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Abstract

Anthocyanins, the pigments that give rise to blue, purple, red and pink colors in many flowers 

and fruits, are produced by the deeply conserved flavonoid biosynthesis pathway. The 

regulation of this pathway is thus fundamental for species differences in color across flowering 

plants, and a growing body of evidence implicates MYB transcription factors as key players 

activating or suppressing the production of different pigments. Here we demonstrate that a 

lineage of R2R3 MYBs that is closely related to well-known flavonol regulators (MYB12 

members in subgroup 7) is the primary determinant of the shift from blue to red flowers in the 

genus Iochroma. Similar to its ortholog in Capsicum, this Iochroma MYB12-like gene controls 

the expression of flavonoid-3’-hydroxylase, the pathway branch point between red and blue 

pigments, and when down-regulated, results in redirection of flux toward red pigments. These 

results underscore the importance of transcription factor evolution in generating phenotypic 

novelty as well as the competitive nature of interactions among flavonoid pathway branches. In 

addition, our study demonstrates the effectiveness of RNAseq of segregating populations, in 

combination with other lines of evidence, for identifying novel functional variation. [186 words]

Keywords:

Transcriptomics, flavonoid biosynthesis, pigmentation, flower color, pelargonidin, gene 

regulation

Abbreviations:

DE: differentially-expressed; MYB: myeloblastosis; TPM: transcripts per million
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Introduction

Phenotypic differences between species are often controlled by differences in the timing and 

patterns of gene expression (Kimura et al., 2008, Des Marais and Rausher, 2010, Byers et al., 

2014). These differences in gene expression can arise through a variety of mechanisms, 

including changes in the cis-regulatory regions controlling expression (i.e., promoters, 

enhancers), changes in the expression or function of transcription factors, or post-transcriptional

regulation (e.g., gene silencing). Many authors have argued that the cis-regulatory mutations 

will be favored during evolutionary transitions due to their modular architecture, allowing for 

altered expression in one context without pleiotropic effects in other contexts (Wray, 2007, 

Prud'homme et al., 2006). However, functional changes in transcription factors can have 

similarly narrow consequences, depending on their specificity in terms of target genes and 

spatio-temporal patterns of expression (Lynch and Wagner, 2008, Panchy et al., 2016, Auge et 

al., 2019).

Plant MYB transcription factors comprise a prime example of a large and diverse gene 

family with highly specialized functions. Whereas animal and fungal genomes house at most a 

few dozen MYB genes, plant genomes contain hundreds of MYBs, even in diploid species (Shiu

et al., 2005, Feller et al., 2011, Gates et al., 2016). This expansion of MYB copies in plants is 

coupled with a diversification of functional roles, from defense, to coloration, to morphology

(Ramsay and Glover, 2005, Wu et al., 2022). Closely related MYBs often share similar 

regulatory functions, e.g., as activators or repressors of particular sets of target genes, but vary 

in their expression patterns, resulting in similar phenotypic effects albeit in different tissues or 

developmental stages (e.g., Millar and Gubler, 2005, Stracke et al., 2007). Nevertheless, with 

the multitude of MYBs in every plant genome, new functional roles and patterns of 

diversification are continuing to be discovered (Sagawa et al., 2016, Gates et al., 2018, Mu et 

al., 2024).

Among the subgroups of plant MYB transcription factors, those regulating floral 

coloration through the production of flavonoid pigments are among the best studied. The 

primary MYB activators of flavonoid synthesis fall into two subgroups of R2R3 MYBs: subgroup 

7 (SG7) genes that regulate the ‘early’ genes of the pathway (e.g., CHS, F3H) and the branches

leading to flavonol production (FLS), and the subgroup 6 (SG6) genes that regulate the ‘late’ 

steps of the pathway (e.g., DFR, ANS) leading to anthocyanin pigments (Dubos et al., 2010, 

Albert et al., 2014) (Fig. 1) Anthocyanins give rise to the red, purple and blue floral hues, while 

flavonols can modify these colors as co-pigments and provide UV-absorbing patterns, such as 
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nectar guides and bullseyes (Sheehan et al., 2016, Todesco et al., 2022). Thus, both types of 

compounds (anthocyanins and flavonols) are important contributors to floral coloration and are 

often jointly produced in developing petals.

While this general early/late regulatory architecture is well-conserved across flowering 

plants (Mol et al., 1998, Schwinn et al., 2014), the factors determining the type of flavonol or 

anthocyanin produced appear more variable across species, and perhaps for that reason, are 

not as well understood. Both flavonols and anthocyanins are produced at three hydroxylation 

levels (mono-, di-, and tri-) that have different spectral properties, and their relative expression 

depends on the expression of the so-called branching enzymes, F3’H and F3’5’H (Fig. 1). For 

example, when both enzymes are highly expressed, flowers will produce the tri-hydroxylated 

flavonoids, such as the blue delphinidin pigments, whereas when these enzymes are not 

present, flowers will produce the red pelargonidin pigments (Wessinger and Rausher, 2012; Fig.

1). The F3’H enzyme, which is responsible for conversion of DHK (the precursor of the flavonol 

kaempferol and the red pigment pelargonidin) into DHQ (the precursor of the flavonol quercetin 

and the purple pigment cyanidin), appears to be regulated by subgroup 7 MYBs in Arabidopsis 

and Capsicum (Stracke et al., 2007, Wu et al., 2023) and subgroup 6 MYBs in petunia and 

Antirrhinum (Albert et al., 2011, Schwinn et al., 2006). The other branching enzyme, F3’5’H, has

been lost in many flowering plant lineages (e.g. morning glories, mustards) (Rausher, 2006, 

Falginella et al., 2010), but in those which have retained the encoding gene, its expression is 

typically co-regulated with the late genes by the subgroup 6 MYBs (Albert et al., 2011).

In the present study, we investigate the regulatory control of F3’h expression in 

Iochroma (nightshade family, Solanaceae), one of several genera in which red pelargonidin-

producing flowers have evolved from blue delphinidin-producing ancestors. Previous work 

demonstrated that this flower color transition involved three genetic changes, including the 

down-regulation of F3’H, the evolution of substrate specificity in DFR, and the loss of the F3’5’h 

gene in the red-flowered species (Smith and Rausher, 2011, Smith et al., 2013). Among these 

changes, the loss of F3’h expression has the largest effect on pigment production because it 

largely eliminates flux away from DHK, allowing anthocyanin production to be redirected 

towards pelargonidin (Smith and Rausher, 2011). Moreover, this shift in F3’h expression is due 

to a trans-regulatory mutation, as the genotype at the F3’h locus itself does not predict flower 

color in segregating populations (Smith and Rausher, 2011). This unknown regulator of F3’h, 

which segregates as a single gene, was termed the ‘T-locus’ (Smith and Rausher, 2011).

Here we use a suite of genomic, transcriptomic, and biochemical approaches to identify 

candidates for the T-locus responsible for the shift toward pelargonidin production and in turn, 
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the evolution of red flowers in Iochroma. Using biochemical and expression data, we first sorted 

individuals from a backcross population by pigment phenotype and corresponding difference in 

F3’h expression. Next, we searched the floral transcriptomes of these two pools of individuals 

for genes that match the predicted allelic pattern (e.g., homozygous for the red-flowered parent 

allele in the pink/red-flowered pool) and show the predicted association with F3’h expression. 

Our analyses point to a single R2R3 MYB transcription factor that is related to the MYB12 

members of Solanaceae subgroup 7 MYBs but falls in a deeply diverged clade, only functionally

characterized in chili peppers. As we discuss, these results suggest that the subgroup 7 MYBs 

may be much more diverse than previously known and play an underappreciated role in flower 

color evolution through their effects on flavonol production.

Materials and methods

Source populations and phenotyping

Individuals of the blue-flowered I. cyaneum were crossed with the red-flowered I. gesnerioides 

to create segregating populations to dissect the genetic basis of their flower color differences

(Smith and Rausher, 2011). The blue-flowered state is ancestral in Iochroma and corresponds 

to the production of delphinidin-derived anthocyanins, while the red-flowered derived state 

involves the production of pelargonidin-derived anthocyanins (Fig. 1; Smith and Rausher, 2011).

The I. cyaneum parent was grown from seed from a cultivated accession from the Missouri 

Botanical Gardens, originally collected by W. G. D'Arcy, and the I. gesnerioides parent was 

grown from the Solanaceae Germplasm collection in the Botanical Garden of Nijmegen 

(accession number 944750129). Herbarium vouchers for these accessions are Smith 265 and 

266 (WIS), respectively. A single F1 was backcrossed to the I. gesnerioides parent, and 

progeny from the resulting backcross population were genotyped at F3’5’h and Dfr (Smith and 

Rausher, 2011; Table 1). Anthocyanin production was previously characterized using HPLC and

revealed three pigment phenotypes (purple-flowered individuals producing primarily cyanidin, 

pink-flowered individuals producing mostly pelargonidin, and red-flowered individuals producing 

almost entirely pelargonidin) (Smith and Rausher 2011). The purple-flowered individuals share 

high F3’h expression and are inferred to carry a dominant ‘blue’ allele at a segregating trans-

acting factor (the ‘T-locus’, Smith and Rausher 2011) (Table 1). 
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Biochemical phenotyping and RNA-seq of backcross individuals

We performed RNA-Seq on corolla tissue from 24 backcross individuals segregating for the 

putative T-locus. We sampled 12 individuals with each inferred T-locus genotype: Tt 

corresponding to one dominant ‘blue’ allele and high F3’h expression or tt corresponding to two 

recessive red alleles and low F3’h expression (Table 1). We divided these 12 among the 

possible genotypes at the other two loci that affect flower color in this cross (Dfr and F3’5’h). Dfr 

shows functional specialization, with the red allele specialized for activity on DHK (Smith et al. 

2013), while F3’5’h is absent from the red parent genome (Smith and Rausher, 2011). With four 

possible combinations at these other two loci (Dd/F-, Dd/–, dd/F-, dd/–), we sampled three 

biological replicates of each within the groups of 12 (Table 1). We included all possible 

genotypic combinations at the three loci influencing flower color in order to isolate the T-locus 

while balancing across the effects of these other loci. For RNA extraction, we flash-froze corolla 

tissue from buds of roughly 1.25cm in length, which is equivalent to Petunia bud Stage 5 (Pollak

et al., 1993). This developmental stage shows expression of both early and late pathway genes 

in the anthocyanin pathway (Larter et al., 2018). Total RNA was extracted with the Spectrum 

Total RNA extraction kit (Sigma, St Louis, MO). Library preparation and 150-base-pair paired-

end mRNA sequencing was carried out by Novogene (Sacramento, CA).

Identifying SNPs associated with flower color and F3’h expression

We used the reference genome assembly for Iochroma cyaneum (Powell et al., 2022) to call 

SNP variants and filter the RNASeq dataset for candidates for the T-locus. RNAseq reads were 

aligned with STAR (Dobin et al., 2013), and the resulting BAM files were used as input for 

bcftools mpileup with default settings to call variants. We filtered variants by base call quality, 

only retaining variants with quality score greater than or equal to 20. We used the resulting VCF 

file for subsequent analyses of associations with the color phenotype.

We first split the filtered VCF files into two subsets, one for all samples with purple 

cyanidin-producing flowers (inferred Tt genotype at T-locus) and one for those with pink or red 

mostly pelargonidin-producing flowers (inferred tt genotype at T-locus) (Table 1). In order to 

identify SNPs that differ between these two pools, we used pyvcf (Casbon, 2012) to filter the 

variants to include only those that are present in all “Tt” individuals and not present in any “tt” 
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individuals. This strict criterion resulted in a set of SNPs that perfectly co-segregate with the 

high or low F3’h expression (see Results). Most of the SNPs are located on chromosome 5, but 

some mapped to smaller scaffolds that were not incorporated into the reference assembly 

(Supplementary Fig. S1). We then used promer from Mummer4 (Marçais et al., 2018) and D-

genies (Cabanettes and Klopp, 2018) to align these scaffolds back to the I. cyaneum and 

tomato reference genomes.

In addition to this filtering approach, we performed a case-control GWAS with the variant

calls in GEMMA (Zhou and Stephens, 2012). We set phenotypes to 0 (purple-flowered Tt 

plants) or 1 (pink/red-flowered tt plants) and fit a univariate linear mixed model with the full set of

variants. We then plotted the location of all analyzed variants on the assembled I. cyaneum 

chromosomes and identified variants with significant phenotypic associations.

Co-expression of candidate genes with F3’h

We predicted that if the T-locus is a transcriptional regulator, its expression will likely track that 

of F3’h in the segregating backcross. Thus, we used expression data from the 24 

transcriptomes to quantify levels of expression and test for correlations between F3’h and loci 

carrying associated SNPs (previous section). We first created a de novo transcriptome for the 

blue-flowered parent (I. cyaneum) to ensure that we captured all expressed genes. For this 

assembly, we used single-end Illumina RNA-seq data from reproductive, seed, and vegetative 

tissues from I. cyaneum from a previous study (Powell et al., 2022) and assembled the 

transcripts using the pipeline developed in Wheeler et al (2022). Briefly, we corrected read 

errors in the 128,433,717 raw reads using Rcorrector (Song and Florea, 2015) and removed 

unfixable reads using unfixable_filter.py (Yang and Smith, 2014). We trimmed adaptor 

sequences from the filtered reads using Trimmomatic (Bolger et al., 2014) and used the 

trimmed reads for de novo assembly with Trinity (Grabherr et al., 2011). We removed apparent 

chimeric sequences using run_chimera_detection.py (Morales-Briones et al., 2021), with a 

reference BLAST database consisting of sequences from Arabidopsis, Solanum, and Petunia. 

We then used Corset (Davidson and Oshlack, 2014) to cluster transcripts and 

filter_corset_output.py (Yang and Smith, 2014) to remove redundant transcripts. Finally, we 

predicted complete CDS from the Corset-filtered transcripts using TransDecoder (Haas et al., 

2013). 

Next, we quantified gene expression by pseudo-aligning reads from each backcross 

individual to the predicted CDS in the transcriptome using Salmon (Patro et al., 2017). We 
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calculated estimated read counts and TPM for each transcript. We imported Salmon quant files, 

partitioned by inferred T-locus genotype (Tt/tt), into DEseq2 with tximport (Soneson et al., 2015)

and used the DESeqDataSetFromTximport function to create a DEseq analysis object, with 

treatments corresponding to the T-locus genotype. We quantified differential expression 

between these subsets using the DESeq function. We filtered the resulting transcripts by 

adjusted p-value with a significance threshold of padj=0.05 to identify significant DE transcripts. 

We used WGCNA (Langfelder and Horvath, 2008) to identify modules of co-expressed 

genes, as we predict that the T-locus would be co-expressed with F3’h and possibly other 

flavonoid biosynthesis genes. WGCNA computes pairwise correlation coefficients, which then 

are converted to an adjacency matrix with the raw values raised to a soft-thresholding power (β)

to approximate a scale-free network. For our data, we selected a β of 7, which corresponds to 

an R2 value of 0.88 with the scale-free model and a mean connectivity of 20.4 (Supplementary 

Fig. S2). We initially used blockwise module detection on the full de novo transcriptomic dataset

of 19,184 genes, and from this first pass, we retained modules with a correlation of 0.2 or 

greater with the trait of interest (color phenotype/inferred T-locus genotype). The filtered dataset

contained 4854 genes, which allowed us to examine smaller modules (minimum size of 20 

genes). After hierarchical clustering, we merged modules that were 90% similar and re-

calculated correlations between the module eigengenes and the trait.

 We exported the resulting module containing F3’h to Cytoscape format using 

exportNetworkToCytoscape and extracted the topology overlap matrix (TOM) edge weights. We

plotted the distribution of weights for edges containing F3'h and for all other edges and used Z-

scores to capture how extreme each co-expression relationship is within the context of the 

module. We considered genes that emerged from the association mapping (above) and 

presented significantly correlated expression with F3’h as strong candidates for the T-locus. 

Phylogenetic analysis of MYB12-like genes and other SG7 MYBs

Our combined analyses of SNP association and gene expression strongly implicated an R2R3 

MYB, which we refer to as Iochroma cyaneum MYB12-like following the nomenclature in 

Capsicum (see Results). As R2R3 MYBs comprise a large group of functionally distinct 

transcription factors, we carried out phylogenetic analysis to identify the most closely related 

copies in other model Solanaceae and in Arabidopsis. We used BLAST searches to retrieve the 

top hits from tomato, potato, groundcherry, chilipepper, Nicotiana benthamiana, and 

Arabidopsis thaliana and created a protein alignment with MAFFT v. 7 (Katoh and Standley, 

8

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256



2013) using default settings. As BLAST results suggested that the most similar sequences 

belonged to the flavonoid-regulating subgroup 7 (SG7) MYBs, we included the R2 and R3 MYB 

domains through to the SG7 motif (Stracke et al., 2007, Stracke et al., 2001) in the alignment. 

The downstream positions were trimmed as they were hypervariable and could not be 

confidently aligned. We estimated a maximum-likelihood phylogeny using this SG7 amino acid 

alignment with the best-fitting model of amino acid substitutions (Q.plant+G4) and 1000 

bootstrap replicates in IQ-TREE 2.3.6 (Nguyen et al., 2015, Minh et al., 2020). We rooted the 

resulting topology on the lineage leading to the clade containing AtMYB111, AtMYB11 and 

AtMYB12 (Schilbert and Glover, 2022).

Based on this broader phylogenetic analysis, we identified a set of MYBs most closely 

related to the candidate locus. We next estimated a tree from full length coding sequences 

(CDS) from those closely related copies, which are more easily aligned. We included six 

additional Iochrominae sequences assembled by mapping reads from floral bud transcriptome 

data onto the Iochroma cyaneum genome sequence, again using STAR. Each of these six 

species is represented by two biological replicates; a consensus of the two was used for the 

phylogeny and the replicates were used to estimate the levels of MYB12-like expression in each

species using Salmon as above. We estimated the maximum likelihood tree from the CDS 

alignment with IQ-TREE, using the best-fitting model of nucleotide substitutions (TIM3+F+G4). 

Statistical analysis

We conducted statistical analyses using R version 4.2.3 and additional software as described 

above. All scripts along with input and output files are included in a single OSF repository to 

allow the results to be easily replicated (https://osf.io/j5m8f/). Raw RNASeq data from the 24 

backcross individuals (Table 1) as well as from the six Iochrominae species is available on 

NCBI’s short read archive as BioProjects PRJNA1092111 and PRJNA1102413, respectively.

Results

Localization of associated SNPs with flower color in the Iochroma genome

We recovered 92 SNPs that perfectly co-segregate with the two phenotypic pools, i.e., 

distinguish purple-flowered Tt and pink/red-flowered tt pools). The majority of these SNPs (49, 

9

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

https://osf.io/j5m8f/


53%) fall on chromosome 5 of the I. cyaneum reference assembly. We also found 28 SNPs 

mapping to a roughly 620 Kb scaffold (00085) and the remainder (15) mapping to three 

additional unincorporated scaffolds (Supplementary Fig. S1). Our subsequent analyses suggest 

that these scaffolds represent segments of chromosome 5 that were not included during the 

assembly process (Powell et al., 2022). For example, scaffold00085 aligns well with tomato 

chromosome 5 (Supplementary Fig. S3), and 95% of the CDS retrieved from that scaffold have 

top hits on tomato chromosome 5. This region appears nested within the larger region of I. 

cyaneum chromosome 5 where most of the SNP associations are clustered (Fig. 2). The three 

smaller scaffolds with associated SNPs (Supplementary Fig. S1) also BLAST to tomato 

chromosome 5 and were also likely excluded during assembly. Thus, all SNPs recovered from 

the co-segregation analysis appear to be localized along a small region of I. cyaneum 

chromosome 5.

We carried out a case-control GWAS using the same set of variant calls. This analysis 

similarly retrieved associations exclusively on chromosome 5, with significant hits in the gene-

dense region in the last 500kb of the chromosome (Fig. 2; Supplementary Fig. S4). This region 

of the genome contains 468 gene models (Supplementary Table S1), 352 of which are 

functionally annotated in the genome (Supplementary Table S2). Twenty-eight of these genes 

are annotated as transcription factors and only one corresponds to a known group of flavonoid 

regulators. This locus (IC05g034110) is annotated as a MYB111 transcription factor based on 

similarity with AtMYB111, a flavonol-regulating subgroup 7 MYB (Stracke et al., 2007); we will 

refer to this gene as Iochroma cyaneum MYB12-like (IcMYB12-like) based on the phylogenetic 

analysis (see below). The region also contains copies of one of the upstream pathway enzymes,

chalcone synthase (CHS), as well as UDP-glycosyltransferase (UGT), which can glycosylate 

various flavonoids.

Patterns of differential expression and co-expression

Our DEseq2 analysis identified 58 significantly differentially expressed transcripts between the 

two phenotypic pools in our backcross (Supplementary Table S3). The MYB transcription factor 

IcMYB12-like appears as the sixth most strongly differentially expressed gene between the 

pools (log2-fold change = -6.35, or ca. 82-fold lower expression in the pink/red pool). Its putative 

target, F3’h, is the eighth most differentially expressed (log2-fold change = -5.83, or ca. 57-fold 

lower expression in the pink/red pool). Note that the expression of F3’h in many of these 

individuals was previously measured with qPCR (Table 1; Smith and Rausher, 2011); this 
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analysis confirms the strength and degree of the differential expression between individuals 

presenting the alternate pigment phenotypes (Fig. 3A). A similar degree of differential 

expression was found for Fls between the two pools, and three other flavonoid pathway genes 

(Chs, UGt, and 3Gt) also appear among the list of significantly DE genes (Supplementary Table 

S3). These patterns could indicate some degree of regulatory control of IcMYB12-like over other

pathway steps.

In addition to examining DE genes between the two phenotypic pools, we explored co-

expression of genes across the entire set of 24 backcross individuals. If IcMYB12-like indeed 

activates floral F3’h expression, we expect the two genes to show correlated expression and to 

belong to the same co-expressed module of genes. Consistent with this prediction, our WGCNA

analysis recovered a module of 52 genes containing F3’h and IcMYB12-like (Supplementary 

Table S4). Out of the 34 modules found in the analysis, the module is the only one significantly 

correlated with the pigment phenotype (purple vs. pink/red, R2=-0.92, p=1e-10, Supplementary 

Fig. S5). Within this module, IcMYB12-like is tightly co-expressed with F3’h (Fig. 3B, 

Supplementary Table. S4). The connectivity between F3’h and IcMYB12-like, measured as 

topological overlap matrix (TOM) values from the WGCNA analysis, was the second highest in 

the set of all edges involving F3’h (Z-score: 1.96) with only the edge connecting F3’h and Fls 

having a higher value (Z-score: 2.56) (Supplementary Fig S6). We also found a tight connection 

between IcMYB12-like and Fls (Z-score: 1.83), suggesting that both F3’h and Fls are both 

regulated by IcMYB12-like. Four other flavonoid pathway genes, Chs, Chi, 3Gt, and Ugt appear 

in the module associated with the phenotype, and all except for Chi are directly connected to 

IcMYB12-like (Supplementary Table S4; Fig. 3B). Eight other loci within phenotype-associated 

module are connected to IcMYB12-like (e.g., DETOX-35-like-2 and the F-box protein 

At5g07610-like), although no functional connection is known. Three of the genes connected to 

IcMYB12-like (R1A-10, the F-box protein At5g07610-like and UGT) fall in the same genomic 

region as IcMYB12-like (Supplementary Table S2), suggesting that these co-expression 

patterns may be related to co-localization within the genome (Michalak, 2008). Indeed, 

differentially expressed transcripts are clustered around IcMYB12-like (Supplementary Fig. S7). 

Nevertheless, both F3’h and Fls occur outside of the region containing IcMYB12-like (Fig. 2), 

excluding co-localization as an explanation for their strong co-expression with IcMYB12-like.

Phylogenetic relationship of IcMYB12-like to other MYB transcription factors
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We used BLAST searches to retrieve similar sequences to IcMYB12-like. The top hits from 

Arabidopsis and Solanaceae genomes corresponded to members of subgroup 7 of R2R3 MYB 

transcription factors (Stracke et al., 2001). This subgroup controls flavonol production in 

Arabidopsis (Stracke et al., 2007) by regulating upstream steps such as CHS, CHI, and FLS, as 

well as the glycosyltransferases that stabilize these products. Maximum-likelihood analysis 

revealed that IcMYB12-like and highly similar sequences from pepper and potato are closely 

related to subgroup 7 but fall in a separate subclade, with strong support (Fig. 4A). Subgroup 7 

MYBs have been well characterized in Solanaceae (e.g., Ballester et al., 2010, Song et al., 

2019) and appear functionally similar to their orthologs in Arabidopsis. Iochroma possesses an 

SG7 MYB that is closely related to these well-characterized MYB12 genes (IC05g030210, Fig. 

4A) in addition to the divergent sequence (IC05g034110), which we refer to as a MYB12-like 

gene following the naming of CaMYB12-like in Capsicum (CA05g18430 in Fig. 4A).

Using additional BLAST searches beyond nightshade crops, we identified an additional 

member of the MYB12-like clade in Lycium, which we used to root the phylogeny including the 

additional Iochrominae sequences (Fig. 4B). The topology is similar to the species tree (Deanna

et al., 2019) although most of the branches are unsupported given that the sequences present 

few differences (Supplementary Fig. S8). Examining the expression of MYB12-like in these taxa

in relation to their floral flavonol production (Larter et al., 2019), we observed that species with 

higher MYB12-like expression also produce higher amounts of flavonols (Fig. 4B), which are 

mainly quercetin glycosides (Berardi et al., 2016). This pattern aligns well with the proposed 

function of MYB12-like in activating F3’h, which in turn produces DHQ, the precursor of 

quercetin (Fig. 1)

Discussion

This study aimed to identify the gene underlying the so-called T-locus, which acts as a 

transcriptional regulator of F3’h to determine flower color in the nightshade genus Iochroma. By 

carrying out RNASeq of floral bud tissue from multiple backcross individuals with T-locus 

genotypes assigned based on flower color (Fig. 1B), we pinpointed an R2R3 MYB transcription 

factor as the strongest candidate for the T-locus. First, our SNP-association studies narrowed 

the candidate region to 10Mb near the end of chromosome 5 (Fig. 2; Supplementary Fig. S4). 

This region of the genome contains 468 gene models, including 28 annotated as transcription 

factors. Among these, only one of these corresponds to a class of genes, SG7 MYBs, known to 

be involved in regulating flavonoid biosynthesis. This MYB12-like gene shows tightly correlated 
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expression with F3’h across the backcross (r=0.91, Fig. 3A). Indeed, these two genes emerge 

as part of a compact module in transcriptome-wide co-expression analyses, with F3’h having a 

stronger connection with MYB12-like than any other gene in the floral transcriptome with the 

exception of Fls (Fig. 3B; Supplementary Fig. S6). Given that the effect of the T-locus could be 

due to coding sequences changes only, this set of analyses cannot conclusively eliminate other 

candidate transcription factors in the associated region of the genome. Nevertheless, our 

phylogenetic analyses identify IcMYB12-like as an ortholog of chillipepper CaMYB12-like, a 

recently characterized flavonoid regulator, which like its Iochroma ortholog, acts as a positive 

regulator of F3’h (Wu et al., 2023). Together, these lines of evidence argue that the T-locus 

corresponds to the MYB12-like gene in Iochroma, which drives the origin of red flowers by 

altering floral flavonoid composition. Below we discuss how these findings contribute to our 

broader understanding of flower color evolution.

The role of MYB transcription factors in shaping floral hue 

While genetic studies of flower color have long implicated subgroup 6 R2R3 MYBs as the major 

determinants of floral pigment intensity (e.g., Quattrocchio et al., 1999, Schwinn et al., 2006, 

Streisfeld et al., 2013), work on the genetic basis of changes in floral hue has implicated a wide 

variety of molecular mechanisms (Wessinger and Rausher, 2012, Berardi et al., 2021, 

Quattrocchio et al., 2006). Differences in the type of anthocyanins produced, which in turn 

influence the type of flower color, can arise from shifts in gene regulation (either in cis- or trans-)

as well as changes in the function of pathway enzymes (Hopkins and Rausher, 2011, 

Wessinger and Rausher, 2015, Smith and Rausher, 2011, Smith et al., 2013, Wheeler et al., 

2023). Nevertheless, the identity of transcription factors that influence the type of anthocyanin 

produced (as opposed to the overall amount) has remained nebulous. 

Because of the shared precursors within the flavonoid pathway, subgroup 7 (SG7) 

transcriptional regulators of flavonol production can directly influence anthocyanin production, 

and, as shown in the present study, the type of anthocyanin produced as well. The deeply 

conserved structure of the pathway presents multiple branching points where a single precursor 

can be converted in different products depending on the enzymes present and their properties

(Tohge et al., 2013, Winkel-Shirley, 2001). The colorful anthocyanins share dihydroflavonol 

precursors (DHK, DHQ, DHM) with flavonols, creating the potential for competition between 

DFR and FLS for these substrates (Fig. 1A). Thus, the upregulation of SG7 MYBs and, in turn, 

their targets (Chs, Chi, F3h, F3’h, Fls and sometimes F3’h) generally reduces anthocyanin 
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production in favor of flavonols to produce paler flowers (Holton et al., 1993, Yuan et al., 2016, 

Wheeler et al., 2023). The precise effect of altering the expression of SG7 MYBs on flower color

will, however, depend on their target genes and the substrate preferences of multifunctional 

pathway enzymes (e.g., DFR, FLS).

In the case of Iochroma, the ability of the SG7 MYB12-like gene to alter flower color is 

likely due to the combination of a narrowing of target genes and strong substrate preferences 

among downstream enzymes. While the pepper CaMYB12-like gene activates a broad suite of 

early genes (Chs, Chi, F3h, F3’h, Fls, 3GT, Wu et al., 2023), the Iochroma ortholog only shows 

strong co-expression with F3’h and Fls (plus weaker co-expression with Chs, 3Gt and, Ugt), 

indicating a reduced suite of targets. The broad upstream action by CaMYB12-like is similar to 

that of the other well-known SG7 MYBs in Solanaceae (SlMYB12 in tomato, Ballester et al., 

2010, Fernandez-Moreno et al., 2016; NtMYB12 in tobacco, Song et al., 2019), suggesting that 

coordinated regulation of ‘early’ genes represents the ancestral state and that the functional 

shift toward specificity has occurred along the MYB12-like lineage leading to Iochroma. 

Accordingly, the loss of MYB12-like expression in I. gesnerioides flowers is not associated with 

a complete disruption in floral flavonoid pigment production (Berardi et al., 2021, Larter et al., 

2019), but a targeted reduction in DHQ through lower F3’h expression. The resulting 

accumulation of DHK is not converted to kaempferol, likely because of coordinated loss of Fls 

expression and its low preference for DHQ, at least in the berry-fruited Solanaceae like 

Iochroma (Bovy et al., 2007, Berardi et al., 2016, Rosa-Martínez et al., 2023). Instead, this DHK 

precursor is converted to red pelargonidin pigments by the DFR enzyme, which in I. 

gesnerioides, is specialized for DHK (Smith et al., 2013). Smith et al. (2013) hypothesized that, 

during the evolutionary transition from blue to red flowers, the trans-regulatory loss of F3’h 

expression occurred first, allowing the flux to shift toward red pigmentation. Under this scenario, 

the selection would be expected to favor increased activity of DFR on DHK to allow efficient 

conversion to red pelargonidins.

This MYB12-like-mediated biochemical trade of blue anthocyanins plus flavonols for red 

anthocyanins alone may have also carried ecological consequences for relationships with 

pollinators. In addition to acting as co-pigments, flavonols increase floral UV-absorbance, which 

is attractive to moth pollinators (Sheehan et al., 2016), and can also enhance fly and bee 

visitation if associated with floral patterning (Koski and Ashman, 2014). Indeed, insects 

comprise only 10% of pollinator visits to Iochroma gesnerioides compared hummingbirds, which

account for 90% of visits (Smith et al., 2008). This lack of UV-absorbing flavonols is isolated to 

I. gesnerioides flowers as the leaves produce comparable amounts of flavonols (specifically 
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quercetin) as the blue-flowered I. cyanuem (Berardi et al., 2016) and the expression of F3’h is 

actually higher in I. gesnerioides leaves than in those of I. cyanuem (Smith and Rausher, 2011).

The targeted effects of MYB12-like on floral flavonols may have thus created an accessible 

evolutionary pathway to red flowers, given that a loss of quercetin across the entire plant would 

carry significant negative pleiotropic effects (Ryan et al., 2001, Singh et al., 2021).

MYB transcription factors in the evolution of species differences

Closely related species of flowering plants are often distinguished by subtle differences in their 

reproductive organs, e.g., in the color, shape, scent, or pubescence of flowers or fruits. MYB 

transcription factors control many of these aspects of morphological development and epidermal

cell fate (Ramsay and Glover, 2005, Hileman, 2014), which may help to explain their prevalence

in underlying fixed differences between species (e.g., Preston et al., 2011, Castillejo et al., 

2020, Gates et al., 2018, Yarahmadov et al., 2020). In fact, MYB transcription factors may act 

as speciation genes when the phenotypic differences resulting from changes in their function or 

expression leads to reproductive isolation (Streisfeld et al., 2013, Sheehan et al., 2016, Lüthi et 

al., 2022). Through its simultaneous effects on visible anthocyanins and UV-absorbing 

pigments, changes in floral MYB12-like expression could have played a role in species 

divergence, although the split between the red-flowered clade containing I. gesnerioides and its 

blue-flowered relatives likely occurred 5 to 10 million years ago (Huang et al., 2023), and the 

two lineages no longer occur in hybrid zones. The I. arborescens complex (the “A” clade sensu 

Smith and Baum (2006)) presents a stronger opportunity for dissecting the role of MYB12-like in

floral isolation as red-flowered, low-flavonol primarily-hummingbird-pollinated species (e.g., I. 

edule) co-occur and hybridize with flavonol-rich insect-pollinated species (e.g., I. arborescens)

(Smith et al., 2008; Fig. 4B).

Cis-regulatory mutations involving MYBs appear to be a major target for evolutionary 

transitions, and our results suggest that regulatory changes, as opposed to functional variation, 

drive the effects of MYB12-like on flower color in Iochroma. First, the MYB12-like sequence 

from I. gesnerioides shows 6 fixed amino acid differences from its closest blue-flowered relative 

(I. calycinum), however all but one of these variants (a threonine indel close to the 3’ end, 

Supplementary Fig. 7) are segregating across Iochroma species with both low and high flavonol

accumulation (Fig. 4B). Moreover, MYB12-like expression levels are strongly predictive of 

pathway activity. Within the backcross, the red I. gesneroides parent allele of MYB12-like is 

expressed at extremely low levels, which in homozygous state translates to a near absence of 
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F3’h expression (Fig. 3A). This relationship extends above the species level, where lower levels 

of MYB12-like expression appear to be associated with lower levels of quercetin flavonols (Fig. 

4B). Beyond Iochroma, cis-regulatory mutations at MYB transcription factors frequently 

contribute to within and among species differences in flower color (Martins et al., 2017, 

Streisfeld et al., 2013, Fattorini and Ó’Maoiléidigh, 2022), a pattern that has been attributed to 

their comparatively limited pleiotropic effects (Sobel and Streisfeld, 2013). Nevertheless, the 

precise changes in the MYB promoters are unknown in these natural systems. Identifying the 

causal mutation(s) will require fine dissection of the promoter region along with in vivo or in vitro 

assays of various constructs (e.g., Espley et al., 2009, Jia et al., 2021). Although transformation 

remains challenging outside of model systems, pinpointing these causal variants is important for

ultimately understanding how and why MYBs and the modules they control can be deployed in 

new developmental contexts.

Conclusions

As a powerful group of antioxidants, flavonols have long been the focus of efforts in plant 

breeding, resulting in a detailed understanding of the subgroup 7 MYBs that largely control their 

expression across flowering plants. Within the nightshades, the best known of these MYBs are 

the orthologs of MYB12, which contribute to stress tolerance in tobacco (Song et al., 2019) and 

the color of the fruit peel in tomato (Ballester et al., 2010) via their effects on flavonoid 

production. This gene family is also expressed in Solanaceae flowers (Zheng et al., 2021), 

activating early branches of the pathway to provide both flavonol co-pigments and the 

substrates for anthocyanin biosynthesis. Our work reveals that, in addition to this canonical 

‘MYB12’ group of SG7 MYBs, Iochroma flowers also express a more divergent ‘MYB12-like’ 

lineage that has evolved narrow specificity for FLS and F3’H. This specialization, together with 

flower-specific expression, allows IcMYB12-like to act as the switch between blue and red 

flowers. Piecing together the origin of this gene’s role in floral flavonoid production will require 

additional sampling of closely related genomes as they emerge. Still, our study together with the

larger body of literature underscores how the diversification of MYB transcription factors is 

intimately connected to the diversification of plant phenotypes, from crop varieties to 

interspecies differences.
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Table S1. Gene models in the genomic region containing phenotype-associated SNPs.

Table S2. Functionally-annotated genes in the phenotype-associated genomic region.

Table S3. Differentially expressed transcripts from the DESeq analysis.

Table S4. Nodes and edges within phenotype-associated module from WGCNA analysis.

Table S5. Gene expression for MYB12-like and floral flavonol content for six Iochrominae 

species.

Table S6. Gene names and descriptions for phylogenetic analysis.

Fig. S1. Unincorporated scaffolds containing phenotype-associated SNPs

Fig. S2. Scale independence and mean connectivity for soft threshold selection for WGCNA 

analysis.

Fig. S3. Iochroma chromosome 5 and scaffold00085 mapped to tomato chromosome 5.

Fig. S4. Manhattan plots for associations with flower color across all I. cyaneum chromosomes.

Fig. S5. Module-trait relationships from the WGCNA analysis.

Fig. S6. Distribution of connectivity (TOM) values between DE transcripts.

Fig. S7. Elevated differential expression near MYB12-like locus.

Fig. S8. Amino acid alignment for MYB12-like sequences from Iochrominae and other 

Solanaceae.
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Table 1. Phenotypes and genotypes of sampled individuals from backcross population. The DEL, CYAN 
and PEL columns show the proportion of anthocyanins derived from blue delphinidin, purple cyanidin and 
red pelargonidin pigments, respectively (data from Smith and Rausher 2011). The expression of F3’h was
quantified with qPCR in Smith and Rausher (2011); individuals with ‘low’ expression have 10-fold lower 
expression than those with ‘high’. Individuals with high F3’h expression and/or primarily cyanidin 
production are predicted to be heterozygous at the T-locus with one ‘blue’ and one ‘red’ allele (Tt). The 
samples are split between Tt and tt individuals at the T-locus, and there are three replicates for each 
combination of genotypes at the other involved loci (F3’5’h and Dfr). Note that the red parental species is 
missing the functional copy of F3’5’h, so the red allele is indicated with a -.

Indiv DEL CYAN PEL F3’h expression

Inferred
T-locus

genotype F3’5’h Dfr

GCG22 0.2 0.68 0.1 high Tt F- dd

GCG55 0.3 0.63 0.1 high Tt F- dd

GCG11 0.24 0.61 0.15 high Tt F- dd

GCG98 0.2 0.7 0.1 high Tt – Dd

GCG84 0.03 0.67 0.30 high Tt – Dd

GCG25 0.2 0.62 0.2 high Tt – Dd

GCG49 0.12 0.53 0.35 high Tt F- Dd

GCG40 0.11 0.67 0.22 high Tt F- Dd

GCG94 0.3 0.57 0.2 n/a Tt F- Dd

GCG60 0.01 0.70 0.29 high Tt – dd

GCG18 0.01 0.84 0.14 high Tt – dd

GCG76 0.05 0.81 0.14 n/a Tt – dd

GCG2 0.24 0.07 0.69 low tt F- Dd

GCG61 0.2 0.14 0.7 low tt F- Dd

GCG23 0.21 0.11 0.67 low tt F- Dd

GCG24 0.2 0.14 0.7 low tt F- dd

GCG73 0.2 0.12 0.7 low tt F- dd

GCG7 0.17 0.14 0.69 low tt F- dd

GCG4 0.05 0.05 0.90 low tt – Dd

GCG85 0.02 0.04 0.94 n/a tt – Dd

GCG6 0.08 0.11 0.81 low tt – Dd

GCG9 0.05 0.04 0.91 low tt – dd

GCG104 0.1 0.08 0.9 low tt – dd

GCG43 0.07 0.06 0.87 low tt – dd
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Figures and figure legends

Fig. 1. Flavonoid pigment production in parental lines and experimental design for identifying the T-locus. 
(A) Segregating backcross populations were created from parental lines of the blue-flowered Iochroma 
cyaneum and the red-flowered I. gesnerioides. The former makes delphinidin-derived anthocyanins and 
all three of flavonols (kaempferol, quercetin and myricetin) while the latter makes only pelargonidin-
derived anthocyanins and kaempferol. The active branches of the pathway are shaded in each case. The 
enzymes shown (in ellipses) are flavonoid 3’hydroxylase (F’3H), flavonoid-3’5’-hydroxylase (F3’5’H), 
dihydroflavonol reductase (DFR) and flavonol synthase (FLS). Flavonoid intermediates are 
dihydrokaempferol (DHK), dihydroquercetin (DHQ) and dihydromyricetin (DHM). Additional steps 
upstream of DHK (e.g. involving chalcone synthase, chalcone isomerase and flavanone hydroxylase) and
downstream of DFR (e.g., involving anthocyanidin synthase, glucosyltransferase) are not shown but 
indicated with the dashed portion of the arrows. Note that F3’5’H has 3’ activity and can act on DHK in 
some taxa, but in Iochroma, it is specialized for DHQ (Smith and Rausher, 2011). The F1 hybrid produces
mainly cyanidin-derived anthocyanins and is presumed to be heterozygous at the T-locus, which controls 
F3’h expression. (B) Phenotypes and pools for RNASeq experiment. We divided the backcross population
(F1 crossed to the red parent) into a high F3’h expression purple-flowered cyanidin-producing pool 
(presumably Tt) and a low F3’h expression mostly or entire pelargonidin-producing pink to red-flowered 
pool (presumably tt). See Table 1 for more information on sequenced individuals.   
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Fig. 2. Manhattan plot showing significant SNP associations on Iochroma cyaneum 
chromosome 5. The blue-dashed line marks the cutoff for genome-wide significance (P<5x10-8).
The gold vertical line marks the location of the MYB12-like gene, which predicts F3’h 
expression. (A) The position of MYB12-like near the 3’ prime end of the chromosome. (B) 
Close-up of the region containing MYB12-like, showing the concentration of associated SNPS in
the last 500kb of the chromosome.
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Fig. 3. Co-expression of F3’h and IcMYB12-like.  (A) Expression levels for each gene in the 
two phenotypic pools. Box plots mark the first and third quantiles, with a bisecting line to 
indicate the median. The mean is denoted with an x. The Pearson correlation coefficient for the 
expression of these two genes is 0.91 (P<0.0001).  (B) Submodule from WGCNA analysis 
containing all edges including F3’h and IcMYB12-like (see Supplementary Table S4). The lines 
representing each edge are colored by the connectivity value (TOM) from WGCNA (Fig. S6); 
more closely clustered genes are more tightly co-expressed (i.e., spring layout). Enzymes 
related to the flavonoid pathway (CHS, FLS, 3’GT, UGT) are outlined along with IcMYB12-like. 
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Fig. 4. Phylogenetic position of MYB12-like proteins in relation to other subgroup 7 R2R3 
MYBs. (A) Maximum likelihood phylogeny from protein sequences. Most Solanaceae subgroup 
7 MYBs fall into large clade typically annotated as “MYB12”. MYB12-like sequences fall into a 
deeply diverged clade that appears to be sister to the MYB12 sequences. Bolded branches 
have >95% bootstrap support; values between 50 and 95% bootstrap support are shown. (B) 
Maximum likelihood phylogeny for MYB12-like sequences based on a complete CDS alignment.
Bootstrap supports are shown as in (A). Tip values for MYB12-like expression (TPM) and floral 
flavonol content (in mg/g from Larter et al. 2019) for six species are colored by magnitude (see 
Supplementary Table S5 for raw data). These data are graphed in the inset figure with the 
dashed line showing the linear trend. Iochroma cyaneum is not included as data from previous 
transcriptomic analyses (Gates et al. 2018) are not directly comparable with the de novo 
transcriptomes from the present study. Full names and sources for all sequences used in this 
analysis are given in Supplementary Table S6. Branch lengths in both trees are in substitutions 
per site.
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