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Abstract

1. Human infrastructures are among the most impactful wildlife threats. Although
estimates of animal mortality by these structures exist over a given period, they
typically do not account for several detection biases (i.e., difference between
recorded and true mortality). Consequently, true mortality rates may be severely

underestimated, as well as their impact on populations and species.

2. We present a hierarchical Bayesian latent-state modelling framework that
sequentially accounts for three main processes that produce biases in estimating
mortality abundance: the probability that a hit animal dies on the surveyed area
(carcass location probability), the probability that the carcass remains on the
surveyed area until the survey is conducted (carcass persistence probability), and
the probability that the carcass is observed during the survey process (carcass
observation probability). We employ a comprehensive simulation study where we
test the effects of variability in species characteristics, sampling design, latent-
state parameters, and prior information on the ability of our model to estimate
mortality abundance on roads as total number of roadkills. We then apply our
framework on a case study to estimate the total number of roadkills per km in
Mediterranean ecosystems while evaluating the cross-efficiency of different

sampling methods.

3. Our framework accurately recovers the total number of roadkills from
simulated census data for most simulation scenarios. We detected the highest
disagreement between modelling outcomes and simulated data when variability
in simulated carcass persistence probability was high and Bayesian priors were

highly diffuse. In the case study, our results show notably high roadkill numbers
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(e.g., estimating 48.92 per km passerines based on 8.04 observed counts), along
with substantial variation across different vertebrate groups. Furthermore, our
case study confirms that walking and cycling surveys outperform driving surveys
in carcass observation rate and provide complementary information between

them, observing partially distinct sets of species and carcass sizes.

4. Our modelling framework offers an efficient approach to estimate mortality
rates for a wide range of taxa. Optimizing application requires extensive fieldwork
for bias estimation and integration. We provide a checklist to help managers to
assess when infrastructure-related mortality can be assessed most robustly to

prioritize conservation efforts.

We have made all data and code available in a ZIP file and on Figshare (links also in

ZIP)

1. Introduction

Linear infrastructures such as roads, power lines and wind turbines have become
extremely widespread and are expected to increase substantially in the next
decades, particularly in developing countries that host rich biodiversity (D’Amico,
Catry, et al.,, 2018; Meijer et al., 2018; Tabassum-Abbasi et al., 2014). This is
worrying because linear infrastructures contribute to the decline and even extinction
of wildlife populations, and ultimately to biodiversity loss (Barrientos et al., 2021;
D’Amico et al., 2019; Pearce-Higgins et al., 2012). In the last decades, this
ecological impact has been extensively studied, with the majority of research
focusing on infrastructure-induced mortality (Barrientos et al., 2021; D’Amico,
Ascenséo, et al.,, 2018; Nazir et al., 2020). Most research has primarily aimed at

investigating the spatiotemporal patterns of such mortality (D’Amico et al., 2015; Guil
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et al., 2015), although a growing body of studies has more recently sought to

quantify the magnitude of this threat.

However, when estimating infrastructure-induced mortality, standard carcass counts
may not accurately reflect the total number of individuals affected. This is because
the recorded carcasses are the result of a series of sequential processes, including
the affected animal remaining near the infrastructure after the mortality event, the
carcass persisting until the survey, and finally the observer detecting it (Barrientos et
al., 2018; Bech et al., 2012; Roman et al., 2024). Not accounting for these three
hierarchical processes may lead to multiple nested sources of bias, i.e., mismatch
among recorded roadkills and true road mortality due to lack of detection, when
inferring infrastructure-induced mortality from carcass surveys (Barrientos et al.,
2018; Roman et al., 2024). The first of these biases is carcass location bias and
concerns missing animals injured by collisions with power lines, wind turbines, or
vehicles on roads that die outside the survey area (Bernardino et al., 2018; Roman
et al., 2024; Smallwood, 2007). The second bias affecting standard mortality surveys
along infrastructures is carcass persistence bias, which occurs when carcasses
disappear from the survey area over time before a given survey (Barrientos et al.,
2018; Borner et al., 2017; Ravache et al., 2024). This is typically due to natural
decomposition and environmental factors influencing it (such as weather conditions;
Barrientos et al., 2018; Borner et al., 2017), as well as to scavenger activity (DeVault
et al., 2017; Dhiab et al., 2023). On roads, carcass persistence can also be impacted
by repeated crushing by vehicles and road maintenance (Abra et al., 2018;
Barrientos et al.,, 2018; Santos et al.,, 2011). Finally, the third bias is carcass

observation bias, which occurs when carcasses within the survey area are not



124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

detected by observers, typically due to the sampling method used and the observers’
level of experience (Barrientos et al., 2018; Borner et al., 2017; Dominguez del Valle
et al., 2020). On roads, this bias tends to be particularly pronounced when roadkill
surveys are conducted from vehicles compared to those conducted cycling or

walking (Delgado et al., 2019; Guinard et al., 2012; Teixeira et al., 2013).

Although the hierarchical nature of biases in carcass surveys along infrastructures
may appear evident, this aspect has received relatively little attention in the scientific
literature. While carcass location bias has been largely neglected in mortality
estimates (Barrientos et al., 2018; Roman et al.,, 2024), several authors have
highlighted the significant underestimation of carcass records due to both
persistence and observation bias (Barrientos et al., 2018; Kitano et al., 2023;
Teixeira et al., 2013). Nonetheless, not even the hierarchical nature of these two
biases has been sufficiently disclosed in the scientific literature. Some notable
exceptions relate to road-mortality research, where recent studies have implemented
hierarchical statistical models to account for carcass persistence and observation
bias combined as latent states when estimating roadkill numbers (Santos et al.,
2018), or even extrapolating such estimates to assess the population abundance of
the affected species (Fernandez-Lopez et al., 2022). However, despite these recent
advances, methods that integrate the varying magnitudes of all three biases in
carcass surveys are still lacking, hindering the estimation of the total number of killed

animals.

In this study, we developed a Bayesian latent-state modelling framework that can

effectively integrate location, persistence, and observation biases into a reliable
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estimate of actual infrastructure-induced mortality across different vertebrate groups.
More specifically, we focused on road mortality and roadkill surveys, as the scientific
literature on this topic is more extensive than that available for other infrastructures.
Our framework is an extension of Bayesian N-mixture models, which estimate
abundances from repeated counts (Royle, 2004). We conducted a simulation study
to assess the framework’s accuracy in recovering the simulated total number of
roadkills for different vertebrate groups and survey methods (walking, cycling, and
driving). In this study, we implemented multiple scenarios in which we varied the
number of road transects surveyed, the daily variability in roadkill numbers and
carcass persistence rate, and finally the certainty of prior expert knowledge on
location and persistence bias probabilities, which we integrated into our model. We
then applied our model to a case study with real data collected by road surveys in

southern Spain.

2. Material and methods

2.1 General overview

We first describe our Bayesian hierarchical latent-state modelling framework, which
quantifies the total number of roadkills by sequentially assessing how carcass
location, persistence and observation biases cause deviations in roadkill census data
from actual roadkill (i.e., similar to detection biases in abundance estimation from
count data (e.g. Barrientos et al., 2018; Smallwood, 2007) (Fig. 1)). We then
evaluate the model's performance through a simulation study, testing different
roadkill scenarios across different vertebrate groups and conducting a prior
sensitivity analysis. Finally, we apply our model to data from a field case study to

estimate the total number of roadkills based on empirical census datasets.
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2.2 Modelling framework

We introduce a hierarchical latent-state model to estimate the total number of
roadkills, explicitly accounting for the three nested levels of bias: carcass location,
persistence, and observation. The model structure is based on the widely used N-
mixture models, which estimate abundances from count data while accounting for

imperfect detection (Hostetter et al., 2019; Kery & Royle, 2021; Royle, 2004).

We model the total number of roadkills N; ., across i = 1.../ road transects, within t =

1...T survey periods (with months used as periods in our model, as more frequent
surveys are rarely performed), considering a retrospective carcass accumulation
period of D days (representing the maximum number of days a carcass remains on
the survey area before disappearing). We define N; ., as a random Poisson variable

sampled from 4, , = mean number of roadkills for the period t over D days:

N;¢p ~ Poisson (A¢p) eqn. 1

As 1.4, and consequently N;.p, can vary across months t, our model accounts for
seasonal changes in roadkill numbers throughout the year. Note, however, that we

do not model variability in 4, 4 at the transect level /.

We assume that N;,, = X5_; N; .4, Where each daily total number of roadkills N; ;4
can fluctuate across the days within period D, following the daily 4., in month t.
However, our framework assumes that N; . ; and 4, ; cannot be modelled directly and

instead need to be estimated over the maximum persistence time D, as conducting

daily road monitoring is too resource-demanding to be feasible.
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We then define N2;,, as the subset of the total number of roadkills (N;.,) whose
carcasses were located on the road survey area after the collision, determined by
the probability of a carcass being located on the road (p,, carcass location

probability):
Nzl"t’D ~ Blnomial (po Ni,t,D) eqn 2

As for N;.p,, we assume that N2;., =Y5_;N2;,,. Based on previous studies

(Roman et al., 2024), we assume that p, does not vary among days d =1 —D.

Subsequently, we define N3;,, = X5_; N3;.4 as the subset of roadkills located on
the road (N2;, p) that remain on it until the day of the road survey, determined by the
cumulative probability of a carcass persisting on the road survey area, weighted by D

(pp, carcass persistence probability)
N3i,t,D ~ Blnomlal (pp, Nzi,t,D) eqn 3

More precisely, if we assume that the carcass persistence probability could be
modelled using a survival function d (e.g., a Cox-hazard model as in Santos et al.
2011), then pp = fles(d)d(d), being the average persistence probability from d = 1
to D (for details, see Supplementary Material S1). For example, if daily N2;, ; values
are known and, for illustration, we set D = 3 days ( with d7, d2 and d3 denoting days
1, 2 and 3 since roadkills occur), our framework can in theory model:
N3; a1 ~ Binomial (ppa1PpazPras N2ita1), N3itaz ~ Binomial (PpazPpaz, N2itaz),
N3; a3 ~ Binomial (ppas, N2;t43), Where ppay, bpaz @nd ppgs are the daily carcass

persistence probability on first, second and third days since roadkills occur,

respectively.
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Finally, we define C; ; . p m as the census data, representing the proportion of the total
number of roadkills that have persisted in the road survey area during D and are
recorded in a given road survey, which depend on the carcass observation

probability po.,:

Cijtpm ™~ Binomial (pom,N3i+p) eqn. 4

We assume a robust-design road survey (Royle, 2004), and thus C; ., varies by
road transect i, by m = 1...M methods used for surveying (here: walking, bike, or
vehicle), as well as by month t (the primary sampling occasion), with j = 1...J
independent sampling replicates each month (secondary sampling occasion). In turn,

Pom differs depending on the sampling method m used.

Equation 4 builds upon the N-mixture model introduced by Royle (2004), where the
estimation of p,,, comes from the variabilty among the independent sampling
replicates for each method from a robust design census dataset. That is, we assume
that independent observers sampled a given road transect repeatedly during a given
road survey. This allows us to make an independent estimation of the observation

probability per method pg,,.

2.3 Implementation of the model

We implemented our Bayesian hierarchical latent-state modelling framework to run
our model, using Markov chain Monte Carlo (MCMC) to estimate the parameters
(Hobbs & Hooten, 2015). Carcass location probability p, and carcass persistence
probability pp parameters are not typically estimated directly in roadkill census data,
and therefore we assumed them to be latent parameters. We employed beta-

distributed informative priors for p, and pp, with different parameter estimates for
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different vertebrate groups. The beta distribution is ideal for modelling probabilities
like p, and pp because it is defined on the interval [0,1] and its probability density
distribution can take on various shapes, allowing us to represent different levels of
prior belief and uncertainty. For each vertebrate group, we defined the a and g
parameters of the beta distribution based on a mean estimate for p, and pp,
reflecting our prior knowledge, and a standard error (SE) that captured our
uncertainty around this knowledge (see sections 2.3.1 and 2.4.2 for more

information).

Using the respective mean and SE values for p, and pp, we calculated the « and
parameters for their prior beta distributions using the method of moments relative to
the standard parameterization of the beta distribution. We adopted a non-informative
prior for po;m ( pom ~ Uniform(0,1)), and weakly informative priors for 4, , setting the
upper limit sufficiently wide to accommodate the expected number of roadkills

( A¢p ~ Uniform(0,300), ~ Uniform(0,600) or ~ Uniform(0,800), as detailed in
Supplementary Material S2, S3 and S6), this specific upper limit was selected to
ensure values remained biologically reasonable, while increasing the computational

stability and convergence of the Bayesian models.

The MCMC sampling process was conducted in JAGS (Plummer, 2003), operated
within the R statistical framework v. 4.2.2 (R Core Team, 2022) through the jagsUI
package v. 1.6.2 (Kellner, 2015). To determine model convergence, we used the
Gelman-Rubin R diagnostic criterion, considering models to have converged when R
was less than 1.1, following the guidelines by Brooks and Gelman (1998). We also
evaluated the effective sample size (ESS) and visually inspected the traceplots of

the posterior distributions among the different MCMC chains to check convergence
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or mixing issues (see Appendix C). For each model run, we used three chains of
400,000 iterations with a burn-in period of 100,000 iterations, an adaptive period of

100,000 iterations, and a thinning rate of 1,000.

2.3.1 Prior information on carcass location (p,) and carcass persistence (pp)

probability

We assumed that in most roadkill estimation studies carcass location and
persistence probabilities estimations were not available and could not be easily

estimated from the census data (C; ;. pm). They would have to be entirely modelled

as latent states based on prior information. Therefore, in both our simulation and
case studies, we integrated such priors based on literature data for these two
probabilities. Furthermore, given this structural reliance on prior information, we conducted

a specific prior sensitivity analysis to evaluate the robustness of our estimates under

different prior specifications (see Section 2.4.3).

2.3.1.1 Carcass location probability (p;)

We obtained information on p, from a recent publication, in which authors
determined the probability of a carcass being located on the road after the collision
from direct and indirect first-hand observations of vehicle-animal collisions (Roman
et al., 2024). Based on their data, we reorganized their 150 observations into 10
vertebrate groups (G) using their supplementary material (Amphibians, Reptiles G1,
Reptiles G2, Birds/Bats G1, Birds G2, Mammals G1, Mammals G2, Mammals G3,
Mammals G4 and Mammals G5; see Table 1). These groups were delineated based
on species traits (body size and mobility); consequently, these groups determined
the characteristics of observed roadkill numbers and seasonal trends (differences in

abundances across months), as well as the maximum days their carcasses remain
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on the road without disappearing (D), and the average p,, pp, and p,,, values, as

shown in Table 1.

We used the observations in Roman et al. (2024) to designate a carcass that was
located inside the road as success (1) and outside the road as failure (0), and then
calculated the mean of successes over each vertebrate group in order to estimate
their p,. In groups where the value of p, was 1, we assumed the absence of carcass
location bias and hence an extremely low probability of being displaced by the
collision or being capable of moving after the impact. For this reason, we excluded
equation 2 when modelling such groups (i.e., Amphibians, Reptiles G1, Mammals
G1, Mammals G2 and Mammals G3 in Table 1), in such cases N3; ., being directly

dependent on N; ., (Supplementary Material S3).
2.3.1.2 Carcass persistence probability (pp)

Santos, Carvalho, and Mira (2011) was, to our knowledge, the only study providing
estimates of mean daily carcass persistence probability (pp;) for a diverse array of
vertebrate groups from Mediterranean habitats, which we were able to adapt to our
classification. We used these values to derive p, (as discussed in section 2.2 and
Supplementary Material S1, see also Supplementary Material S2, S3, S6, S8 and S9
for R code). Santos, Carvalho, and Mira (2011) did not provide information for
"Mammals G5". Nonetheless, based on available scientific literature, we contended
that this group likely does not demonstrate carcass persistence bias within a monthly
time period between successive roadkill surveys (Barrientos et al. 2018). For this

reason, we excluded equation 3 when modelling this group, in these cases C; j;pm

being directly dependent on N2, ,, = »:3_; N2;. 4 (Supplementary Material S4)
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2.4 Simulation study

We used a simulation study to stress-test under which scenarios our modelling
framework accurately estimated the total number of roadkills N, , and recovered p,,
pp and py,, as latent states. The simulation study generated census data C;;pm

based on different biological and observation processes described below.

2.4.1 Principles of census data generation

To generate different census datasets, we followed the nested levels of data as
described in the modelling framework section 2.2 (N - N2 - N3 - (). The
progression through these levels was carried out considering the values of p;, pp
and p,., specific to each vertebrate group (Table 1), in order to create a range of

biologically realistic data.

We first sampled N; 4 for each road transect (i), month (t), and day (d = 1-D, where
D was the maximum carcass persistence period for a given vertebrate group) as a
random Poisson variable based on their mean total number of roadkills 4, (using
equation 1). We used expert knowledge to assign variation in month t dimension
based on data collected in 2021 and 2022 in southern Spain, which

incorporated known seasonal trends for each vertebrate group (Supplementary
Material S5).

As an example, considering D = 3 days, A;41, A¢q42, and A, 43 would be generated
(i.e., the mean number of roadkills occurring three days, two days, or the day before

the road survey day, respectively). Roadkills on the survey day itself were not
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considered as surveys typically occur in the first half of the day. Through the Poisson
sampling process, we then obtained the respective N; . 41, N; ¢ 42 and N;; 43, being the
total number of roadkills three days, two days and one day before the road survey
day respectively. From these values, we could obtain the simulated total number of
roadkills N;.p = 29_; N; 4, Which we wanted to recover by applying our modelling
framework. For Mammals G5 such as ungulates, since we assumed that their
carcasses remain on the road survey area all month and their roadkill numbers were
low, simulating N; ., values along a D = 30 days period led to an unrealistically high
value for N;.p. Therefore, here, we simulated a single N;., value for the entire

month, such thatN;.p = N;¢4.

Next, for vertebrate groups affected by carcass location bias (Table 1), we sampled
N2; .4 values from their respective N; .4, from a random binomial distribution with p,

as the probability of success (equation 2).

Lastly, we sampled N3;., values from their respective N2;,,, from a random
binomial distribution with the daily persistence probabilities pp,; as the probability of
success (equation 3). For each vertebrate group with their respective pp,; value (see
Supplementary material S1), From these N3;,, values we obtained the simulated
total number of roadkills that are available to be observed in the survey day N3;,p, =
»D_1N3;.q4. For Mammals G5, which were not affected by carcass persistence bias

(i.e., pp = 1), N3; . p was directly dependent on N; ., (Supplementary Material S4).

Finally, we sampled census data C;;;p, from N3;,,, from a random binomial

distribution with the carcass observation probability, py,,, as the probability of
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success (equation 4) using m = 3 survey methods (i.e. walking, cycling and driving),
with j = 3 independent sampling replicates per method. We considered the following
evidence when assigning p,,, values for the different vertebrate groups (in the
absence of more concrete data and based on our expert knowledge): (a) we
assumed that observation was highest when walking, followed by cycling, and then
driving (Guinard et al., 2012; Winton et al., 2018); (b) we assumed that observation
for any of the three methods would be low for small vertebrate groups and high for

the large, more visible groups (Gerow et al., 2010; Teixeira et al., 2013) (Table 1).

2.4.2 Simulation scenarios of variable data

We generated different simulated census dataset for each of the vertebrate groups
considered here (Table 1) using scenarios that introduced different levels of
parameters variability (Table 2) to assess when our model can recover simulated

parameters and when there is a risk of under- or overestimating total roadkills.

First, we introduced variability in the daily number of roadkills and persistence rates
across simulations of i = 10 or 100 road transects. Specifically, we introduced
variability in the mean daily number of roadkills A,,; by multiplying it by a value
sampled from a truncated random Normal distribution (mean = 1; SD = 0, 0.5, or
1.5), and similarly applied variability to the daily persistence probability pp; by
sampling from a truncated random Normal distribution (mean = pp4; SD = 0, 0.05, or
0.15). We didn’t add variability to p;, as we assume p, doesn’t vary among days. We
then analysed these datasets using p, and p, priors fitted with both a strong
informative prior distribution (Standard Error (SE) = 0.05) and a weaker prior

distribution (SE = 0.1) to test how uncertainty in the priors affects the recovery of
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parameters in the presence of variability, as p, and p, values are prior-driven. We
couldn’t simulate 1,4 and pp, variability for Mammals G5 as we simulated a single
N; . q value for the entire month and this group is not affected by carcass persistence

bias, respectively.

We also simulated vertebrate groups, i.e., "Amphibians" and "Reptiles G1",
characterized by a significant peak in roadkill numbers over just a few months, as
examples of high seasonal roadkill numbers due to presumed absence or low
numbers of roadkills in certain months where animals are not active (monthly
abundance from the 2021 and 2022 data collected <5; see Supplementary Material
S5). Here, as we assumed that active and inactive periods were independent, we
fitted additional models that only included months where monthly abundance from
the 2021 and 2022 data collected was > 5 (see Supplementary Material S6). The aim
was to see if model performance improved without accounting for the extended

periods with very low roadkill counts, compared to the peak abundance months.

We simulated 20 datasets for each vertebrate group and scenario combination,
resulting in 720 simulated datasets per vertebrate group (dataset simulation code is

detailed in Supplementary Material S2, S3, S4 and S6).

2.4.3 Prior sensitivity

In our Bayesian models, information on p, and p, comes entirely from prior
knowledge, as the count data alone (C; ;¢ p,) does not contain sufficient information
to independently disentangle these intermediate latent processes without external

information. Therefore, we conducted a sensitivity analysis to stress-test whether key
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simulated parameters can be recovered and p, and p, are identifiable by using
informative vs. uninformative prior knowledge. We again simulated different datasets
for each vertebrate group (as described in 2.4.2), but we fixed the following
parameters: i = 10 road transects, 4, ; and p,,, values, and SD = 0 for both 4,4 and
pra- We then simulated datasets using pairwise combinations of p;, and pp; as
shown in Supplementary Material S7. For each simulated dataset, we then used
three prior specifications in Bayesian models: accurate informative priors centered
on the p, and pp values associated with each simulated data set (Supplementary
Material S7); inaccurate informative priors (0.7 if p, or pp < 0.5 and 0.3 if p, or pp >
0.5); and finally, uninformative priors using a uniform distribution from 0 to 1. Prior

precision was set to SE = 0.05 (see 2.4.2).

We generated 27 scenario combinations per vertebrate group affected by carcass
location and persistence bias, leading to 540 simulated datasets per vertebrate
group, while 9 scenario combinations were generated for vertebrate groups only
affected by carcass location or persistence bias, i.e., 180 simulated datasets

(dataset simulation code is detailed in Supplementary Material S8, S9 and S10).
All datasets were generated and analysed in R v. 4.2.2 (R Core Team, 2022) .
2.4.4 Model evaluation

To evaluate the ability of the modelling framework to recover the simulated
parameters we compared their Bayesian posterior distribution of parameters és,v,sim,t
with the real known simulated parameter value 6g,n.. Here, the subscripts
denoted s = 1...S simulation scenario, v = 1...V vertebrate groups, sim = 1...Sim

specific simulation iteration and ¢ = 1...T months. We focused on the recovery of N, p,
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O v sime» and py, pp, and pon, B, sim (NOte that there was no dimension t as p;, pp,

and po,, values did not change across t months).

We used the Relative Root Mean Squared Error (RRMSE) to compare model
performance across simulation scenarios and vertebrate groups. RRMSE
standardizes the error relative to the magnitude of the true parameter, allowing for
comparisons between parameters with different scales (e.g., total number of roadkills
vs. carcass bias probabilities). It was calculated as shown in the following equation

(Rosenbaum et al., 2024):

~ 1
RRMSE(0; y,sim,¢) =

\/(E(és,v,sim,t) - gs,v,sim,t)z + Var(és,v,sim,t) eqn. 5

gs,v,sim,t

where E(és,v,sim,t) was the mean of the Bayesian posterior distribution. Intuitively,
RRMSE represents the size of the error as a proportion of the true simulated value.
An RRMSE of O indicates perfect accuracy, while a value of 1 implies that the
magnitude of the error is equal to the true simulated value itself. Consequently,
RRMSE values can exceed 1 (or >0 on a logarithmic scale used for graphical clarity)
when the estimation error is larger than the parameter being estimated, indicating
high uncertainty. In the case of N;p 0s,sm: Values, we added 1 to all values as
RRMSE (0.,,5im¢) could not be calculated when N,, = 0 (Supplementary Material

S11).

In the case of p;, pp, and po,, We generalized their RRMSE (@mim) values as the
geometric mean of all probability estimates for each vertebrate group
(RRMSE (8 ,5im)), as shown in the following equation (Rosenbaum et al. 2024;

Supplementary Material S12):
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RRMSE (és,v,sim) = er{pL,pp,pOm} RRMSE (és,v,sim) 1/ tpLpp2om) eqn. 6

To ensure that the true known simulated values were recovered, we assessed
whether the average true values N, p 6;,,sim ¢ 1ay within the 95% credible interval of
Bayesian posterior estimates of average N, p és,,,,sim,t. In contrast for carcass bias
probabilities, we assessed whether the true values p,, pp, Pom Os v sim 12y Within the

full range of their pooled respective posterior distributions p,, pp, and pon, és,v,sim.

In the prior sensitivity analysis, we also evaluated across the different simulation
scenarios whether the true values 6;, ., correctly overlapped with the posterior
distributions és,v,sim_t. Specifically, we assessed the accuracy of estimates for the
mean number of roadkills for period t over D days 4, the total number of roadkills
N.p, and the carcass observation probabilities per survey method py,,. Additionally,
we verified the successful recovery of the p, and p, values integrated into the model

as priors.

2.5 Case study

We applied our modelling framework to estimate the total number of roadkills across
i = 9 road transects of 3 km each, in three different Mediterranean ecosystems in

south-western Spain (Supplementary Material S13).

We collected data on these road sections using M = 3 different methods carried
simultaneously (walking, cycling, and driving), with J = 2 independent sampling
repetitions per method (thereby guaranteeing a robust sampling design) for each

method and T = 4 monthly surveys from February to May in 2023. For each 3 km
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transect, one observer conducted an initial survey, followed by a second observer
after a 10-minute break, considering this interval short enough to assume that the
roadkill population was closed. Due to administrative and legal requirements, during
the initial phase of the driving surveys, the first observer was solely responsible for
roadkill sampling while the second focused entirely on driving. In the subsequent
transect sampling repetition, the roles were reversed, allowing the driver to also take
on the task of searching for roadkill, ensuring both observers made independent

samplings. The survey velocity while driving was the minimum allowed on the road.

For each roadkill detected, we noted the observer's identity, the surveyed transect,
sampling method, observation month and the exact georeferenced location of the
roadkill (with less than 10 m error). Roadkills were documented with zenithal
photographs and identified to the lowest feasible taxonomic level, although the
ultimate goal was to group them into functional groups. However, unlike the
Simulation study (Section 2.4.2) where broad theoretical categories were used (e.g.,
“Birds and Bats G17), here we adapted the group nomenclature to strictly reflect the

specific taxa actually observed during fieldwork (e.g., “Passerines”).

3. Results
In our Bayesian model analysis, the R statistic consistently showed values below 1.1,

indicating good convergence and precise parameter estimations from the MCMC

chains (Appendix A; B; C).

3.1 Simulation scenarios of variable data
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Our outputs demonstrated overall low RRMSE(@S,,,,Sim,t) values recovering the
simulated total number of roadkills N;p(6s,sim¢) across nearly all scenarios of
variability in parameters (Fig. 2; see also Supplementary Material S14 for more
detailed plots for each of the vertebrate groups). Nevertheless, the vertebrate groups
Reptiles G2, Birds G2, and Mammals G3 showed very high variation in their
distributions, ranging from log RRMSE (0 ,, sim,c) Values below -1 to over 4 (Fig. 2).
Across vertebrate groups, the highest RRMSE(@S,vlsim,t) scores, indicating relatively
worse performance of the model in recovering simulated parameters, corresponded
to scenarios with high variability in daily persistence probabilities (SD pp4) (Fig. 2).
Additionally, RRMSE(@S,v,Sim_t) increased when the SE was high for the prior
distributions for p, and pp compared with low SE, and increased further when
variability in daily mean number of roadkills (SD A,,4) was also high (Fig. 2). The
number of road transects simulated (10 or 100 transects) had minimal impact on
RRMSE (05,,5im.¢), except for Reptiles G1, where the RRMSE (8, sim.) decreased
notably in the case of full-year datasets, including extended periods of low number of
roadkills (Supplementary Material S14). For Amphibians and Reptiles G1,
RRMSE (0s.,5im..) Were lower when limiting the analysis to months when animals are
active (abundance peak), compared to when extended periods of low number of

roadkills were included in the datasets (Supplementary Material S14).

Across all scenarios, when the p;, and pp, prior SE was low, the simulated total
number of roadkills N; (0, sime) Was generally well recovered for all vertebrate
groups, i.e., was withing the 95% credible interval of N, és,v,sim’t (Fig. 3a; see

Supplementary Material S15 for more detailed plots). However, Reptiles G1 was an
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exception: when considering full-year datasets with 10 road transects, estimates for
this vertebrate group were overestimated in all scenarios, whereas with 100 road
transects they were well recovered. Accounting only for the abundance peak led to
better fits overall, even though estimates for this vertebrate group were always
underestimated. (Supplementary Material S15). On the other hand, when p;, and p,
prior SE was high, the 95% credible interval overlap widened, leading to
overestimations across most vertebrate groups (Supplementary Material S15). The
only exception were Amphibians and Reptiles G1 accounting only for the abundance
peak, where estimates were typically underestimated, resulting in increased
uncertainty but reduced underestimation in most scenarios (Supplementary Material

S15).

RRMSE (0, sim) scores for p;, pp and pon (0s,5im) Showed the same relative
differences as RRMSE (8, ,, sim ), being the highest for Reptiles G1, Birds G2 and
Mammals G3 under high variability in daily carcass persistence probabilities (SD
ppq) (Fig. 4). This was largely due to the fact that the Bayesian hierarchical models
could not recover well pp under high SD pp,; and a high pp prior SE , although pg.,
values where always well recovered, being much more precise in 100 survey sites
scenario (Fig. 3b; see Supplementary Material S16 for more detailed plots). The only
exception was the Reptiles G1 full-year dataset with 10 road transects, where pg,,
was not recovered although recovery was successful with 100 transects

(Supplementary Material S16).

3.2 Prior sensitivity analyses
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Regarding our Prior Sensitivity Analysis, we observed that when priors are accurate,
the posterior distributions correctly overlapped with the true values, accurately
estimating the mean number of roadkills for the period t over D days 4, p, the total
number of roadkills for the period t over D days N,p, and the carcass observation
probabilities per survey method p,,,, in addition to successfully recovering the p, and
pp values integrated in the model as priors (Supplementary material S17). In the
case of inaccurate and uninformative prior scenarios, the estimation of p,,, values
remained robust, although the remaining parameters were affected (Supplementary
material S17). Specifically, in the case of inaccurate priors, the p, and p, values
were never recovered (although the model occasionally recovered estimates of N, p
and A, p, but with lower accuracy than in accurate prior scenarios (Supplementary
material S17). On the other hand, uninformative priors produced extremely wide
posterior distributions of p; and pp, which resulted in an extreme overestimation of
N.p and A, . Furthermore, uninformative priors often resulted in model run errors, as
impossible values during the Bayesian estimation process were generated

(Supplementary material S17).

3.3 Case study

During the sampling period, we recorded a total of 650 different carcasses of 45
identified species (386 of these carcasses could only be classified into higher
taxonomic groups). For further modelling, we classified these carcasses into the
following taxa: 199 lizards, 17 snakes, 217 passerines, 43 small mammals, 72
lagomorphs, and 24 carnivores. Although we observed 40 amphibians, 22 medium-
sized birds, 12 hedgehogs and 4 big-sized mammals we were unable to estimate the

total number of roadkills for these taxa. Standardizing observations across the 27 km
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surveyed (9 transects x 3 km), the roadkill rates per kilometre were highest for
passerines (8.04/km) and lizards (7.37/km), followed by lagomorphs (2.67/km), small

mammals (1.59/km), carnivores (0.89/km), and snakes (0.63/km).

Our model generated estimates for the total number of roadkills over the 4 months of
sampling on our study roads, taking into account prior distributions of p, and pp,
alongside the estimated values of p,,, for each sampling method used. The
estimated roadkill rates per kilometre were 15.22 for lizards (2.07 times higher than
observed), 8.84 for snakes (14.03 times higher), 48.92 for passerines (6.08 times
higher), 7.64 for small mammals (4.81 times higher), 7 for lagomorphs (2.62 times
higher), and 5.49 for carnivores (6.16 times higher) (see Fig. 5). For each vertebrate,
Pom €Stimation is highest for walking survey method p,,,, followed by cycling p,.,
and is considerably lower for driving p,,. This was particularly evident in lizards,
passerines, and lagomorphs, where p,,, was markedly higher compared to the other
methods. For lizards and small mammals, the probability of observation was

generally low, with values concentrated close to zero when using the driving method

(Fig. 6).

Finally, our data revealed that some carcasses were observed exclusively by one
survey method and not by the others: 294 carcasses were only observed using the
walking method, 134 by the cycling method, and 1 by the driving method

(Supplementary material S18).

4. Discussion

4.1 Integrating biases in surveys of infrastructure-induced mortality
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In the present study, we integrated the three intrinsic survey biases of infrastructure-
induced mortality (i.e., carcass location, persistence, and observation bias) within the
predefined conceptual framework of our modelling approach. Consequently, we were
able to infer the actual mortality from carcass census data, which represents a
significant step forward in methodological research on this type of impact, with
potentially important implications for the conservation of threatened species as well
as for taxa providing ecosystem services. Unlike earlier studies that implemented
similar statistical approaches, which provided abundance indices (e.g., Fernandez-
Lopez et al., 2022) or roadkill risk metrics (e.g., Santos et al., 2018), the application
of modified Bayesian N-mixture models in our study allowed us to derive actual
roadkill estimates while propagating uncertainty throughout the model thanks to the
Bayesian approach (Schmelter et al., 2012). Our roadkill estimates were between
2.07 and 14.03 times higher than the observed records in the case study (depending
on the species group considered), highlighting that road mortality is a far greater
threat than previously recognized, especially for species more affected by sampling
biases, such as small birds and bats (Barrientos et al., 2018; Roman et al., 2024).
Since the biases analyzed in this study are very similar to those affecting other
infrastructure-induced mortality surveys (Barrientos et al., 2018; Bernardino et al.,
2020), it is reasonable to assume that this threat is also underestimated along power

lines, wind farms and other linear developments.

4.2 Model performance in simulation scenarios
4.2.1 Impact of variability in daily parameters
Our simulation scenarios of variable data indicate that, under low variability in daily

number of roadkills and daily carcass persistence probabilities, the N-mixture model
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provides reliable estimates of total number of roadkills. However, when we simulated
scenarios with high variability in parameters, total number of roadkills were both
over- and underestimated, which was reflected in increased Relative Root Mean
Square Error (RRMSE) values. These reliability results are consistent with findings by
Dennis et al. (2015); Duarte et al. (2018); Link et al. (2018) and Monroe et al. (2019),
who emphasize that N-mixture models are highly sensitive to excessive variation in
model parameters. Consequently, estimates of total number of roadkill should be
interpreted with caution in datasets characterized by high variability in parameters
(see Table 3). However, despite these inaccuracies in estimating total roadkill
numbers, the models consistently yielded reliable estimates of relative numbers
across months. This finding supports the “can’t lose” proposition described by Kéry &
Royle (2021): even when violations of parametric assumptions compromise the
precision of the absolute population size, the N-mixture framework remains a robust
tool for inferring relative dynamics. As noted by Barker et al. (2018); Knape &
Korner-Nievergelt (2015) and Martijn et al. (2023), such models effectively

characterize relative abundance even when data are sparse or variable.

4.2.2 Impact of priors information for carcass location and persistence probability

In most current road survey designs, data on carcass location (p,) and persistence
(pp) probability are not explicitly collected, and these two parameters are not
identifiable from count data alone. Thus, the estimation of these specific biases
becomes prior-driven; that is, the posterior distributions are dominated by the prior
assumptions rather than by the data itself (Banner et al., 2020; Northrup & Gerber,
2018). Our simulation scenarios of variable data and prior sensitivity show that weak

informative, uninformative or inaccurate prior distributions (i.e., wide distributions
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with high standard errors, uniform distributions or informative priors intentionally
biased away from the true values) propagated uncertainty directly to estimates total
number of roadkill or resulted in low recovery and identifiability of simulated carcass
location and persistence probability priors by the Bayesian model, an issue
highlighted by (Fidino, 2021). This behaviour is consistent with literature on Bayesian
mixture models, which warns that inference can become unstable when data are

sparse and priors are uninformative (Depaoli, 2013; Depaoli et al., 2017).

Our results demonstrate that to obtain reliable estimates of the total number of
roadkills, future roadkill studies cannot rely on vague priors for carcass bias
probabilities; they require informative priors derived from independent empirical data;
or, ideally, would incorporate independent data to facilitate the estimation of posterior
distributions of these parameters. Thus, research efforts must prioritize collecting
auxiliary data to quantify carcass location probability (Roman et al., 2024) and
persistence rates (Ruiz-Capillas et al., 2015; Santos et al., 2018), as these

independent constraints are necessary to anchor the model parameters.

4.2.3 Differences among vertebrate groups

When simulated data are highly variable or priors were uninformative, the total
number of roadkills can be overestimated, depending on the vertebrate group. The
fact that lizards were overestimated when considering full-year datasets with 10 road
transects and informative priors is likely due to extremely low persistence and
observation probabilities in this group, which resulted in a zero-inflated simulated
dataset for analysis. In such cases, a higher sampling efforts (Guillera-Arroita et al.,

2010; MacKenzie et al., 2002) and employing a zero-inflated Poisson version of the
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N-mixture model can yield more accurate results (Joseph et al., 2009; Wenger &

Freeman, 2008).

4.2.4 Reliability checklist to assess robustness of Bayesian framework in future
applications

Based on the model's performance across our simulation scenarios, we provide a
reliability checklist to guide researchers in ensuring the reliability of total mortality
estimates in infrastructure mortality surveys (Table 3). The model generally provides
robust estimates of all target parameters when accurate priors are available for the
carcass location and carcass persistence probabilities. However, as outlined in the
checklist (Table 3), the precision of these estimates may be compromised in
scenarios where prior uncertainty or data complexity affect the reliability and
performance of the model. In such instances, while carcass observation probability
estimates tend to remain robust, the estimates for the total number of roadkills

should be approached with caution.

Future applications must cautiously evaluate and document prior knowledge on
carcass location and persistence probabilities and ideally incorporate, auxiliary field
experiments to estimate posterior distributions. In addition, we strongly recommend
restricting the analysis to the biologically active season for taxa with marked
seasonal dynamics (e.g., amphibians, reptiles). Lastly, results must be interpreted
with caution when applying these models to datasets where daily roadkill numbers or
persistence rates fluctuate drastically. For such highly variable data, estimates

should be interpreted as robust indices of relative abundance (Kéry & Royle, 2021).
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Crucially, beyond adhering to this checklist, we strongly recommend that researchers
using our Bayesian models to estimate infrastructure mortality perform their own
simulations to validate the model's suitability for their specific study system and data.
By utilizing the simulation R scripts provided in this study (Supplementary Material
S2, S3, S4 and S6), users can easily adapt our specifications to generate simulated
datasets that mimic their specific study conditions (e.g., number of survey transects;

carcass location, persistence and observation per method probabilities values).

4.3 Case study application

Applying the hierarchical modelling framework to empirical data in our case study
showed an important increase in the estimated number of roadkills compared to
those observed, aligning with the findings of other studies (e.g Teixeira et al. (2013);
Winton et al. (2018)). Also, our estimates for carcass observation probabilities align
with previous findings in the literature, as it is highest for walking surveys, followed
by cycling, and lowest for driving (Guinard et al., 2012; Ogletree & Mead, 2020;
Winton et al., 2018), and it is also lower for smaller vertebrate groups and higher for
larger, more visible species (Gerow et al., 2010; Teixeira et al., 2013). Our study is
the first to compare all three survey methods simultaneously within the same study.
We not only demonstrate that walking surveys—while the most effective method—
are not perfect and should not be assumed to observe all roadkill events, as was
done in Teixeira et al. (2013), but we also show that a significant number of
carcasses were missed by walking surveys but observed by cycling. This suggests
that walking, cycling, and driving surveys should not be seen as a ranking from best
to worst but rather as complementary methods, each with its own advantages and

limitations. For example, while walking likely helps observe carcasses directly
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underfoot, the elevated perspective provided by cycling allows for a broader field of

view, making it easier to observe carcasses on the roadside.

These results highlight that using the driving method in surveys not only reduces the
proportion of carcasses observed on the road but can also lead to an overestimation
of the total number of collisions. In N-mixture models, lower observation probabilities
result in larger extrapolations in the estimated values. Since observation probabilities
while driving are extremely low, the estimated total number of roadkills ultimately

would be much higher than the real one (Dennis et al., 2015; Hostetter et al., 2019).

Regarding our case study survey methodology, one important consideration is that,
typically, roadkill studies alternate the direction of search and the side of the road
randomly in order to cover the area as thoroughly as possible along the
infrastructure (D’Amico et al., 2015). However, in our case, as our study was an
initial phase of a citizen science project with volunteers, we had to employ a simple
and easy sampling method, conducting surveys on only one side of the road and
always in the same direction. Although we recognize that this may decrease the
carcass observation probability, it would be interesting to investigate in the future
whether randomizing the direction and side of the road would actually reduce

carcass observation bias.

4.4 Limitations and future perspectives
A limitation of our methodology is that it requires extensive knowledge of carcass
location, persistence, and observation biases specific to each infrastructure,

vertebrate group, and study environment. The bias values for each of these contexts
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may vary, which is crucial for making accurate estimates in each case. Another
limitation of our estimates of total number of roadkills is that they are limited by the
maximum number of days a carcass from a specific vertebrate group remains on the
road before disappearing (D-day period). This means that to estimate the number of
roadkill for periods larger than the D-day period (e.g., one month or a specific
season), we currently simply extrapolate our estimates for the D-day period over a
larger time window (e.g., 30 days / D-day period). Thus, for vertebrate groups with
shorter persistence times (such as amphibians and lizards), the extrapolation gap
required to cover the unobserved temporal window is significantly larger than for
groups with longer persistence times (such as large birds and carnivores). To
address the accuracy of monthly extrapolations, roadkill survey frequency should
take into account the persistence period of the target vertebrate group. This
approach would be particularly useful in studies focused on endangered or high-
interest species, due to most studies do not typically follow this method, as they
generally assess overall vertebrate mortality (e.g. D’Amico et al., 2015). For species
with short persistence times, such as lizards, surveys should be done every day

throughout the study season to avoid extrapolation and rely on actual observed data.

Finally, our modelling framework could be used for animal conservation issues by
combining it with population abundance estimation models near to infrastructure,
offering a valuable tool to assess what proportion of the study population may
succumb to infrastructure-related mortality, such as roads (Barrientos et al., 2021),
power lines (Biasotto & Kindel, 2018; D’Amico et al., 2019) and multiple linear
infrastructures (Ascensao et al.,, 2022). This information would facilitate the

identification of species or populations more significantly affected by infrastructure-
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related mortality (e.g. species with very low population sizes and highly susceptible

to roadkill), thereby prioritizing conservation efforts.
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Figures and tables

Table 1. Descriptive characteristics of the different vertebrate groups used to
simulate roadkill numbers, including examples of species, their features of observed
roadkill numbers and their seasonal variation, maximum days their carcass remains
on the road without disappearing (D), probability of their carcass being located on
the road (p,), average probability across D of their carcass persisting on the road
(pp) and carcass observation probability (py.n,) by walking (pow), cycling (poc) and

driving (podr) survey method.

Pom

Vertebrate Observed roadkill | Seasonal D
Example pL pp
groups abundance variation | (days) pow | Poc | Podr

Amphibians Small Frequently High 2 1 0.36 | 0.5 | 0.3 | 0.02




amphibians

such as Bufo

spinosus or
Epidalea

calamita

observed

Reptiles G1

Small reptiles
such as
Psammodromus
algirus or Timon

lepidus

Frequently

observed

High

0.54

0.5

0.3

0.02

Reptiles G2

Medium-sized
ophidians such
as Malpolon
monspessulanu
s or Zamenis

scalaris

Frequently

observed

High

0.43

0.36

0.7

0.5

0.1

Birds/Bats G1

Small birds such
as Carduelis

carduelis or bats

Frequently

observed

Low

0.36

0.36

0.6

0.4

0.05

Birds G2

Medium-sized
birds such as
Alectoris rufa or
large birds as

Asio otus

Rarely observed

Low

10

0.69

0.34

0.8

0.6

0.2

Mammals G1

Small mammals
such as Mus
spretus or

Rattus rattus

Frequently

observed

Low

0.36

0.6

0.4

0.05

Mammals G2

Medium-sized

mammals such

as Oryctolagus
cuniculus or

Lepus

Frequently

observed

Low

0.35

0.8

0.6

0.2




981

982

983

984

985

granatensis

Mammals with
keratinous
Mammals G3 | structures such Rarely observed Low 12 1 034 | 0.8 | 06 | 0.2
as Erinaceus

europaeus

Medium-sized
carnivores as Frequently
Mammals G4 Low 14 0.65| 034 | 09| 07| 03
Felis catus or observed

Vulpes vulpes

Big mammals as
Mammals G5 Sus scrofa or Rarely observed Low 30 0.5 1 1 09| 0.8

Cervus elaphus

Table 2. Simulation scenarios to generate roadkill census data, including levels of
variation and justification for the scenario choice. 4, 4= daily mean number of roadkills
in month t for each specific day d across D (maximum persistence), ppq = daily

carcass persistence probability, SD = Standard Deviation and SE = Standard Error.

Parameter Levels Justification

N-mixture models can be sensitive to the spatial
replication of count surveys (Kery & Royle, 2021).
N° road transect 10/100 Increasing the number of transects can enhance the
precision of estimates by improving the spatial

representativeness of the data

Since we model the total number of roadkills as the
SD in Ag 0/0.5/1.5 sum over the maximum persistence period (D), we

aim to know how this modelling approach impacts our




986

987

988

989

990

991

992

993

estimates when daily values show no variation,

moderate variation, or high variation

SD in Prd

Since we model the carcass persistence probability as
the average of carcass persistence probabilities over

the maximum persistence period (D), we aim to know

0/0.05/0.15

how this modelling approach impacts our estimates
when daily values show no variation, moderate

variation, or high variation

SE in priors pL and

pr

0.05/0.1

Since we model our prior beta-distribution a and
parameters for a p, and pp from their mean values and
a SE that captures our uncertainty around this
knowledge, we aim to know how low and high

uncertainty impacts our estimates

Table 3: Checklist to assess reliability of our model’s absolute infrastructure mortality

estimates. The matrix classifies reliability into three levels: Robust (green), Caution

(yellow), and High risk of erroneous outputs (red), based on three critical modelling

constraints: Priors information (specifically for carcass location and persistence

probabilities), variability of parameters in input data, and seasonality of road mortality

events.

Key factors affecting model
robustness

Robust

Caution

Prior information (carcass location
and persistence probabilities)

Accurate: Based on literature from
same ecosystems and vertebrate
group or derived from independent
field experiments.

Inaccurate: Based on literature but
from different ecosystems or
vertebrate groups.

Result: Non-identifiability. Better use
only as relative index.

Weak informative or uninformative:
wide distributions with high SE or
Uniform distributions (0-1).
Result: Non-identifiability, model run
errors, and mortality overestimation.
Use only as relative index.

Variability of parameters in input data

Low variability: Daily carcass
persistence and daily mortality

numbers are relatively constant.

Moderate variability: Variability is
present but remain within a moderate
order of magnitude.

Result: Increased uncertainty in
estimates.

High variability: Extreme variability in
daily carcass persistence or daily
mortality numbers.

Result: Use only as relative index.

Seasonality of road mortality events

Active season only: Dataset
restricted to biologically active

months of specific vertebrate groups.

Full year with low seasonality:
Vertebrate groups with continuous
activity along the year
(e.g., some mammals).
Result: Increased uncertainty in
estimates.

Full year with high seasonality:
vertebrate groups with inactive
periods (e.g. amphibians/lizards).
Result: Increased uncertainty and
reduced accuracy in estimates.
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Figure 1. Roadkill survey bias framework. This diagram illustrates how three types of
survey bias (carcass location bias, carcass persistence bias, and carcass
observation bias) impact the census data of roadkill within the surveyed road. These
theoretical different sizes of the squares in the diagram symbolize the quantity of
roadkill that would be available at each nested level of the framework. Additionally, D
represents the time elapsed between the roadkill event and the maximum days a
carcass remains on the road without disappearing until survey day, where carcass
persistence bias occurs, while Sd represents the survey duration, during which

observational bias occurs.
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Figure 2: N, RRMSE (8;,,sim:) values (Equation 5), where log values <O indicate
high accuracy of the model, log values =0 indicate that the magnitude of the error
equals the true simulated value, and log values >0 indicates low accuracy of the
model. This is evaluated across s = 9 different scenario combinations of mean daily
number of roadkills and daily carcass persistence variability (SD A; 4 and SD ppg), V =
10 vertebrate groups, sim = 20 simulations, t = 12 months and D = maximum days a
carcass remains on the road without disappearing. Each distribution represents
N:p RRMSE (B, sim,c) Values derived from each sim and t levels described above for
a) Amphibians, b) Reptiles G1, c) Reptiles G2, d) Birds/Bats G1, e) Birds G2, f)
Mammals G1, g) Mammals G2, h) Mammals G3, i) Mammals G4 and j) Mammals
G5. The results are shown for 2 levels of standard error (0.05 or 0.1) for the p, and
pp prior distributions, and for 100 road transects surveyed. Coloured circles
represent the mean, bold lines for 66% intervals, and thin lines 95% intervals. An
asterisk (*) in the distributions indicates values exceeding 5 that are part of the
distribution. Note: Amphibians and Reptiles G1 vertebrate groups models only

account for peak abundance months, excluding periods of typical absence.
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1028  daily mean number of roadkills (4, 4) and daily carcass persistence probability (ppg),
1029  considering a SE = 0.05 in p, and pp priors. a) Comparison of total number of
1030  roadkills per transect. Lines represent the average N, p 6, sim ¢ Over 20 simulations,
1031  while the shaded areas show the average 95% credible interval of Bayesian
1032  posterior estimates N, p, ésl,,,sim,t over the 20 simulated census data. b) Comparison
1033  of carcass location, persistence and observation probability per method. Green dots

1034  represent the p,, pp and pon, 054 sim Values for m = walking (poy), cycling (po.) or
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same underlying data) show the pooled p,, pp and pom és,v,sim over 20 simulated

census data.
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Figure 4: p.,pp & Pom RRMSE (0,sim) (Equation 6), where log values <0 indicate
high accuracy of the model, log values =0 indicate that the magnitude of the error
equals the true simulated value, and log values >0 indicates low accuracy of the
model. This is evaluated across s = 9 different scenario combinations of daily mean
number of roadkills and daily carcass persistence variability (SD A; 4 and SD ppg), vV =
10 vertebrate groups, sim = 20 simulations and m = walking, cycling and driving
survey methods. Each distribution represents p;,pp & pom RRMSE (85, i) Vvalues
derived from each sim level described above for a) Amphibians, b) Reptiles G1, c)
Reptiles G2, d) Birds/Bats G1, e) Birds G2, f) Mammals G1, g) Mammals G2, h)
Mammals G3, i) Mammals G4 and j) Mammals G5. The results are shown for 2

levels of standard error (0.05 or 0.1) for the p;, and pp prior distributions, and for 100
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road transects surveyed. Coloured circles represent the mean, bold lines for 66%
intervals, and thin lines 95% intervals. Note: Amphibians and Reptiles G1 vertebrate
groups models only account for peak abundance months, excluding periods of

typical absence.
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Figure 5. Observed roadkill rates per kilometer in road surveys (blue) and Bayesian
posterior estimates of total roadkill rates per kilometer (black), derived from
aggregating four monthly census data of the case study, for each vertebrate group.
These estimated roadkill rates are limited to those that occurred within the time
interval where each vertebrate group remains visible on the road without
disappearing. Dots for means, bold lines for 66% credible intervals, and thin lines for

95% credible intervals.
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Figure 6. Bayesian posterior distribution of the carcass observation probabilities from
case study, for each considered vertebrate groups. “Walking” means the estimation
of carcass observation probability by walking survey method, “Cycling” by cycling

survey method and “Driving” by driving survey method. Dots for means, bold lines for

66% credible intervals, and thin lines for 95% credible intervals.



