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ABSTRACT 39 

1. Human infrastructures are among the most impactful threads to wildlife. While 40 

estimates exist on the number of animals killed by these structures over a given 41 

period, such estimates typically do no account for several detection biases. 42 

Consequently, true mortality rates may be severely underestimated, as well as 43 

their impact on populations and species. 44 

2.   We present a hierarchical Bayesian latent-state modelling framework that 45 

sequentially accounts for three main biases probabilities in estimating mortality 46 

abundance: the probability that a hit animal dies on the surveyed area (carcass 47 

location probability), the probability that the carcass remains on the surveyed 48 

area until the survey is conducted (carcass persistence probability), and the 49 

probability that the carcass is observed during the survey process (carcass 50 

observation probability). We employ a comprehensive simulation study where we 51 

test the effects of variability in species characteristics, sampling design, latent-52 

state parameters, and prior information on the ability of our model to estimate 53 

mortality abundance on roads as total number of roadkills. We then demonstrate 54 

the applicability of our framework on a case study to estimate the total number of 55 

roadkills per km in different Mediterranean ecosystems while evaluating the 56 

cross-efficiency of different sampling methods. 57 

3.  Our framework is able to accurately recover the total number of roadkills from 58 

simulated census data for most simulation scenarios. We detected the highest 59 

disagreement between modelling outcomes and simulated data when variability 60 

in simulated carcass persistence probability, as well as related prior information 61 

in the Bayesian model, were high. In the case study, our results showed notably 62 

high roadkill numbers (e.g., for passerines, we estimate a total of 48.92 roadkills 63 

per km rate based on 8.04 observed rate during the road survey), along with 64 

substantial variation across different vertebrate groups. Furthermore, our case 65 

study confirms that walking and cycling surveys are more effective than driving 66 

surveys in detecting carcasses. 67 

4.   Our modelling framework offers an efficient approach to estimate mortality 68 

rates for a wide range of taxa. To optimize its application, extensive fieldwork for 69 

bias estimation and integration in analysis is needed. The accuracy of our 70 

framework may help managers to assess the impact of infrastructure-related 71 

mortality and prioritize conservation efforts to mitigate it. 72 



 73 

1. Introduction 74 

Linear infrastructures such as roads, power lines and wind turbines have become 75 

extremely widespread and are expected to increase substantially in the next 76 

decades, particularly in developing countries that host rich biodiversity (D’Amico, 77 

Catry, et al., 2018; Meijer et al., 2018; Tabassum-Abbasi et al., 2014). This is 78 

worrying because linear infrastructures contribute to the decline and even extinction 79 

of wildlife populations, and ultimately to biodiversity loss (Barrientos et al., 2021; 80 

D’Amico et al., 2019; Pearce-Higgins et al., 2012). In the last decades, this 81 

ecological impact has been extensively studied, with the majority of research 82 

focusing on infrastructure-induced mortality (Barrientos et al., 2021; D’Amico, 83 

Ascensão, et al., 2018; Nazir et al., 2020). Most research has primarily aimed at 84 

investigating the spatiotemporal patterns of such mortality (D’Amico et al., 2015; Guil 85 

et al., 2015), although a growing body of studies has more recently sought to 86 

quantify the magnitude of this threat.  87 

 88 

However, when estimating infrastructure-induced mortality, standard carcass counts 89 

may not accurately reflect the total number of individuals affected. This is because 90 

the recorded carcasses are the result of a series of sequential processes, including 91 

the affected animal remaining near the infrastructure after the mortality event, the 92 

carcass persisting until the survey, and finally the observer detecting it (Barrientos et 93 

al., 2018; Bech et al., 2012; Román et al., 2024). Not accounting for these three 94 

hierarchical processes may result in several nested levels of biases in carcass 95 

surveys (Barrientos et al., 2018; Román et al., 2024). The first of these process is 96 

carcass location bias and concerns animals injured by collisions with power lines, 97 

wind turbines, or vehicles on roads that die outside the survey area (Bernardino et 98 

al., 2018; Román et al., 2024; Smallwood, 2007). The second process affecting 99 

standard mortality surveys along infrastructures is carcass persistence bias, which 100 

occurs when carcasses disappear from the survey area over time (Barrientos et al., 101 

2018; Borner et al., 2017; Ravache et al., 2024). This is typically due to natural 102 

decomposition and environmental factors influencing it (such as weather conditions; 103 

Barrientos et al., 2018; Borner et al., 2017), but also to scavenger activity (DeVault et 104 

al., 2017; Dhiab et al., 2023). Regarding roads, carcass persistence can also be 105 

impacted by repeated crushing by vehicles and road maintenance (Abra et al., 2018; 106 

Barrientos et al., 2018; Santos et al., 2011). Finally, the third process affecting 107 

standard mortality surveys along infrastructures is carcass observation bias, which 108 

occurs when carcasses within the survey area are not detected by observers, 109 

typically due to the sampling method used and the observers’ level of experience 110 

(Barrientos et al., 2018; Borner et al., 2017; Domínguez del Valle et al., 2020). On 111 

roads, this bias tends to be particularly pronounced when roadkill surveys are 112 

conducted from vehicles compared to those conducted cycling or walking (Delgado 113 

et al., 2019; Guinard et al., 2012; Teixeira et al., 2013). 114 



 115 

Although the hierarchical nature of biases in carcass surveys along infrastructures 116 

may appear evident, this aspect has received relatively little attention in the scientific 117 

literature. While carcass location bias has been largely neglected in mortality 118 

estimates (Barrientos et al., 2018; Román et al., 2024), several authors have 119 

highlighted the significant underestimation of carcass records due to both 120 

persistence and observation bias (Barrientos et al., 2018; Kitano et al., 2023; 121 

Teixeira et al., 2013). Nonetheless, not even the hierarchical nature of these two 122 

biases has been sufficiently disclosed in the scientific literature. Some notable 123 

exceptions relate to road-mortality research, where recent studies have implemented 124 

hierarchical statistical models to account for carcass persistence and observation 125 

bias combined as latent states when estimating roadkill numbers (Santos et al., 126 

2018), or even extrapolating such estimates to assess the population abundance of 127 

the affected species (Fernández-López et al., 2022). However, despite these recent 128 

advances, methods that integrate the varying magnitudes of all three biases in 129 

carcass surveys are still lacking, hindering the estimation of the total number of killed 130 

animals.  131 

 132 

In this study, we developed a Bayesian latent-state modelling framework that can 133 

effectively integrate location, persistence, and observation biases into a reliable 134 

estimate of actual infrastructure-induced mortality across different vertebrate groups. 135 

More specifically, we focused on road mortality and roadkill surveys, as the scientific 136 

literature on this topic is more extensive than that available for other infrastructures. 137 

Our framework is an extension of Bayesian N-mixture models, which estimate 138 

abundances from repeated counts (Royle, 2004). We conducted a simulation study 139 

to assess the framework’s accuracy in recovering the simulated total number of 140 

roadkills for different vertebrate groups and survey methods (walking, cycling, and 141 

driving). In this study, we implemented multiple scenarios in which we varied the 142 

number of road transects surveyed, the daily variability in roadkill numbers and 143 

carcass persistence rate, and finally the certainty of prior expert knowledge on 144 

location and persistence bias probabilities, which we integrated into our model. We 145 

then applied our model to a case study with real data collected by road surveys in 146 

southern Spain. 147 

2. Material and methods 148 

2.1 General overview 149 

 150 

In this study, we first described our Bayesian hierarchical latent-state modelling 151 

framework, which quantifies the total number of roadkills by sequentially assessing 152 

how carcass location, persistence and observation biases cause deviations in 153 

roadkill census data from actual roadkill (i.e., similar to detection biases in 154 

abundance estimation from count data (e.g. Barrientos et al., 2018; Smallwood, 155 

2007) (Figure 1)). We then evaluated the model’s performance through a simulation 156 



study, testing different roadkill scenarios across different vertebrate groups. Finally, 157 

we applied our model to data from a field case study to estimate the total number of 158 

roadkills based on empirical census datasets. 159 

 160 

2.2 Modelling framework 161 

We introduce a hierarchical latent-state model to estimate the total number of 162 

roadkills, explicitly accounting for the three nested levels of bias: carcass location, 163 

persistence, and observation. The model structure is based on the widely used N-164 

mixture models, which estimate abundances from count data while accounting for 165 

imperfect detection (Hostetter et al., 2019; Kery & Royle, 2020; Royle, 2004). 166 

We assume that the total number of roadkills 𝑁𝑖,𝑡,𝐷 varies across i = 1…I road 167 

transects, within t = 1…T survey periods (with months used as periods in our model, 168 

as more frequent surveys are rarely performed), and for a given D = the maximum 169 

number of days a carcass remains on the survey area before disappearing. This 170 

timeframe serves as the window during which we can estimate the total number of 171 

roadkills based on the number of observed carcasses in the survey. For instance, if 172 

D = 3 days, we assume that when carcasses are observed during a road survey (in 173 

the morning of day d), the roadkill events could have occurred on any day between d 174 

and d – 3, contributing to the total count of carcasses observed in the survey. We 175 

define 𝑁𝑖,𝑡,𝐷 as a random Poisson variable sampled from an average number of 176 

roadkills over D days 𝜆𝑡,𝐷:    177 

𝑁𝑖,𝑡,𝐷 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (λ𝑡,𝐷)       eqn. 1 178 

As 𝜆𝑡,𝑑 , and consequently 𝑁𝑖,𝑡,𝐷, can vary across months t, our model accounts for 179 

seasonal changes in roadkill numbers throughout the year. We assume that 𝑁𝑖,𝑡,𝐷 =180 

∑ 𝑁𝑖,𝑡,𝑑
𝐷
𝑑=1 , where each daily total number of roadkills 𝑁𝑖,𝑡,𝑑 can fluctuate across the 181 

days within period D, following the daily 𝜆𝑡,𝑑 in month t. However, our framework 182 

assumes that 𝑁𝑖,𝑡,𝑑 and 𝜆𝑡,𝑑 cannot not be modelled directly and instead needs to be 183 

estimated over the maximum persistence time D, as conducting daily road 184 

monitoring is too resource-demanding to be feasible.   185 

We then define 𝑁2𝑖,𝑡,𝐷 as the proportion of the total number of roadkills (𝑁𝑖,𝑡,𝐷) whose 186 

carcasses were located on the road survey area after the collision, determined by 187 

the probability of a carcass being located on the road (𝑝𝐿, carcass location 188 

probability):  189 

𝑁2𝑖,𝑡,𝐷 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝐿 , 𝑁𝑖,𝑡,𝐷)   eqn. 2 190 

As for 𝑁𝑖,𝑡,𝐷, we assume that 𝑁2𝑖,𝑡,𝐷 = ∑ 𝑁2𝑖,𝑡,𝑑
𝐷
𝑑=1 . Based on previous studies 191 

(Román et al., 2024), we assume that 𝑝𝐿 does not vary among days d = 1 – D.  192 



Subsequently, we define 𝑁3𝑖,𝑡,𝐷 = ∑ 𝑁3𝑖,𝑡,𝑑
𝐷
𝑑=1  as the proportion of roadkills located 193 

on the road (𝑁2𝑖,𝑡,𝐷) that remain on it until the day of the road survey, determined by 194 

the cumulative probability of a carcass persisting on the road survey area, weighted 195 

by D (𝑝𝑃, carcass persistence probability) 196 

𝑁3𝑖,𝑡,𝐷 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃, 𝑁2𝑖,𝑡,𝐷)  eqn. 3 197 

More precisely, if we assume that the carcass persistence probability could be 198 

modelled using a survival function d (e.g., Cox-hazard model as in Santos et al. 199 

2011), then 𝑝𝑃 = ∫ 𝑆(𝑑)𝑑(𝑑)
𝐷

𝑑=1
, i.e, the average persistence probability from d = 1 to 200 

D (for details, see Supplementary Material S1). If daily 𝑁2𝑖,𝑡,𝑑 values are known, and 201 

assuming D = 3, our framework can in theory model: 202 

𝑁3𝑖,𝑡,𝑑0 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃𝑑0𝑝𝑃𝑑1𝑝𝑃𝑑2,  𝑁2𝑖,𝑡,𝑑0), 𝑁3𝑖,𝑡,𝑑1 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃𝑑1𝑝𝑃𝑑2, 𝑁2𝑖,𝑡,𝑑1), 203 

𝑁3𝑖,𝑡,𝑑2 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑃𝑑2, 𝑁2𝑖,𝑡,𝑑2), , being 𝑝𝑃𝑑 daily carcass persistence probability. 204 

Finally, we define 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 as the census data, representing the proportion of the total 205 

number of roadkills that have persisted in the road survey area during D and are 206 

recorded in a given road survey, which depend on the carcass observation 207 

probability 𝑝𝑂𝑚: 208 

  𝐶𝑖,𝑗,𝑡,𝐷,𝑚 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑝𝑂𝑚, 𝑁3𝑖,𝑡,𝐷)   eqn. 4 209 

We assume a robust-design road survey (Royle, 2004), and thus 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 varies by 210 

road transect i, by m = 1…M methods used for surveying (here: walking, bike, or 211 

vehicle), as well as by month t (the primary sampling occasion), with j = 1…J 212 

independent sampling replicates each month (secondary sampling occasion). In turn, 213 

𝑝𝑂𝑚 differs depending on the sampling method m used.  214 

Equation 4 builds upon the N-mixture model introduced by Royle (2004), where the 215 

estimation of 𝑝𝑂𝑚 comes from the variability among the independent sampling 216 

replicates for each method from a robust design census dataset. That is, we assume 217 

that independent observers sampled a given road transect repeatedly during a given 218 

road survey. This allows us to make an independent estimation of the observation 219 

probability per method 𝑝𝑂𝑚. 220 

2.3 Implementation of the model 221 

We used a Bayesian framework to implement our model, using Markov chain Monte 222 

Carlo (MCMC) to estimate the parameters (Hobbs & Hooten, 2015). Carcass 223 

location probability 𝑝𝐿 and carcass persistence probability 𝑝𝑃 parameters are not 224 

typically estimated directly in roadkill census data, and therefore we assumed them 225 

to be latent parameters. We employed beta-distributed informative priors for 𝑝𝐿 and 226 

𝑝𝑃, with different parameter estimates for different vertebrate groups. The beta 227 

distribution is ideal for modelling probabilities like 𝑝𝐿 and 𝑝𝑃 because it is defined on 228 

https://www.zotero.org/google-docs/?nVtuDl


the interval [0,1] and its probability density distribution can take on various shapes, 229 

allowing us to represent different levels of prior belief and uncertainty. For each 230 

vertebrate group, we defined the 𝛼 and 𝛽 parameters of the beta distribution based 231 

on a mean estimate for 𝑝𝐿 and 𝑝𝑃, reflecting our prior knowledge, and a standard 232 

error (SE) that captured our uncertainty around this knowledge (see sections 2.3.1 233 

and 2.4.2 for more information).  234 

Using the respective mean and SE values for 𝑝𝐿 and 𝑝𝑃, we calculated the 𝛼 and 𝛽 235 

parameters for their prior beta distributions as follows: 236 

𝛼 = (
(1−𝑚𝑒𝑎𝑛)

𝑆𝐸2
−  

1

𝑚𝑒𝑎𝑛
) ∗  𝑚𝑒𝑎𝑛2                                 eqn. 5   237 

𝛽 =  𝛼 ∗ (
1

𝑚𝑒𝑎𝑛
− 1)                                   eqn. 6 238 

 239 

We adopted non-informative priors for the 𝜆𝑡,𝐷 and 𝑝𝑂𝑚 parameters, as detailed in 240 

Supplementary Material S2.  241 

The MCMC sampling process was conducted in JAGS (Plummer, 2003), operated 242 

within the R statistical framework v. 4.2.2 (R Core Team, 2022) through the jagsUI 243 

package (Kellner, 2015). To determine model convergence, we used the Gelman–244 

Rubin �̅� diagnostic criterion, considering models to have converged when �̅� was less 245 

than 1.1, following the guidelines by Brooks and Gelman (1998). We also visually 246 

inspected the posterior distributions among the different MCMC chains. For each 247 

model run, we used three chains of 400,000 iterations with a burn-in period of 248 

100,000 iterations, an adaptive period of 100,000 iterations, and a thinning rate of 249 

1,000. 250 

2.3.1 Prior information on carcass location (𝑝𝐿) and carcass persistence (𝑝𝑃) 251 

probability 252 

We assumed that in most roadkill estimation studies carcass location and 253 

persistence probabilities estimations were not available and could not be easily 254 

estimated from the census data (𝐶𝑖,𝑗,𝑡,𝐷,𝑚). They would have to be entirely modelled 255 

as latent states based on prior information. Therefore, in both our simulation and 256 

case studies, we integrated such priors based on literature data for these two 257 

probabilities.  258 

2.3.1.1 Carcass location probability (𝑝𝐿) 259 

We obtained information on 𝑝𝐿 from a recent publication, in which authors 260 

determined the probability of a carcass being located on the road after the collision 261 

from direct and indirect first-hand observations of vehicle-animal collisions (Román 262 

et al., 2024). Based on their data, we reorganized their 150 observations into 10 263 



vertebrate groups (G) using their supplementary material (Amphibians, Reptiles G1, 264 

Reptiles G2, Birds/Bats G1, Birds G2, Mammals G1, Mammals G2, Mammals G3, 265 

Mammals G4 and Mammals G5; see Table 1). These categories were delineated 266 

based on species traits (body size and mobility) which then determined the 267 

characteristics of observed roadkill numbers and annual trends (differences in 268 

abundances across months), as well as the maximum days their carcasses remain 269 

on the road without disappearing (D), and the average 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 values, as 270 

shown in Table 1. 271 

We used the observations in Román et al. (2024) to designate a carcass that was 272 

located inside the road as success (1) and outside the road as failure (0), and then 273 

calculated the mean of successes over each vertebrate group in order to estimate 274 

their 𝑝𝐿. In groups where the value of 𝑝𝐿 was 1, we assumed the absence of carcass 275 

location bias and hence an extremely low probability of being displaced by the 276 

collision or being capable of moving after the impact. For this reason, we excluded 277 

equation 2 when modelling such categories (i.e., Amphibians, Reptiles G1, Mammals 278 

G1, Mammals G2 and Mammals G3 in Table 1), in such cases 𝑁3𝑖,𝑡,𝐷 being directly 279 

dependent on 𝑁𝑖,𝑡,𝐷 (Supplementary Material S3). 280 

2.3.1.2 Carcass persistence probability (𝑝𝑃) 281 

Santos, Carvalho, and Mira (2011) was, to our knowledge, the only study providing 282 

estimates of mean daily carcass persistence probability (𝑝𝑃𝑑) for a diverse array of 283 

vertebrate groups from Mediterranean habitats, which we were able to adapt to our 284 

classification. We used these values to derive 𝑝𝑃 (as discussed in section 2.1., see 285 

also Supplementary Material S2 and S3 for R code). Santos, Carvalho, and Mira 286 

(2011) did not provide information for "Mammals G5". Nonetheless, based on 287 

available scientific literature, we contended that this group likely does not 288 

demonstrate carcass persistence bias within a monthly time period between 289 

successive roadkill surveys (Barrientos et al. 2018). For this reason, we excluded 290 

equation 3 when modelling this category, in these cases 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 being directly 291 

dependent on 𝑁2𝑖,𝑡,𝐷 = ∑ 𝑁2𝑖,𝑡,𝑑
𝐷
𝑑=1  (Supplementary Material S4) 292 

 293 

2.4 Simulation study 294 

To evaluate how well our modelling framework estimated the total number of 295 

roadkills and recovered 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 as latent states, we simulated different 296 

datasets. These datasets were census data 𝐶𝑖,𝑗,𝑡,𝐷,𝑚, generated based on variations 297 

on the number of road transects surveyed, the mean total number of roadkills , 𝜆𝑡,𝑑, 298 

for each specific day d in month t over the period of D days, the daily carcass 299 

persistence probability 𝑝𝑃𝑑, and the standard error values that defined the range of 300 



the prior distributions for the latent parameters 𝑝𝐿 and 𝑝𝑃 (Table 2). Values for 𝑝𝑂𝑚 301 

were fixed in the simulations depending on the vertebrate group (Table 1).  302 

2.4.1 Census data simulation 303 

For census data simulation, we followed the nested levels of data as described in the 304 

modelling framework. We started from the daily total number of roadkills for each 305 

respective 𝑁𝑖,𝑡,𝑑, then the daily proportion of each 𝑁𝑖,𝑡,𝑑 that were located in the road 306 

survey area after the collision 𝑁2𝑖,𝑡,𝑑, then the proportion of each 𝑁2𝑖,𝑡,𝑑 that 307 

persisted on the road survey area until the road survey day, 𝑁3𝑖,𝑡,𝑑, and the 308 

proportion of the total number of 𝑁3𝑖,𝑡,𝑑 that had persisted on the road for the 309 

maximum persistence period D, 𝑁3𝑖,𝑡,𝐷 and were finally recorded in a given road 310 

survey on the census data 𝐶𝑖,𝑗,𝑡,𝐷,𝑚. The progression through the different nested 311 

levels in the simulations was carried out considering the values of 𝑝𝐿, 𝑝𝑃, and 312 

𝑝𝑂𝑚  which were specific to each vertebrate group (Table 1) and the different 313 

scenarios of simulation (Table 2). 314 

 315 

We first sampled 𝑁𝑖,𝑡,𝑑  for each road transect (i = 1-10 or 1-100, depending on the 316 

simulation scenario, Table 2), month (t = 1-12), and day (d = 1-D, where D was the 317 

maximum carcass persistence period for a given vertebrate group) as a random 318 

Poisson variable based on their mean total number of roadkills in month t for each 319 

specific day d along the D-day period 𝜆𝑡,𝑑 (using eqn. 1). We used expert knowledge 320 

to assign variation in month t dimension based on data collected by the authors in 321 

2021 and 2022 in southern Spain, which incorporated known monthly fluctuation 322 

trends for each vertebrate group, making the census data more realistic 323 

(Supplementary Material S5).  324 

 325 

As 𝑁𝑖,𝑡,𝑑  values could vary across the maximum persistence period D, along with 326 

their corresponding 𝜆𝑡,𝑑 values, we introduced variability by multiplying each 𝜆𝑡,𝑑 by a 327 

value sampled from a truncated random Normal distribution (mean = 1; SD = 0, 0.5, 328 

or 1.5, depending on the simulation scenario; Table 2). We used these 𝜆𝑡,𝑑 to 329 

generate 𝑁𝑖,𝑡,𝑑 values through the Poisson sampling process. For example, 330 

considering D = 3 days, 𝜆𝑡,𝑑0, 𝜆𝑡,𝑑1, and 𝜆𝑡,𝑑2 would be generated (i.e., the mean 331 

number of roadkills occurring three days, two days, or the day before the road survey 332 

day, respectively).  Roadkills on the survey day itself were not considered as surveys 333 

typically occur in the first half of the day. Through the Poisson sampling process, we 334 

then obtained the respective 𝑁𝑖,𝑡,𝑑0, 𝑁𝑖,𝑡,𝑑1 and 𝑁𝑖,𝑡,𝑑2, being the total number of 335 

roadkills three days, two days and one day before the road survey day respectively. 336 

From these values, we could obtain the simulated total number of roadkills 𝑁𝑖,𝑡,𝐷 =337 

∑ 𝑁𝑖,𝑡,𝑑
𝐷
𝑑=1 , which we wanted to recover by applying our modelling framework. For 338 

Mammals G5 such as ungulates, since we assumed that their carcasses remain 339 

onthe road survey area all month and their roadkill numbers were low, simulating 340 

𝑁𝑖,𝑡,𝑑 values along a D = 30 days period led to an unrealistically high value for 𝑁𝑖,𝑡,𝐷. 341 



Therefore, here, we simulated a single 𝑁𝑖,𝑡,𝑑  value for the entire month, such 342 

that 𝑁𝑖,𝑡,𝐷 =  𝑁𝑖,𝑡,𝑑. As a result, we did not include daily variation in the daily number 343 

of roadkills within the month for the simulations. 344 

 345 

Next, for vertebrate groups affected by carcass location bias (Table 1), we sampled  346 

𝑁2𝑖,𝑡,𝑑 values from their respective 𝑁𝑖,𝑡,𝑑, from a random binomial distribution with 𝑝𝐿 347 

as the probability of success (eqn. 2). The 𝑝𝐿 value was constant for each respective 348 

𝑁𝑖,𝑡,𝑑, as we assume that 𝑝𝐿 did not vary among days 1 – D, using our specific prior 349 

mean values on 𝑝𝐿 for vertebrate group (Table 1).  350 

 351 

Lastly, we sampled 𝑁3𝑖,𝑡,𝑑 values from their respective 𝑁2𝑖,𝑡,𝑑, from a random 352 

binomial distribution with the daily persistence probabilities 𝑝𝑃𝑑 as the probability of 353 

success (eqn. 3). For each vertebrate group with their respective 𝑝𝑃𝑑 value (see 354 

Supplementary material S1), we introduced variability by sampling the 𝑝𝑃𝑑  from a 355 

truncated Normal distribution (mean = 𝑝𝑃𝑑; SD = 0, 0.05, or 0.15, depending on the 356 

simulation scenario; Table 2). From these 𝑁3𝑖,𝑡,𝑑 values we obtained the simulated 357 

total number of roadkills that are available to be observed in the survey day 𝑁3𝑖,𝑡,𝐷 =358 

∑ 𝑁3𝑖,𝑡,𝑑
𝐷
𝑑=1 . For Mammals G5, which were not affected by carcass persistence bias 359 

(i.e., 𝑝𝑃 = 1), 𝑁3𝑖,𝑡,𝐷 was directly dependent on 𝑁𝑖,𝑡,𝐷 (Supplementary Material S4).  360 

 361 

Finally, we sampled census data 𝐶𝑖,𝑗,𝑡,𝐷,𝑚 from 𝑁3𝑖,𝑡,𝐷, from a random binomial 362 

distribution with the carcass observation probability, 𝑝𝑂𝑚, as the probability of 363 

success (eqn .4) using m = 3 survey methods (i.e. walking, cycling and driving), with 364 

j = 3 independent sampling replicates per method. We considered the following 365 

evidence when assigning 𝑝𝑂𝑚 values for the different vertebrate groups (in the 366 

absence of more concrete data and based on our expert knowledge): (a) we 367 

assumed that detection was highest when walking, followed by cycling, and then 368 

driving (Guinard et al., 2012; Winton et al., 2018); (b) we assumed that observation 369 

for any of the three methods would be low for small vertebrate groups and high for 370 

the large, more visible groups (Gerow et al., 2010; Teixeira et al., 2013) (Table 1). 371 

 372 

 373 

2.4.2 Analysis of simulated data   374 

 375 

We aimed to test how well the modelling framework could recover latent parameters 376 

assuming different levels of uncertainty in the 𝑝𝐿 and 𝑝𝑃 prior distributions (eqn. 2 377 

and 3). We analysed the simulated datasets using a low standard error value (SE 𝑝𝐿 378 

and 𝑝𝑃=0.05), which created a narrow prior distribution, and a high standard error 379 

value (SE 𝑝𝐿 and 𝑝𝑃=0.1), which resulted in a wider prior distribution.  380 

 381 

We used "Amphibians" and "Reptiles G1", characterized by a significant peak in 382 

roadkill numbers over just a few months, as examples of high seasonal roadkill 383 

numbers due to presumed absence or low numbers of roadkills in certain months 384 



where animals were not active (monthly abundance from the 2021 and 2022 data 385 

collected <5; see Supplementary Material S5). Here, as we assumed that active and 386 

inactive periods were independent, we fitted additional models that only included 387 

months where monthly abundance from the 2021 and 2022 data collected was > 5 388 

(see Supplementary Material S6). The aim was to see if model performance 389 

improved without accounting for the extended periods with very low roadkill counts, 390 

compared to the peak abundance months. 391 

 392 

Models were run for all possible scenarios for each vertebrate group, aiming to 393 

recover the value of  𝑁𝑡,𝐷 = ∑ ∑ 𝑁𝑖,𝑡,𝑑
𝑑
𝐷

𝑖
𝐼  in our posterior distributions, as well as the 394 

values of 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚. In total, we simulated 20 datasets for each of the 36 395 

scenario combinations per vertebrate group, resulting in the analysis of 720 396 

simulated datasets per vertebrate group.  397 

The dataset simulation code is detailed in Supplementary Material S2, S3, S4 and 398 

S6. All datasets were generated in R v. 4.2.2 (R Core Team, 2022). 399 

 400 

2.4.3 Model evaluation 401 

To evaluate the ability of the modelling framework to recover the simulated 402 

parameters we compared their Bayesian posterior distribution of parameters 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 403 

with the real known simulated parameter value 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 . In our simulation study we 404 

focused on the recovery of 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 , and 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 (note that there 405 

was no dimension t as 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 values did not change across t months). 406 

We used the Relative Root Mean Squared Error (𝑅𝑅𝑀𝑆𝐸) to compare the model 407 

development along every simulation scenario and vertebrate group estimations, as 408 

shown in the following equation (Rosenbaum et al., 2024): 409 

RRMSE(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) =
1

𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡
√(𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) − 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡)2 + Var(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡)        eqn. 5            410 

where 𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) was the mean of the Bayesian posterior distribution for s = 1…S 411 

scenario combination, v = 1…V vertebrate groups, sim = 1…Sim simulations and t = 412 

1…T months. In the case of 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  values, we added 1 to all values because 413 

some of them were equal to 0, and so we could not obtain the 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡). 414 

In the case of 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚, we generalized their 𝑅𝑅𝑀𝑆𝐸 (𝜃𝑠,𝑣,𝑠𝑖𝑚) values as the 415 

geometric mean of all probability estimates for each vertebrate group 416 

(𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚)), as shown in the following equation (Rosenbaum et al. 2024): 417 

RRMSE̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚) =  ∏ RRMSE(𝜃𝑠,𝑣,𝑠𝑖𝑚)1 |{𝑝𝐿,𝑝𝑃,𝑝𝑂𝑚}|⁄
𝑥∈{𝑝𝐿,𝑝𝑃,𝑝𝑂𝑚}                              eqn. 6           418 



We also tested whether 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 , and 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚  𝜃𝑠,𝑣,𝑠𝑖𝑚  overlapped with 419 

the 95% credible interval of the 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 and 𝑝𝐿, 𝑝𝑃, and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 distributions 420 

respectively, ensuring that the true known value was correctly estimated with 95% 421 

credibility. 422 

2.5 Case study 423 

We applied our modelling framework to estimate the total number of roadkills across 424 

i = 9 road transects of 3 km each, in three different Mediterranean ecosystems in 425 

south-western Spain (Supplementary Material S5). The first ecosystem was located 426 

in a hilly landscape belonging to the Natural Park of Sierra Norte de Sevilla, 427 

characterized by mountainous Mediterranean dehesa, composed mainly of holm 428 

oaks Quercus ilex, bushes and grasslands. We surveyed the SE-5405 road from 429 

Castilblanco de los Arroyos to Almadén de la Plata (37°45'08.9"N, 6°02'38.7"W). The 430 

second ecosystem was mostly plain farmland characterized by sunflower, wheat and 431 

olive tree plantations. We selected three roads: the SE-6103 from Carmona to La 432 

Campana (37°31'41.5"N, 5°29'37.5"W), the A-456 from La Campana to Lora del Río, 433 

and the A-457 from Lora del Rio to Carmona (37°36'31.0"N, 5°28'46.7"W). Finally, 434 

the third ecosystem was the mainly flat agroforestry matrix surrounding Doñana 435 

National Park, characterized by Mediterranean dehesa, pine trees and interspersed 436 

orchards, fruit trees and other minor crops. We selected the A-481 road from Hinojos 437 

to Villamanrique de la Condesa (37°14'01.7"N, 6°19'38.0"W) and the A-494 road 438 

from Mazagón to Matalascañas (37°07'05.9"N 6°46'06.5"W).  439 

We collected data on these road sections using M = 3 different methods carried 440 

simultaneously (walking, cycling, and driving), with J = 2 independent sampling 441 

repetitions per method (thereby guaranteeing a robust sampling design) for each 442 

method and T = 4 monthly surveys from February to May in 2023. For each 3 km 443 

transect, one observer conducted an initial survey, followed by a second observer 444 

after a 10-minute break, considering this interval short enough to assume that the 445 

roadkill population was closed. Due to administrative and legal requirements, during 446 

the initial phase of the driving surveys, the first observer was solely responsible for 447 

roadkill sampling while the second focused entirely on driving. In the subsequent 448 

transect sampling repetition, the roles were reversed, allowing the driver to also take 449 

on the task of searching for roadkill, ensuring both observers made independent 450 

samplings. The survey velocity while driving was the minimum allowed on the road. 451 

For each roadkill detected, we noted the observer's identity, the surveyed transect, 452 

sampling method, observation month and the exact georeferenced location of the 453 

roadkill (with less than 10 m error). Roadkills were documented with zenithal 454 

photographs and identified to the lowest feasible taxonomic level, although the 455 

ultimate goal was to group them into functional groups.  456 

 457 

3. Results 458 



 459 

In our Bayesian model analysis, the �̅� statistic consistently showed values below 1.1, 460 

indicating good convergence and precise parameter estimations from the MCMC 461 

chains (Appendix A1; A2). 462 

 463 

3.1 Simulation study 464 

 465 

Our model outputs demonstrated overall low 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values recovering the 466 

simulated total number of roadkills 𝑁𝑡,𝐷(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 ) across nearly all scenarios (Fig. 2; 467 

see also Supplementary Material S7 for more detailed plots for each of the 468 

vertebrate groups). Nevertheless, the vertebrate groups Reptiles G2, Birds G2, and 469 

Mammals G3 showed very high variation in their distributions, ranging from 470 

log 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values below -1 to over 4 (Fig. 2).  Across vertebrate groups, 471 

the highest 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) scores, indicating relatively worse performance of the 472 

model in recovering simulated parameters, corresponded to scenarios with high 473 

variability in daily persistence probabilities (SD 𝑝𝑃𝑑) (Fig. 2). Additionally, 474 

𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) increased when the SE was high for the prior distributions for 𝑝𝐿 475 

and 𝑝𝑃 compared with low SE, and increased further when variability in daily roadkill 476 

numbers (SD 𝜆𝑡,𝑑) was also high (Fig. 2). The number of road transects simulated 477 

(10 or 100 transects) had minimal impact on 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) (Supplementary 478 

Material S7). For Amphibians and Reptiles G1, 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) were lower when 479 

considering only those months in the analyses when animals are active, compared to 480 

when extended periods of low number of roadkills were included in the datasets 481 

(Supplementary Material S7). Regarding the overlap of the 95% credible interval for 482 

𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 across all scenarios, when the 𝑝𝐿 and 𝑝𝑃 prior SE was low, the 483 

simulated total number of roadkills 𝑁𝑡,𝐷(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 )  was generally well recovered for all 484 

vertebrate groups (Fig. 4a; see Supplementary Material S8 for more detailed plots). 485 

However, there were some exceptions: Amphibians and Mammals G4 were 486 

underestimated in some scenarios, while Reptiles G1 were underestimated in all 487 

scenarios (Supplementary Material S8). On the other hand, when 𝑝𝐿 and 𝑝𝑃 prior SE 488 

was high, the 95% credible interval overlap widened, leading to overestimations 489 

across all vertebrate groups (Supplementary Material S8). The only exceptions were 490 

Amphibians and Reptiles G1, which were typically underestimated, resulting in 491 

increased uncertainty but reduced underestimation (Supplementary Material S8). 492 

 493 

𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚) scores for 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 (𝜃𝑠,𝑣,𝑠𝑖𝑚) showed the same relative 494 

differences as 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡), being the highest for Reptiles G2, Birds G2, and 495 

Mammals G3 under high variability in daily carcass persistence probabilities (SD 496 

𝑝𝑃𝑑) (Fig. 3). This was largely due to the fact that the Bayesian hierarchical models 497 

could not recover well 𝑝𝑃 under high SD 𝑝𝑃𝑑 and a high 𝑝𝑃 prior SE , although 𝑝𝑂𝑚 498 

values where always well recovered, being much more precise in 100 survey sites 499 

scenario (Fig. 4b; see Supplementary Material S9 for more detailed plots). 500 



 501 

3.2 Case study 502 

 503 

During the sampling period, we recorded a total of 650 different carcasses of 45 504 

identified species (386 of these carcasses could only be classified into higher 505 

taxonomic groups). For further modelling, we classified these carcasses into the 506 

following functional groups: 199 lizards, 17 snakes, 217 passerines, 43 small 507 

mammals, 72 lagomorphs, and 24 carnivores. Although we observed 40 amphibians, 508 

22 medium-sized birds, 12 hedgehogs and 4 big-sized mammals we were unable to 509 

estimate the total number of roadkills for these groups. Standardizing observations 510 

across the 27 km surveyed (9 transects × 3 km), the roadkill rates per kilometre were 511 

highest for passerines (8.04/km) and lizards (7.37/km), followed by lagomorphs 512 

(2.67/km), small mammals (1.59/km), carnivores (0.89/km), and snakes (0.63/km).  513 

 514 

Our model generated estimates for the total number of roadkills over the 4 months of 515 

sampling on our study roads, taking into account prior distributions of 𝑝𝐿 and 𝑝𝑃, 516 

alongside the estimated values of 𝑝𝑂𝑚 for each sampling method used. The 517 

estimated roadkill rates per kilometre were 15.22 for lizards (2.07 times higher than 518 

observed), 8.84 for snakes (14.03 times higher), 48.92 for passerines (6.08 times 519 

higher), 7.64 for small mammals (4.81 times higher), 7 for lagomorphs (2.62 times 520 

higher), and 5.49 for carnivores (6.16 times higher) (see Fig. 5). For each vertebrate, 521 

𝑝𝑂𝑚 estimation is highest for walking survey method 𝑝𝑂𝑤, followed by cycling 𝑝𝑂𝑐, 522 

and is considerably lower for driving 𝑝𝑂𝑑. This was particularly evident in lizards, 523 

passerines, and lagomorphs, where 𝑝𝑂𝑤 was markedly higher compared to the other 524 

methods. For lizards and small mammals, the probability of observation was 525 

generally low, with values concentrated close to zero when using the driving method 526 

(Fig. 6). 527 

 528 

Finally, our data revealed that some carcasses were observed exclusively by one 529 

survey method and not by the others: 294 carcasses were only observed using the 530 

walking method, 134 by the cycling method, and 1 by the driving method 531 

(Supplementary material 11). 532 

 533 

 534 

4. Discussion 535 

 536 

4.1 Integrating biases in surveys of infrastructure-induced mortality 537 

 538 

In the present study, we successfully integrated the three intrinsic survey biases of 539 

infrastructure-induced mortality (i.e., carcass location, persistence, and observation 540 

bias) within the predefined conceptual framework of our modelling approach. As a 541 

consequence, we were able to robustly infer the actual mortality from carcass 542 

census data, which represents a significant step forward in methodological research 543 

on this type of impact, with potentially important implications for the conservation of 544 



threatened species as well as for taxa providing ecosystem services. Unlike earlier 545 

studies that implemented similar statistical approaches, which provided abundance 546 

indices (e.g., Fernández-López et al., 2022) or roadkill risk metrics (e.g., Santos et 547 

al., 2018), the application of modified Bayesian N-mixture models in our study 548 

allowed us to derive actual roadkill estimates while propagating uncertainty 549 

throughout the model due to the Bayesian approach (Schmelter et al., 2012). Our 550 

roadkill estimates were between 2.07 and 14.03 times higher than the observed 551 

records in the case study (depending on the species group considered), highlighting 552 

that road mortality is a far greater threat than previously recognized, especially for 553 

species more affected by sampling biases, such as small birds and bats (Barrientos 554 

et al., 2018; Román et al., 2024). Since the biases analyzed in this study are very 555 

similar to those affecting other infrastructure-induced mortality surveys (Barrientos et 556 

al., 2018; Bernardino et al., 2020), it is reasonable to assume that this threat is also 557 

underestimated along power lines, wind farms and other linear developments. 558 

 559 

4.2 Model performance in simulation scenarios 560 

 561 

The worse performance of the model in scenarios with high standard error in the 562 

Bayesian prior distributions of carcass location and persistence probabilities could be 563 

due to the fact that a higher prior variation is translated to weakly informative priors. 564 

Since we lacked empirical data to refine these weakly informative priors, this 565 

uncertainty propagated through the model, resulting in more uncertain posterior 566 

distribution estimates. Bayesian mixture models have been noted before to run into 567 

performance issues when data are scarce and prior information for latent parameters 568 

is uninformative (Depaoli (2013) or Depaoli, Yang, and Felt (2017)). Thus, improving 569 

knowledge of carcass location and persistence probabilities is crucial for future 570 

roadkill studies. Regarding carcass location bias, this can be addressed through 571 

collaborative research efforts, such as those already being conducted by some 572 

authors (Román et al. 2024). On the other hand, our knowledge of persistence bias 573 

can be improved through targeted experiments of persistence times (Ruiz-Capillas et 574 

al., 2015; Santos & Ascensão, 2019) and more intensive censuses, although this is 575 

often associated with high logistical and economic costs (Costa et al., 2015; Henry et 576 

al., 2021). It is important to emphasize that the study of these biases needs to be 577 

further explored in other infrastructures as well, and in fact, even more than in roads, 578 

about which comparatively more studies have been conducted (Barrientos et al., 579 

2018). 580 

 581 

4.2.2 Impact of daily parameters variability 582 

 583 

Not surprisingly, the combination of a high variability in daily roadkill numbers and 584 

daily persistence probabilities negatively affected the agreement between modelled 585 

and simulated total roadkill numbers in some simulations, thereby increasing the 586 

variation in Relative Root Mean Square Error (𝑅𝑅𝑀𝑆𝐸). This occurs because total 587 

roadkill numbers are a non-linear function of the combination of the parameters. By 588 

averaging daily values of potentially highly variable parameters (e.g., high roadkill 589 

numbers on certain days, combined with low persistence probabilities and vice 590 

versa), we introduce non-linear averaging that may skew estimates upwards or 591 

downwards (Denny, 2017), causing the 𝑅𝑅𝑀𝑆𝐸 value to vary. 592 



 593 

Our results also suggest that true average persistence probabilities may be 594 

underestimated when the simulated daily persistence shows high variation and 595 

carcasses may persist more than five days. This can be explained by the fact that 596 

the prior for the average persistence probability is obtained using a persistence 597 

curve that follows a convex function (see Supplementary Material S1). Under 598 

Jensen’s inequality (Ruel & Ayres, 1999) given our convex function, the average 599 

value of our persistence curve across its range is typically lower than the value of the 600 

mean of the different daily persistence probabilities values that generate the convex 601 

curve (see Supplementary Material S11). 602 

 603 

4.2.3 Differences among vertebrate groups 604 

 605 

The fact that we underestimated simulated roadkill numbers for amphibians and 606 

lizards is likely due to the fact that extremely low persistence and observation 607 

probabilities in these groups resulted in a zero-inflated simulated dataset for 608 

analysis. In such cases, employing a zero-inflated Poisson version of the N-mixture 609 

model could potentially yield more accurate results (Joseph et al., 2009; Wenger & 610 

Freeman, 2008). Regarding carnivores, in our models, this vertebrate group has 611 

particularly high carcass location, persistence and observation probabilities, in 612 

agreement with previous knowledge (Barrientos et al., 2018), leading to posterior 613 

distributions that are very precise and narrow (Veech et al., 2016). However, the 614 

underestimation of this group in certain scenarios remains unexplained, requiring 615 

further investigation. 616 

 617 

4.3 Case study application 618 

 619 

Applying the hierarchical modelling framework to empirical data in our case study 620 

showed an important increase in the estimated number of roadkills compared to 621 

those observed, aligning with the findings of other studies (e.g Teixeira et al. (2013); 622 

Winton et al. (2018)). Also, our estimates for carcass observation probabilities align 623 

with previous findings in the literature, as it is highest for walking surveys, followed 624 

by cycling, and lowest for driving (Guinard et al., 2012; Ogletree & Mead, 2020; 625 

Winton et al., 2018), and it is  also lower for smaller vertebrate groups and higher for 626 

larger, more visible species (Gerow et al., 2010; Teixeira et al., 2013). Our study is 627 

the first to compare all three survey methods simultaneously within the same study. 628 

We not only demonstrate that walking surveys—while the most effective method—629 

are not perfect and should not be assumed to observe all roadkill events, as was 630 

done in Teixeira et al. (2013), but we also show that a significant number of 631 

carcasses were missed by walking surveys but observed by cycling. This suggests 632 

that walking, cycling, and driving surveys should not be seen as a ranking from best 633 

to worst but rather as complementary methods, each with its own advantages and 634 

limitations. For example, while walking likely helps observe carcasses directly 635 

underfoot, the elevated perspective provided by cycling allows for a broader field of 636 

view, making it easier to observe carcasses on the roadside. 637 

 638 

These results highlight that using the driving method in surveys not only reduces the 639 

proportion of carcasses observed on the road but can also lead to an overestimation 640 

of the total number of collisions. In N-mixture models, lower observation probabilities 641 

result in larger extrapolations in the estimated values. Since observation probabilities 642 



while driving are extremely low, the estimated number of roadkills of collisions 643 

ultimately be much higher than the real number of roadkills (Dennis et al., 2015; 644 

Hostetter et al., 2019).  645 

 646 

4.4 Limitations and future perspectives 647 

 648 

A limitation of our methodology is that it requires extensive knowledge of carcass 649 

location, persistence, and observation biases specific to each infrastructure, 650 

vertebrate group, and study environment. The bias values for each of these contexts 651 

may vary, which is crucial for making accurate estimates in each case. 652 

 653 

Another limitation of our estimates of total roadkill numbers is that they are limited by 654 

the maximum number of days a carcass from a specific vertebrate group remains on 655 

the road before disappearing. This means that to estimate the number of roadkill 656 

within specific time units (day, month, etc.), further methodological development of 657 

the model would be needed to ensure that the estimates are properly linked to the 658 

chosen time unit. Consequently, when extrapolating monthly roadkill levels, 659 

vertebrate groups with shorter persistence times (such as amphibians and lizards) 660 

may show significantly higher roadkill estimates compared to those with longer 661 

persistence times (such as large birds and carnivores). To address the accuracy of 662 

monthly extrapolations, roadkill survey frequency should take into account the 663 

persistence period of the target vertebrate group. This approach would be 664 

particularly useful in studies focused on endangered or high-interest species, due to 665 

most studies do not typically follow this method, as they generally assess overall 666 

vertebrate mortality (e.g. D’Amico et al., 2015). For species with short persistence 667 

times, such as lizards, surveys should be done every day throughout the study 668 

season to avoid extrapolation and rely on actual observed data. 669 

 670 

In the case study, one important consideration is that, typically, roadkill studies 671 

alternate the direction of search and the side of the road randomly in order to cover 672 

the area as thoroughly as possible along the infrastructure (D’Amico et al., 2015). 673 

However, in our case, as our study was an initial phase of a citizen science project 674 

with volunteers, we had to employ a simple and easy sampling method, conducting 675 

surveys on only one side of the road and always in the same direction. Although we 676 

recognize that this may decrease the carcass observation probability, it would be 677 

interesting to investigate in the future whether randomizing the direction and side of 678 

the road would actually reduce this bias. 679 

 680 

Finally, our modelling framework could be used for animal conservation issues by 681 

combining it with population abundance estimation models near to infrastructure, 682 

offering a valuable tool to assess what proportion of the study population may 683 

succumb to infrastructure-related mortality (e.g. roads: Barrientos et al. (2021); 684 

power lines: Biasotto & Kindel (2018) and D’Amico et al. (2019); multiple linear 685 

infrastructures: Ascensão et al. (2022)) This information would facilitate the 686 

identification of species or populations more significantly affected by infrastructure-687 

related mortality (e.g. species with very low population sizes and highly susceptible 688 

to roadkill), thereby prioritizing conservation efforts.  689 

 690 

 691 
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Figures and tables 873 

 874 

Table 1. Descriptive characteristics of the different vertebrate groups used to 875 

simulate roadkill numbers, including examples of species, their features of observed 876 

roadkill numbers and their annual trend, maximum days their carcass remains on the 877 

road without disappearing (D), probability of their carcass being located on the road 878 

(𝑝𝐿), average probability across D of their carcass persisting on the road (𝑝𝑃) and 879 

carcass observation probability (𝑝𝑂𝑚) by walking (pOw), cycling (pOc) and driving (pOdr) 880 

survey method. 881 

Vertebrate 
groups 

Example 
Observed roadkill 

abundance 
Seasonal 
variation 

D 
(days) 

pL pP  

pOm 

pOw pOc pOdr 

Amphibians 

Small 
amphibians 

such as Bufo 
spinosus or 

Epidalea 
calamita 

Frequently 
observed  

High 2 1 0.36 0.5 0.3 0.02 



Reptiles G1 

Small reptiles 
such as 

Psammodromus 
algirus or Timon 

lepidus 

Frequently 
observed 

High 1 1 0.54 0.5 0.3 0.02 

Reptiles G2 

Medium-sized 
ophidians such 

as Malpolon 
monspessulanu

s or Zamenis 
scalaris 

Frequently 
observed 

High 3 0.43 0.36 0.7 0.5 0.1 

Birds/Bats G1 
Small birds such 

as Carduelis 
carduelis or bats 

Frequently 
observed 

Low 3 0.36 0.36 0.6 0.4 0.05 

Birds G2 

Medium-sized 
birds such as 

Alectoris rufa or 
large birds as 

Asio otus 

Rarely observed Low 10 0.69 0.34 0.8 0.6 0.2 

Mammals G1 

Small mammals 
such as Mus 

spretus or 
Rattus rattus 

Frequently 
observed 

Low 3 1 0.36 0.6 0.4 0.05 

Mammals G2 

Medium-sized 
mammals such 
as Oryctolagus 

cuniculus or 
Lepus 

granatensis 

Frequently 
observed 

Low 4 1 0.35 0.8 0.6 0.2 

Mammals G3 

Mammals with 
keratinous 

structures such 
as Erinaceus 
europaeus 

Rarely observed Low 12 1 0.34 0.8 0.6 0.2 

Mammals G4 

Medium-sized 
carnivores as 
Felis catus or 
Vulpes vulpes 

Frequently 
observed 

Low 14 0.65 0.34 0.9 0.7 0.3 

Mammals G5 
Big mammals as 

Sus scrofa or 
Cervus elaphus 

Rarely observed Low 30 0.5 1 1 0.9 0.8 

 882 

Table 2. Simulation scenarios to generate roadkill census data, including levels of 883 

variation and justification for the scenario choice. 𝜆𝑡,𝑑= mean total number of roadkills 884 

in month t for each specific day d across D (maximum persistence), 𝑝𝑃𝑑 = daily 885 

carcass persistence probability, SD = Standard Deviation and SE = Standard Error. 886 

Parameter Levels Justification 

Nº road transect 10/100 

N-mixture models can be sensitive to the spatial 
replication of count surveys (Kery & Royle, 2020). 

Increasing the number of transects can enhance the 
precision of estimates by improving the spatial 

representativeness of the data 

SD in λt,d 0/0.5/1.5 

Since we model the total number of roadkills as the 
sum over the maximum persistence period (D), we 

aim to know how this modelling approach impacts our 
estimates when daily values show no variation, 

moderate variation, or high variation 



SD in pPd 0/0.05/0.15 

Since we model the carcass persistence probability as 
the average of carcass persistence probabilities over 
the maximum persistence period (D), we aim to know 
how this modelling approach impacts our estimates 

when daily values show no variation, moderate 
variation, or high variation 

SE in priors pL and 
pP 

0.05/0.1 

Since we model our prior beta-distribution 𝛼 and 𝛽 
parameters for a pL and pP from their mean values and 

a SE that captures our uncertainty around this 
knowledge, we aim to know how low and high 

uncertainty impacts our estimates 

 887 

 888 

 889 

Figure 1. Roadkill survey bias framework. This diagram illustrates how three types of 890 

survey bias (carcass location bias, carcass persistence bias, and carcass 891 

observation bias) impact the census data of roadkill within the surveyed road. These 892 

theoretical different sizes of the squares in the diagram symbolize the quantity of 893 

roadkill that would be available at each nested level of the framework. Additionally, D 894 

represents the time elapsed between the roadkill event and the maximum days a 895 

carcass remains on the road without disappearing until survey day, where carcass 896 

persistence bias occurs, while Sd represents the survey duration, during which 897 

observational bias occurs. 898 



 899 

Figure 2: 𝑁𝑡,𝐷 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values (Equation 5), where lower values indicate 900 

better model performance in recovering the simulated value. This is evaluated 901 

across s = 9 different scenario combinations of daily roadkill numbers and daily 902 

carcass persistence variability (𝑆𝐷 𝜆𝑡,𝑑  and 𝑆𝐷𝑝𝑃𝑑), v = 10 vertebrate groups, sim = 903 

20 simulations, t = 12 months and D = maximum days a carcass remains on the road 904 

without disappearing. Each distribution represents 𝑁𝑡,𝐷 𝑅𝑅𝑀𝑆𝐸(𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡) values 905 

derived from each sim and t levels described above for a) Amphibians, b) Reptiles 906 

G1, c) Reptiles G2, d) Birds/Bats G1, e) Birds G2, f) Mammals G1, g) Mammals G2, 907 

h) Mammals G3, i) Mammals G4 and j) Mammals G5. The results are shown for 2 908 

levels of standard error (0.05 or 0.1) for the 𝑝𝐿 and 𝑝𝑃 prior distributions, and for 100 909 

road transects surveyed. Dot represent the mean, bold lines for 66% intervals, and 910 

thin lines 95% intervals. An asterisk (*) in the distributions indicates values exceeding 911 

4 that are part of the distribution. Note: Amphibians and Reptiles G1 vertebrate 912 

groups models only account for peak abundance months, excluding periods of 913 

typical absence, therefore t = 4 months were considered. 914 



 915 

Figure 3:  𝑝𝐿 , 𝑝𝑃 & 𝑝𝑂𝑚 𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (�̂�𝑠,𝑣,𝑠𝑖𝑚) (Equation 6), where lower values indicate 916 

better model performance in recovering the simulated value. This is evaluated 917 

across s = 9 different scenario combinations of daily roadkill numbers and daily 918 

carcass persistence variability (𝑆𝐷 𝜆𝑡,𝑑  and 𝑆𝐷𝑝𝑃𝑑), v = 10 vertebrate groups, sim = 919 

20 simulations and m = walking, cycling and driving survey methods. Each 920 

distribution represents 𝑝𝐿 , 𝑝𝑃 & 𝑝𝑂𝑚 𝑅𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝜃𝑠,𝑣,𝑠𝑖𝑚) values derived from each sim 921 

level described above for a) Amphibians, b) Reptiles G1, c) Reptiles G2, d) 922 

Birds/Bats G1, e) Birds G2, f) Mammals G1, g) Mammals G2, h) Mammals G3, i) 923 

Mammals G4 and j) Mammals G5. 924 

 The results are shown for 2 levels of standard error (0.05 or 0.1) for the 𝑝𝐿 and 𝑝𝑃 925 

prior distributions, and for 100 road transects surveyed. Design: Log-spaced grid 926 

with dots for means, bold lines for 66% intervals, and thin lines for 95% intervals. 927 

Note: Amphibians and Reptiles G1 vertebrate groups models only account for peak 928 

abundance months, excluding periods of typical absence. 929 

 930 



 931 

 932 

Figure 4: Overlap of total number of roadkills simulated values 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  per road 933 

transect (a) and carcass location, persistence and observation per method 934 

probabilities simulated data 𝑝𝐿 , 𝑝𝑃 and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 (b) between their Bayesian 935 

estimation distribution, 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 and 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚, for Mammals G1, 936 

Reptiles G2, and and Birds/Bats G1, when census data were simulated under 937 

variability scenario for daily roadkill numbers (𝜆𝑡,𝑑) and daily carcass persistence 938 

probability (𝑝𝑃𝑑), considering a SE = 0.05 in 𝑝𝐿 and 𝑝𝑃 priors. a) Lines represent the 939 

averaged 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡  over 20 simulations, while the shaded areas show the 95% 940 

credible interval of the average 𝑁𝑡,𝐷 𝜃𝑠,𝑣,𝑠𝑖𝑚,𝑡 over each 20 simulated census data. b) 941 

Green dots represent the 𝑝𝐿 , 𝑝𝑃 and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 for m = walking (𝑝𝑂𝑤), cycling 942 

(𝑝𝑂𝑐) or driving (𝑝𝑂𝑑) survey methods, while the boxplots with violin plots show the 943 

credible interval of the pooled 𝑝𝐿, 𝑝𝑃 and 𝑝𝑂𝑚 𝜃𝑠,𝑣,𝑠𝑖𝑚 over 20 simulated census data. 944 
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 946 

 947 

Figure 5. Observed roadkill rates per kilometer in road surveys (blue) and Bayesian 948 

posterior estimates of total roadkill rates per kilometer (black), derived from 949 

aggregating four monthly census data of the case study, for each vertebrate group. 950 

These estimated roadkill rates are limited to those that occurred within the time 951 

interval where each vertebrate group remains visible on the road without 952 

disappearing. Dots for means, bold lines for 66% credible intervals, and thin lines for 953 

95% credible intervals. 954 
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 957 

Figure 6. Bayesian posterior distribution of the carcass observation probabilities 958 

from case study, for each considered vertebrate groups. “Walking” means the 959 

estimation of carcass observation probability by walking survey method, “Cycling” by 960 

cycling survey method and “Driving” by driving survey method. Dots for means, bold 961 

lines for 66% credible intervals, and thin lines for 95% credible intervals. 962 
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