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Summary 35 
 36 
The level and pattern of gene expression is increasingly recognized as a principal 37 
determinant of plant phenotypes and thus of fitness. The estimation of natural selection 38 
on the transcriptome is an emerging research discipline. We here review recent 39 
progress and consider the challenges posed by the high dimensionality of the 40 
transcriptome for the multiple regression methods routinely used to characterize 41 
selection in field experiments. We consider several different methods, including 42 
classical multivariate statistical approaches, regularized regression, latent factor 43 
models, and machine learning, that address the fact that the number of traits potentially 44 
affecting fitness (each expressed gene) can greatly exceed the number of plants that 45 
researchers can reasonably monitor in a field study. While such studies are currently 46 
few, extant data are sufficient to illustrate several of these approaches. With additional 47 
methodological development coupled with applications to a broader range of species, 48 
we believe prospects are favorable for directly characterizing selection on gene 49 
expression within natural plant populations.   50 
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Introduction 51 
 52 
One of the fundamental goals of evolutionary biology is to understand how natural 53 
selection acts on phenotypes. Understanding the form, strength, and direction of 54 
selection is crucial to making predictions about the evolutionary trajectory of traits, 55 
understanding adaptation, and quantitatively testing alternative hypotheses about the 56 
extent to which organismal features evolve by adaptive or non-adaptive mechanisms. 57 
For this reason, evolutionary biologists have devoted considerable effort to measuring 58 
natural selection in field, experimental, and common garden environments (Kingsolver 59 
et al. 2001, 2012; Siepielski et al. 2013). While the rapid progress in molecular biology 60 
and genomics continually offers the promise of characterizing the genetic basis of 61 
complex traits (Hill 2010), there is a growing realization that these techniques and 62 
approaches yield a suite of molecular phenotypes that are themselves amenable to 63 
evolutionary (and genetic) analysis. Here we outline the prospects and challenges for 64 
characterizing natural selection on one particularly relevant– and increasingly 65 
attainable– set of molecular phenotypes, gene expression.  66 
 67 
Several lines of evidence suggest that gene expression is an important determinant of 68 
organismal fitness, and thus likely to experience selection. Early experimental results, 69 
from mutation accumulation experiments in which the strength of selection has been 70 
minimized or reduced, suggested that stabilizing selection was acting on gene 71 
expression (Rifkin et al. 2005, Gilad et al. 2006). Likewise, observations from the 72 
microarray-era indicated that populations experiencing different environmental 73 
conditions can diverge in gene expression, even in the face of substantial gene flow 74 
(Oleksiak et al. 2002), potentially indicating the past action of selection. Collectively, 75 
these and more recent studies reveal that gene expression can and does evolve on a 76 
wide array of time-scales, including in the laboratory (Rifkin et al. 2005), between 77 
adjacent populations of the same species (Oleksiak et al. 2002), in response to severe 78 
weather events (Campbell-Staton et al. 2017; Hamann et al. 2021), and in ecologically 79 
realistic, complex communities within a handful of generations (Ghalambor et al. 2015, 80 
2018). 81 
 82 
Despite prominent examples of gene expression evolution on microevolutionary 83 
timescales, as well as theorizing on its relevance on macroevolutionary time scales 84 
(e.g., King and Wilson 1975), few researchers have directly estimated natural selection 85 
on gene expression. In contemporary populations, is gene expression subject to 86 
stabilizing selection as first predicted, or is it frequently subject to directional selection 87 
as might be deduced from these studies of evolutionary divergence on short time 88 
scales? How does the strength of selection on gene expression compare to that on 89 
‘macroscopic’ traits such as life history, morphology, or behavior? Are the levels of 90 
transcription among multiple genes in the transcriptome sufficiently correlated as to 91 
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require distinguishing between direct and indirect selection? Is there a relationship 92 
between the level of expression and the strength of phenotypic selection, analogous to 93 
the relationship between the level of expression and rates of molecular evolution 94 
(Wright et al. 2004, Slotte et al. 2011)? These and a host of other questions require 95 
extending the Lande-Arnold revolution (Lande and Arnold 1983; Svensson 2023) from 96 
traditional macroscopic phenotypes to include gene expression. 97 
 98 
Transcriptomes as Quantitative Traits 99 
 100 
Progress on these questions starts with the recognition that gene expression is itself a 101 
quantitative trait. The expression levels of genes across the genome are quantitative 102 
traits with strong environmental influences combined with multi-locus genetic effects 103 
(Liu et al. 2019). In fact, given that modern RNA-seq experiments often obtain 104 
expression estimates for many genes simultaneously (N in the 1,000s), the 105 
transcriptome is really a collection of vectors (or a matrix). Considering the 106 
transcriptome as a set of correlated characters within a quantitative genetic perspective 107 
offers several insights. Perhaps most importantly, there is a well-developed machinery 108 
to analyze selection on correlated quantitative traits (Lande & Arnold, 1983; Rausher, 109 
1992). 110 
 111 
The transcriptome is hugely multivariate and thus offers investigators a chance to 112 
measure many phenotypes simultaneously. While it is true that these phenotypes are 113 
“snapshots” – measured at a particular time, life stage, or tissue – that is also usually 114 
true of measures of morphology, physiology, and life history. For example, scoring the 115 
expression of genes from plants harvested at the expansion of the 2nd leaf pair is not 116 
necessarily more restrictive than measuring morphology on the day of anthesis of the 117 
first flower. In a fundamental way, transcriptome studies are more inclusive because the 118 
set of traits considered in the final analysis is not driven by the inclinations of the 119 
investigator. Quite understandably, biologists focus on traits they hypothesize to be 120 
important determinants of fitness (drought stress, pollinator recruitment, deterrence of 121 
herbivores, etc). Unfortunately, the more accurate the intuition of biologists in choosing 122 
critical traits, the more biased our estimates of selection based on these macroscopic 123 
phenotypes will be. It is entirely possible that the strength and relative frequencies of 124 
directional, stabilizing, or disruptive selection will be systematically different between 125 
chosen traits and the rest of the phenotype. 126 
 127 
Despite clear advantages, the volume of data produced by transcriptome studies forces 128 
quantitative genetics to confront a serious challenge of scale. Most studies of 129 
phenotypic selection utilize a regression framework. In the simplest implementation of 130 
this approach, an estimate of relative fitness (e.g., individual seed set divided by mean 131 
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seed set for the population) is regressed on a single phenotype in a univariate 132 
regression. In the context of gene expression, this would involve regressing an estimate 133 
of relative fitness on the expression of an individual gene, for all the individuals in the 134 
experimental population or sample. If expression has been standardized (i.e., x̄ = 0 and 135 
σ =1), the resulting parameter estimate is the standardized selection differential for the 136 
expression of that gene; positive values would indicate that greater expression of the 137 
gene was associated with increased relative fitness. Groen et al. (2020) applied this 138 
approach to populations of rice growing under field and drought environments. They 139 
found that selection differentials for gene expression were generally weak, but stronger 140 
under drought than well-watered conditions.  141 
 142 
The scale of the transcriptome introduces two key problems with the univariate 143 
approach. First, RNA-seq experiments estimate the expression of thousands of genes 144 
at a time. Simply repeating a univariate analysis for all the genes for which one has data 145 
introduces several inter-related problems. First, it is unlikely that the expression of each 146 
gene is independent of the expression of other genes, in the same way that a single 147 
macroscopic phenotype is often correlated with other phenotypes. Selection differentials 148 
measure total selection on a phenotype, which is the sum of direct selection on the trait 149 
and indirect selection through correlated traits (Lande and Arnold 1983). Because the 150 
expression of any individual gene is likely to be correlated with the expression of other 151 
genes (and other traits), a selection differential alone cannot tell whether it is the 152 
expression of a focal gene that is directly important for relative fitness, or whether the 153 
expression of that gene is simply correlated with other traits that are under selection. 154 
Second, testing the relationship between each gene’s expression and fitness 155 
independently ignores the fact that it is impossible for these estimates to be 156 
independent when there are more ‘traits’ than there are observations (there are simply 157 
insufficient degrees of freedom). Lastly, analyzing the relationship between expression 158 
and fitness for each gene in succession introduces multiple testing problems in a 159 
hypothesis-testing framework: A large number of genes associated with relative fitness 160 
will undoubtedly be false positives. Addressing the number of tests thus requires 161 
multiple testing or false discovery rate corrections. We caution against obsession with 162 
significance testing and some of the methods we describe do not use it at all. However, 163 
it is important for investigators to realize that performing many thousands of tests at a 164 
time will incur false positives.  165 
  166 
 167 
 168 
 169 
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170 
Figure 1. A schematic depicting the mapping from genotype to fitness. From left to 171 
right. We present a hypothetical case of two genotypes (G1 and G2, differing by a base-172 
pair) and two environments (E1 and E2) to illustrate how genetic and environmental 173 
variation affect transcriptomes, phenotypes, and fitness. In the middle column, we 174 
highlight that genetic and environmental variation may lead to differences in expression 175 
in some tissues and stages (measured tissue/stage) but not others (in this case, an 176 
unmeasured tissue/stage). Expression and environmental variation, in turn, both affect 177 
macroscopic phenotypes (z1, z2, z3). In this case, we highlight that while z1 and z2 have 178 
been measured, it is likely that unmeasured phenotypes (z3) are affected by expression 179 
and also affect fitness. In the arrows leading to fitness, we note that expression can 180 
affect fitness directly (dotted arrow) and via phenotypes (z1 and z2). Bars across the 181 
bottom are labeled with common analytical approaches to understanding expression, 182 
the genetic basis of traits, and selection. Key paths: (a) Groen et al. (2020), (b) 183 
Stinchcombe and Henry (2025), (c) Figure 2, this paper, (d) Brown and Kelly (2022), (e) 184 
Josephs et al. (2015, 2020), (f) Lande and Arnold (1983), (g) Rausher (1992). 185 
Illustration by Martin R. Henry.  186 
 187 
 188 
The standard approach for measuring selection on correlated traits is multiple 189 
regression (Lande and Arnold 1983; Figure 1 path (f)). In this context, a regression of 190 
relative fitness on the expression of all the genes in the transcriptome would yield 191 
selection gradients for gene expression. These gradients measure the direct effect of 192 
expression on relative fitness, accounting for the effects of the other traits (i.e., 193 
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expression of other genes) included in the model. While promising in the abstract, with 194 
real data and sample sizes, such a model quickly runs into the N-p problem: there are 195 
far more parameters to estimate (p) than there are total samples (N) in even the most 196 
heroic of experiments. Consequently, one of the primary advantages of the Lande-197 
Arnold (1983) approach, its ability to distinguish direct and indirect selection on 198 
correlated traits, is lost. Many of the questions outlined above—about the strength and 199 
form of selection, the prevalence of direct versus indirect selection, and even the 200 
fraction of the transcriptome subject to direct selection—remain inaccessible. In the 201 
remaining sections, we outline a handful of promising statistical and experimental 202 
approaches that can be used to address the N - p problem of measuring selection 203 
gradients for transcriptomes. 204 
 205 
Selection Gradients for the Transcriptome: Statistical Approaches 206 
 207 
There are several statistical approaches for measuring selection gradients for gene 208 
expression, and here we comment on some variants that appear to be emerging. Our 209 
expectation is that there will be continued work and that future developments are likely. 210 
At their core, these methods share one fundamental feature: dimensionality reduction, 211 
the compression of the data so as to estimate fewer parameters than the sample size. 212 
To use a hypothetical example, if an investigator has estimates of fitness for 500 213 
individuals, and estimates of expression for >500 genes in those same 500 individuals, 214 
the goal of these approaches is to reduce the problem to estimating selection from far 215 
fewer than 500 parameters (so that N is greater than p). 216 
 217 
PCA and Gene Coexpression Modules 218 
 219 
The most straightforward approach is likely familiar to many users of selection gradient 220 
analysis, principal component analysis (PCA). Because PCA is a widely used technique 221 
and familiar to many biologists, we do not consider the mathematical or technical details 222 
of its implementation; Jolliffe (2002) provides an extensive coverage. In short, after a 223 
PCA, an investigator obtains independent axes capturing variation in the original traits. 224 
In many cases, far fewer axes (PCs) are required to describe the data than there were 225 
original traits. In the context of gene expression, these PC axes can be used as 226 
independent variables to predict relative fitness. An important point is that fewer– ideally 227 
far fewer– PC axes must be used than there were original traits, otherwise nothing is 228 
gained. Groen et al. (2020; Figure 1, path (a)) used this approach with PC axes, and 229 
were able to detect significant selection on several PC axes. They used these findings 230 
to detect selection on the expression of genes related to photosynthesis and growth.  231 
 232 
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One downside of this approach is that a PC axis simultaneously reflects all the 233 
individual traits included in the study. A PC score is a weighted average of the 234 
expression of all measured genes with the magnitude and direction of the weights 235 
differing among principal components, which can make them difficult to interpret. Chong 236 
et al. (2018) illustrate a method to ‘back-transform’ selection estimates for PC scores 237 
into selection estimates on the original traits. They argued these are much easier to 238 
interpret and suggested the technique would be useful for studies of selection on gene 239 
expression, metabolomics, and other high dimensional traits. In brief, one performs 240 
some matrix algebra computations involving selection estimates for PC scores and the 241 
eigenvectors of the original PCA. This rotation yields an estimate of a selection gradient 242 
on individual gene expression traits, accounting for the patterns of correlation among 243 
the traits, but only within the portion of multivariate space described by the PC axes 244 
included (Chong et al. 2018). Similar calculations can be performed to estimate 245 
standard errors for these reconstituted estimates of selection gradients for gene 246 
expression.  247 
 248 
Henry and Stinchcombe (2025, Figure 1, path (b)) also used PCA to understand 249 
selection on gene expression. Like Groen et al. (2020), they regressed relative fitness 250 
on PC axes of gene expression. However, rather than using the PC axes as objects of 251 
study in themselves, they used the methods described by Chong et al. (2018) to back-252 
transform selection on PC scores into selection gradient estimates for individual genes. 253 
In their study of Ipomoea hederacea (Ivyleaf morning glory), they had estimates of 254 
relative fitness for 96 individuals, and estimates of gene expression for 2,753 genes 255 
throughout the genome. The best model used 61 PCs to describe patterns of variation 256 
in gene expression, which collectively explained 55% of variation in relative fitness. 257 
Turning these back into selection gradients for the expression of individual genes 258 
suggest several important, if tentative, findings about selection on gene expression. 259 
First, they found a very strong positive relationship between selection differentials and 260 
selection gradients for gene expression, suggesting that most of the selection on gene 261 
expression was direct, rather than indirect due to the expression of other genes. 262 
Second, they found a wide distribution of selection gradients for expression, 263 
approximately symmetrical around zero: some genes were under selection for 264 
increased expression, and a similar number for decreased expression. Finally, they 265 
observed that selection gradients for gene expression were substantially smaller than 266 
their past findings of selection on size and life history traits in the same population 267 
(Henry and Stinchcombe 2023). 268 
 269 
An alternative approach to dimensionality reduction is to first identify gene co-270 
expression modules using programs like WGCNA (Langfelder and Horvath 2008). 271 
These modules are constructed by identifying sets of genes whose expression is more 272 
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strongly correlated with other genes in the module than with genes in other modules. 273 
The expression of the genes within a module can be summarized with PCA– so-called 274 
eigen-genes– and the PC1 score of a module can be estimated for each individual in a 275 
data set. These PC scores represent a weighted sum of gene expression of the genes 276 
within the module. As before, PC scores for a module’s expression– which might 277 
summarize the expression of dozens to hundreds of genes– can be used as ‘traits’ in 278 
Lande-Arnold style analyses.  279 
 280 
Several investigators have applied this approach, relating gene coexpression modules 281 
to aspects of plant performance, size, or life history traits that are likely to be under 282 
strong selection (e.g., Palakurty et al. 2018, Josephs et al. 2020, Brown and Kelly 283 
2022). For example, Brown and Kelly (2022; Figure 1 path (d)) found that PC1 scores 284 
from twenty gene coexpression modules could explain 47% of variation in flower size in 285 
Mimulus guttatus. They used permutation testing to verify that these modules indeed 286 
significantly predicted flower size, and that the observed co-expression modules 287 
performed significantly better than random groupings of genes of the same size. In 288 
other words, the coexpression modules contain biological signal for predicting traits (in 289 
this case, flower size). Flower size is not itself a fitness component, but is under strong 290 
selection in Mimulus guttatus (Mojica and Kelly 2010), suggesting that transcriptomic 291 
variation affecting flower size can also potentially affect fitness. Interestingly, while 292 
several studies have related eigen-gene expression from coexpression modules to 293 
performance and fitness traits, to our knowledge none have used the PC rotations of 294 
Chong et al. (2018) to estimate selection gradients for expression of the individual 295 
genes within the module.  296 
 297 
The use of gene co-expression modules entails both benefits and drawbacks that are 298 
worth considering. Co-expression modules have the benefit that individual genes 299 
appear in one and only one module. As a consequence, the interpretation of the 300 
expression of the entire module is more straightforward than the output of a PCA, where 301 
the expression of each gene will load onto all the PC axes. Discrete, non-overlapping 302 
modules, in our view, might offer greater biological interpretation of the types of genes 303 
(or GO categories) that are associated with any given module. One drawback of 304 
coexpression modules, or PC scores summarizing the expression levels of genes within 305 
a module (eigen-gene expression), is that the scores summarizing multiple modules are 306 
not guaranteed to be uncorrelated across a sample, in contrast to a PCA using all of the 307 
data. Consequently, understanding selection on multiple modules simultaneously may 308 
require multiple regression and the estimation of selection gradients. 309 
 310 
Machine Learning 311 
 312 
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There is great enthusiasm for machine learning approaches in evolutionary biology 313 
(Schrider and Kern 2018). While this field is moving quickly and a full review is beyond 314 
our scope here (see Schrider and Kern 2018 for an entry point), there are several 315 
features of these algorithms that suggest promise in the context of measuring selection 316 
on gene expression. Machine learning approaches often focus on overall prediction 317 
rather than individual parameter estimation. In this context, it would be to predict relative 318 
fitness from expression of the set of genes for which investigators have expression, 319 
rather than hypothesis testing about the individual contribution of any one gene’s 320 
expression. Several features of the mechanics of how the algorithms work aid this. First, 321 
data are often split into “training” and “testing” sets, which can prevent overfitting and 322 
noise being fit to the model, and allow an evaluation of the overall performance of the 323 
model. Second, many of the approaches identify features (gene expression in this case) 324 
in a way that reduces the overall number of parameters that are estimated, which is a 325 
start towards addressing the issue of the scale of the transcriptome. Third, in many 326 
cases the output of a machine learning algorithm is a measure of importance (e.g., the 327 
expression of these genes is important in determining whether an individual survives or 328 
dies before reproduction), rather than a parameter with a clear evolutionary 329 
interpretation like a selection differential or gradient.  330 
 331 
Assuming that as an evolutionary biologist one has managed to implement one of the 332 
many machine learning algorithms available, and obtained a list of genes (features) 333 
whose expression is related to a fitness component, how does one make that 334 
information compatible and conversant with traditional measures of selection like 335 
differentials or gradients? One potential way forward is to use this reduced set of 336 
genes– that having survived cross-validation, evaluation in the testing data set, and 337 
acceptable performance metrics– appear to have expression that predicts relative 338 
fitness to estimate selection differentials and gradients the traditional way. In other 339 
words, one can use machine learning algorithms to prioritize an important subset of 340 
genes for further study, and then traditional selection analysis to estimate selection 341 
differentials and gradients. 342 
 343 
In Henry and Stinchcombe’s (2025) study, they used machine learning classification 344 
algorithms to determine which genes’ expression were important for determining 345 
whether an individual set seed versus failed to set seed. After model fitting, they 346 
identified 278 genes whose expression was identified as important for determining 347 
whether an individual set seed or failed to set seed; 29 of these genes were also 348 
identified with PCA, having strong selection gradients for their expression. Interestingly, 349 
the distribution of selection differentials and gradients for the expression of these 29 350 
genes was bimodal, with few instances of weak (near-zero) selection. In other words, 351 
the machine learning classifier identified genes whose expression was important for 352 
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successfully setting seed and these genes showed the strongest patterns of phenotypic 353 
selection.  354 
 355 
Regularized regression  356 
 357 
Many evolutionary biologists (including ourselves!) find aspects of machine learning to 358 
be a bit of a black box: its hard to fully visualize the functions and models being fit by 359 
the algorithms. This is especially in the case of neural networks where the output of one 360 
function is used as the input for another, in a series of layers. Fortunately, there’s a set 361 
of statistical techniques closely related to machine learning– and indeed used by some 362 
machine learning algorithms– that is similar to the typical statistical toolkits of practicing 363 
evolutionary biologists. While to our knowledge regularized regression has not been 364 
used to estimate selection on gene expression, several features suggest that it could be 365 
useful. 366 
 367 
Regularized regression is an analytical tool for fitting regressions with many predictors, 368 
varying degrees of multicollinearity between the predictors, and limited data (Morrisey 369 
2014; Sztepanacz and Houle 2024). In contrast to ordinary least squares (OLS) 370 
univariate or multivariate regressions which estimate parameters by minimizing the sum 371 
of squared errors, regularized regressions minimize functions which include a penalty 372 
(Morrisey 2014; Sztepanacz and Houle 2024). As a result, individual parameter 373 
estimates are shrunk towards zero (i.e., regularized), which also reduces their variance. 374 
Parameter estimates obtained from regularized regression are biased compared to 375 
least-squares estimates, but the overall model predictive accuracy can be improved in 376 
the presence of a bias-variance trade-off. For these reasons, regularized regression 377 
approaches are likely to be of use in the case of multicollinearity (Chong et al. 2018; 378 
Sztepanacz and Houle 2024).  379 
 380 
Sztepanacz and Houle (2024) performed a simulation study that illustrates the potential 381 
utility of regularized regression for measuring selection on multiple, potentially highly 382 
correlated traits. While their focus was not on gene expression, the lessons apply 383 
broadly. They showed that with limited data, and multicollinearity between predictors (as 384 
might be expected with the expression of thousands of genes as traits), regularized 385 
estimates provided more accurate estimates of the total strength of selection and the 386 
overall multivariate direction of selection. The frequentist implementation of regularized 387 
regression, however, does not yield traditional measures of uncertainty like standard 388 
errors and statistical significance for the individual predictors (Morrissey 2014; 389 
Sztepanacz and Houle 2024). While this is a potential limitation for future meta-analyses 390 
which require estimates of uncertainty for parameters, it is important to note that the 391 
importance of a gene’s expression in predicting relative fitness can be judged from the 392 
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magnitude of the estimated parameters, especially because regularized regression 393 
approaches require the predictor data to be scaled to x̄ = 0 and σ =1. In this manner, 394 
genes whose expression leads to large estimated coefficients are worthy of further 395 
investigation and follow up. To our knowledge, no one has yet used regularized 396 
regression to estimate natural selection on transcriptomes.  397 
 398 
Measuring Selection Gradients at the Genotypic scale 399 
 400 
In evolutionary quantitative genetics, it is common to distinguish phenotypic selection 401 
from response to selection. The former is the relationship between the multivariate 402 
phenotype and fitness while the latter is determined by the mapping from genotype to 403 
phenotype and requires an additional generation to measure. Separating selection from 404 
response enables an operational division of labor. Field studies without a genetic 405 
component can characterize selection, usually employing the Lande-Arnold regression 406 
framework. Given phenotypic selection estimates, an evolutionary response can be 407 
predicted using estimates of additive genetic variances and covariances from genetic 408 
experiments. Genetic statistics can be estimated from classical breeding designs or 409 
pedigrees or from genomic genotyping of individuals (Lynch and Walsh 1998).  410 
 411 
The separation of selection from response is certainly convenient, but it is encumbered 412 
with serious assumptions (Morrissey et al. 2010). There are many situations in which it 413 
is advantageous to predict fitness from genetic statistics. One downfall of predicting 414 
fitness directly from phenotypic traits (of any variety) is the possibility that the 415 
relationship may be environmentally induced (Mitchell-Olds and Shaw 1987; Price et al. 416 
1988; Rausher 1992). For plant systems, it is easy to envision that individuals growing 417 
in high resource soils (e.g., high N, P, or K) both have higher fitness and also larger 418 
values of traits requiring N and P– for example, size, branching, or plant defense traits. 419 
In this instance, a naive application of the Lande-Arnold approach would detect 420 
selection on these traits even if size, branching, and plant defense have no effect on 421 
fitness at all. In this scenario, both fitness and the other phenotypic traits are 422 
responding, independently, to soil resource variation, and investigators observe an 423 
environmentally induced relationship rather than a causal one. In regression terms, one 424 
has omitted a ‘trait’ (in this case, soil NPK concentrations) that is correlated with both 425 
the predictors and the response variable, leading to inaccurate parameter estimates. 426 
Importantly, such relationships will not lead to responses to selection and evolutionary 427 
change (Rausher 1992). It is highly likely that gene expression, as a trait, will be 428 
environmentally sensitive to aspects of soils, temperature, weather, abiotic and biotic 429 
conditions, and a multitude of other influences. A priori, this suggests that the potential 430 
for environmental covariances to bias estimates of phenotypic selection on gene 431 
expression is high.  432 
 433 
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Fortunately, Rausher (1992; Figure 1, path (g)) provided a solution to this problem: 434 
estimating selection using either breeding values or estimates of genotypic values for 435 
both phenotypes and fitness. While this approach comes at a cost of sample size and 436 
statistical power (Stinchcombe et al. 2002), covariances estimated with breeding values 437 
between fitness and phenotypes reflect genetic relationships, rather than 438 
environmentally induced ones. The resulting parameter estimates of selection are more 439 
accurate, and reflect relationships that have the potential to produce evolutionary 440 
change (Stinchcombe et al 2002). While formal studies remain rare (but see 441 
Stinchcombe et al. 2002 and Hadfield 2008), existing evidence suggests that many 442 
estimates of phenotypic selection on macroscopic traits are highly biased by 443 
environmental covariances (Stinchcombe et al. 2002; Kruuk 2002; Morrissey et al. 444 
2012; Hajduk et al. 2020). 445 

 446 
Figure 2. Selection gradients for expression module ‘Red’ in M. guttatus were 447 
positive for survival in all three years. The overall effect of Red on survival to 448 
flower (all years included) is significantly positive (F 1,107 = 6.43, p = 0.013), 449 
although only the 2015 regression, where survival was generally low, is 450 
significant when considered in isolation (F1, 38 = 11.07, p < 0.002). 451 
 452 
The breeding value regression approach is as applicable to gene expression as it is to 453 
macro-phenotypes. This is also true for the compression methods discussed in the 454 
previous section (e.g., PCA and WGCNA). They can be applied as readily to breeding 455 
value regressions as to phenotypic regressions. To illustrate, we revisit the gene 456 
expression modules of Brown and Kelly (2022) which were obtained for homozygous 457 
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lines of Mimulus guttatus. Many of these same lines were intercrossed to make F1 458 
plants and then measured for survival and reproductive success in the natural habitat by 459 
Troth et al. (2018). With additive inheritance, the breeding values (a.k.a. additive genetic 460 
values) for the F1 plants are the average of the values obtained from the parental lines 461 
(Lynch and Walsh 1998). Therefore, we can use gene expression estimates obtained in 462 
the greenhouse to predict fitness in nature. Over three successive generations, one 463 
expression module (Red) was a consistent predictor of survival to flower in each of the 464 
three field seasons (Fig 2; note that Fig. 2 is path (c) in Fig. 1). In the greenhouse, 465 
genotypes with high values for ‘Red’ are associated with earlier germination (Brown and 466 
Kelly 2022).  467 
 468 
Unlike phenotypes, which are unique features of individual plants, breeding values are 469 
‘portable’; indeed, this feature is at the heart of their success in agricultural applications. 470 
Breeding values can be carried across experiments whenever genotypes can be 471 
replicated. Portability enables highly powered experiments because gene expression 472 
can be studied on large samples of plants grown under controlled conditions (e.g., the 473 
greenhouse environment). Also, because breeding values of expression are the 474 
predictors of field fitness, we avoid the serious difficulty of environmental factors 475 
inducing spurious correlations between phenotype and fitness. The downside is that 476 
expression levels in the greenhouse could prove to be the “wrong traits.” The same 477 
genes could be expressed in different ways under field conditions than under those 478 
used to obtain breeding values, or different genes could be expressed in response to 479 
different environments. This would be an example of genotype by environment 480 
interaction, where the amount of expression, or which genes are expressed, depends 481 
on the environmental context (greenhouse or field). Of course, this is always a concern 482 
with RNA-seq studies, whether the transcripts sampled from a particular tissue at a 483 
particular life stage are the most relevant determinants of phenotype and/or fitness. 484 
 485 
To date, there has been a great deal more work on the genetic basis of transcriptional 486 
variation than on how this variation affects fitness. Research on the genetics of gene 487 
expression has also been confronting the issue of scale. Above, we discussed PCA and 488 
WGCNA based on the ‘P matrix’, the variances and covariances among plants in the 489 
expression level of each gene (the phenotype). An alternative approach is to partition 490 
the phenotypic variance into genetic and environmental components and then apply the 491 
compression to these underlying components. For example, Blows et al (2015) show 492 
that the genetic component of variation in expression of 8750 genes of Drosophila 493 
serrata could be distilled into the contributions of a much smaller number of underlying 494 
variables using matrix completion methods.  495 
 496 



15 

A distinct but related approach to understanding gene expression evolution is to apply 497 
factor analysis or latent factor modelling. These approaches are common in psychology 498 
and other disciplines but have received less adoption in evolutionary biology (for 499 
exceptions, see McGuigan and Bows 2010; Frichot et al. 2013). In the context of gene 500 
expression, the idea is that the expression of each gene is influenced by a limited 501 
number of underlying ‘factors.’ These factors are not directly observed but can be 502 
modeled and estimated from data. Variation in factors can be partitioned into genetic 503 
and environmental components, and through the mapping from the factors to the 504 
expression levels of genes, one can characterize the variances and covariances for the 505 
entire transcriptome. The problem thus shifts from analyzing the genetic variances and 506 
covariances in the expression of thousands of individual genes to understanding the 507 
variances and covariances of a much more limited set of inferred factors. Two 508 
implementation methods– Bayesian Sparse Factor Analysis (BSFA; Runcie and 509 
Mukherjee 2013; for examples, see Hine et al. 2018, 2022) and MegaLMM (Runcie et 510 
al. 2021)– have been developed that are suited to predicting the high dimensional 511 
structure of genetic variances and covariances of the transcriptome from a more limited 512 
set of variables. These approaches provide a natural means to reduce the 513 
dimensionality of the determination of gene expression levels from genetic and 514 
environmental influences. Correlations between expression levels emerge when 515 
different genes share a common factor. 516 
 517 
Factor analysis could be applied to estimate selection on the transcriptome in either of 518 
two distinct ways. The first would be to apply BSFA or MegaLMM strictly to the 519 
partitioning of transcriptome variation into genetic and environmental components, 520 
without including fitness variables in the model. Given estimated breeding values for 521 
factors, one could predict field fitness in a way analogous to the Mimulus example of Fig 522 
2 (except using factors instead of module PC scores). This approach addresses the 523 
scale issue because factors are uncorrelated with each other. Moreover, given the 524 
mapping from factors to expression levels, one can extrapolate from selection gradients 525 
on factors to gradients on individual genes. The second way would be to apply factor 526 
analysis to transcriptomes and fitness measurements simultaneously. This is essentially 527 
adding fitness measures to the list of phenotypes (transcript levels). One then estimates 528 
genetic and environmental covariances among the expression levels of genes 529 
simultaneously with their covariances with fitness. Estimated factors with strong 530 
contributions from fitness would be identified as under selection. Genes whose 531 
expression loaded heavily on those factors are thus under selection. 532 
 533 
The simultaneous approach has the advantage that the sparse factor model directly 534 
estimates the genetic covariance between fitness and gene expression. This is the 535 
predicted change in the mean expression level into the next generation (Robertson 536 
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1966, Price 1970, 1972). The two-part method is more consistent with the traditional 537 
quantitative genetic approach based on regression where we distinguish traits as 538 
independent variables (predictors) and fitness components as dependent variables. 539 
Oftentimes, the joint distribution for traits can be treated with a multivariate normal 540 
distribution. However, fitness components are usually non-normal (e.g. binary for 541 
survivorship, negative binomial for fecundity, etc). It may be easier to accommodate the 542 
differing distributions for transcript variation and fitness components in a regression 543 
framework. A second reason to separate fitness from characterization of transcriptome 544 
variation is that we often expect the relationship between trait values and fitness to be 545 
non-linear due to stabilizing, disruptive, or correlational selection. Regardless of whether 546 
investigators use the simultaneous or two-part approach, we again note that doing so 547 
with genetic estimates or breeding values is likely to be superior to purely phenotypic 548 
analyses because of the problem of environmentally induced covariances (Rausher 549 
1992). 550 
 551 
Conclusions 552 
 553 
Several common themes emerged from our overview of techniques for characterizing 554 
selection on the transcriptome even though many techniques are still in areas of active 555 
development. First, at their heart, most of the approaches we have discussed approach 556 
the N-p problem through some form of compression and reduction in the number of 557 
parameters that have to be estimated. As long as the sample sizes for the number of 558 
genes for which expression is measured with sequencing technologies exceed the 559 
number of individuals in experiments, some form of data reduction or compression will 560 
remain a requirement. 561 
 562 
Second, we perceive distinct analysis paths which investigators can take, based on the 563 
data in hand and the tractability of the system. For species in which it is possible to 564 
perform breeding designs, create known and replicated genotypes, and/or generate 565 
inbred lines, analyses based on breeding values should be pursued. In these systems, 566 
gene expression can be measured in the greenhouse or growth chamber and fitness 567 
estimates obtained from the same genotypes (or relatives with predictable breeding 568 
values). In the case of inbred lines, successive estimates of transcriptomes, 569 
performance, and fitness could be obtained from immortalized genotypes that are 570 
exposed to a variety of growth conditions. In contrast, for species or systems where it is 571 
difficult to obtain immortalized genotypes– or where cost constraints preclude 572 
characterizing the transcriptomes of many genotypes– estimates of selection on the 573 
transcriptome are more akin to the field studies of selection on macro traits that followed 574 
the Lande and Arnold (1983) paper. The rich picture of how natural selection acts on 575 
morphological, behavioral, and life-history phenotypes is from a set of studies similar in 576 
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design to a single-instance measurement of selection on the transcriptome (Henry and 577 
Stinchcombe 2025). We have drastically fewer estimates of selection on transcriptomes 578 
to characterize its strength, mode, and spatial or temporal consistency, perhaps 579 
because the approach and technology are in early development. More than 40 years 580 
ago, Arnold (1983) coined the expression “morphology, performance, fitness” in a 581 
landmark paper describing how to understand variation in, and selection on, 582 
morphology. We suggest that an important area of research in the next 40 years of 583 
evolutionary biology will be to explore the mapping from gene expression to phenotype 584 
to fitness. 585 
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