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Abstract 51 

1. Human infrastructures are among the most impactful wildlife threats. Although 52 

estimates of animal mortality by these structures exist over a given period, they 53 

typically do not account for several detection biases (i.e., difference between 54 

recorded and true mortality). Consequently, true mortality rates may be severely 55 

underestimated, as well as their impact on populations and species. 56 

2.   We present a hierarchical Bayesian latent-state modelling framework that 57 

sequentially accounts for three main processes that produce biases in estimating 58 

mortality abundance: the probability that a hit animal dies on the surveyed area 59 

(carcass location probability), the probability that the carcass remains on the 60 

surveyed area until the survey is conducted (carcass persistence probability), and 61 

the probability that the carcass is observed during the survey process (carcass 62 

observation probability). We employ a comprehensive simulation study where we 63 

test the effects of variability in species characteristics, sampling design, latent-64 

state parameters, and prior information on the ability of our model to estimate 65 

mortality abundance on roads as total number of roadkills. We then apply our 66 

framework on a case study to estimate the total number of roadkills per km in 67 

Mediterranean ecosystems while evaluating the cross-efficiency of different 68 

sampling methods. 69 

3.  Our framework accurately recovers the total number of roadkills from 70 

simulated census data for most simulation scenarios. We detected the highest 71 

disagreement between modelling outcomes and simulated data when variability 72 

in simulated carcass persistence probability was high and Bayesian priors were 73 

highly diffuse. In the case study, our results show notably high roadkill numbers 74 



(e.g., estimating 48.92 per km passerines based on 8.04 observed counts), along 75 

with substantial variation across different vertebrate groups. Furthermore, our 76 

case study confirms that walking and cycling surveys outperform driving surveys 77 

in carcass observation rate and provide complementary information between 78 

them, observing partially distinct sets of species and carcass sizes. 79 

4.   Our modelling framework offers an efficient approach to estimate mortality 80 

rates for a wide range of taxa. Optimizing application requires extensive fieldwork 81 

for bias estimation and integration. We provide a checklist to help managers to 82 

assess when infrastructure-related mortality can be assessed most robustly to 83 

prioritize conservation efforts. 84 

We have made all data and code available in a ZIP file and on Figshare (links also in 85 

ZIP) 86 

1. Introduction 87 

Linear infrastructures such as roads, power lines and wind turbines have become 88 

extremely widespread and are expected to increase substantially in the next 89 

decades, particularly in developing countries that host rich biodiversity (D’Amico, 90 

Catry, et al., 2018; Meijer et al., 2018; Tabassum-Abbasi et al., 2014). This is 91 

worrying because linear infrastructures contribute to the decline and even extinction 92 

of wildlife populations, and ultimately to biodiversity loss (Barrientos et al., 2021; 93 

D’Amico et al., 2019; Pearce-Higgins et al., 2012). In the last decades, this 94 

ecological impact has been extensively studied, with the majority of research 95 

focusing on infrastructure-induced mortality (Barrientos et al., 2021; D’Amico, 96 

Ascensão, et al., 2018; Nazir et al., 2020). Most research has primarily aimed at 97 

investigating the spatiotemporal patterns of such mortality (D’Amico et al., 2015; Guil 98 



et al., 2015), although a growing body of studies has more recently sought to 99 

quantify the magnitude of this threat.  100 

 101 

However, when estimating infrastructure-induced mortality, standard carcass counts 102 

may not accurately reflect the total number of individuals affected. This is because 103 

the recorded carcasses are the result of a series of sequential processes, including 104 

the affected animal remaining near the infrastructure after the mortality event, the 105 

carcass persisting until the survey, and finally the observer detecting it (Barrientos et 106 

al., 2018; Bech et al., 2012; Román et al., 2024). Not accounting for these three 107 

hierarchical processes may lead to multiple nested sources of bias, i.e., mismatch 108 

among recorded roadkills and true road mortality due to lack of detection, when 109 

inferring infrastructure-induced mortality from carcass surveys (Barrientos et al., 110 

2018; Román et al., 2024). The first of these biases is carcass location bias and 111 

concerns missing animals injured by collisions with power lines, wind turbines, or 112 

vehicles on roads that die outside the survey area (Bernardino et al., 2018; Román 113 

et al., 2024; Smallwood, 2007). The second bias affecting standard mortality surveys 114 

along infrastructures is carcass persistence bias, which occurs when carcasses 115 

disappear from the survey area over time before a given survey (Barrientos et al., 116 

2018; Borner et al., 2017; Ravache et al., 2024). This is typically due to natural 117 

decomposition and environmental factors influencing it (such as weather conditions; 118 

Barrientos et al., 2018; Borner et al., 2017), as well as to scavenger activity (DeVault 119 

et al., 2017; Dhiab et al., 2023). On roads, carcass persistence can also be impacted 120 

by repeated crushing by vehicles and road maintenance (Abra et al., 2018; 121 

Barrientos et al., 2018; Santos et al., 2011). Finally, the third bias is carcass 122 

observation bias, which occurs when carcasses within the survey area are not 123 



detected by observers, typically due to the sampling method used and the observers’ 124 

level of experience (Barrientos et al., 2018; Borner et al., 2017; Domínguez del Valle 125 

et al., 2020). On roads, this bias tends to be particularly pronounced when roadkill 126 

surveys are conducted from vehicles compared to those conducted cycling or 127 

walking (Delgado et al., 2019; Guinard et al., 2012; Teixeira et al., 2013). 128 

 129 

Although the hierarchical nature of biases in carcass surveys along infrastructures 130 

may appear evident, this aspect has received relatively little attention in the scientific 131 

literature. While carcass location bias has been largely neglected in mortality 132 

estimates (Barrientos et al., 2018; Román et al., 2024), several authors have 133 

highlighted the significant underestimation of carcass records due to both 134 

persistence and observation bias (Barrientos et al., 2018; Kitano et al., 2023; 135 

Teixeira et al., 2013). Nonetheless, not even the hierarchical nature of these two 136 

biases has been sufficiently disclosed in the scientific literature. Some notable 137 

exceptions relate to road-mortality research, where recent studies have implemented 138 

hierarchical statistical models to account for carcass persistence and observation 139 

bias combined as latent states when estimating roadkill numbers (Santos et al., 140 

2018), or even extrapolating such estimates to assess the population abundance of 141 

the affected species (Fernández-López et al., 2022). However, despite these recent 142 

advances, methods that integrate the varying magnitudes of all three biases in 143 

carcass surveys are still lacking, hindering the estimation of the total number of killed 144 

animals.  145 

 146 

In this study, we developed a Bayesian latent-state modelling framework that can 147 

effectively integrate location, persistence, and observation biases into a reliable 148 



estimate of actual infrastructure-induced mortality across different vertebrate groups. 149 

More specifically, we focused on road mortality and roadkill surveys, as the scientific 150 

literature on this topic is more extensive than that available for other infrastructures. 151 

Our framework is an extension of Bayesian N-mixture models, which estimate 152 

abundances from repeated counts (Royle, 2004). We conducted a simulation study 153 

to assess the framework’s accuracy in recovering the simulated total number of 154 

roadkills for different vertebrate groups and survey methods (walking, cycling, and 155 

driving). In this study, we implemented multiple scenarios in which we varied the 156 

number of road transects surveyed, the daily variability in roadkill numbers and 157 

carcass persistence rate, and finally the certainty of prior expert knowledge on 158 

location and persistence bias probabilities, which we integrated into our model. We 159 

then applied our model to a case study with real data collected by road surveys in 160 

southern Spain. 161 

2. Material and methods 162 

2.1 General overview 163 

We first describe our Bayesian hierarchical latent-state modelling framework, which 164 

quantifies the total number of roadkills by sequentially assessing how carcass 165 

location, persistence and observation biases cause deviations in roadkill census data 166 

from actual roadkill (i.e., similar to detection biases in abundance estimation from 167 

count data (e.g. Barrientos et al., 2018; Smallwood, 2007) (Fig. 1)). We then 168 

evaluate the model’s performance through a simulation study, testing different 169 

roadkill scenarios across different vertebrate groups and conducting a prior 170 

sensitivity analysis. Finally, we apply our model to data from a field case study to 171 

estimate the total number of roadkills based on empirical census datasets. 172 



2.2 Modelling framework 173 

We introduce a hierarchical latent-state model to estimate the total number of 174 

roadkills, explicitly accounting for the three nested levels of bias: carcass location, 175 

persistence, and observation. The model structure is based on the widely used N-176 

mixture models, which estimate abundances from count data while accounting for 177 

imperfect detection (Hostetter et al., 2019; Kery & Royle, 2021; Royle, 2004). 178 

We model the total number of roadkills 𝑁𝑖,𝑡,𝐷 across i = 1…I road transects, within t = 179 

1…T survey periods (with months used as periods in our model, as more frequent 180 

surveys are rarely performed), considering a retrospective carcass accumulation 181 

period of D days (representing the maximum number of days a carcass remains on 182 

the survey area before disappearing). We define 𝑁𝑖,𝑡,𝐷 as a random Poisson variable 183 

sampled from 𝜆𝑡,𝐷 = mean number of roadkills for the period t over D days:    184 

𝑁𝑖,𝑡,𝐷 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (λ𝑡,𝐷)       eqn. 1 185 

As 𝜆𝑡,𝑑 , and consequently 𝑁𝑖,𝑡,𝐷, can vary across months t, our model accounts for 186 

seasonal changes in roadkill numbers throughout the year. Note, however, that we 187 

do not model variability in 𝜆𝑡,𝑑 at the transect level i. 188 

We assume that 𝑁𝑖,𝑡,𝐷 = ∑ 𝑁𝑖,𝑡,𝑑
𝐷
𝑑=1 , where each daily total number of roadkills 𝑁𝑖,𝑡,𝑑 189 

can fluctuate across the days within period D, following the daily 𝜆𝑡,𝑑 in month t. 190 

However, our framework assumes that 𝑁𝑖,𝑡,𝑑 and 𝜆𝑡,𝑑 cannot be modelled directly and 191 

instead need to be estimated over the maximum persistence time D, as conducting 192 

daily road monitoring is too resource-demanding to be feasible.   193 



We then define 𝑁2𝑖,𝑡,𝐷 as the subset of the total number of roadkills (𝑁𝑖,𝑡,𝐷) whose 194 

carcasses were located on the road survey area after the collision, determined by 195 

the probability of a carcass being located on the road (𝑝𝐿, carcass location 196 

probability):  197 

𝑁2𝑖,𝑡,𝐷 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝐿 , 𝑁𝑖,𝑡,𝐷)   eqn. 2 198 

As for 𝑁𝑖,𝑡,𝐷, we assume that 𝑁2𝑖,𝑡,𝐷 = ∑ 𝑁2𝑖,𝑡,𝑑
𝐷
𝑑=1 . Based on previous studies 199 

(Román et al., 2024), we assume that 𝑝𝐿 does not vary among days d = 1 – D.  200 

Subsequently, we define 𝑁3𝑖,𝑡,𝐷 = ∑ 𝑁3𝑖,𝑡,𝑑
𝐷
𝑑=1  as the subset of roadkills located on 201 

the road (𝑁2𝑖,𝑡,𝐷) that remain on it until the day of the road survey, determined by the 202 

cumulative probability of a carcass persisting on the road survey area, weighted by D 203 

(𝑝𝑃, carcass persistence probability) 204 

𝑁3𝑖,𝑡,𝐷 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃, 𝑁2𝑖,𝑡,𝐷)  eqn. 3 205 

More precisely, if we assume that the carcass persistence probability could be 206 

modelled using a survival function d (e.g., a Cox-hazard model as in Santos et al. 207 

2011), then 𝑝𝑃 = ∫ 𝑆(𝑑)𝑑(𝑑)
𝐷

𝑑=1
, being the average persistence probability from d = 1 208 

to D (for details, see Supplementary Material S1). For example, if daily 𝑁2𝑖,𝑡,𝑑 values 209 

are known and, for illustration, we set D = 3 days ( with d1, d2 and d3 denoting days 210 

1, 2 and 3 since roadkills occur), our framework can in theory model: 211 

𝑁3𝑖,𝑡,𝑑1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃𝑑1𝑝𝑃𝑑2𝑝𝑃𝑑3,  𝑁2𝑖,𝑡,𝑑1), 𝑁3𝑖,𝑡,𝑑2 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃𝑑2𝑝𝑃𝑑3, 𝑁2𝑖,𝑡,𝑑2), 212 

𝑁3𝑖,𝑡,𝑑3 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃𝑑3, 𝑁2𝑖,𝑡,𝑑3), where 𝑝𝑃𝑑1, 𝑝𝑃𝑑2  and 𝑝𝑃𝑑3  are the daily carcass 213 

persistence probability on first, second and third days since roadkills occur, 214 

respectively. 215 



Finally, we define 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 as the census data, representing the proportion of the total 216 

number of roadkills that have persisted in the road survey area during D and are 217 

recorded in a given road survey, which depend on the carcass observation 218 

probability 𝑝𝑂𝑚: 219 

  𝐶𝑖,𝑗,𝑡,𝐷,𝑚 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑂𝑚, 𝑁3𝑖,𝑡,𝐷)   eqn. 4 220 

We assume a robust-design road survey (Royle, 2004), and thus 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 varies by 221 

road transect i, by m = 1…M methods used for surveying (here: walking, bike, or 222 

vehicle), as well as by month t (the primary sampling occasion), with j = 1…J 223 

independent sampling replicates each month (secondary sampling occasion). In turn, 224 

𝑝𝑂𝑚 differs depending on the sampling method m used.  225 

Equation 4 builds upon the N-mixture model introduced by Royle (2004), where the 226 

estimation of 𝑝𝑂𝑚 comes from the variability among the independent sampling 227 

replicates for each method from a robust design census dataset. That is, we assume 228 

that independent observers sampled a given road transect repeatedly during a given 229 

road survey. This allows us to make an independent estimation of the observation 230 

probability per method 𝑝𝑂𝑚. 231 

2.3 Implementation of the model 232 

 We implemented our Bayesian hierarchical latent-state modelling framework to run 233 

our model, using Markov chain Monte Carlo (MCMC) to estimate the parameters 234 

(Hobbs & Hooten, 2015). Carcass location probability 𝑝𝐿 and carcass persistence 235 

probability 𝑝𝑃 parameters are not typically estimated directly in roadkill census data, 236 

and therefore we assumed them to be latent parameters. We employed beta-237 

distributed informative priors for 𝑝𝐿 and 𝑝𝑃, with different parameter estimates for 238 

https://www.zotero.org/google-docs/?nVtuDl


different vertebrate groups. The beta distribution is ideal for modelling probabilities 239 

like 𝑝𝐿 and 𝑝𝑃 because it is defined on the interval [0,1] and its probability density 240 

distribution can take on various shapes, allowing us to represent different levels of 241 

prior belief and uncertainty. For each vertebrate group, we defined the 𝛼 and 𝛽 242 

parameters of the beta distribution based on a mean estimate for 𝑝𝐿 and 𝑝𝑃, 243 

reflecting our prior knowledge, and a standard error (SE) that captured our 244 

uncertainty around this knowledge (see sections 2.3.1 and 2.4.2 for more 245 

information).  246 

Using the respective mean and SE values for 𝑝𝐿 and 𝑝𝑃, we calculated the 𝛼 and 𝛽 247 

parameters for their prior beta distributions using the method of moments relative to 248 

the standard parameterization of the beta distribution. We adopted a non-informative 249 

prior for  𝑝𝑂𝑚 ( 𝑝𝑂𝑚 ∼ Uniform(0,1)), and weakly informative priors for 𝜆𝑡,𝐷 setting the 250 

upper limit sufficiently wide to accommodate the expected number of roadkills 251 

( 𝜆𝑡,𝐷 ∼ Uniform(0,300), ∼ Uniform(0,600) or ∼ Uniform(0,800), as detailed in 252 

Supplementary Material S2, S3 and S6), this specific upper limit was selected to 253 

ensure values remained biologically reasonable, while increasing the computational 254 

stability and convergence of the Bayesian models.   255 

The MCMC sampling process was conducted in JAGS (Plummer, 2003), operated 256 

within the R statistical framework v. 4.2.2 (R Core Team, 2022) through the jagsUI 257 

package v. 1.6.2 (Kellner, 2015). To determine model convergence, we used the 258 

Gelman–Rubin 𝑅̅ diagnostic criterion, considering models to have converged when 𝑅̅ 259 

was less than 1.1, following the guidelines by Brooks and Gelman (1998). We also 260 

evaluated the effective sample size (ESS) and visually inspected the traceplots of 261 

the posterior distributions among the different MCMC chains to check convergence 262 



or mixing issues (see Appendix C). For each model run, we used three chains of 263 

400,000 iterations with a burn-in period of 100,000 iterations, an adaptive period of 264 

100,000 iterations, and a thinning rate of 1,000. 265 

2.3.1 Prior information on carcass location (𝑝𝐿) and carcass persistence (𝑝𝑃) 266 

probability 267 

We assumed that in most roadkill estimation studies carcass location and 268 

persistence probabilities estimations were not available and could not be easily 269 

estimated from the census data (𝐶𝑖,𝑗,𝑡,𝐷,𝑚). They would have to be entirely modelled 270 

as latent states based on prior information. Therefore, in both our simulation and 271 

case studies, we integrated such priors based on literature data for these two 272 

probabilities. Furthermore, given this structural reliance on prior information, we conducted 273 

a specific prior sensitivity analysis to evaluate the robustness of our estimates under 274 

different prior specifications (see Section 2.4.3).  275 

2.3.1.1 Carcass location probability (𝑝𝐿) 276 

We obtained information on 𝑝𝐿 from a recent publication, in which authors 277 

determined the probability of a carcass being located on the road after the collision 278 

from direct and indirect first-hand observations of vehicle-animal collisions (Román 279 

et al., 2024). Based on their data, we reorganized their 150 observations into 10 280 

vertebrate groups (G) using their supplementary material (Amphibians, Reptiles G1, 281 

Reptiles G2, Birds/Bats G1, Birds G2, Mammals G1, Mammals G2, Mammals G3, 282 

Mammals G4 and Mammals G5; see Table 1). These groups were delineated based 283 

on species traits (body size and mobility); consequently, these groups determined 284 

the characteristics of observed roadkill numbers and seasonal trends (differences in 285 

abundances across months), as well as the maximum days their carcasses remain 286 



on the road without disappearing (D), and the average 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 values, as 287 

shown in Table 1. 288 

We used the observations in Román et al. (2024) to designate a carcass that was 289 

located inside the road as success (1) and outside the road as failure (0), and then 290 

calculated the mean of successes over each vertebrate group in order to estimate 291 

their 𝑝𝐿. In groups where the value of 𝑝𝐿 was 1, we assumed the absence of carcass 292 

location bias and hence an extremely low probability of being displaced by the 293 

collision or being capable of moving after the impact. For this reason, we excluded 294 

equation 2 when modelling such groups (i.e., Amphibians, Reptiles G1, Mammals 295 

G1, Mammals G2 and Mammals G3 in Table 1), in such cases 𝑁3𝑖,𝑡,𝐷 being directly 296 

dependent on 𝑁𝑖,𝑡,𝐷 (Supplementary Material S3). 297 

2.3.1.2 Carcass persistence probability (𝑝𝑃) 298 

Santos, Carvalho, and Mira (2011) was, to our knowledge, the only study providing 299 

estimates of mean daily carcass persistence probability (𝑝𝑃𝑑) for a diverse array of 300 

vertebrate groups from Mediterranean habitats, which we were able to adapt to our 301 

classification. We used these values to derive 𝑝𝑃 (as discussed in section 2.2 and 302 

Supplementary Material S1, see also Supplementary Material S2, S3, S6, S8 and S9 303 

for R code). Santos, Carvalho, and Mira (2011) did not provide information for 304 

"Mammals G5". Nonetheless, based on available scientific literature, we contended 305 

that this group likely does not demonstrate carcass persistence bias within a monthly 306 

time period between successive roadkill surveys (Barrientos et al. 2018). For this 307 

reason, we excluded equation 3 when modelling this group, in these cases 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 308 

being directly dependent on 𝑁2𝑖,𝑡,𝐷 = ∑ 𝑁2𝑖,𝑡,𝑑
𝐷
𝑑=1  (Supplementary Material S4) 309 



 310 

2.4 Simulation study 311 

We used a simulation study to stress-test under which scenarios our modelling 312 

framework accurately estimated the total number of roadkills 𝑁𝑡,𝐷 and recovered 𝑝𝐿, 313 

𝑝𝑃 and 𝑝𝑂𝑚 as latent states. The simulation study generated census data 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 314 

based on different biological and observation processes described below. 315 

2.4.1 Principles of census data generation 316 

To generate different census datasets, we followed the nested levels of data as 317 

described in the modelling framework section 2.2 (𝑁 → 𝑁2 → 𝑁3 → 𝐶). The 318 

progression through these levels was carried out considering the values of 𝑝𝐿, 𝑝𝑃 319 

and 𝑝𝑂𝑚 specific to each vertebrate group (Table 1), in order to create a range of 320 

biologically realistic data. 321 

 322 

We first sampled 𝑁𝑖,𝑡,𝑑  for each road transect (i), month (t), and day (d = 1-D, where 323 

D was the maximum carcass persistence period for a given vertebrate group) as a 324 

random Poisson variable based on their mean total number of roadkills 𝜆𝑡,𝑑 (using 325 

equation 1). We used expert knowledge to assign variation in month t dimension 326 

based on data collected in 2021 and 2022 in southern Spain, which 327 

incorporated known seasonal trends for each vertebrate group (Supplementary 328 

Material S5).  329 

As an example, considering D = 3 days, 𝜆𝑡,𝑑1, 𝜆𝑡,𝑑2, and 𝜆𝑡,𝑑3 would be generated 330 

(i.e., the mean number of roadkills occurring three days, two days, or the day before 331 

the road survey day, respectively). Roadkills on the survey day itself were not 332 



considered as surveys typically occur in the first half of the day. Through the Poisson 333 

sampling process, we then obtained the respective 𝑁𝑖,𝑡,𝑑1, 𝑁𝑖,𝑡,𝑑2 and 𝑁𝑖,𝑡,𝑑3, being the 334 

total number of roadkills three days, two days and one day before the road survey 335 

day respectively. From these values, we could obtain the simulated total number of 336 

roadkills 𝑁𝑖,𝑡,𝐷 = ∑ 𝑁𝑖,𝑡,𝑑
𝐷
𝑑=1 , which we wanted to recover by applying our modelling 337 

framework. For Mammals G5 such as ungulates, since we assumed that their 338 

carcasses remain on the road survey area all month and their roadkill numbers were 339 

low, simulating 𝑁𝑖,𝑡,𝑑 values along a D = 30 days period led to an unrealistically high 340 

value for 𝑁𝑖,𝑡,𝐷. Therefore, here, we simulated a single 𝑁𝑖,𝑡,𝑑  value for the entire 341 

month, such that 𝑁𝑖,𝑡,𝐷 =  𝑁𝑖,𝑡,𝑑.  342 

 343 

Next, for vertebrate groups affected by carcass location bias (Table 1), we sampled  344 

𝑁2𝑖,𝑡,𝑑 values from their respective 𝑁𝑖,𝑡,𝑑, from a random binomial distribution with 𝑝𝐿 345 

as the probability of success (equation 2).  346 

 347 

Lastly, we sampled 𝑁3𝑖,𝑡,𝑑 values from their respective 𝑁2𝑖,𝑡,𝑑, from a random 348 

binomial distribution with the daily persistence probabilities 𝑝𝑃𝑑 as the probability of 349 

success (equation 3). For each vertebrate group with their respective 𝑝𝑃𝑑 value (see 350 

Supplementary material S1), From these 𝑁3𝑖,𝑡,𝑑 values we obtained the simulated 351 

total number of roadkills that are available to be observed in the survey day 𝑁3𝑖,𝑡,𝐷 =352 

∑ 𝑁3𝑖,𝑡,𝑑
𝐷
𝑑=1 . For Mammals G5, which were not affected by carcass persistence bias 353 

(i.e., 𝑝𝑃 = 1), 𝑁3𝑖,𝑡,𝐷 was directly dependent on 𝑁𝑖,𝑡,𝐷 (Supplementary Material S4).  354 

 355 

Finally, we sampled census data 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 from 𝑁3𝑖,𝑡,𝐷, from a random binomial 356 

distribution with the carcass observation probability, 𝑝𝑂𝑚, as the probability of 357 



success (equation 4) using m = 3 survey methods (i.e. walking, cycling and driving), 358 

with j = 3 independent sampling replicates per method. We considered the following 359 

evidence when assigning 𝑝𝑂𝑚 values for the different vertebrate groups (in the 360 

absence of more concrete data and based on our expert knowledge): (a) we 361 

assumed that observation was highest when walking, followed by cycling, and then 362 

driving (Guinard et al., 2012; Winton et al., 2018); (b) we assumed that observation 363 

for any of the three methods would be low for small vertebrate groups and high for 364 

the large, more visible groups (Gerow et al., 2010; Teixeira et al., 2013) (Table 1). 365 

 366 

2.4.2 Simulation scenarios of variable data 367 

We generated different simulated census dataset for each of the vertebrate groups 368 

considered here (Table 1) using scenarios that introduced different levels of 369 

parameters variability (Table 2) to assess when our model can recover simulated 370 

parameters and when there is a risk of under- or overestimating total roadkills.  371 

 372 

First, we introduced variability in the daily number of roadkills and persistence rates 373 

across simulations of i = 10 or 100 road transects. Specifically, we introduced 374 

variability in the mean daily number of roadkills 𝜆𝑡,𝑑 by multiplying it by a value 375 

sampled from a truncated random Normal distribution (mean = 1; SD = 0, 0.5, or 376 

1.5), and similarly applied variability to the daily persistence probability 𝑝𝑃𝑑 by 377 

sampling from a truncated random Normal distribution (mean = 𝑝𝑃𝑑; SD = 0, 0.05, or 378 

0.15). We didn’t add variability to 𝑝𝐿, as we assume 𝑝𝐿 doesn’t vary among days. We 379 

then analysed these datasets using 𝑝𝐿 and 𝑝𝑃 priors fitted with both a strong 380 

informative prior distribution (Standard Error (SE) = 0.05) and a weaker prior 381 

distribution (SE = 0.1) to test how uncertainty in the priors affects the recovery of 382 



parameters in the presence of variability, as 𝑝𝐿 and 𝑝𝑃 values are prior-driven. We 383 

couldn’t simulate 𝜆𝑡,𝑑 and 𝑝𝑃𝑑 variability for Mammals G5 as we simulated a single 384 

𝑁𝑖,𝑡,𝑑  value for the entire month and this group is not affected by carcass persistence 385 

bias, respectively. 386 

 387 

We also simulated vertebrate groups, i.e., "Amphibians" and "Reptiles G1", 388 

characterized by a significant peak in roadkill numbers over just a few months, as 389 

examples of high seasonal roadkill numbers due to presumed absence or low 390 

numbers of roadkills in certain months where animals are not active (monthly 391 

abundance from the 2021 and 2022 data collected <5; see Supplementary Material 392 

S5). Here, as we assumed that active and inactive periods were independent, we 393 

fitted additional models that only included months where monthly abundance from 394 

the 2021 and 2022 data collected was > 5 (see Supplementary Material S6). The aim 395 

was to see if model performance improved without accounting for the extended 396 

periods with very low roadkill counts, compared to the peak abundance months. 397 

 398 

We simulated 20 datasets for each vertebrate group and scenario combination, 399 

resulting in 720 simulated datasets per vertebrate group (dataset simulation code is 400 

detailed in Supplementary Material S2, S3, S4 and S6). 401 

 402 

2.4.3 Prior sensitivity 403 

In our Bayesian models, information on 𝑝𝐿 and 𝑝𝑃 comes entirely from prior 404 

knowledge, as the count data alone (𝐶𝑖,𝑗,𝑡,𝐷,𝑚) does not contain sufficient information 405 

to independently disentangle these intermediate latent processes without external 406 

information. Therefore, we conducted a sensitivity analysis to stress-test whether key 407 



simulated parameters can be recovered and 𝑝𝐿 and 𝑝𝑃 are identifiable by using 408 

informative vs. uninformative prior knowledge. We again simulated different datasets 409 

for each vertebrate group (as described in 2.4.2), but we fixed the following 410 

parameters: i = 10 road transects, 𝜆𝑡,𝑑 and 𝑝𝑂𝑚 values, and SD = 0 for both 𝜆𝑡,𝑑 and 411 

𝑝𝑃𝑑. We then simulated datasets using pairwise combinations of 𝑝𝐿 and 𝑝𝑃𝑑 as 412 

shown in Supplementary Material S7. For each simulated dataset, we then used 413 

three prior specifications in Bayesian models: accurate informative priors centered 414 

on the 𝑝𝐿 and 𝑝𝑃 values associated with each simulated data set (Supplementary 415 

Material S7); inaccurate informative priors (0.7 if 𝑝𝐿 or 𝑝𝑃 < 0.5 and 0.3 if 𝑝𝐿 or 𝑝𝑃 > 416 

0.5); and finally, uninformative priors using a uniform distribution from 0 to 1. Prior 417 

precision was set to SE = 0.05 (see 2.4.2). 418 

We generated 27 scenario combinations per vertebrate group affected by carcass 419 

location and persistence bias, leading to 540 simulated datasets per vertebrate 420 

group, while 9 scenario combinations were generated for vertebrate groups only 421 

affected by carcass location or persistence bias, i.e., 180 simulated datasets 422 

(dataset simulation code is detailed in Supplementary Material S8, S9 and S10).  423 

All datasets were generated and analysed in R v. 4.2.2 (R Core Team, 2022) . 424 

2.4.4 Model evaluation 425 

To evaluate the ability of the modelling framework to recover the simulated 426 

parameters we compared their Bayesian posterior distribution of parameters 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 427 

with the real known simulated parameter value 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 . Here, the subscripts 428 

denoted s = 1…S simulation scenario, v = 1…V vertebrate groups, sim = 1…Sim 429 

specific simulation iteration and t = 1…T months. We focused on the recovery of 𝑁𝑡,𝐷 430 



𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 , and 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 (note that there was no dimension t as 𝑝𝐿, 𝑝𝑃, 431 

and 𝑝𝑂𝑚 values did not change across t months). 432 

We used the Relative Root Mean Squared Error (𝑅𝑅𝑀𝑆𝐸) to compare model 433 

performance across simulation scenarios and vertebrate groups. 𝑅𝑅𝑀𝑆𝐸 434 

standardizes the error relative to the magnitude of the true parameter, allowing for 435 

comparisons between parameters with different scales (e.g., total number of roadkills 436 

vs. carcass bias probabilities). It was calculated as shown in the following equation 437 

(Rosenbaum et al., 2024): 438 

RRMSE(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) =
1

𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡
√(𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) − 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡)2 + Var(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡)        eqn. 5            439 

where 𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) was the mean of the Bayesian posterior distribution. Intuitively, 440 

𝑅𝑅𝑀𝑆𝐸 represents the size of the error as a proportion of the true simulated value. 441 

An 𝑅𝑅𝑀𝑆𝐸 of 0 indicates perfect accuracy, while a value of 1 implies that the 442 

magnitude of the error is equal to the true simulated value itself. Consequently, 443 

𝑅𝑅𝑀𝑆𝐸 values can exceed 1 (or >0 on a logarithmic scale used for graphical clarity) 444 

when the estimation error is larger than the parameter being estimated, indicating 445 

high uncertainty. In the case of 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  values, we added 1 to all values as 446 

𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) could not be calculated when 𝑁𝑡,𝐷 = 0 (Supplementary Material 447 

S11). 448 

In the case of 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚, we generalized their 𝑅𝑅𝑀𝑆𝐸 (𝜃𝑠,𝑣,𝑠𝑖𝑚) values as the 449 

geometric mean of all probability estimates for each vertebrate group 450 

(𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚)), as shown in the following equation (Rosenbaum et al. 2024; 451 

Supplementary Material S12): 452 



RRMSE̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚) =  ∏ RRMSE(𝜃𝑠,𝑣,𝑠𝑖𝑚)1 |{𝑝𝐿,𝑝𝑃,𝑝𝑂𝑚}|⁄
𝑥∈{𝑝𝐿,𝑝𝑃,𝑝𝑂𝑚}                        eqn. 6           453 

To ensure that the true known simulated values were recovered, we assessed 454 

whether the average true values 𝑁𝑡,𝐷  𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 lay within the 95% credible interval of 455 

Bayesian posterior estimates of average 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡. In contrast for carcass bias 456 

probabilities, we assessed whether the true values 𝑝𝐿, 𝑝𝑃, 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 lay within the 457 

full range of their pooled respective posterior distributions 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚. 458 

In the prior sensitivity analysis, we also evaluated across the different simulation 459 

scenarios whether the true values 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  correctly overlapped with the posterior 460 

distributions 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡. Specifically, we assessed the accuracy of estimates for the 461 

mean number of roadkills for period t over D days 𝜆𝑡,𝐷 the total number of roadkills 462 

𝑁𝑡,𝐷, and the carcass observation probabilities per survey method 𝑝𝑂𝑚. Additionally, 463 

we verified the successful recovery of the 𝑝𝐿 and 𝑝𝑃 values integrated into the model 464 

as priors.  465 

 466 

2.5 Case study 467 

We applied our modelling framework to estimate the total number of roadkills across 468 

i = 9 road transects of 3 km each, in three different Mediterranean ecosystems in 469 

south-western Spain (Supplementary Material S13).  470 

We collected data on these road sections using M = 3 different methods carried 471 

simultaneously (walking, cycling, and driving), with J = 2 independent sampling 472 

repetitions per method (thereby guaranteeing a robust sampling design) for each 473 

method and T = 4 monthly surveys from February to May in 2023. For each 3 km 474 



transect, one observer conducted an initial survey, followed by a second observer 475 

after a 10-minute break, considering this interval short enough to assume that the 476 

roadkill population was closed. Due to administrative and legal requirements, during 477 

the initial phase of the driving surveys, the first observer was solely responsible for 478 

roadkill sampling while the second focused entirely on driving. In the subsequent 479 

transect sampling repetition, the roles were reversed, allowing the driver to also take 480 

on the task of searching for roadkill, ensuring both observers made independent 481 

samplings. The survey velocity while driving was the minimum allowed on the road. 482 

For each roadkill detected, we noted the observer's identity, the surveyed transect, 483 

sampling method, observation month and the exact georeferenced location of the 484 

roadkill (with less than 10 m error). Roadkills were documented with zenithal 485 

photographs and identified to the lowest feasible taxonomic level, although the 486 

ultimate goal was to group them into functional groups. However, unlike the 487 

Simulation study (Section 2.4.2) where broad theoretical categories were used (e.g., 488 

“Birds and Bats G1”), here we adapted the group nomenclature to strictly reflect the 489 

specific taxa actually observed during fieldwork (e.g., “Passerines”). 490 

 491 

3. Results 492 

In our Bayesian model analysis, the 𝑅̅ statistic consistently showed values below 1.1, 493 

indicating good convergence and precise parameter estimations from the MCMC 494 

chains (Appendix A; B; C). 495 

 496 

3.1 Simulation scenarios of variable data 497 



Our outputs demonstrated overall low 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values recovering the 498 

simulated total number of roadkills 𝑁𝑡,𝐷(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 ) across nearly all scenarios of 499 

variability in parameters (Fig. 2; see also Supplementary Material S14 for more 500 

detailed plots for each of the vertebrate groups). Nevertheless, the vertebrate groups 501 

Reptiles G2, Birds G2, and Mammals G3 showed very high variation in their 502 

distributions, ranging from log 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values below -1 to over 4 (Fig. 2).  503 

Across vertebrate groups, the highest 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) scores, indicating relatively 504 

worse performance of the model in recovering simulated parameters, corresponded 505 

to scenarios with high variability in daily persistence probabilities (SD 𝑝𝑃𝑑) (Fig. 2). 506 

Additionally, 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) increased when the SE was high for the prior 507 

distributions for 𝑝𝐿 and 𝑝𝑃 compared with low SE, and increased further when 508 

variability in daily mean number of roadkills (SD 𝜆𝑡,𝑑) was also high (Fig. 2). The 509 

number of road transects simulated (10 or 100 transects) had minimal impact on 510 

𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡), except for Reptiles G1, where the 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) decreased 511 

notably in the case of full-year datasets, including extended periods of low number of 512 

roadkills (Supplementary Material S14). For Amphibians and Reptiles G1, 513 

𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) were lower when limiting the analysis to months when animals are 514 

active (abundance peak), compared to when extended periods of low number of 515 

roadkills were included in the datasets (Supplementary Material S14).  516 

 517 

Across all scenarios, when the 𝑝𝐿 and 𝑝𝑃 prior SE was low, the simulated total 518 

number of roadkills 𝑁𝑡,𝐷(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 )  was generally well recovered for all vertebrate 519 

groups, i.e., was withing the 95% credible interval of 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  (Fig. 3a; see 520 

Supplementary Material S15 for more detailed plots). However, Reptiles G1 was an 521 



exception: when considering full-year datasets with 10 road transects, estimates for 522 

this vertebrate group were overestimated in all scenarios, whereas with 100 road 523 

transects they were well recovered. Accounting only for the abundance peak led to 524 

better fits overall, even though estimates for this vertebrate group were always 525 

underestimated. (Supplementary Material S15). On the other hand, when 𝑝𝐿 and 𝑝𝑃 526 

prior SE was high, the 95% credible interval overlap widened, leading to 527 

overestimations across most vertebrate groups (Supplementary Material S15). The 528 

only exception were Amphibians and Reptiles G1 accounting only for the abundance 529 

peak, where estimates were typically underestimated, resulting in increased 530 

uncertainty but reduced underestimation in most scenarios (Supplementary Material 531 

S15). 532 

 533 

𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚) scores for 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 (𝜃𝑠,𝑣,𝑠𝑖𝑚) showed the same relative 534 

differences as 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡), being the highest for Reptiles G1, Birds G2 and 535 

Mammals G3 under high variability in daily carcass persistence probabilities (SD 536 

𝑝𝑃𝑑) (Fig. 4). This was largely due to the fact that the Bayesian hierarchical models 537 

could not recover well 𝑝𝑃 under high SD 𝑝𝑃𝑑 and a high 𝑝𝑃 prior SE , although 𝑝𝑂𝑚 538 

values where always well recovered, being much more precise in 100 survey sites 539 

scenario (Fig. 3b; see Supplementary Material S16 for more detailed plots). The only 540 

exception was the Reptiles G1 full-year dataset with 10 road transects, where 𝑝𝑂𝑚 541 

was not recovered although recovery was successful with 100 transects 542 

(Supplementary Material S16). 543 

 544 

3.2 Prior sensitivity analyses  545 



Regarding our Prior Sensitivity Analysis, we observed that when priors are accurate, 546 

the posterior distributions correctly overlapped with the true values, accurately 547 

estimating the mean number of roadkills for the period t over D days 𝜆𝑡,𝐷, the total 548 

number of roadkills for the period t over D days 𝑁𝑡,𝐷, and the carcass observation 549 

probabilities per survey method 𝑝𝑂𝑚, in addition to successfully recovering the 𝑝𝐿 and 550 

𝑝𝑃 values integrated in the model as priors (Supplementary material S17). In the 551 

case of inaccurate and uninformative prior scenarios, the estimation of 𝑝𝑂𝑚 values 552 

remained robust, although the remaining parameters were affected (Supplementary 553 

material S17). Specifically, in the case of inaccurate priors, the 𝑝𝐿 and 𝑝𝑃 values 554 

were never recovered (although the model occasionally recovered estimates of 𝑁𝑡,𝐷 555 

and 𝜆𝑡,𝐷, but with lower accuracy than in accurate prior scenarios (Supplementary 556 

material S17). On the other hand, uninformative priors produced extremely wide 557 

posterior distributions of 𝑝𝐿 and 𝑝𝑃, which resulted in an extreme overestimation of 558 

𝑁𝑡,𝐷 and 𝜆𝑡,𝐷. Furthermore, uninformative priors often resulted in model run errors, as 559 

impossible values during the Bayesian estimation process were generated 560 

(Supplementary material S17). 561 

 562 

3.3 Case study 563 

During the sampling period, we recorded a total of 650 different carcasses of 45 564 

identified species (386 of these carcasses could only be classified into higher 565 

taxonomic groups). For further modelling, we classified these carcasses into the 566 

following taxa: 199 lizards, 17 snakes, 217 passerines, 43 small mammals, 72 567 

lagomorphs, and 24 carnivores. Although we observed 40 amphibians, 22 medium-568 

sized birds, 12 hedgehogs and 4 big-sized mammals we were unable to estimate the 569 

total number of roadkills for these taxa. Standardizing observations across the 27 km 570 



surveyed (9 transects × 3 km), the roadkill rates per kilometre were highest for 571 

passerines (8.04/km) and lizards (7.37/km), followed by lagomorphs (2.67/km), small 572 

mammals (1.59/km), carnivores (0.89/km), and snakes (0.63/km).  573 

 574 

Our model generated estimates for the total number of roadkills over the 4 months of 575 

sampling on our study roads, taking into account prior distributions of 𝑝𝐿 and 𝑝𝑃, 576 

alongside the estimated values of 𝑝𝑂𝑚 for each sampling method used. The 577 

estimated roadkill rates per kilometre were 15.22 for lizards (2.07 times higher than 578 

observed), 8.84 for snakes (14.03 times higher), 48.92 for passerines (6.08 times 579 

higher), 7.64 for small mammals (4.81 times higher), 7 for lagomorphs (2.62 times 580 

higher), and 5.49 for carnivores (6.16 times higher) (see Fig. 5). For each vertebrate, 581 

𝑝𝑂𝑚 estimation is highest for walking survey method 𝑝𝑂𝑤, followed by cycling 𝑝𝑂𝑐, 582 

and is considerably lower for driving 𝑝𝑂𝑑. This was particularly evident in lizards, 583 

passerines, and lagomorphs, where 𝑝𝑂𝑤 was markedly higher compared to the other 584 

methods. For lizards and small mammals, the probability of observation was 585 

generally low, with values concentrated close to zero when using the driving method 586 

(Fig. 6). 587 

 588 

Finally, our data revealed that some carcasses were observed exclusively by one 589 

survey method and not by the others: 294 carcasses were only observed using the 590 

walking method, 134 by the cycling method, and 1 by the driving method 591 

(Supplementary material S18). 592 

 593 

4. Discussion 594 

4.1 Integrating biases in surveys of infrastructure-induced mortality 595 



In the present study, we integrated the three intrinsic survey biases of infrastructure-596 

induced mortality (i.e., carcass location, persistence, and observation bias) within the 597 

predefined conceptual framework of our modelling approach. Consequently, we were 598 

able to infer the actual mortality from carcass census data, which represents a 599 

significant step forward in methodological research on this type of impact, with 600 

potentially important implications for the conservation of threatened species as well 601 

as for taxa providing ecosystem services. Unlike earlier studies that implemented 602 

similar statistical approaches, which provided abundance indices (e.g., Fernández-603 

López et al., 2022) or roadkill risk metrics (e.g., Santos et al., 2018), the application 604 

of modified Bayesian N-mixture models in our study allowed us to derive actual 605 

roadkill estimates while propagating uncertainty throughout the model thanks to the 606 

Bayesian approach (Schmelter et al., 2012). Our roadkill estimates were between 607 

2.07 and 14.03 times higher than the observed records in the case study (depending 608 

on the species group considered), highlighting that road mortality is a far greater 609 

threat than previously recognized, especially for species more affected by sampling 610 

biases, such as small birds and bats (Barrientos et al., 2018; Román et al., 2024). 611 

Since the biases analyzed in this study are very similar to those affecting other 612 

infrastructure-induced mortality surveys (Barrientos et al., 2018; Bernardino et al., 613 

2020), it is reasonable to assume that this threat is also underestimated along power 614 

lines, wind farms and other linear developments. 615 

 616 

4.2 Model performance in simulation scenarios 617 

4.2.1 Impact of variability in daily parameters  618 

Our simulation scenarios of variable data indicate that, under low variability in daily 619 

number of roadkills and daily carcass persistence probabilities, the N-mixture model 620 



provides reliable estimates of total number of roadkills. However, when we simulated 621 

scenarios with high variability in parameters, total number of roadkills were both 622 

over- and underestimated, which was reflected in increased Relative Root Mean 623 

Square Error (𝑅𝑅𝑀𝑆𝐸) values. These reliability results are consistent with findings by 624 

Dennis et al. (2015); Duarte et al. (2018); Link et al. (2018) and Monroe et al. (2019), 625 

who emphasize that N-mixture models are highly sensitive to excessive variation in 626 

model parameters. Consequently, estimates of total number of roadkill should be 627 

interpreted with caution in datasets characterized by high variability in parameters 628 

(see Table 3). However, despite these inaccuracies in estimating total roadkill 629 

numbers, the models consistently yielded reliable estimates of relative numbers 630 

across months. This finding supports the “can’t lose” proposition described by Kéry & 631 

Royle (2021): even when violations of parametric assumptions compromise the 632 

precision of the absolute population size, the N-mixture framework remains a robust 633 

tool for inferring relative dynamics. As noted by Barker et al. (2018); Knape & 634 

Korner-Nievergelt (2015) and Martijn et al. (2023), such models effectively 635 

characterize relative abundance even when data are sparse or variable.  636 

 637 

4.2.2 Impact of priors information for carcass location and persistence probability 638 

In most current road survey designs, data on carcass location (𝑝𝐿) and persistence 639 

(𝑝𝑃) probability are not explicitly collected, and these two parameters are not 640 

identifiable from count data alone. Thus, the estimation of these specific biases 641 

becomes prior-driven; that is, the posterior distributions are dominated by the prior 642 

assumptions rather than by the data itself (Banner et al., 2020; Northrup & Gerber, 643 

2018). Our simulation scenarios of variable data and prior sensitivity show that weak 644 

informative, uninformative or inaccurate prior distributions (i.e., wide distributions 645 



with high standard errors, uniform distributions or informative priors intentionally 646 

biased away from the true values) propagated uncertainty directly to estimates total 647 

number of roadkill or resulted in low recovery and identifiability of simulated carcass 648 

location and persistence probability priors by the Bayesian model, an issue 649 

highlighted by (Fidino, 2021). This behaviour is consistent with literature on Bayesian 650 

mixture models, which warns that inference can become unstable when data are 651 

sparse and priors are uninformative (Depaoli, 2013; Depaoli et al., 2017). 652 

 653 

Our results demonstrate that to obtain reliable estimates of the total number of 654 

roadkills, future roadkill studies cannot rely on vague priors for carcass bias 655 

probabilities; they require informative priors derived from independent empirical data; 656 

or, ideally, would incorporate independent data to facilitate the estimation of posterior 657 

distributions of these parameters. Thus, research efforts must prioritize collecting 658 

auxiliary data to quantify carcass location probability (Román et al., 2024) and 659 

persistence rates (Ruiz-Capillas et al., 2015; Santos et al., 2018), as these 660 

independent constraints are necessary to anchor the model parameters. 661 

 662 

4.2.3 Differences among vertebrate groups 663 

When simulated data are highly variable or priors were uninformative, the total 664 

number of roadkills can be overestimated, depending on the vertebrate group. The 665 

fact that lizards were overestimated when considering full-year datasets with 10 road 666 

transects and informative priors is likely due to extremely low persistence and 667 

observation probabilities in this group, which resulted in a zero-inflated simulated 668 

dataset for analysis. In such cases, a higher sampling efforts (Guillera-Arroita et al., 669 

2010; MacKenzie et al., 2002) and employing a zero-inflated Poisson version of the 670 



N-mixture model can yield more accurate results (Joseph et al., 2009; Wenger & 671 

Freeman, 2008).  672 

 673 

4.2.4 Reliability checklist to assess robustness of Bayesian framework in future 674 

applications 675 

Based on the model’s performance across our simulation scenarios, we provide a 676 

reliability checklist to guide researchers in ensuring the reliability of total mortality 677 

estimates in infrastructure mortality surveys (Table 3). The model generally provides 678 

robust estimates of all target parameters when accurate priors are available for the 679 

carcass location and carcass persistence probabilities. However, as outlined in the 680 

checklist (Table 3), the precision of these estimates may be compromised in 681 

scenarios where prior uncertainty or data complexity affect the reliability and 682 

performance of the model. In such instances, while carcass observation probability 683 

estimates tend to remain robust, the estimates for the total number of roadkills 684 

should be approached with caution.  685 

 686 

Future applications must cautiously evaluate and document prior knowledge on 687 

carcass location and persistence probabilities and ideally incorporate, auxiliary field 688 

experiments to estimate posterior distributions. In addition, we strongly recommend 689 

restricting the analysis to the biologically active season for taxa with marked 690 

seasonal dynamics (e.g., amphibians, reptiles). Lastly, results must be interpreted 691 

with caution when applying these models to datasets where daily roadkill numbers or 692 

persistence rates fluctuate drastically. For such highly variable data, estimates 693 

should be interpreted as robust indices of relative abundance (Kéry & Royle, 2021).  694 

 695 



Crucially, beyond adhering to this checklist, we strongly recommend that researchers 696 

using our Bayesian models to estimate infrastructure mortality perform their own 697 

simulations to validate the model's suitability for their specific study system and data. 698 

By utilizing the simulation R scripts provided in this study (Supplementary Material 699 

S2, S3, S4 and S6), users can easily adapt our specifications to generate simulated 700 

datasets that mimic their specific study conditions (e.g., number of survey transects; 701 

carcass location, persistence and observation per method probabilities values). 702 

 703 

4.3 Case study application 704 

Applying the hierarchical modelling framework to empirical data in our case study 705 

showed an important increase in the estimated number of roadkills compared to 706 

those observed, aligning with the findings of other studies (e.g Teixeira et al. (2013); 707 

Winton et al. (2018)). Also, our estimates for carcass observation probabilities align 708 

with previous findings in the literature, as it is highest for walking surveys, followed 709 

by cycling, and lowest for driving (Guinard et al., 2012; Ogletree & Mead, 2020; 710 

Winton et al., 2018), and it is  also lower for smaller vertebrate groups and higher for 711 

larger, more visible species (Gerow et al., 2010; Teixeira et al., 2013). Our study is 712 

the first to compare all three survey methods simultaneously within the same study. 713 

We not only demonstrate that walking surveys—while the most effective method—714 

are not perfect and should not be assumed to observe all roadkill events, as was 715 

done in Teixeira et al. (2013), but we also show that a significant number of 716 

carcasses were missed by walking surveys but observed by cycling. This suggests 717 

that walking, cycling, and driving surveys should not be seen as a ranking from best 718 

to worst but rather as complementary methods, each with its own advantages and 719 

limitations. For example, while walking likely helps observe carcasses directly 720 



underfoot, the elevated perspective provided by cycling allows for a broader field of 721 

view, making it easier to observe carcasses on the roadside. 722 

 723 

These results highlight that using the driving method in surveys not only reduces the 724 

proportion of carcasses observed on the road but can also lead to an overestimation 725 

of the total number of collisions. In N-mixture models, lower observation probabilities 726 

result in larger extrapolations in the estimated values. Since observation probabilities 727 

while driving are extremely low, the estimated total number of roadkills ultimately 728 

would be much higher than the real one (Dennis et al., 2015; Hostetter et al., 2019).  729 

 730 

Regarding our case study survey methodology, one important consideration is that, 731 

typically, roadkill studies alternate the direction of search and the side of the road 732 

randomly in order to cover the area as thoroughly as possible along the 733 

infrastructure (D’Amico et al., 2015). However, in our case, as our study was an 734 

initial phase of a citizen science project with volunteers, we had to employ a simple 735 

and easy sampling method, conducting surveys on only one side of the road and 736 

always in the same direction. Although we recognize that this may decrease the 737 

carcass observation probability, it would be interesting to investigate in the future 738 

whether randomizing the direction and side of the road would actually reduce 739 

carcass observation bias. 740 

 741 

4.4 Limitations and future perspectives 742 

A limitation of our methodology is that it requires extensive knowledge of carcass 743 

location, persistence, and observation biases specific to each infrastructure, 744 

vertebrate group, and study environment. The bias values for each of these contexts 745 



may vary, which is crucial for making accurate estimates in each case. Another 746 

limitation of our estimates of total number of roadkills is that they are limited by the 747 

maximum number of days a carcass from a specific vertebrate group remains on the 748 

road before disappearing (D-day period). This means that to estimate the number of 749 

roadkill for periods larger than the D-day period (e.g., one month or a specific 750 

season), we currently simply extrapolate our estimates for the D-day period over a 751 

larger time window (e.g., 30 days / D-day period). Thus, for vertebrate groups with 752 

shorter persistence times (such as amphibians and lizards), the extrapolation gap 753 

required to cover the unobserved temporal window is significantly larger than for 754 

groups with longer persistence times (such as large birds and carnivores). To 755 

address the accuracy of monthly extrapolations, roadkill survey frequency should 756 

take into account the persistence period of the target vertebrate group. This 757 

approach would be particularly useful in studies focused on endangered or high-758 

interest species, due to most studies do not typically follow this method, as they 759 

generally assess overall vertebrate mortality (e.g. D’Amico et al., 2015). For species 760 

with short persistence times, such as lizards, surveys should be done every day 761 

throughout the study season to avoid extrapolation and rely on actual observed data. 762 

 763 

Finally, our modelling framework could be used for animal conservation issues by 764 

combining it with population abundance estimation models near to infrastructure, 765 

offering a valuable tool to assess what proportion of the study population may 766 

succumb to infrastructure-related mortality, such as roads (Barrientos et al., 2021), 767 

power lines (Biasotto & Kindel, 2018; D’Amico et al., 2019) and multiple linear 768 

infrastructures (Ascensão et al., 2022). This information would facilitate the 769 

identification of species or populations more significantly affected by infrastructure-770 



related mortality (e.g. species with very low population sizes and highly susceptible 771 

to roadkill), thereby prioritizing conservation efforts.  772 

 773 
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Figures and tables 972 

 973 

Table 1. Descriptive characteristics of the different vertebrate groups used to 974 

simulate roadkill numbers, including examples of species, their features of observed 975 

roadkill numbers and their seasonal variation, maximum days their carcass remains 976 

on the road without disappearing (D), probability of their carcass being located on 977 

the road (𝑝𝐿), average probability across D of their carcass persisting on the road 978 

(𝑝𝑃) and carcass observation probability (𝑝𝑂𝑚) by walking (pOw), cycling (pOc) and 979 

driving (pOdr) survey method. 980 

Vertebrate 

groups 
Example 

Observed roadkill 

abundance 

Seasonal 

variation 

D 

(days) 
pL pP  

pOm 

pOw pOc pOdr 

Amphibians Small Frequently High 2 1 0.36 0.5 0.3 0.02 



amphibians 

such as Bufo 

spinosus or 

Epidalea 

calamita 

observed  

Reptiles G1 

Small reptiles 

such as 

Psammodromus 

algirus or Timon 

lepidus 

Frequently 

observed 
High 1 1 0.54 0.5 0.3 0.02 

Reptiles G2 

Medium-sized 

ophidians such 

as Malpolon 

monspessulanu

s or Zamenis 

scalaris 

Frequently 

observed 
High 3 0.43 0.36 0.7 0.5 0.1 

Birds/Bats G1 

Small birds such 

as Carduelis 

carduelis or bats 

Frequently 

observed 
Low 3 0.36 0.36 0.6 0.4 0.05 

Birds G2 

Medium-sized 

birds such as 

Alectoris rufa or 

large birds as 

Asio otus 

Rarely observed Low 10 0.69 0.34 0.8 0.6 0.2 

Mammals G1 

Small mammals 

such as Mus 

spretus or 

Rattus rattus 

Frequently 

observed 
Low 3 1 0.36 0.6 0.4 0.05 

Mammals G2 

Medium-sized 

mammals such 

as Oryctolagus 

cuniculus or 

Lepus 

Frequently 

observed 
Low 4 1 0.35 0.8 0.6 0.2 



granatensis 

Mammals G3 

Mammals with 

keratinous 

structures such 

as Erinaceus 

europaeus 

Rarely observed Low 12 1 0.34 0.8 0.6 0.2 

Mammals G4 

Medium-sized 

carnivores as 

Felis catus or 

Vulpes vulpes 

Frequently 

observed 
Low 14 0.65 0.34 0.9 0.7 0.3 

Mammals G5 

Big mammals as 

Sus scrofa or 

Cervus elaphus 

Rarely observed Low 30 0.5 1 1 0.9 0.8 

 981 

Table 2. Simulation scenarios to generate roadkill census data, including levels of 982 

variation and justification for the scenario choice. 𝜆𝑡,𝑑= daily mean number of roadkills 983 

in month t for each specific day d across D (maximum persistence), 𝑝𝑃𝑑 = daily 984 

carcass persistence probability, SD = Standard Deviation and SE = Standard Error. 985 

Parameter Levels Justification 

Nº road transect 10/100 

N-mixture models can be sensitive to the spatial 

replication of count surveys (Kery & Royle, 2021). 

Increasing the number of transects can enhance the 

precision of estimates by improving the spatial 

representativeness of the data 

SD in λt,d 0/0.5/1.5 

Since we model the total number of roadkills as the 

sum over the maximum persistence period (D), we 

aim to know how this modelling approach impacts our 



estimates when daily values show no variation, 

moderate variation, or high variation 

SD in pPd 0/0.05/0.15 

Since we model the carcass persistence probability as 

the average of carcass persistence probabilities over 

the maximum persistence period (D), we aim to know 

how this modelling approach impacts our estimates 

when daily values show no variation, moderate 

variation, or high variation 

SE in priors pL and 

pP 
0.05/0.1 

Since we model our prior beta-distribution 𝛼 and 𝛽 

parameters for a pL and pP from their mean values and 

a SE that captures our uncertainty around this 

knowledge, we aim to know how low and high 

uncertainty impacts our estimates 

 986 

Table 3: Checklist to assess reliability of our model’s absolute infrastructure mortality 987 

estimates. The matrix classifies reliability into three levels: Robust (green), Caution 988 

(yellow), and High risk of erroneous outputs (red), based on three critical modelling 989 

constraints: Priors information (specifically for carcass location and persistence 990 

probabilities), variability of parameters in input data, and seasonality of road mortality 991 

events. 992 

 993 



 994 

Figure 1. Roadkill survey bias framework. This diagram illustrates how three types of 995 

survey bias (carcass location bias, carcass persistence bias, and carcass 996 

observation bias) impact the census data of roadkill within the surveyed road. These 997 

theoretical different sizes of the squares in the diagram symbolize the quantity of 998 

roadkill that would be available at each nested level of the framework. Additionally, D 999 

represents the time elapsed between the roadkill event and the maximum days a 1000 

carcass remains on the road without disappearing until survey day, where carcass 1001 

persistence bias occurs, while Sd represents the survey duration, during which 1002 

observational bias occurs. 1003 

 1004 



 1005 

Figure 2: 𝑁𝑡,𝐷 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values (Equation 5), where log values <0 indicate 1006 

high accuracy of the model, log values =0 indicate that the magnitude of the error 1007 

equals the true simulated value, and log values >0 indicates low accuracy of the 1008 

model. This is evaluated across s = 9 different scenario combinations of mean daily 1009 

number of roadkills and daily carcass persistence variability (𝑆𝐷 𝜆𝑡,𝑑 and 𝑆𝐷 𝑝𝑃𝑑), v = 1010 

10 vertebrate groups, sim = 20 simulations, t = 12 months and D = maximum days a 1011 

carcass remains on the road without disappearing. Each distribution represents 1012 

𝑁𝑡,𝐷 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values derived from each sim and t levels described above for 1013 

a) Amphibians, b) Reptiles G1, c) Reptiles G2, d) Birds/Bats G1, e) Birds G2, f) 1014 

Mammals G1, g) Mammals G2, h) Mammals G3, i) Mammals G4 and j) Mammals 1015 

G5. The results are shown for 2 levels of standard error (0.05 or 0.1) for the 𝑝𝐿 and 1016 

𝑝𝑃 prior distributions, and for 100 road transects surveyed. Coloured circles 1017 

represent the mean, bold lines for 66% intervals, and thin lines 95% intervals. An 1018 

asterisk (*) in the distributions indicates values exceeding 5 that are part of the 1019 

distribution. Note: Amphibians and Reptiles G1 vertebrate groups models only 1020 

account for peak abundance months, excluding periods of typical absence. 1021 



 1022 

 1023 

Figure 3: Comparison between the Bayesian estimation distribution of 𝑁𝑡,𝐷 given 1024 

𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 and of 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 given 𝜃𝑠,𝑣,𝑠𝑖𝑚, and their true simulated values, 𝑁𝑡,𝐷 1025 

given 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  and 𝑝𝐿 , 𝑝𝑃 and 𝑝𝑂𝑚 given 𝜃𝑠,𝑣,𝑠𝑖𝑚, for Mammals G1, Reptiles G2, and 1026 

Birds/Bats G1. Here census data were simulated under high variability scenario for 1027 

daily mean number of roadkills (𝜆𝑡,𝑑) and daily carcass persistence probability (𝑝𝑃𝑑), 1028 

considering a SE = 0.05 in 𝑝𝐿 and 𝑝𝑃 priors. a) Comparison of total number of 1029 

roadkills per transect. Lines represent the average 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  over 20 simulations, 1030 

while the shaded areas show the average 95% credible interval of Bayesian 1031 

posterior estimates 𝑁𝑡,𝐷 𝜃̂𝑠,𝑣,𝑠𝑖𝑚,𝑡 over the 20 simulated census data. b) Comparison 1032 

of carcass location, persistence and observation probability per method. Green dots 1033 

represent the 𝑝𝐿 , 𝑝𝑃  and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 values for m = walking (𝑝𝑂𝑤), cycling (𝑝𝑂𝑐) or 1034 



driving (𝑝𝑂𝑑𝑟) survey methods. Violin plots combined with boxplots (representing the 1035 

same underlying data) show the pooled 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 over 20 simulated 1036 

census data. 1037 

 1038 

 1039 

Figure 4:  𝑝𝐿 , 𝑝𝑃 & 𝑝𝑂𝑚 𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃̂𝑠,𝑣,𝑠𝑖𝑚) (Equation 6), where log values <0 indicate 1040 

high accuracy of the model, log values =0 indicate that the magnitude of the error 1041 

equals the true simulated value, and log values >0 indicates low accuracy of the 1042 

model. This is evaluated across s = 9 different scenario combinations of daily mean 1043 

number of roadkills and daily carcass persistence variability (𝑆𝐷 𝜆𝑡,𝑑 and 𝑆𝐷 𝑝𝑃𝑑), v = 1044 

10 vertebrate groups, sim = 20 simulations and m = walking, cycling and driving 1045 

survey methods. Each distribution represents 𝑝𝐿 , 𝑝𝑃 & 𝑝𝑂𝑚 𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚) values 1046 

derived from each sim level described above for a) Amphibians, b) Reptiles G1, c) 1047 

Reptiles G2, d) Birds/Bats G1, e) Birds G2, f) Mammals G1, g) Mammals G2, h) 1048 

Mammals G3, i) Mammals G4 and j) Mammals G5. The results are shown for 2 1049 

levels of standard error (0.05 or 0.1) for the 𝑝𝐿 and 𝑝𝑃 prior distributions, and for 100 1050 



road transects surveyed. Coloured circles represent the mean, bold lines for 66% 1051 

intervals, and thin lines 95% intervals. Note: Amphibians and Reptiles G1 vertebrate 1052 

groups models only account for peak abundance months, excluding periods of 1053 

typical absence. 1054 

 1055 

 1056 

Figure 5. Observed roadkill rates per kilometer in road surveys (blue) and Bayesian 1057 

posterior estimates of total roadkill rates per kilometer (black), derived from 1058 

aggregating four monthly census data of the case study, for each vertebrate group. 1059 

These estimated roadkill rates are limited to those that occurred within the time 1060 

interval where each vertebrate group remains visible on the road without 1061 

disappearing. Dots for means, bold lines for 66% credible intervals, and thin lines for 1062 

95% credible intervals. 1063 



 1064 

 1065 

Figure 6. Bayesian posterior distribution of the carcass observation probabilities from 1066 

case study, for each considered vertebrate groups. “Walking” means the estimation 1067 

of carcass observation probability by walking survey method, “Cycling” by cycling 1068 

survey method and “Driving” by driving survey method. Dots for means, bold lines for 1069 

66% credible intervals, and thin lines for 95% credible intervals. 1070 


