions occurred in 2010. Changes in average ocean temperature during the 400 

other years were intermediate and did not result in strong ENSO events, suggesting a relatively small 401 

impact of the precipitation deficit during the megadrought (discussed below) (Garreaud et al. 2020). 402 

Although a degu population in northcentral Chile showed a delayed response in population growth after 403 

a strong ENSO event in 1990-1992 (Meserve et al. 1995), we did not observe a similar effect in our study 404 

population.  405 
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The Central Chile Megadrought 406 

The decade-long megadrought that occurred during our study (Garreaud et al. 2020) represents an 407 

extreme climatic event (Smith 2011; van de Pol et al. 2017), with negative effects on the hydroclimate 408 

and severe ecological effects, such as vegetation loss (Garreaud et al. 2017). The average precipitation 409 

between 2009 and 2019 was 45% lower than that between 1976 and 2008 at our study site (SM2). We 410 

hypothesize that these conditions represented a tipping point for degus likely causing the population 411 

crash observed in 2020. The cumulative effect of similar droughts has been associated with population 412 

crashes in a number of other species, including black-tailed prairie dogs (Cynomys ludovicianus) (Facka et 413 

al. 2010), Glanville fritillary butterflies (Melitaea cinxia) (van Bergen et al. 2020), burrowing owls (Athene 414 

cunicularia) (Cruz-McDonnell and Wolf 2016), bumble bees (Bombus spp.) (Thomson 2016), and degus in 415 

northern central Chile (Previtali et al. 2010). Degus at our study site persisted for at least 10 years of 416 

drought, suggesting that this population was robust rather than resilient through periods of low food 417 

availability, but could not persist when food was unavailable throughout the entire year (Figure 5). 418 

Resiliency requires that species not only show resistance to disturbances but also demonstrate the 419 

ability to recover to a stable state after a perturbation (Hodgson, McDonald, and Hosken 2015; Holling 420 

1973; Morecroft et al. 2012; Nelson 2011). If or when these extended droughts recur in the future, other 421 

degu populations may be at risk of local extinction. Thus, understanding the interplay between 422 

environmental stressors and the adaptive strategies of degus is crucial for predicting the resilience of 423 

degu populations in the face of climate change and for informing conservation efforts. 424 

Potential density-dependent factors influencing population dynamics 425 

Besides density-independent factors, density-dependent factors such as predation, changes in social 426 

relationships, and Allee effects, may have influenced population demographics. For example, degus may 427 

have faced increased mortality due to heightened predation (Meserve, Gutiérrez, and Jaksic 1993). 428 

Whenever population density is low, the impact of predation may be more pronounced (Meserve, 429 
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Gutiérrez, and Jaksic 1993). The main predators of adult degus at our field site are culpeo foxes 430 

(Pseudalopex culpaeus) and black-chested buzzard eagles (Geranoaetus melanoleucus) (Ebensperger and 431 

Wallem 2002). Yet, population density and precipitation, but not predation by foxes, influence changes in 432 

population growth rate in a north-central degu population (Previtali et al. 2009), and the foxes change 433 

their preference for degus in this site and may select degus just because they are abundant (Kelt et al. 434 

2025). Future research is needed to monitor whether predation increases during drought periods in 435 

central Chile.   436 

Animals may respond to extreme environmental conditions by altering social relationships. For 437 

example, superb fairy-wrens (Malurus cyaneus) change group sizes to promote cooperative behaviors 438 

under harsh conditions (Camerlenghi et al. 2024). Rhesus macaques (Macaca mulatta) on Cayo Santiago 439 

island made new connections and became more tolerant of group members in response to heat stress 440 

after a hurricane destroyed most of the vegetation on the island resulting in shade becoming a limiting 441 

resource (Testard et al. 2021; 2024). In other species, extreme climatic conditions may negatively affect 442 

social and parent-offspring relationships. For example, in the cooperatively breeding pied babbler 443 

(Turdoides bicolor), adults reduce offspring provisioning (Wiley and Ridley 2016) and helpers stop helping 444 

(Bourne, Ridley, and Cunningham 2023) when it is hot. Thus, it is not surprising that living in groups does 445 

not confer survival benefits during periods of both extreme heat and drought in pied babblers (Bourne et 446 

al. 2020b). In degus, communal breeding may not work as a buffer against the harshest environmental 447 

conditions (Hayes et al. 2024). Although we did not quantify social restructuring, social network analyses 448 

conducted on three years of data at this study site indicate that females exhibit stronger relationships 449 

with other females during lactation than during mating and produce the most offspring per capita when 450 

social relationships with other females are homogeneous (Wey et al. 2013). Future analyses could 451 

investigate whether changes in social relationships during harsh environmental conditions affect fitness.  452 
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Positive density-dependence involves a positive relationship between population growth rate 453 

and population density (Courchamp, Clutton-Brock, and Grenfell 1999). Consequently, populations 454 

whose sizes fall below a critical threshold may face increased extinction risk, as the inability to maintain 455 

sufficient numbers exacerbates challenges in survival (Vercken et al. 2021). Critically, the risk of 456 

extinction faced by populations of group-living species characterized by positive-density dependence 457 

seems contingent on the extent to which group size is decoupled from population density. This condition 458 

results in populations with varying sized social groups (Angulo et al. 2018; Fryxell et al. 2007), implying 459 

that a few relatively medium to large sized groups may be present under low density conditions 460 

(Courchamp, Grenfell, and Clutton-Brock 1999; Keynan and Ridley 2016). Critically, fewer large-sized 461 

groups may buffer individuals from low density conditions, and ultimately, decrease population 462 

extinction risk (Angulo et al. 2013). A recent study with this degu population found that positive-density 463 

dependence occurred at the population level and that group size decreased with decreasing population 464 

density (Ebensperger et al. 2025). These findings suggest that positive-density dependence similarly 465 

contributed to the extinction of our study population. 466 

Implications of this local extinction 467 

Degus are important species within xeric ecosystems in north-central Chile (Meserve et al. 2016). 468 

Furthermore, degus are important prey for avian and mammal predators throughout their distribution 469 

(Meserve, Gutiérrez, and Jaksic 1993; Ebensperger and Wallem 2002). They are ecosystem engineers 470 

because other species use their burrow systems (Davidson, Detling, and Brown 2012) and are more 471 

successful foragers in areas with high density of degu runways (Root-Bernstein et al. 2013). Degus are 472 

also important seed dispersers of native plants (Loayza, Luna, and Calviño-Cancela 2020; Cordero, 473 

Gálvez, and Fontúrbel 2021). Therefore, the local extinction of degu populations could have cascading 474 

effects on ecosystem functioning, such as the opening of niche space for competitors (Prugh et al. 2018) 475 
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or the collapse of native plants that rely on degus to disperse seeds (Loayza, Luna, and Calviño-Cancela 476 

2020; Núñez-Hidalgo, Fleury, and Bustamante 2023).  477 

Determining what factors contribute to local population extinctions helps us understand what 478 

populations are subject to population decline or, on the other hand will be resilient to climate change. 479 

Species with greater physiological and behavioral plasticity and the capacity for compensatory breeding 480 

following years with adverse climatic conditions may be the most resilient to environmental challenges 481 

(Bourne et al. 2020a; Testard et al. 2024; Camerlenghi et al. 2024; Boutin and Lane 2014; Hetem et al. 482 

2014).  483 
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