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Abstract 6 

1. Phenological shifts caused by climate change are increasingly documented in wild 7 

populations by the widespread collection of datasets on reproductive timing and 8 

success. These phenological events are often inferred by examining changes in 9 

population abundance and age structure throughout the breeding season. However, the 10 

quantitative relationship between the observed proportion of juveniles over time and 11 

the underlying distribution of breeding times (e.g., onset of reproduction) and average 12 

reproductive success is often not explicitly addressed. In addition, potential biases 13 

introduced by selection on reproductive phenology or by the sampling design can affect 14 

our inference of reproductive phenology and success.  15 

2. In this study, taking the example of bird monitoring, we proposed an analytical model 16 

to relate the proportion of juveniles in counts (e.g., mist-net captures) to the distribution 17 

of fledging dates and mean reproductive success in the population. We then infer laying 18 

dates from fledging dates, accounting for putative selection through fertility and/or 19 

juvenile survival to fledging. We simulated varying levels of variance, selection 20 

strength, and sampling effort.   21 

3. Our simulation results show that our approach is able to recover the true mean and 22 

variance of laying dates and the mean reproductive success under ideal conditions 23 
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(large sampling effort, no selection). It notably corrects for the fact that the mean 24 

fledging time lags behind the inflection point in the proportion of sampled juveniles, all 25 

the more so as laying date variance and reproductive success are high. Selection for 26 

earlier breeding systematically biases the estimates of mean laying dates, but we show 27 

how this bias can be corrected if information on selection strength is available. Multi-28 

site analyses reveal that low sampling effort and high within-site variation can introduce 29 

further biases, but also suggest that four sampling sessions with reasonable effort per 30 

year provides reasonable estimates. 31 

4. These findings underscore the importance of explicitly modeling the population 32 

processes (including possibly selection), and carefully planning sampling designs, to 33 

improve the accuracy of phenological estimates from population monitorings, and 34 

better interpret climate-driven changes in wild populations. 35 

 36 
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Introduction 38 

Phenological shifts represent a major biological response to climate change (Parmesan & Yohe, 39 

2003). Consequently, documenting these changes has become a central objective in ecological 40 

research, as they offer early indicators of ecosystem disruptions. However, inferring 41 

phenological shifts from long-term programs can poses significant methodological challenges 42 

(Brown et al., 2011, 2016). On the one hand, direct methods that follow individual parents 43 

allow assessing the exact date of the breeding onset (e.g., the laying date) and reproductive 44 

investment/output (e.g., the number of laid eggs) for each couple, providing detailed insight 45 

into breeding phenology. However, these methods are very labor-intensive, requiring e.g., 46 

weekly checks to all nest boxes (for hole-nesting birds) during the entire breeding season. On 47 

the other hand, indirect methods that simply count individuals of different classes (e.g., 48 

juveniles, mature, …) at the population level, and outside of their nests, are easier to implement, 49 

as they only require setting up a few sampling sessions. However they require some post-50 

processing to yield reproductive parameters, and may be subject to biases associated with 51 

difficulties in taking into account varying sampling effort (Schmeller et al., 2009). 52 

One simple way to infer breeding onset from population-level monitoring is to track 53 

temporal changes in the proportion of juveniles in the population (Fig. 1). By conducting 54 

several sampling sessions throughout the breeding season, often with the support of citizen 55 

science, researchers obtain a time series of juvenile counts (and proportions) that reflects the 56 

underlying distribution of breeding onset. At the start of the breeding season, the proportion of 57 

juveniles is zero. It then increases before reaching a plateau after all reproduction is completed 58 

(Fig. 1). Clearly, this pattern captures several important aspects of breeding phenology: the 59 

position of the curve should change with the mean breeding phenology, its steepness relates to 60 

phenological variation (with more variable populations displaying more shallow change), and 61 

its asymptote (height of the plateau) should increase with reproductive success. All these 62 
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aspects have ecological importance: variance in phenology is a pre-requisite to its heritability 63 

and thus evolution under climate change, and reproductive success is more directly relevant to 64 

the persistence of a population than breeding time per se. However, beyond these qualitative 65 

statements, there is surprisingly little quantitative investigation of how well reproductive 66 

parameters can be inferred from time series of proportions of juveniles. Moussus et al. (2010) 67 

evaluated and proposed different methods to estimate breeding phenology based on counts and 68 

age-ratios over the breeding season, and showed that Generalized Additive Models (GAMs) 69 

with a fixed shape but shifting position accurately estimated between-year variation in mean 70 

fledging phenology. However, they did not take into account phenological variance and 71 

reproductive success, which are not only interesting per se, but also tightly linked to the 72 

estimate of mean phenology, as we show below. More recently, Cuchot et al. (2024, 2025) 73 

proposed a parametric method estimating the inflection point, steepness, and asymptote of a 74 

sigmoid (logistic) curve for the change in juvenile proportion over the breeding season. This 75 

should allow inferring the different aspects of reproductive phenology highlighted above (mean 76 

and variance of fledging time, and reproductive success), but this link was left implicit in this 77 

approach. There is therefore a need for an approach that explicitly relates reproductive 78 

parameters to the proportion of juveniles over time.  79 

An additional limit of methods that rely on observations or captures outside the nest is 80 

that they can only estimate the parameters of juvenile emergence, rather than birth. There is 81 

generally a time lag before juveniles can be observed in their habitat. For hole-nesting birds, 82 

this lag includes the incubation time, plus the time it takes for nestling to be able to fledge and 83 

leave the nest. Not only does this lag need to be accounted for to estimate breeding phenology, 84 

but it can also lead to significant modifications of the distribution of breeding times. For 85 

example in birds, laying date can be subject to strong selection pressures (via the number of 86 

eggs and/or fledglings produced), which vary in intensity and timing depending on 87 
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environmental conditions (de Villemereuil et al., 2020; Porlier et al., 2012; Visser & Both, 88 

2005). Consequently, the timing of emergence (i.e., rise in frequency) of juveniles outside of 89 

their nests, as well as their number, are influenced not only by their birth date and number, but 90 

also by the selection they have undergone. This can lead to potential biases when inferring 91 

breeding phenology.  92 

In this study, we develop a mathematical model that starts from population-level 93 

processes—distribution of laying dates, reproductive success, and selection—to predict the 94 

observed proportion of juveniles in samplings over the breeding season. Analytical 95 

investigation of this model reveals how (i) the parameters of fledging phenology quantitatively 96 

affect the observed proportions of juveniles; and (ii) parameters of breeding phenology can be 97 

inferred from fledging phenology, if information about selection is available. We then simulate 98 

the process of collecting population-monitoring data throughout the breeding season, and 99 

estimating fledging and laying date phenology and reproductive success using this model, for 100 

populations with varying degrees of variance and selection pressure. Finally, we compare 101 

different sampling designs with varying levels of effort to determine their effectiveness in 102 

estimating reproductive parameters across sites. 103 

  104 
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Methods  105 

Theoretical predictions 106 

General model for proportions of juvenile  107 

The direct observation is number of sampled juveniles 𝐽𝑡 and adults 𝐴𝑡 at a given site at time t. 108 

From this we want to infer (1) the distribution 𝑔(𝑧) of breeding time 𝑧, and (2) the mean 109 

reproductive success R.  110 

 The number 𝐽𝑡 of sampled juveniles at time t is assumed to be drawn from a binomial 111 

distribution, with parameters 𝑝𝑡 (the true proportion of juveniles in the population at time t) 112 

and 𝑁𝑡 = 𝐽𝑡 + 𝐴𝑡 (the total number of sampled individuals at time t). Denoting with non-113 

capitalized letters 𝑗𝑡 and 𝑎𝑡 the true numbers of juveniles and adults in the population at time 114 

t, we have 115 

𝑝𝑡 =
𝑗𝑡𝑐𝑗,𝑡

𝑗𝑡𝑐𝑗,𝑡+𝑎𝑡𝑐𝑎,𝑡
     (1) 116 

where 𝑐𝑗,𝑡 and 𝑐𝑎,𝑡 are the sampling probabilities of juveniles and adults at time t. The critical 117 

step in the derivation involves expressing the number of juveniles at time t from the cumulative 118 

reproduction of parents breeding at different times before, weighted by offspring survival to 119 

fledging (and non-dispersal), 120 

𝑗𝑡 =
1

2
∫ 𝑎𝑧𝑔(𝑧)𝑊(𝑧)𝑑𝑧

𝑡−𝑇𝑓

−∞
.    (2) 121 

(Note that the integral runs from −∞ for technical convenience but this will not impact the 122 

results as long as all individuals reproduce later than time 1 - January 1st - which will be the 123 

case in most studies).  Importantly, eq. (2) introduces the distribution 𝑔(𝑧) of breeding times 124 

(e.g. laying dates) in the population, which quantifies the reproductive phenology that we aim 125 

to infer. The time to fledge 𝑇𝑓 is the time interval between egg laying and fledging of the 126 
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juvenile out of the nest, where it may be sampled. The factor half in eq. (2) accounts for the 127 

fact that only females produce offspring (assuming even parental sex ratio). The distribution of 128 

breeding times 𝑔(𝑧) is weighted in eq. (2) by the fitness function 𝑊(𝑧), which determines how 129 

the time 𝑧 at which parents breed influences their breeding success, as well as the survival-to-130 

fledging of their hatchlings. Expanding further, we have  𝑊(𝑧) = 𝐹(𝑧)𝑆(𝑧), where 𝐹(𝑧) is the 131 

fertility (clutch size) of parents reproducing at time 𝑧, and 𝑆(𝑧) is the survival probability of 132 

individuals hatched from eggs laid at time 𝑧. (𝑆(𝑧) could also include the probability of non-133 

dispersal of these offspring, in which case 𝑊(𝑧) would not be a fitness function stricto sensu). 134 

Adults that do not breed also contribute to 𝑊(𝑧), simply leading to a reduction of the mean 135 

breeding success. 136 

 At the end of the breeding season, the total number of fledglings produced is  137 

𝑗∞ = ∫
𝑎𝑧

2
𝑔(𝑧)𝑊(𝑧)𝑑𝑧

∞

−∞
=

�̅�

2
𝑅    (3) 138 

where �̅� = ∫ 𝑎𝑧𝑔(𝑧)𝑑𝑧
∞

−∞
 is the mean number of breeding adults over the breeding season (and 139 

�̅�/2 the mean number of breeding females, assuming even sex ratio), and  140 

𝑅 =
∫ 𝑎𝑧𝑔(𝑧)𝑊(𝑧)𝑑𝑧

∞
−∞

∫ 𝑎𝑧𝑔(𝑧)𝑑𝑥
∞

−∞

      (4) 141 

is the mean reproductive success per breeding pair (or per female), that is, the average number 142 

of fledglings they produce over the breeding season. Combining with eq. (1), the asymptotic 143 

proportion of juveniles in the population is thus 144 

𝑝∞ =
𝑅

𝑅+2𝑟𝑐
      (5) 145 

which only depends on the mean reproductive success 𝑅 and on 𝑟𝑐 =
𝑎∞

�̅�

𝑐𝑎,∞

𝑐𝑗,∞
,  the ratio of the 146 

final to the average number of adults over the breeding season, multiplied by the final ratio of 147 

sampling probabilities between juveniles and adults.  148 

If we further assume that (i) sampling probabilities are the same in juveniles and adults 149 

at any time (but may still vary over time, for instance because of variable sampling effort), such 150 
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that 𝑐𝑗,𝑡 = 𝑐𝑎,𝑡 = 𝑐𝑡; and (ii) the total number of parents in the population does not vary much 151 

over a breeding season, such that 𝑎𝑡 ≈ 𝑎 for all t, then we get 152 

𝑝𝑡 =
𝑅𝐺∗(𝑧−𝑇𝑓)

2+𝑅𝐺∗(𝑧−𝑇𝑓)
      (6) 153 

where the mean reproductive success becomes 154 

𝑅 = ∫ 𝑔(𝑧)𝑊(𝑧)𝑑𝑧
∞

−∞
,     (7) 155 

and 156 

𝐺∗(𝑧) = ∫
𝑔(𝑧)𝑊(𝑧)

𝑅

𝑡

−∞
𝑑𝑧     (8) 157 

is the cumulative distribution of breeding times after selection in the ongoing generation. In 158 

other words, the function 𝐺∗(𝑧 − 𝑇𝑓) is the cumulative probability of successful breeding 159 

attempts producing offspring that eventually survive to fledge some time 𝑇𝑓 later, allowing 160 

them to be potentially sampled as juveniles at the sampling site. The asymptotic proportion of 161 

juveniles at the end of the breeding season is  162 

𝑝∞ =
𝑅

2+𝑅
        (9) 163 

Reciprocally, assuming that the curve relating the proportion 𝑝𝑡 of juveniles to time has been 164 

fitted empirically, this curve can be used to estimate the mean reproductive success as  165 

�̂� =
2𝑝∞

1−𝑝∞
,      (10) 166 

and the cumulative distribution (after selection) of breeding times up to time z as (combining 167 

eqs. (6) and (9)) 168 

𝐺 ∗̂(𝑧 − 𝑇𝑓) =
𝑝𝑧 (1−𝑝∞)

(1−𝑝𝑧) 𝑝∞
.    (11) 169 

Equation (11) thus shows that the cumulative distribution of breeding times, accounting for 170 

potential effects of selection in the ongoing generation, is simply the odds ratio of frequency 171 

of juveniles at time z over their final frequency. The distribution of fledging times (rather than 172 
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breeding times) is simply obtained by removing the term −𝑇𝑓 in eq. (11). We will now proceed 173 

to derive more explicit results based on this foundation.  174 

Analytical predictions under specific assumptions 175 

Logistic curve for 𝑝𝑡 176 

For practical purposes, it is convenient to fit the proportion of juveniles in catches as a logistic 177 

function of time,  178 

𝑝𝑡 =
𝑝∞

1+exp(−
𝑡−𝑡𝑚

𝑏
)
     (12) 179 

where 𝑝∞ is the asymptotic (maximum) proportion of juveniles (as in eq. 9), 𝑡𝑚 is the time at 180 

which 𝑝𝑡 = 𝑝∞/2 (midpoint and inflection point of the curve), and 𝑏 controls the slope at 𝑡𝑚 181 

(with steeper slopes under smaller b). What makes equation (12) especially useful is that it can 182 

be combined with binomial error to yield a modified logistic regression, allowing estimation 183 

of 𝑝𝑡 from raw counts 𝐽𝑡 and 𝐴𝑡 for juveniles and adults, respectively (Cuchot et al., 2024). 184 

Combining with eq. (11), taking the derivative with respect to time, and scaling to an integral 185 

of 1, leads to the probability density function of breeding times, from which all moments of the 186 

distribution can be derived.  In particular, the estimated mean breeding time after selection is  187 

𝜇∗̂ = 𝑡𝑚 − 𝑇𝑓 − 𝑏 log(1 − 𝑝∞)    (13) 188 

(the mean fledging time is simply 𝜇∗̂ + 𝑇𝑓 = 𝑡𝑚 − 𝑏 log(1 − 𝑝∞)), and the variance in fledging 189 

time (or breeding time weighted by selection) is 190 

𝜎𝑧
2∗̂ =

𝜋2𝑏2

3
.     (14) 191 

Interestingly, eq. (13) shows that the mean breeding time in the population is not directly 192 

estimated by the midpoint 𝑡𝑚 of the logistic curve for 𝑝𝑡 (corrected by fledging time 𝑇𝑓). 193 

Instead, the true mean breeding time occurs later (since −log(1 − 𝑝∞) > 0 for all 0 < 𝑝∞ <194 

1), all the more so as the slope of the logistic function is shallower (larger 𝑏), and the final 195 
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frequency of juveniles 𝑝∞ is larger. In other words, the midpoint of the frequency of juveniles 196 

in catches precedes the true mean fledging time, with a larger advance when the mean 197 

reproductive success (from eq. 9) and/or the variance of breeding time (eq. 14) are large (Fig. 198 

1). On the other hand, the variance of breeding times is proportional to the squared slope 199 

parameter 𝑏2, and does not depend on any other parameters of the logistic curve.  200 

Gaussian fitness peak 201 

As mentioned above, whenever breeding time influences fitness by affecting clutch size and/or 202 

survival to fledging, samples outside of the nests can only infer the post-selection distribution 203 

of breeding time (density 𝑔∗(𝑧) and cumulative distribution 𝐺∗(𝑧)), not the baseline 204 

distribution 𝑔(𝑧) of breeding times in parents before selection. To understand how these two 205 

distributions are related, we assume that the pre-selection distribution 𝑔(𝑧) is normal, with 206 

mean 𝜇 and variance 𝜎𝑧
2, and make use of classic results from evolutionary quantitative genetics 207 

(Lande, 1976; Walsh et al., 2018). In addition, more analytical progress can be achieved when 208 

also assuming a specific shape for the fitness function 𝑊(𝑧) = 𝐹(𝑧)𝑆(𝑧). A typical assumption 209 

for phenology, supported by empirical analyses (Chevin et al., 2015; de Villemereuil et al., 210 

2020; Gamelon et al., 2018; Reed et al., 2013), is that fitness is maximized at some intermediate 211 

optimum breeding time 𝑧, such that reproducing too early or too late is detrimental. This is 212 

typically modelled by making fitness a Gaussian function of breeding time, 213 

𝑊(𝑧) = 𝑊max exp (−
(𝑧−𝜃)2

2𝜔2
),    (15) 214 

where 𝜃 is the optimal breeding time where reproductive success is highest (fitness peak), 𝑊max 215 

is the maximum fitness of parents that breed at that optimal timing (peak height), and 𝜔 is the 216 

width of the fitness peak, with narrower peaks leading to stronger stabilizing selection. If both 217 

fertility and viability exert stabilizing selection in a form similar to eq. (15), then the effective 218 
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width, height, and optimum of the peak for the resulting total fitness function in eq. (15) can 219 

be derived from their basic parameters (Cotto & Chevin, 2020).  220 

Under these assumptions, the mean breeding time after selection in the ongoing 221 

generation is (modified from Lande, 1976) 222 

𝜇∗ = 𝜇 −
𝛿

�̃�2+1
,    (16) 223 

where 𝛿 = 𝜇 − 𝜃 is the mean phenotypic mismatch with optimum (positive for delayed 224 

reproduction), and �̃� = 𝜔/𝜎𝑧 is the standardized peak width (scaled to the standard deviation 225 

of the trait). Equation (16) shows that selection in the ongoing generation changes the mean 226 

phenotype in a direction opposite to the phenotypic mismatch with optimum 𝛿 (hence the minus 227 

sign), thus bringing the mean phenotype back towards the optimum, to an extent that increases 228 

with the magnitude of the mismatch 𝛿 and the standardized strength of stabilizing selection 229 

(stronger with smaller �̃�) (Lande, 1976). The phenotypic variance after selection is 230 

𝜎𝑧
2∗ =

�̃�2

�̃�2+1
𝜎𝑧

2     (17) 231 

which importantly does not depend on the mismatch 𝛿. The ratio in eq. (17) is always lower 232 

than 1, showing that selection for an optimum phenotype always reduces phenotypic variance, 233 

all the more so as peak width is small relative to the phenotypic variance (small �̃�), leading to 234 

strong stabilizing selection. Stabilizing selection also influences the mean reproductive success 235 

𝑅, which is equal to the mean fitness (eq. 7), such that 236 

�̂� = 𝑊max√
�̃�2

�̃�2+1
exp (−

�̃�2

2(�̃�2+1)
),    (18) 237 

where 𝛿 = 𝛿/𝜎𝑧 is the standardized phenotypic mismatch. Equation (18) shows that for a given 238 

reproductive potential (quantified by 𝑊max), the mean reproductive success is reduced when 239 

the mean phenotype deviates from the optimum (𝛿 ≠ 0), as expected. But even when the mean 240 

phenotype is at the optimum, the reproductive output is still reduced by phenotypic variance 241 
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causing some individuals to deviate from the optimum (decreasing √
�̃�2

�̃�2+1
≤ 1, variance load, 242 

Lande & Shannon, 1996).  243 

 If the standardized peak width �̃� and mismatch with optimum (both raw 𝛿 and 244 

standardized 𝛿) can be known independently, then it is possible to work backwards from post-245 

selection estimates based on the proportion of juveniles over time (eqs (10), (13) and (14)), 246 

combined with the effect of selection in eqs (16-18), to infer pre-selection breeding parameters 247 

as 248 

�̂� = �̂�∗ +
𝛿

�̃�2 + 1
 249 

𝜎𝑧
2̂ =

�̃�2+1

�̃�2 𝜎𝑧
2∗̂      (19) 250 

𝑊max̂ = �̂�√
�̃�2 + 1

�̃�2
exp (

𝛿2

2(�̃�2 + 1)
) 251 

where the hat notation denotes a statistical estimate.  252 

Simulations 253 

Validating analytical predictions 254 

To validate the analytical results above and assess their ability to estimate the true breeding 255 

phenology, we simulated datasets of breeding time and sampling of juveniles and parents, 256 

varying 𝑊max, 𝜎 and 𝜔. We drew the laying dates of 1000 breeding pairs from a normal 257 

distribution with mean 𝜇, fixed to 90 in the simulations, and standard deviation 𝜎, ranging from 258 

3 to 10. The number of sampling sessions was initially set to 150 to be non-limiting (but see 259 

below). We set the time to fledge 𝑇𝑓 to 40, as this is generally considered to be a good 260 

approximation for blue and great tits (20 day of incubation followed by about 20 days to 261 

fledge). We modeled the relationship between breeding time and reproductive success for each 262 
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breeding pair using a Gaussian fitness function (following eq. 15), centered on an optimum 𝜃 263 

set to 20 days before mean laying date. This 20-day delay was introduced to account for the 264 

fact that selection for earlier breeding is generally found in birds, and is often ascribed to a 265 

mismatch with the optimal laying date (Chevin et al., 2015; de Villemereuil et al., 2020; 266 

Gamelon et al., 2018; Reed et al., 2013). The Gaussian fitness peak is also characterized by its 267 

standardized width �̃� determining the intensity of stabilizing selection, with smaller �̃� leading 268 

to a narrower peak and thus stronger stabilizing selection. The peak height 𝑊max sets the 269 

reproductive success of well-adapted parents with the optimal laying date. The number of eggs 270 

laid by each pair was drawn from a Poisson distribution, with expectation provided by the 271 

fitness function evaluated at their laying date. Once the laying dates and the number of eggs 272 

per pair were established, we simulated sampling of juveniles and adults from the population 273 

at specific times corresponding to sampling sessions, evenly spaced between the start and end 274 

of the sampling protocol.  275 

Each parameter combination was simulated 10 times, and the results were averaged 276 

over these replicates. For each combination of parameters and simulation repeat, we estimated 277 

a sigmoid curve for the proportion of juveniles over time from the population-monitoring data, 278 

implementing the non-linear sigmoid model from equation (12) using R2jags (Su & Yajima, 279 

2021) package on R (R Core Team, 2024). We ran the models with 4000 iterations, 1000 of 280 

burning, 3 chains and with weakly informative priors (Appendix 3). We then transformed 281 

estimates of parameters from this function to obtain the required fledging parameters from 282 

equations (10), (13) and (14). We also predicted the mean and variance of breeding time, 283 

(before selection) and the maximum fitness Wmax, from the (assumed to known) selection 284 

parameters (equation 19).  285 
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Comparing sampling schemes 286 

In the simulations described in the previous section, we deliberately set the numbers of 287 

sampling sessions and breeding pairs to very high values, enabling us to establish clear links 288 

between breeding and selection parameters on one hand, and proportion of sampled juveniles 289 

on the other hand, regardless of considerations on inference strength. However, this was not 290 

meant to realistically model real sampling schemes, which generally include only a handful of 291 

sampling sessions. Fewer sampling sessions and number of breeding pairs, which jointly 292 

characterize sampling effort, are expected to reduce the accuracy of the estimates of breeding 293 

parameters (Arizaga et al., 2023). Nevertheless, Cuchot et al. (2024) suggested that the lack of 294 

annual data per site could be compensated by pooling data from multiple sites, including year 295 

and site as random effects in the analysis. 296 

To assess this claim, we next simulated data with more realistic parameter values, 297 

corresponding to two typical designs from European ringing program (Robinson, 2023), 298 

differing by their number of capture (i.e. sampling) sessions per year (from three to ten). For 299 

each set of simulated data, we proceeded as if we had pooled 150 populations that varied in 300 

their mean laying dates, but otherwise had similar distribution of phenology (normal 301 

distributions with the same within-population variance). Grand mean laying date was set to 90 302 

(as previously) and 𝜔 (the unstandardized peak width) to 100 (vanishingly weak selection). 303 

The between-site standard deviation in laying dates was set to 10, and we compared different 304 

magnitudes of within-population standard deviations (1, 5 and 10).  This approach allowed us 305 

to assess how the sampling design (number of capture sessions) and sampling effort (number 306 

of capturable pairs on the sampling site, set to 15 for low sampling effort and 200 for high 307 

sampling effort) affects the accuracy and precision of estimates for breeding phenology. It also 308 

allowed to assess how well the between-site variance in laying date could be estimated. During 309 

the sampling sessions, we set the total number of sampled individuals to be 80% of the flying 310 
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individuals (include the parents and fledglings). For each set of parameters, we fit the same 311 

non-linear model (eq. 12) to these simulated datasets, but now also including a random effect 312 

for site on the sigmoid inflection point 𝑡𝑚(equation 20, 21).  313 

𝑝𝑡,𝑠𝑖𝑡𝑒 =
𝑝∞

1+exp(−
𝑡−(𝑡𝑚+𝜌𝑠𝑖𝑡𝑒)

𝑏
)
     (20) 314 

 315 

𝜌𝑠𝑖𝑡𝑒~𝑁(𝜇𝜌 𝑠𝑖𝑡𝑒 , 𝜎²𝑠𝑖𝑡𝑒)     (21) 316 

with 𝜎²𝑠𝑖𝑡𝑒  being the between-site variance. We ran the models with 50000 iterations, 20000 317 

of burning. The model is detailed in appendix 3. From this we calculated 𝜇∗̂ from equations 318 

(13), 𝜎²𝑠𝑖𝑡𝑒 from model output, and compared them to the predictions from simulated 319 

parameters, across varying numbers of capture sessions and breeding pairs. Each combination 320 

of parameter and model was simulated 20 times. 321 

  322 



16 

 

Results 323 

Analytical predictions for breeding phenology  324 

We derived an analytical model to predict observed proportions of sampled juveniles over the 325 

breeding seasons from the underlying distribution of laying dates and mean reproductive 326 

success in a population. A striking result from this model is that, even without selection, the 327 

mean fledging time is not directly predicted by the inflection point (or midpoint) of the curve 328 

relating the proportion of juveniles to time. Instead, the mean fledging time lags some time 329 

after the midpoint. From eqs (9), (13) and (14), this lag is  330 

𝐿 = √3
𝜎𝑧

𝜋
log (

2+𝑅

2
)    (22) 331 

which increases proportionally to the phenotypic standard deviation in breeding times 𝜎𝑧, and 332 

also increases with the mean reproductive success R. This is illustrated in Figure 1, which 333 

shows that the true mean fledging time (dashed gray line, occurring sometime after the mean 334 

breeding time shown in continuous gray line) occurs later than the midpoint in the proportion 335 

of juveniles, all the more so as phenotypic variance (Fig. 1A) or the reproductive success (Fig. 336 

1B) are large. The reason for this lag L is that the proportion of juveniles in sampled individuals 337 

is not the cumulative distribution of fledging times per se, as it also depends on the number of 338 

adults. The midpoint therefore needs to be transformed using eq. (11) to reach information 339 

about fledging times (or breeding time, after correcting by time to fledge).  340 

An important consequence of eq. (22) is that the mean reproductive success and the 341 

variance in breeding times, even when they are not the main focus per se, are both key to 342 

predicting the mean phenology. Fortunately, these parameters can also be estimated from 343 

proportion of juveniles among samples using simple formulas (eqs. 10 and 14, respectively). 344 

Hence, the analytical theory predicts that the sigmoid curve relating the proportion of juveniles 345 
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in samples to time contains important quantitative information about reproductive phenology 346 

and success. As a proof of principle, and since some of these predictions were based on 347 

mathematical approximations, we have verified them using simulations. 348 

Estimating fledging parameters in simulations. 349 

Our analyses of simulation results demonstrate that the method yields accurate estimates of 350 

fledging phenology and reproductive success (Fig. 2). The mean fledging time is well estimated 351 

by eq. (13) (solid vs dashed black lines in Fig. 2A), while directly using the midpoint of the 352 

logistic curve leads to anticipating the true fledging time by as much as 10 days in our example 353 

(grey lines in Fig. 2A). This delay increases with higher variance in breeding time and 354 

reproductive success, as predicted by eq. (22). Our approach also correctly estimates the 355 

variance in fledging time, although underestimating it slightly (Fig. 2B). This underestimation 356 

is partly explained by the fact that the realized variance in the population is expected to be 357 

lower than the theoretical variance because of the finite number of breeding pairs (reduced in 358 

proportion 1 – 1/n, with n the number of pairs). This underestimation of the phenological 359 

variance leads to a small underestimation of the mean fledging time (continuous vs dashed 360 

lines in Fig. 2A), owing to the dependence of the estimated mean fledging time on the variance 361 

(eqs. 13 and 22). The asymptotic proportion of juveniles consistently provides robust estimates 362 

of the reproductive success (Fig. 2C).  363 

From fledging to breeding parameters. 364 

Having validated that the fledging phenology and reproductive success can be estimated 365 

accurately through sampled juvenile, we next proceed to inferring phenological parameters 366 

prior to fledging, relating to the laying date of breeding pairs. Beyond just accounting for the 367 

delay between the laying date and fledging date quantified by the time to fledge 𝑇𝑓, we also 368 
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allow for selection, by letting the reproductive success of a breeding pair (number of offspring 369 

that reach the fledgling stage) depend on the match between their laying date and an optimum 370 

laying date that is earlier than the mean phenotype in the population (following eq. 15, 371 

consistent with Chevin et al., 2015; de Villemereuil et al., 2020). We consider estimates that 372 

do, or do not, correct for the influence of selection, assuming in the former case that selection 373 

parameters can be estimated through other means.  374 

For a given mean laying date (dashed grey line in Fig. 3A, fixed at 90 days), selection 375 

for earlier breeding causes the mean fledging time to become earlier, all the more so as the 376 

phenotypic variance is large (dashed black line in Fig. 3A) and selection is strong (smaller 𝜔, 377 

lower panel in Fig. 3A). If selection is not accounted for and the mean laying date is simply 378 

estimated by subtracting 𝑇𝑓 from the mean fledging time, this leads to a systematic downward 379 

bias in the estimation of laying dates (light grey line in Fig. 3A). The magnitude of this bias 380 

increases with greater variance in laying date and stronger selection, mirroring the trend in the 381 

mean fledging time. Stabilizing selection induced by the fitness peak with an optimum also 382 

significantly reduces the variance in fledging dates (black dashed lines in Fig. 3B) relative to 383 

the variance in laying dates (grey dashed lines in Fig. 3B), all the more so as selection is 384 

stronger (lower panel in Fig. 3B). Finally, selection causes the realized mean reproductive 385 

success in the population (black dashed lines in Fig. 3C) to be lower than the maximum 386 

reproductive success of a pair with optimal laying date (grey dashed lines in Fig. 3C), all the 387 

more so as selection is strong. These influences of selection on phenological and reproductive 388 

parameters qualitatively match the predictions from eqs. (16-18). 389 

Assuming that the parameters of the fitness function in eq. (15) are known from other 390 

approaches, we are able to correct for the influence of selection on all estimated breeding 391 

parameters, working backwards from the fledging parameters estimated through the proportion 392 

of juveniles in samples. The mean laying date (Fig. 3A) and maximum reproductive success 393 
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are very well estimated in all conditions (continuous vs dashed lines in Fig. 3C; see also 394 

Appendix 1, Figs. S1-3). The standard deviation of breeding phenology is still underestimated 395 

(dashed vs continuous line of same color in Fig. 3B), as without selection (Fig. 2B), but 396 

interestingly this bias seems to be less pronounced as selection becomes stronger (lower vs 397 

upper row in Fig. 3B; see also Appendix 1, Fig. S2). Furthermore, the effect of selection on 398 

phenological SD is well corrected by our approach (black vs grey lines in Fig. 3B).   399 

Power in a multi-site approach 400 

So far, we have used ideal conditions as proof of principle for the validity of our approach. We 401 

now investigate the method's performance under more realistic conditions. Specifically, we 402 

focus on scenarios involving pooled data from multiple sites, each with moderate sampling 403 

effort, and variation in mean laying date between sites. We incorporate random effects in the 404 

midpoint of the sigmoid curve to improve estimation of grand mean phenology (across sites), 405 

together with providing information about site-to-site variation in mean phenology.  406 

For a given mean laying date (dashed black line in Fig. 4A, fixed at 90 days), large 407 

within-site variance in laying date causes mean fledging time to be estimated earlier (from 1 to 408 

3 days difference, depending on the number of sampling session) when sampling effort is low 409 

(Fig. 4A). Within-site variation in laying date is systematically underestimated, but this bias is 410 

reduced when switching to high sampling effort and increasing the number of capture sessions 411 

from 4 to 10. The reproductive success is systematically very well estimated, with in the worst 412 

case a difference of 0.5 offspring with the true value, with slight under-estimation in the 413 

scenarios with high within-site variation in laying date (Fig. 4C). Between-site variation in 414 

fledging date is slightly underestimated, except in scenarios with the fewest sampling sessions 415 

(n = 3), where it is slightly overestimated—particularly in scenarios with low variation in 416 

fledging time (Fig. S4). As described in eq. (13), mean and variance in fledging time are linked, 417 
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and this relationship may explain why the mean fledging time underestimated in scenarios 418 

where the standard deviation is also underestimated (Fig. 4A-B). These simulations highlight 419 

the trade-offs between maximizing the number of sessions, sites, or individuals sampled in 420 

designing effective sampling schemes.  421 
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Discussion 422 

Assessing reproductive parameters from population samples over time 423 

In this study, we aimed at understanding how to infer breeding phenology - laying and fledging 424 

time - and reproductive success from the emergence of juveniles among sampled individuals, 425 

typically passerines in mist-net capture schemes. Our approach confirmed that a three-426 

parameter function describing how the proportion of juveniles in samples changes along the 427 

breeding seasons allows a good assessment of the mean population breeding phenology. 428 

However, we show that the midpoint of the sigmoid curve does not directly predict this mean 429 

phenology. Instead, it needs to be corrected using the asymptote and maximum slope of the 430 

sigmoid curve (eq. 13). Failing to do so may lead to inferring spurious correlations between the 431 

mean phenology and the phenological variance, or the mean reproductive success. 432 

Nevertheless, if only the midpoint varies, it can still be used to study variation in mean 433 

phenology across sites and time (Fig. 4 and Fig. S2). Moreover, we showed that, beyond just 434 

the average breeding phenology, this method also allows a good assessment of phenological 435 

variance and the reproductive success, respectively from the maximum slope and asymptote of 436 

the curve. Finally, we demonstrated that this method can leverage hierarchical modeling to 437 

estimate breeding parameters across sampling sites. We also identified important aspects of the 438 

sampling design, suggesting that while too few sampling sessions should be avoided, 439 

increasing their number does not improve the accuracy or correctness of the estimates, as long 440 

as many sites are available. 441 

Accounting for selection 442 

Although the method does not allow for direct estimation of the actual strength of selection, it 443 

provides valuable insights into how selection on laying date, via clutch size and nestling 444 
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survival to fledging, can influence our estimates of breeding phenology. Specifically, strong 445 

selection for earlier breeding introduces a systematic bias in the laying dates inferred from 446 

sampled juveniles, which increases with variance in laying dates (light grey line in Fig. 3). 447 

When parameters of selection are not known, equations (10), (13) and (14) can still correctly 448 

estimate the post-selection breeding parameters (fledging phenology), and the (co)variation in 449 

these estimates across years and sites may possibly provide information about variation in 450 

selection. For instance, equations (16) and (18) predict that years of strong maladaptation lead 451 

to joint changes in the mean breeding time after selection 𝑧̅∗ and reproductive output 𝑅, through 452 

their shared dependence on the mismatch with optimum 𝛿.  453 

Furthermore, if the basic parameters of the fitness function can be known from other 454 

sources, then we show how to efficiently correct for the influence of selection, when working 455 

back from fledging to laying date parameters (dark gray lines in Fig. 3). These parameters of 456 

the fitness function could be estimated from a small subset of sites where both population (e.g., 457 

mist-net) and nest-box monitoring are available. Where this is not feasible, estimates from the 458 

literature (Chevin et al., 2015; de Villemereuil et al., 2020) could be used to put bounds on the 459 

possible influence of selection on the inferred breeding phenology, conditional on the estimated 460 

fledging phenology.  461 

Sampling effort 462 

European monitoring program of bird capture widely vary in both the number of sampling 463 

sessions, ranging from to 3 to 10, and in the sampling effort per session, i.e., the number of 464 

mist net settled (Robinson, 2023). Here, we showed that sampling only three times during the 465 

breeding season led to overestimating the average fledging phenology. However, it should be 466 

noted that in the worst-case scenario, the estimated fledging time was delayed by only three 467 

days. Increasing the sampling effort (having access to more breeders) and the number of 468 
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sampling sessions affected the estimation of the within-site SD in fledging time (Fig. 4), but 469 

the latter was systematically underestimated.  470 

Based on these results, for a typical constant ringing monitoring program of bird populations, 471 

we recommend conducting between four and five sampling sessions during the breeding season 472 

with moderate effort. Fewer than four sessions may not capture enough variability in 473 

phenological parameters, while increasing the number of sessions beyond five does not 474 

improve the precision or accuracy of the estimates. This approach strikes an optimal balance 475 

between resource investment and the reliability of the monitoring results. Crucially, this would 476 

allow increasing the number of sites where these sampling sessions are performed, which is 477 

critical to the accuracy of the inference.  478 

Sampling probabilities 479 

Our model assumes an equal sampling probability between age status (adult or juvenile). In 480 

reality, juveniles might be easier to capture due to their lower flight abilities (Senar et al., 1999). 481 

While this statement seems broadly valid, evidence suggests that it depends on the sampled 482 

species. For instance, no difference was found in  house sparrows (Senar et al., 1999), while 483 

higher capture probability of juveniles was found in starlings (Simons et al., 2015).Variation 484 

in the activity of the parents over time could also modify their chance of being captured. 485 

Presumably they should be more active before fledging, because they need to provide all the 486 

food to juveniles. After fledging, the juveniles take care of themselves, so their parent’s 487 

workload must decline quite dramatically. Such biases could affect the shape of the logistic 488 

curve on which our analysis relies, for instance, not leading to a plateau (i.e., asymptote) in the 489 

case where adults capture probability decrease with time. However, if information about these 490 

parameters, such as changes in capture probability, is available, it could be directly 491 

incorporated into the analysis using eq. 1 to account for such effects. 492 
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Conclusion 493 

In the face of climate change, shifts in the timing of biological events in wild organisms have 494 

become increasingly significant. Recognizing the need for reliable methods to track these 495 

changes, our study demonstrates that a logistic sigmoid curve can accurately estimate breeding 496 

phenology and reproductive success from mist-net captures in passerines (and similar 497 

population-monitoring designs), provided the parameters of this curve are suitably 498 

transformed. In addition, the influence of selection can be accounted for if the fitness function 499 

on laying date is available from other approaches. While limitations such as sampling biases 500 

remain, this method suggest that an optimized sampling design of four to five sessions yields 501 

precise and reliable estimates. Ultimately, this work not only refines methods for avian 502 

reproductive monitoring, but also provides a valuable framework for tracking climate-driven 503 

phenological changes in wildlife populations, including by relying on citizen size. 504 
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Figures 579 

Figure 1:  580 

 581 

Figure 1: Relationship between breeding phenology and proportion of juveniles in 582 

catches. For each panel, the Gaussian curves represent the distribution of laying dates, while 583 

the sigmoid curves with the same colors represent the corresponding increases in the proportion 584 

of juveniles along the breeding season. For a given mean breeding time (vertical continuous 585 

line) and fledging time (vertical dashed line), the inflection point of the sigmoid curve (dot) 586 

changes with (A) within-site variation in laying date, and (B) maximal reproductive success 587 

(e.g., number of eggs laid). The inflection points are earlier than the true mean fledging time, 588 

all the more as variance of fledging time (A) and reproductive success (B) are large (red in both 589 

panels). The time to fledge, the time from laying to leaving the nest, is set to 40 days.  590 

  591 
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Figure 2:  592 

 593 

Figure 2: Inferring fledging parameters from changes in proportions of juveniles in 594 

population samples. The mean fledging time (A), standard deviation in fledging time (B) and 595 

reproductive success (C), as estimated from proportions of juveniles in population samples, are 596 

shown across a range of true simulated SD of laying date, for two values of maximal 597 

reproductive success. The dashed lines represent the known (simulated) values for each 598 

parameter, and the solid lines represent estimates from our approach, using eq. (13) in A 599 

(representing 𝜇∗̂ + 𝑇𝑓 for the mean fledging time), eq. (14) in B, and eq. (9) in C. The inflection 600 

point of the sigmoid (𝑡𝑚 in eq. 12) is also shown as grey line in A.  601 



30 

 

Figure 3:  602 

 603 

Figure 3: Inferring breeding parameters from fledging data. The mean (A) and standard 604 

deviation (B) of reproductive phenology, and the reproductive success (C), as estimated from 605 

the proportions of juveniles in population samples (black lines), or inferred for laying (i.e., 606 

breeding) parameters (dark grey lines), are shown across a range of the true simulated SD in 607 

laying dates, for two strengths of selection (𝜔 = 20 for “Moderate selection”, upper panel; 608 

𝜔 = 10 for “Strong selection”, lower panel). Dashed lines represent the known (simulated) 609 

values for each parameter, while solid lines represent the estimated ones. The light grey solid 610 

line in A represents the mean laying date inferred when ignoring the influence of selection, by 611 

simply subtracting the time to fledge 𝑇𝑓 from the mean fledging date. The dark grey lines in C 612 

represent the maximal reproductive success associated to the optimal breeding time.   613 
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Figure 4:  614 

 615 

Figure 4: Influence of sampling scheme on cross-site inference of fledging parameters. 616 

The mean fledging time (A), standard deviation in fledging time (B), and reproductive success 617 

(C), as estimated from proportions of juveniles in population samples at n = 150 sites, are 618 

shown across a range of number of sampling sessions, for two values sampling effort (15 619 

capturable breeding pairs for “low sampling effort”, upper panel; 200 capturable breeding pairs 620 

for “high sampling effort”, lower panel) and three values of within-site SD. Selection is set to 621 

be weak (𝜔 = 100). Dashed lines represent the known (simulated) values for each parameter, 622 

while solid lines represent their mean estimate. Shaded areas correspond to standard deviation 623 

of estimated values among the 10 iterations.  624 

  625 
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Supplementary materials 626 

Appendix 1: Validating analytical predictions  627 

Figure S1: Phenology 628 

 629 

Figure S1: Estimating mean laying dates and fledging time from proportions of juveniles 630 

in catches. The mean reproductive phenology, as estimated from the proportions of juveniles 631 

in population samples (black lines), or inferred for laying date (dark grey lines), are shown 632 
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across a range of the true simulated SD in laying dates, for three strengths of selection 633 

(columns, for weak selection: 𝜔 = 100; moderate selection: 𝜔 = 20; strong selection: 𝜔 =634 

10), and different values of maximum reproductive success (rows). Dashed lines represent the 635 

known (simulated) values for each parameter, while solid lines represent the estimated ones. 636 

The light grey solid line represents the mean laying date inferred when ignoring the influence 637 

of selection, simply subtracting the time to fledge 𝑇𝑓 from the mean fledging date.   638 
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Figure S2: Variance 639 

 640 

Figure S2: Estimating standard deviation in laying dates from proportions of juveniles in 641 

catches. The standard deviation of reproductive phenology as estimated from the proportions 642 

of juveniles in population samples (black lines), or inferred for laying date (grey lines), are 643 

shown across a range of the true simulated SD in laying dates, for three strengths of selection 644 

(columns, for weak selection: 𝜔 = 100; moderate selection: 𝜔 = 20; strong selection: 𝜔 =645 

10). Dashed lines represent the known (simulated) values for each parameter, while solid lines 646 

represent the estimated ones.  647 

648 
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Figure S3: Realized reproductive success 649 

 650 

Figure S3: Estimating reproductive success from proportions of juveniles in catches. The 651 

mean the reproductive success as estimated from the proportions of juveniles in population 652 

samples (black lines), and the maximum fitness of parents with the optimal breeding date (dark 653 

grey lines), are shown across a range of the true simulated SD in laying dates, for three strengths 654 

of selection (columns, for weak selection: 𝜔 = 100; moderate selection: 𝜔 = 20; strong 655 

selection: 𝜔 = 10). Dashed lines represent the known (simulated) values for each parameter, 656 

while solid lines represent the estimated ones.   657 
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Appendix 2: Comparing sampling schemes 658 

Figure S4: Between-site variation 659 

 660 

Figure S4: Inferring between-site variation in fledging time. The between-site standard 661 

deviation of breeding time, as estimated by the random effect on the midpoint (following eqs. 662 

20-21), is shown across a range of number of capture sessions, for two values sampling effort 663 

(number of capturable breeding pairs = 15 for “low sampling effort”, upper panel, number of 664 

capturable breeding pairs = 200 for “high sampling effort”, lower panel) and three values of 665 

within site SD (colors). Selection is set to be weak (𝜔 = 100). Dashed line represents the 666 

known (simulated) value of between-site variation in fledging time, solid lines represent the 667 

estimated ones. 668 

  669 
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Appendix 3: Model specifications (multi-site) 670 

For each site and for each sampling session 𝑡, the number of sampled juveniles 𝑁𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠𝑠𝑖𝑡𝑒,𝑡 
 671 

is assumed to follow a binomial distribution defined by the total number of sampled individuals 672 

per site and per session 𝑁𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑡𝑒,𝑡
 and the probability for a sampled individual to be a juvenile 673 

𝑝𝑠𝑖𝑡𝑒,𝑡 (eq. 1) 674 

𝑁𝑗𝑢𝑣𝑒𝑛𝑖𝑙𝑒𝑠𝑠𝑖𝑡𝑒,𝑡 
~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑡𝑜𝑡𝑎𝑙𝑠𝑖𝑡𝑒,𝑡

, 𝑝𝑠𝑖𝑡𝑒,𝑡) (1) 

Where 𝑝𝑠𝑖𝑡𝑒,𝑡 follows a three-parameters sigmoid function (eq. 2). 675 

𝑝𝑠𝑖𝑡𝑒,𝑡 =
𝑝∞

1 + exp (
𝑡𝑚𝑠𝑖𝑡𝑒 − 𝑡

𝑑
)
 

(2) 

𝑝∞ being the asymptote parameter, 𝑡𝑚 the time at the inflection point and 𝑑 the slope 676 

parameter.  677 

The parameters 𝑝∞ and 𝑑 are shared between sites and both follow normal distributions (eq. 3-678 

4)  679 

𝑝∞~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑝∞,𝑠𝑖𝑡𝑒 , 𝜎𝑝∞,𝑠𝑖𝑡𝑒) (3) 

𝑑~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇d,𝑠𝑖𝑡𝑒 , 𝜎d,𝑠𝑖𝑡𝑒) (4) 

 680 

The parameter 𝑡𝑚 varies between sites (eq. 3), and can be considered as the sum of a grand 681 

mean (shared among sites) 𝛼 and a site-specific 𝜇0,𝑠𝑖𝑡𝑒 deviation from this mean (eq. 4).  682 

𝑡𝑚𝑠𝑖𝑡𝑒~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑡𝑚,𝑠𝑖𝑡𝑒 , 𝜎𝑡𝑚,𝑠𝑖𝑡𝑒) (5) 

𝜇𝑡𝑚,𝑠𝑖𝑡𝑒 = 𝛼 + 𝜇0,𝑠𝑖𝑡𝑒 (6) 

with 𝜇0,𝑠𝑖𝑡𝑒 being the random site effect (eq. 5), with distribution 683 

𝜇0,𝑠𝑖𝑡𝑒~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑟𝑑,𝑠𝑖𝑡𝑒 ) (7) 

 684 

 685 
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Priors: 686 

 𝜇𝑝∞,𝑠𝑖𝑡𝑒~𝑁𝑜𝑟𝑚𝑎𝑙(0.8,10) (8) 

 𝜇d,𝑠𝑖𝑡𝑒 ~𝑁𝑜𝑟𝑚𝑎𝑙(2,10) (9) 

 𝛼~𝑁𝑜𝑟𝑚𝑎𝑙(130,10) (10) 

 𝜎𝑡𝑚,𝑠𝑖𝑡𝑒~𝑡(0,200) (11) 

 𝜎𝑝∞,𝑠𝑖𝑡𝑒~𝑡(0,100) (12) 

 𝜎𝑑,𝑠𝑖𝑡𝑒~𝑡(0,10) (13) 

 𝜎𝑟𝑑,𝑠𝑖𝑡𝑒 ~𝑁𝑜𝑟𝑚𝑎𝑙(0,60) (14) 

 687 


