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Abstract

The number of vertebrae in the axial skeleton of vertebrates is extremely diverse, and reflects adaptations to a diverse range of habitats

and lifestyles. The capacity for heritable evolutionary change in the number of vertebrae - its evolvability - is underpinned by the process

of somitogenesis, which determines the number of somites that form in the early embryo. However, despite the evolvability of somi-

togenesis having been crucial for the success of the vertebrates across evolutionary history, the developmental sources of evolvability in

somitogenesis are still unknown. Here, we review the evolution of somitogenesis and vertebral number, and attempt to identify sources

of evolvability within this important developmental process.

Introduction
The body plans of vertebrates are extremely diverse [1, 2, 3, 4, 5, 6]. A major contributor to this diversity is the number of vertebrae in the axial

skeleton, which can range from as few as 7 in diminutive terrestrial frogs from the Paedophryne genus [7], to more than 750 in deep-sea Nemichthys
Snipe eels [8, 9, 4]. The capacity for variation or ‘evolvability’ in the number of vertebrae varies between clades: in some groups this variation

is low and the number can be taxonomically definitive [4]while in others, this number can be highly variable, for instance in the Ophidiidae

Cusk-eels which vary from 58 to 91 vertebrae in total [8] or in African cichlids (Pseudocrenilabrinae) where vertebral counts are more modest but

still vary with a range from 25 to 40 [10, 11]. This capacity has been a major driver of vertebrate evolution, as changes in vertebral number have

enabled vertebrates to colonise new niches across evolutionary history [12, 13, 14]. However, the developmental origins of this evolvability remain

elusive and poorly understood.

The development of the vertebrae is a well-characterised process, where the number of vertebrae is specified in early development by the number

of somites [15, 16], paired blocks of mesoderm that segment the developing trunk body, and give rise to the skeletal muscle and axial skeleton

[15]. Somitogenesis is a highly dynamic process, with somites arising sequentially from an unsegmented region of mesoderm at the posterior of

the developing embryo, known as the pre-somitic mesoderm (PSM). The process by which somite boundaries are pre-patterned in the PSM is

well-characterised, and is thought to be driven by a complex molecular oscillator known as the ‘segmentation clock’ that drives travelling waves of

synchronised gene expression from the PSM posterior to the anterior [17, 18, 19]. The total number of somites formed is thought to be inversely

proportional to the frequency of the segmentation clock [17, 20, 21], and the dynamics of the clock are known to vary across species [22, 23], for

instance in the Zebrafish (Danio rerio) the clock oscillates approximately once every 30 minutes [24, 19], every 90 minutes in the Chicken (Gallus
gallus) [18], every 120 minutes in the Mouse (Mus musculus) [25], or 320 minutes in Humans [25], suggesting that evolution of the clock may be

involved in generating the diversity of vertebral number. While we are now beginning to understand the processes that give rise to such a diversity

of dynamics [25, 23], the developmental sources of evolvability in somitogenesis remain elusive.

Understanding evolvability, the capacity of a biological systems to evolve heritable and adaptive phenotypes, and its relationship to the mapping

between genotype and phenotype, is a major research goal within evolutionary developmental biology (EvoDevo) [26, 27, 28, 29, 30]. While the

term ‘evolvability’ is widely credited to Dawkins (1989) [31], who studied whether a lineage’s capacity to evolve and adapt under natural selection

could itself evolve using in silico life forms, the study of how properties of development may affect the trajectory of evolution is itself older [27,

26, 32, 33]. Evolvability is thought to be determined by a variety of processes, such as the rates of mutation and recombination of genetic material

[34], phenotypic plasticity in response to environmental factors [35], stochastic gene expression and resulting phenotypic heterogeneity [36],

pleiotropy [37], canalisation and robustness of the genotype-phenotype map [38, 39], the complexity of the genotype-phenotype map [33, 40],

and the way in which adaptive or fit phenotypes are selected by evolution [41, 42].

While much of the work on evolvability has been theoretical, there now exists a large corpus of experimental studies investigating the causes of

evolvability and their evolution reviewed in [43]. Experiments involving techniques suited to microorganisms, such as experimental mutagenesis

[44, 45], laboratory studies of evolution [46, 47, 48, 42] or design of synthetic gene regulatory networks [36, 49] have proven extremely power-

ful in furthering our understanding of evolvability. However outside of a handful of examples [50, 51, 52], there are relatively few experimental

or data-driven studies of the developmental bases of evolvability in multicellular systems. This is in part due to the experimental challenges in-

volved in performing comparative studies of development between closely related taxa, and also because in order to determine the causality of

development in evolvability, realistic and accurate data-driven mathematical models are required [26, 32, 27]. With this in mind, the study of

vertebral number in vertebrates provides an excellent model system for understanding the developmental sources of evolvability as there exists

a rich repertoire of data-driven mathematical models describing the segmentation clock [53, 54, 55, 56, 57, 58] and an increasingly large body of

comparative data [22, 23]. Here, we examine the evolvability of vertebral number in vertebrates and discuss possible sources of evolvability within
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somitogenesis.

Evolvability of segment number
The number of vertebrae in the vertebrate axial skeleton exhibits a high degree of evolvability, as can be seen in the ray-finned fish (Figure 1).

Here, we see repeated independent transitions between low and high counts at a family-level resolution (Figure 1), with the same pattern of re-

peated independent transitions in vertebral number being present within clades [8, 59], and at the infra-family scale, e.g. within African cichlids

(Cichlidae, Pseudocrenilabrinae) (Figure 1) [10, 11]. Vertebral number is also known to vary between populations of the same species, e.g. in the

Medaka Oryzias latipes which ranges from 30 to 31 vertebrae [60] (Figure 1), the Arctic Charr Salvelinus alpinus (58 to 64) [61], the Kōaro Galax-
ias brevipinnis (57 to 62) [62], the Northern pike Esox lucius (56-63)[63], or the Deer mouse Peromyscus maniculatus (23 to 27 caudal vertebrae)

[14]. While some of this variation may be attributable to environmentally driven developmental plasticity [63, 64], in at least the Pike, Medaka,

and Deer mouse such variation has been shown to be heritable [63, 60, 14]. It therefore appears that heritable changes in vertebral number can

occur under presumably minor or at least evolutionarily rapid changes to the genotype, and thus that vertebral number exhibits a high degree of

evolvability.

Vertebral number is also an adaptive trait: longer tails with more vertebrae permit forest populations of Deer mice to climb better than their

prairie-dwelling congeners [14]. Deep sea fish show typically elongate eel-like bodies, thought to be an adaptation for energy-efficient anguilli-

form swimming under increased hydrostatic pressure [12]. In some cases, this is associated with extreme increases in the number of vertebrae [9].

Similarly, fossorial snakes possess smaller vertebrae relative to their body than fast-moving terrestrial or arboreal species [1], which could in princi-

ple arise via an increase in the number of vertebrae while reducing the length of the vertebrae to preserve overall body length but allowing greater

flexibility, as may possibly be required for such a lifestyle. In a similar way, fast predatory fish such as Barracuda or Scombriformes are known to

have relatively few vertebrae compared with other similarly elongate fish [65], which may stiffen their body axis, giving better propulsion when

pursuing prey [66].

Figure 1: Diversity in vertebral number across the bony fishes.
Left: Family-level phylogeny of the Actinopterygii after [67], with tips coloured according to the log-transformed minimum number of verte-

brae reported for that family by [4]. Silhouettes were downloaded from PhyloPic (https://www.phylopic.org/). Top right: Tribe-level

phylogeny of the african Cichlidae, after [68]. Tips coloured according to the log-transformed minimum number of vertebrae from the cor-

responding tribe ([11]). Silhouettes were downloaded from PhyloPic or created in Inkscape. Bottom right: Different populations of japanese

Medaka (Oryzias latipes) show heritable differences in vertebral number ([60]).
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Development of vertebral number and its evolution
The number of vertebrae in the adult vertebrate is determined by the number of somites that form in the early embryo [15, 16]. Somites are paired

transient blocks of mesoderm that segment the trunk anterior-posterior axis, and determine the future segmentation of the body’s musculature,

nervous system, and axial skeleton [15]. The number of somites is partially controlled by the frequency of an intracellular oscillator known as the

segmentation clock, which synchronises differentiation of cells in the pre-somitic mesoderm (PSM) and thus controls the timing of the regular

budding of cells out of the PSM to form the somites [17, 18, 20].

The action of the clock is most often explained in terms of the clock and wavefront model [17, 69]. In brief, this model assumes that the phase

of intracellular oscillations in gene expression are ‘read-out’ by development at a point in space known as the wavefront. This wavefront moves

posteriorly as the embryo elongates, and thus the temporal information from the oscillator can be read out into a spatially periodic pattern [17].

The identity and nature of the wavefront is controversial but is generally thought to be under the control of FGF signalling [70, 20, 71, 72, 69],

most likely via ERK signalling [73, 74, 75]. The coupling of this wavefront to elongation of the embryo is thought to be, at least in part, due to the

progressive decay of FGF mRNA in PSM cells, creating a gradient of positional information [76] from the posterior to the anterior. The identity

of clock components is less controversial and there is strong evidence that the clock is driven by auto-repressive feedback of genes in the Hes/Her

family [18, 77, 53, 78, 79, 80]. Intracellular oscillations of Hes/Her transcription factors are noisy [81, 82], are synchronised by delta-notch sig-

nalling [83, 81, 54, 80], and decrease in frequency towards the PSM anterior [84], creating travelling waves of gene expression which travel along

the PSM towards the anterior [81, 19].

The frequency of the clock thus determines the total number of somites (and therefore vertebrae) that can be formed [20, 85, 86]. However, the

model also implies that the duration of somitogenesis is causal in determining the number of vertebrae in the body. Developmental control of

the duration of somitogenesis is less well-understood, and it is thought to depend both on gene regulatory and morphogenetic processes [87, 20,

88, 14]. For one, the total number of somites in the embryo correlates with how much the PSM elongates over the course of somitogenesis [22,

88], which has been explained by termination of somitogenesis being induced by a threshold value of retinoic acid (RA), an anterior-posterior

decreasing gradient which is secreted from the somites, and thus somitogenesis terminates when the PSM is sufficiently short [20, 89]. In this

way, it is thought that maintenance of PSM length over time by morphogenesis determines the duration of somitogenesis, and with it, of the

total number of vertebrae formed. What controls the maintenance of the PSM over the course of somitogenesis is unclear, however the point in

time at which PSM elongation halts has been shown to correlate with the expression of Hox13 genes [90, 91, 92, 93, 94, 95], and temporal changes

in Hox13 expression have been implicated in evolutionary changes in vertebral number in reptiles and mice [91, 14].

It is however unclear from the current literature whether one of these two processes is most often employed by evolution to alter an organism’s

vertebral number, and if so which one. To explore the relative importance of changes to clock frequency or duration of somitogenesis in evo-

lution, we performed a literature survey, cataloguing the number of somites formed during embryogenesis and the rate of their appearance in

different vertebrate species (see supplementary material). We can imagine three scenarios that would help explain these data (Figure 2A). In sce-

nario one, diversity in somite number is solely explained by evolution of the clock frequency, and we see a positive correlation between somite

number and frequency (Figure 2A, left). In scenario two, where diversity in somite number can be explained by evolution of the duration of

somitogenesis alone, we would expect to see the data lie along a vertical line when we plot the number of somites against the clock frequency

(Figure 2A). The third scenario is that the diversity in segment number is due to co-evolution of these two processes, and we would expect to see

the data spread along each axis (Figure 2A).

Plotting the total number of somites formed in the embryo against the rate of somitogenesis (see supplementary material for methods and data),

we see no clear trend, and that the frequency of somitogenesis and the total number of somites is extremely diverse across different groups of

vertebrates (Figure 2B). Within our dataset, the slowest rate of somite formation is the Common snapping turtle (Chelydra serpentina), with one

somite being formed every 19 hours [96], and the quickest is the Mexican tetra (Astyanax mexicanus), with one somite being formed every 20

minutes [97]. However, for appropriate comparison between species the rate of somitogenesis must be scaled against the overall pace of devel-

opment, which varies across taxa [25, 23]. We note that the period of somitogenesis (i.e., the time taken to form one somite) correlates well with

the time taken for the embryo to reach the phylotypic stage (defined by the first appearance of the pharyngeal arches), and the slow frequency of

somite formation in species like the Common snapping turtle or the Common marmoset (Callithrix jacchus) can largely be explained by their

overall slower pace of development (Figure 2C). This is similar to the results of [23] who observe that the period of the segmentation clock in
vitro scales with the overall pace of development [23]. Scaling the frequency against this overall rate of development (see supplementary material

for methods) and plotting against the number of somites reveals that the total number of somites correlates with frequency, but that the data are

broadly heterogenous and are best explained by scenario three (Figure 2D).

Here we see that some species, such as the Japanese striped snake Elaphe quadrivirgata or the Corn Snake Pantherophis guttatus exhibit accel-

erated clocks and their large numbers of somites can be at least partially attributed to this fact (Figure 2D) [22]. We also see that some active

predatory fish such as the European seabass (Dicentrarchus labrax) form few somites and have correspondingly slow clocks (Figure 2D), sug-

gesting that perhaps this reflects selection for a stiffer vertebral column with fewer vertebrae [65, 66]. However, some species such as the Long

spiky-head carp (Luciobrama macrocephalus) possess rapid clocks, approaching the snakes’ in their frequency, but do not form as many somites

(Figure 2D). This suggests that the duration of somitogenesis is shorter relative to the frequency of the clock in the Long spiky-head carp than in

snakes and highlights that even in cases where the clock is dramatically accelerated, evolution of duration cannot be discounted when considering

the evolution of somite number [22].
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We also note, as reported by [23], that the species of mammals analysed here have roughly equivalent somitogenesis frequencies when one ac-

counts for differences in developmental rate (Figure 2D), suggesting that perhaps differences in mammalian vertebral number are not driven by

changes in the clock but rather differences in the duration of somitogenesis [14]. The evolution of the mammalian vertebral column is thought

to be highly constrained by its regionalisation, with number of pre-sacral vertebrae being highly conserved [27, 98]. It is possible therefore that

this invariance in scaled clock frequency reflects a constraint on the pace of the clock relative to the pace of the ‘Hox timer’ or the sequential

activation of Hox genes in the embryo [99] - assuming such a timer also scales with the overall pace of development - thereby ensuring a constant

number of vertebrae per axial region. While this is speculative, the accessibility of non-model mammalian species for developmental biology is

rapidly improving [23], and it may soon be possible to verify if the developmentally-adjusted frequency of the clock is indeed a conserved feature

of mammals.

This analysis also reveals that when the overall pace of development is accounted for, the Testudines (turtles, terrapins, and tortoises) have a very

slow rate of somite formation (Figure 2D). The three species of Testudines in our dataset, the Common snapping turtle, the Green sea turtle

(Chelonia mydas), and the Red-bellied short-necked turtle (Emydura subglobosa), all have similarly low frequencies of somite formation (Figure

2D), suggesting this is possibly an ancestral feature of the Testudines. The functionality of this is unclear, but perhaps could reflect an adaptation

for decreased vertebral number and increased rigidity of the axial skeleton [100]. Study of the Testudine segmentation clock may prove to be

illuminating for understanding the evolvability of vertebral number, particularly in terms of understanding the clock’s capacity for change in

both dynamics and regulatory architecture, as well as a comparison with snakes, which appear to have taken the diametrically opposite path in

evolution (Figure 2D).

We also note that the frequency of somite formation is approximately the same in the Sea lamprey (Petromyzon marinus) and the Brownbanded

bamboo shark (Chiloscyllium punctatum) (Figure 2D). Whether this is coincidental or not remains to be seen, however we consider it of note

due to the position of both species at the base of the vertebrate tree of life [101, 102]. If such a trend were to hold more generally and the rate of

somitogenesis is conserved between the cyclostomes and elasmobranchs it would suggest that the extant evolvability of the clock arose only later

in vertebrate evolution. Data on somitogenesis is currently extremely limited within these clades and sparse in general, but as more data become

available we suggest that the field take note of any conservation of somitogenesis frequency.

Overall, this analysis suggests that both the morphogenesis of the PSM and the clock co-evolve to generate diversity in segment number. We

cannot identify from this dataset whether or not one process is more labile under evolution than the other. To do so, it would be necessary to

have data from closely related species that had diverged in vertebral counts relatively recently.
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Figure 2: Diversity in somitogenesis dynamics across the vertebrates.
A Top: the same number of somites (black rectangles) can be achieved by changes in either frequency (top) or duration (bottom) of somito-

genesis. Bottom: Scenarios for plotting the total number of somites formed during embryogenesis against somitogenesis frequency. If most of

diversity is due to only evolutionary changes in frequency, the data should lie along a linear trendline (left, black). Conversely if most of diversity is

due to only changes in duration, the data should lie along a vertical line (middle, blue). If diversity is created by a combination of the two, the data

is heterogenously spread across the space (right, mauve). B The total number of somites formed during embryogenesis, plotted against the fre-

quency at which somites are formed. A linear trendline is fitted from regression of the log-transformed data with trendline y = 0.023x− 1.765
with the summary statistics p = 0.8866, R2 = 0.001, suggesting that there is no correlation between the dependent and independent vari-

ables. C The time taken to reach phylotypic stage (defined as presence of four pharyngeal arches), plotted against the somitogenesis period. A

linear trendline is fitted from regression of the log-transformed data with trendline y = 0.8x− 0.568 with the summary statistics p << 0.01,

R2 = 0.645, suggesting a statistically significant relationship. As the magnitude of this trendline 0.8 ≈ 1, the relationship between the raw data

is approximately linear. D The total number of somites formed during embryogenesis, plotted against the somitogenesis period divided by the

time taken to reach phylotypic stage. A linear trendline is fitted from regression of the log-transformed data with trendline y = 0.619x+1.628
with the summary statistics p = 0.0006, R2 = 0.368, suggesting a statistically significant relationship with poor explanatory power. Code and

data with references, for all figures, can be found in the supplementary material.

5



Developmental sources of evolvability
While the segmentation clock is thought to be driven by auto-repressive feedback on Hes/Her gene expression, the clock contains a large number

of oscillatory and non-oscillatory components [103]. It is possible that this has been a rich substrate for evolution. The formation of non-DNA-

binding Hes/Her dimers is known to accelerate clock oscillations [85, 78], and therefore duplication of Hes/Her family genes and their expression

in the PSM could potentially result in changes to the frequency of the clock. The Hes/Her family contains many paralogs within the vertebrates

[104], and Hes/Her family genes have been shown to have undergone repeated duplications across the metazoa [105, 106, 107, 108], suggesting

that perhaps the appearance of novel paralogs or the neo- or sub-functionalisation of paralogous genes in this rapidly-duplicating family may

be a major source of evolvability for clock dynamics. Indeed, the identity of Hes/Her oscillatory genes in the clock can vary between species

of teleosts [105], suggesting a role for neo-functionalisation. Similarly, altering the copy number of delta genes has been shown to increase the

emergent frequency of the clock as a result of elevated clock coupling between cells [109]. Lastly, the presence of paralogs can also create redun-

dancy within the clock, such as in the case of the her1 and her7 genes in zebrafish [78]. It is possible that such redundancy has allowed neutral

exploration of genotypes in evolution, allowing the discovery of novel, highly divergent clock dynamics and expression [38]. We can expect the

role of gene duplication in the evolvability of somitogenesis to become clearer as the availability of comparative data increases.

It is possible that a similar property exists for the morphogenetic processes underpinning elongation of the PSM. Across different vertebrate

species elongation of the PSM is known to be driven by cell division [88], as well as ingression of nascent PSM progenitor cells from surrounding

tissues [110, 88, 111], and dynamic changes in cell motility [112, 113, 111, 114] and cell density [112, 115, 116]. The degree to which any one of these

processes contributes to elongation of the PSM appears to vary across species [22, 88], which could suggest that diverse PSM elongation dynamics

can be generated by the combinatorial effects of these processes. If this were the case, then the existence of a set of uncoupled morphogenetic

processes such as these could be regarded as a source of evolvability for somitogenesis, however whether such processes are uncoupled is as yet

deeply unclear and the development of cell-based models of PSM elongation [112, 115, 58, 117, 118] will reveal whether this is the case, and with it,

the scope for neutral exploration of the mechanisms underlying PSM elongation by evolution.

The topology of the segmentation clock gene regulatory network may also be a source of evolvability, specifically the existence of two oscillatory

circuits: one being the Hes/Her auto-repressive loop, and the other the negative feedback of delta-notch signalling onto itself via intercellular sig-

nalling [53]. Using a simple model, Lewis [53] demonstrated that the relatively long time delay created by intercellular signalling allows oscillations

with much lower frequency to be created when auto-repression of Hes/Her expression is decreased, and speculated the covariation in these two

processes could perhaps give rise to different clock frequencies in evolution [53]. However, simulations suggest the existence of a parameter space

with irregular oscillations as the relative contribution of delta/notch to the circuit increases, and thus the evolution of this system may actually

be constrained in this regard [53]. Inferring the relative contribution of each circuit in determining the clock’s frequency is a hard problem as it

requires experimental parametrisation of this model, and to our knowledge there have not been comparative studies examining the contributions

of each circuit nor their change in evolution.

The delay in intercellular communication via delta-notch is also likely to exert constraints on the evolution of the clock gene regulatory network,

and vice versa. In order for stable synchronous oscillations to be formed the delay in intercellular signalling must satisfy a relationship with the

frequency of auto-repressive intracellular oscillations of Hes/Her genes where signals are sent and received by cells in the correct phase of the

clock [53, 119]. The delay in intercellular signalling is thought in part to be controlled by the number of intermediary molecules, such as lunatic

fringe (Lfng), involved in the signal transduction pathway [120], and therefore the number of intermediary components in signal transduction

may be constrained by the frequency of Hes/Her oscillations. We also can expect the converse to be true, and that the frequency of Hes/Her

oscillations is constrained by the existing signalling delay. However, the collective frequency of oscillations is also set by the value of the delay

[53, 119], and so it may be that evolutionarily neutral regions of parameter space exist where the delay and the frequency may co-vary without

perturbing the overall frequency. Only with further theoretical study will it become clear to what capacity the delay and frequency of the clock

mutually constrain one another’s evolution.

It is unclear how the behaviour of the oscillatory components of the FGF/Wnt pathways [121, 122, 103, 123], which are capable of changing their

expression dynamics in evolution [103] might affect segmentation clock dynamics. Indeed, in Mouse at least it appears that the dynamics of Wnt

and Notch signalling are coupled, with functional significance for somite polarity [123]. However, there is limited comparative data on whether

this is a conserved feature of vertebrates and as such we cannot predict in what way such regulation may affect the evolution of the clock. Ad-

ditionally, we note that as PSM morphogenesis is itself under the regulation of Wnt and FGF signalling [112, 110, 113, 114, 75], the evolution of

morphogenesis and the dynamics of the clock may be prone to co-vary.

Vertebral number has been shown to also depend on maternal effects [124, 125], as have the period of somitogenesis and its duration [124]. The

total duration of somitogenesis has also been shown to correlate with the amount of yolk available to the embryo [88], and the number of somites

been shown to be lowered in conjoined twin embryos of the Lake trout Salvelinus namaycush, leading to a suggestion that the number of verte-

brae depends on the quantity of yolk available to the embryo [126]. Maternal contribution to the offspring can vary with the age of the mother

[127], suggesting this as a possible source of phenotypic heterogeneity in otherwise genetically homogenous populations, however it is unknown

whether age-specific effects occur in the vertebral number of offspring.

Vertebral number is also known to exhibit environmentally-induced phenotypic plasticity, with vertebral number responding to changes in salin-

ity, light, and temperature [128, 63, 64]. Due to their external mode of development, this has been most extensively studied in the teleost fishes.
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The environmental effect of temperature here is perhaps counter-intuitive, as the frequency of somitogenesis increases with increasing tempera-

ture [129, 130, 24], whereas it is typically observed in nature that lower temperatures yield fish with more vertebrae [131, 60, 63, 64], and indeed

the relationship between embryo temperature and vertebral number is thought to be U-shaped, where the maximal number of vertebrae occurs

at extremely low or extremely high temperatures and at intermediary temperatures the lowest number of vertebrae are formed [128, 132]. The de-

velopmental basis of such a trend is unclear. Furthermore, the effect of temperature on somitogenesis is thought to be buffered by the invariance

of somite length [24], likely due to a scaling in wavefront and clock molecular kinetics [133]. It is likely therefore that this scaling relationship, or

any scaling relationship that exists between the frequency and duration of somitogenesis, breaks down at extreme temperatures.

While our understanding of somitogenesis and the segmentation clock has benefitted from a large body of theoretical work, it is still difficult to

definitively identify sources of evolvability within somitogenesis. This is in large part due to a still incomplete understanding of the gene regu-

latory architecture underpinning the segmentation clock and the wavefront, as well as the computationally complex problem of understanding

how cellular behaviours such as motility and division give rise to the elongation of the PSM, and the added difficulty of parameterising such

models using experimental data. Furthermore, comparative studies of somitogenesis have largely been limited to vertebrate model species that

are significantly diverged [105, 22, 103], and there have been few comparative studies examining how vertebral number and the components and

dynamics of somitogenesis co-vary over short evolutionary timescales [14, 134], so it is difficult to suggest from observational data where the

sources of evolvability may lie.

Modularity of the segmentation clock and PSM elongation
Modularity, the dissociability of developmental processes and pathways by evolution, is thought to be a major source of evolvability across the

tree of life [28, 135], though evolvable systems can also exist without modular organisation [136]. The evolvability of diverse phenotypes such as

butterfly eyespots [137], beak shape in the Galapágos finches [138], arthropod limbs [139, 140], arthropod segmentation [51], and the regionalisa-

tion of the vertebrate skeleton [8, 99], is thought to be underpinned by modularity of development.

In a recent study, we predicted that the clock and morphogenesis of the PSM exhibit modularity in zebrafish, and thus, that this might heighten

the evolvability of vertebral number [117]. We predicted that the modularity is dependent on properties of morphogenesis such as tissue length

and density, but more so on properties of the clock such as the strength of delta-notch signalling and the coupling delay [117]. Due to a lack of

comparative experimental data we were only able to predict that this is true in zebrafish, however we see no reason to expect why this property is

restricted to zebrafish and not a conserved feature of the vertebrates, particularly in light of the apparently combinatorial effects of somitogenesis

pace and duration in driving diversity of vertebral number (Figure 2).

Understanding the selective or neutral ways in which modularity arises in evolution is an open question in evolutionary biology [28, 30, 141]. To

our knowledge somitogenesis is one of the few developmental systems where modularity has been predicted to depend on such a small set of

experimentally tractable parameters, and thus we suggest that a quantitiative study of the evolution of the segmentation clock and the PSM may

be extremely insightful for this question.

Conclusions and Future Work
While much is known about somitogenesis and the developmental control of vertebral number, the developmental basis of its evolvability are still

unclear.However, many of the properties of the segmentation clock and PSM morphogenesis can be placed in the context of previous theoretical

work to predict possible sources of evolvability. The reasons for this lack of understanding are twofold, and reflect a lack of comparative studies

with closely-related species, as well as of experimentally parameterised models of somitogenesis in different species. We note that technological ad-

vances are increasingly allowing the field to undertake comparative studies of somitogenesis [23], and suggest that these technologies be employed

to study closely related groups of organisms to understand the relative lability of the various components of somitogenesis in evolution. We also

suggest that the study of the reptiles, particularly a comparative study of the Serpentes and Testudines, could be illuminating in understanding

the extreme limits of somitogenesis and elucidate which changes to somitogenesis can generate extreme diversity.

Methods
Mapping of vertebral counts to phylogenies was completed in R (v4.2.0) [142]. Ranges for 271 Teleostean orders and families were collated pri-

marily from Nelson’s ‘Fishes of the World’ [4] and for the tribes and subtribes of Pseudocrenilabrinae from previously reported data [10, 11]. We

pruned the time-calibrated, bony fishes phylogeny published by [67] to the families present within our vertebral counts dataset in the R package,

ape (v5.7.1) [143]. To reduce each family to a single branch and to account for the estimated age of each respective family, the tree was pruned to

the longest (i.e. most basal) branch within each family, an approach we utilised again to prune the Pseudocrenilabrinae phylogeny published by

[68] to each respective tribe and subtribe. Log-transformed minimum total vertebral and ancestral states were mapped and inferred using the

function contMap, part of the phytools (v2.1.1) package [144]. R code for generating the figures can be found in the supplementary file map-
ping_vertebral_counts.R.
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The data in Figure 2 reflects either reported values for the period and frequency of somitogenesis, or values that have been inferred by linear

regression of the reported number of somites over time (see supplementary table 1). Linear regressions between frequency and the number of

somites, or period and the time to phylotypic stage, were performed in Julia v1.8.2 using the function GLM.lm. Julia code for generating the

figures can be found in the supplementary file somitogenesis_pace.jl.
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Supplementary Material

Species Class Total somites Period (mins) Phylotypic stage (hpf) Method Source(s)

Amphiprion ocellaris Actinopterygii 35 22 45 Reported [145]

Anguilla japonica Actinopterygii 37.5 114 85 Reported [146], A. Seleit pers.
comm.

Astatotilapia calliptera Actinopterygii 73.7 30 192 Reported [147]

Astyanax mexicanus Actinopterygii 20 40 - Reported [97]

Crassius auratus Actinopterygii 30 35 26 Reported [148]

Clupea harengus Actinopterygii 52 61 - Reported [129]

Clupea pallasii Actinopterygii 72.8 54 139 Inferred [149]

Danio rerio Actinopterygii 25.1 32 24 Reported [24]

Dicentrarchus labrax Actinopterygii 109 28 72 Inferred [150]

Gadus morhua Actinopterygii 207 52 250 Reported [151, 152]

Leucopsarion petersii Actinopterygii 187 36 - Inferred [153]

Luciobrama macrocephalus Actinopterygii 22 55 60 Inferred [154]

Misgurnus anguillicaudatus Actinopterygii 36 50 - Reported [155]

Muraenesox cinereus Actinopterygii 31.6 149 - Reported [146]

Oryzias latipes Actinopterygii 57.5 35 101 Reported [156, 134]

Rhamphochromis sp. ‘Chilingali’ Actinopterygii 67.7 36 192 Reported [147]

Salmo salar Actinopterygii 155.8 67 228.5 Reported [130]

Anas platyrhynchos Aves 80.4 50 96 Inferred [157]

Columba livia Aves 59.4 44 96 Inferred [158]

Gallus gallus Aves 90 52 84 Reported [18, 159]

Lonchura striata Aves 87.7 45 132 Inferred [160]

Pygoscelis adeliae Aves 187 50 240 Inferred [161]

Chiloscyllium punctatum Chondrichthyes 228.5 80 336 Inferred [162]

Petromyzon marinus Hyperoartia 241 101 384 Inferred [163]

Bos taurus Mammalia 310 56 626 Inferred [164, 23]

Callithrix jacchus Mammalia 778 56 1440 Inferred [165, 166, 23]

Ceratotherium simum Mammalia 236 44 - Inferred [167, 23]

Mus musculus Mammalia 120 65 216 Reported [168]

Oryctolagus cuniculus Mammalia 143 45 252 Inferred [169, 170, 23]

Aspidoscelis uniparens Reptilia 240 90 - Reported [22]

Chelonia mydas Reptilia 395.2 43 168 Inferred [171]

Chelydra serpentina Reptilia 1123.6 31 600 Inferred [96]

Elaphe quadrivirgata Reptilia 86.4 297 264 Reported [172]

Emydura subglobosa Reptilia 284 39 144 Inferred [173]

Lamprophis fuliginosus Reptilia 60 300 - Reported [22]

Pantherophis guttatus Reptilia 100 315 768 Reported [22]

Table 1: Somitogenesis period, time to phylotypic stage, and total somites, across species. For each species the periodicity of somitogenesis,

the time elapsed before one somite is formed, was either taken from a previously published value (‘reported’), or was inferred by linear regression

of somites over time from published data (‘inferred’). The time taken to reach phylotypic stage, defined as the presence of pharyngeal arches, was

not always reported and so in some cases this data is missing.

15

https://doi.org/https://doi.org/10.1002/dvdy.22104
https://doi.org/https://doi.org/10.1002/dvdy.22104
https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/dvdy.22104
https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.22104
https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.22104

