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Summary 32 
 33 
The level and pattern of gene expression is increasingly recognized as a principal 34 
determinant of plant phenotypes and thus of fitness. The estimation of natural selection 35 
on the transcriptome is an emerging research discipline. We here review recent 36 
progress and consider the challenges posed by the high dimensionality of the 37 
transcriptome for the multiple regression methods routinely used to characterize 38 
selection in field experiments. We consider several different methods, including 39 
classical multivariate statistical approaches, regularized regression, latent factor 40 
models, and machine learning, that address the fact that the number of traits potentially 41 
affecting fitness (each expressed gene) can greatly exceed the number of plants that 42 
researchers can reasonably monitor in a field study. While such studies are currently 43 
few in number, extant data is sufficient to illustrate several of these approaches. With 44 
additional methodological development coupled with applications to a broader range of 45 
species, we believe prospects are favorable for directly characterizing selection on gene 46 
expression within natural plant populations.   47 
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Introduction 48 
 49 
One of the fundamental goals of evolutionary biology is to understand how natural 50 
selection acts on phenotypes. Understanding the form, strength, and direction of 51 
selection is crucial to making predictions about the evolutionary trajectory of traits, 52 
understanding adaptation, and quantitatively testing alternative hypotheses about the 53 
extent to which organismal features evolve by adaptive or non-adaptive mechanisms. 54 
For this reason, evolutionary biologists have devoted considerable effort to measuring 55 
natural selection in field, experimental, and common garden environments (Kingsolver 56 
et al. 2001, 2012; Siepielski et al. 2013). While the rapid progress in molecular biology 57 
and genomics continually offers the promise of characterizing the genetic basis of 58 
complex traits (Hill 2010), there is a growing realization that these techniques and 59 
approaches yield a suite of molecular phenotypes that are themselves amenable to 60 
evolutionary (and genetic) analysis. Here we outline the prospects and challenges for 61 
characterizing natural selection on one particularly relevant– and increasingly 62 
attainable– set of molecular phenotypes, gene expression.  63 
 64 
Several lines of evidence suggest that gene expression is an important determinant of 65 
organismal fitness, and thus likely to experience selection. Early experimental results, 66 
from mutation accumulation experiments in which the strength of selection has been 67 
minimized or reduced, suggested that stabilizing selection was acting on gene 68 
expression (Rifkin et al. 2005, Gilad et al. 2006). Likewise, observations from the 69 
microarray-era indicated that populations experiencing different environmental 70 
conditions can diverge in gene expression, even in the face of substantial gene flow 71 
(Oleksiak et al. 2002), potentially indicating the past action of selection. More recent 72 
studies have demonstrated changes in gene expression in response to severe weather 73 
events like cold snaps (Campbell-Staton et al. 2017), between ancestors and surviving 74 
descendants of droughts (Hamann et al. 2021), and in response 3-4 generations of 75 
experimental evolution in the field under new ecological conditions (Ghalambor et al. 76 
2015). Collectively, these and other studies reveal that gene expression can and does 77 
evolve on a wide array of time-scales, including in the laboratory (Rifkin et al. 2005), 78 
between adjacent populations of the same species (Oleksiak et al. 2002), in response to 79 
severe weather events (Campbell-Staton et al. 2017; Hamann et al. 2021), and in 80 
ecologically realistic, complex communities within a handful of generations (Ghalambor 81 
et al. 2015, 2018). 82 
 83 
Despite prominent examples of gene expression evolution on microevolutionary 84 
timescales, as well as theorizing on its relevance on macroevolutionary time scales 85 
(e.g., King and Wilson 1975), we have few direct estimates of natural selection on gene 86 
expression. In contemporary populations, is gene expression subject to stabilizing 87 
selection as first predicted, or is it frequently subject to directional selection as might be 88 
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deduced from these studies of evolutionary divergence on short time scales? How does 89 
the strength of selection on gene expression compare to that on ‘macroscopic’ traits 90 
such as life history, morphology, or behavior? Are the levels of transcription among 91 
multiple genes in the transcriptome sufficiently correlated as to require distinguishing 92 
between direct and indirect selection? Is there a relationship between the level of 93 
expression and the strength of phenotypic selection, analogous to the relationship 94 
between the level of expression and rates of molecular evolution (Wright et al. 2004, 95 
Slotte et al. 2011)? These and a host of other questions require extending the Lande-96 
Arnold revolution (Lande and Arnold 1983; Svensson 2023) from traditional 97 
macroscopic phenotypes to include gene expression. 98 
 99 
Transcriptomes as Quantitative Traits 100 
 101 
Progress on these questions starts with the recognition that gene expression is itself a 102 
quantitative trait. The expression levels of genes across the genome are quantitative 103 
traits with strong environmental influences combined with multi-locus genetic effects 104 
(Liu et al. 2019). In fact, given that modern RNA-seq experiments often obtain 105 
expression estimates for many genes simultaneously (N in the 1,000s), the 106 
transcriptome is really a collection of vectors (or a matrix), as expression levels of a 107 
gene change with tissue, lifestage, and the expression of other genes. Considering the 108 
transcriptome as a set of correlated characters with a quantitative genetic perspective 109 
offers several insights. First, the transcriptome is hugely multivariate and thus offers 110 
investigators a chance to measure a large number of phenotypes simultaneously. In 111 
addition, by characterizing the phenotype in the broad sense, the traits measured are 112 
less prone to bias about the types of traits that might be important or under strong 113 
selection (e.g., size versus floral traits, those involved in mating versus anti-herbivore 114 
defense), although important choices must still be made about the time and tissue 115 
sampled. Perhaps most importantly, there is a well-developed machinery to analyze 116 
selection on correlated quantitative traits (Lande & Arnold, 1983; Rausher, 1992). 117 
However, the application of quantitative genetics to the transcriptome must confront the 118 
serious challenge of scale. 119 
 120 
Most studies of phenotypic selection utilize a regression framework. In the simplest 121 
implementation of this approach, an estimate of relative fitness (e.g., individual seed set 122 
divided by mean seed set for the population) is regressed on a single phenotype in a 123 
univariate regression. In the context of gene expression, this would involve regressing 124 
an estimate of relative fitness on the expression of an individual gene, for all the 125 
individuals in the experimental population or sample. If expression has been 126 
standardized (i.e., x̄ = 0 and σ =1), the resulting parameter estimate is the standardized 127 
selection differential for the expression of that gene; positive values would indicate that 128 
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greater expression of the gene was associated with increased relative fitness. Groen et 129 
al. (2020) applied this approach to populations of rice growing under field and drought 130 
environments. They found that selection differentials for gene expression were generally 131 
weak, but stronger under drought than well-watered conditions.  132 
 133 
The scale of the transcriptome introduces two key problems with the univariate 134 
approach. First, RNA-seq experiments estimate the expression of thousands of genes 135 
at a time. Simply repeating a univariate analysis for all the genes for which one has data 136 
introduces severe multiple testing problems: A large number of genes associated with 137 
relative fitness will undoubtedly be false positives. Addressing the number of tests thus 138 
requires multiple testing or false discovery rate corrections. Second, selection 139 
differentials measure total selection on a phenotype, which is the sum of direct selection 140 
on the trait and indirect selection through correlated traits (Lande and Arnold 1983). 141 
Because the expression of any individual gene is likely to be correlated with the 142 
expression of other genes (and other traits), a selection differential alone cannot tell 143 
whether it is the expression of a focal gene that is directly important for relative fitness, 144 
or whether the expression of that gene is simply correlated with other traits that are 145 
under selection.  146 
 147 
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 148 
Figure 1. A schematic depicting the mapping from genotype to fitness. From left to 149 
right. We present a hypothetical case of two genotypes (G1 and G2) and two 150 
environments (E1 and E2) to illustrate how genetic variation and environmental variation 151 
affect transcriptomes, phenotypes, and fitness. In the middle column, we highlight that 152 
genetic and environmental variation may lead to differences in expression in some 153 
tissues and stages (measured tissue/stage) but not others (in this case, an unmeasured 154 
tissue/stage). Expression and environmental variation, in turn, both affect macroscopic 155 
phenotypes (z1, z2, z3). In this case, we highlight that while z1 and z2 have been 156 
measured, it is likely that unmeasured phenotypes (z3) are affected by expression and 157 
also affect fitness. In the arrows leading to fitness, we note that expression can affect 158 
fitness directly (dotted arrow) and via phenotypes (z1 and z2). Bars across the bottom 159 
are labeled with common analytical approaches to understanding expression, the 160 
genetic basis of traits, and selection. Key paths: (a) Groen et al. (2020), (b) 161 
Stinchcombe and Henry (2025), (c) Figure 2, this paper, (d) Brown and Kelly (2022), (e) 162 
Josephs et al. (2015, 2020), (f) Lande and Arnold (1983), (g) Rausher (1992). 163 
 164 
 165 
The standard approach for measuring selection on (potentially) correlated traits involves 166 
multiple regression (Lande and Arnold 1983; Figure 1 path (f)). In this context, a 167 
regression of relative fitness on the expression of all the genes in the transcriptome 168 
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would yield selection gradients for gene expression. These gradients measure the direct 169 
effect of expression on relative fitness, accounting for the effects of the other traits (i.e., 170 
expression of other genes) included in the model. While promising in the abstract, with 171 
real data and sample sizes, such a model quickly runs into the N-p problem: there are 172 
far more parameters to estimate (p) than there are total samples (N) in even the most 173 
heroic of experiments. Consequently, one of the primary advantages of the Lande-174 
Arnold (1983) approach–its ability to distinguish direct and indirect selection on 175 
correlated traits–is lost. In the remaining sections, we outline a handful of promising 176 
statistical and experimental approaches that can be used to address the N - p problem 177 
of measuring selection gradients for transcriptomes. 178 
 179 
Selection Gradients for the Transcriptome: Statistical Approaches 180 
 181 
There are several statistical approaches for measuring selection gradients for gene 182 
expression, and here we comment on some variants that appear to be emerging in the 183 
literature. Our expectation is that there will be continued work in this area, and that 184 
future developments are likely. At their core, these methods share one fundamental 185 
feature: dimensionality reduction, the compression of the data so as to estimate fewer 186 
parameters than the sample size. To use a hypothetical example, if an investigator has 187 
estimates of fitness for 500 individuals, and estimates of expression for >500 genes in 188 
those same 500 individuals, the goal of these approaches is to reduce the problem to 189 
estimating selection from far fewer than 500 parameters (so that N is greater than p). 190 
 191 
PCA and Gene Coexpression Modules 192 
 193 
The most straightforward approach is likely familiar to many users of selection gradient 194 
analysis– principal component analysis (PCA). Because PCA is a widely used 195 
technique and familiar to many biologists, we do not consider the mathematical or 196 
technical details of its implementation; Jolliffe (2002) provides an extensive coverage. In 197 
short, after a PCA, an investigator obtains independent axes capturing variation in the 198 
original traits. In many cases, far fewer axes (PCs) are required to describe the data 199 
than there were original traits. In the context of gene expression, these PC axes can be 200 
used as independent variables to predict relative fitness. An important point is that 201 
fewer– ideally far fewer– PC axes have to be used than there were original traits, 202 
otherwise nothing is gained. Groen et al. (2020; Figure 1, path (a)) used this approach 203 
with PC axes, and were able to detect significant selection on several PC axes. They 204 
used these findings to detect selection on the expression of genes related to 205 
photosynthesis and growth.  206 
 207 
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One downside of this approach is that a PC axis reflects– simultaneously– all the 208 
individual traits included in the study. A PC score is a weighted average of the 209 
expression of all measured genes with the magnitude and direction of the weights 210 
differing among principal components. This can make PC scores difficult to interpret. 211 
Chong et al. (2018) illustrate a method to ‘back-transform’ selection estimates for PC 212 
scores into selection estimates on the original traits. They argued these are much easier 213 
to interpret and suggested the technique would be useful for studies of selection on 214 
gene expression, metabolomics, and other high dimensional traits. In brief, one 215 
performs some matrix algebra computations involving selection estimates for PC scores 216 
and the eigenvectors of the original PCA. This rotation yields an estimate of a selection 217 
gradient on individual gene expression traits, accounting for the patterns of correlation 218 
among the traits, but only within the portion of multivariate space described by the PC 219 
axes included (Chong et al. 2018). Similar calculations can be performed to estimate 220 
standard errors for these reconstituted estimates of selection gradients for gene 221 
expression.  222 
 223 
Henry and Stinchcombe (2025, Figure 1, path (b)) also used PCA to understand 224 
selection on gene expression. Like Groen et al. (2020), they regressed relative fitness 225 
on PC axes of gene expression. However, rather than using the PC axes as objects of 226 
study in themselves, they used the methods described by Chong et al. (2018) to back-227 
transform selection on PC scores into selection gradient estimates for individual genes. 228 
In their study of Ipomoea hederacea (Ivyleaf morning glory), they had estimates of 229 
relative fitness for 96 individuals, and estimates of gene expression for 2,753 genes 230 
throughout the genome. The best model used 61 PCs to describe patterns of variation 231 
in gene expression, which collectively explained 55% of variation in relative fitness. 232 
Turning these back into selection gradients for the expression of individual genes 233 
suggest several important, if tentative, findings about selection on gene expression. 234 
First, they found a very strong positive relationship between selection differentials and 235 
selection gradients for gene expression, suggesting that overall in their study much of 236 
the selection on gene expression was direct, rather than indirect due to the expression 237 
of other genes. Second, they found a wide distribution of selection gradients for 238 
expression, approximately symmetrical around zero: some genes were under selection 239 
for increased expression, and a similar number for decreased expression. Finally, they 240 
observed that selection gradients for gene expression were substantially smaller than 241 
their past findings of selection on size and life history traits in the same population 242 
(Henry and Stinchcombe 2023). 243 
 244 
An alternative approach to dimensionality reduction is to first identify gene co-245 
expression modules using programs like WGCNA (Langfelder and Horvath 2008). 246 
These modules are constructed by identifying sets of genes whose expression is more 247 
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tightly correlated with other genes in the module than genes in other modules. The 248 
expression of the genes within a module can be summarized with PCA– so-called 249 
eigen-genes– and the PC1 score for the first eigenvector of a module can be estimated 250 
for each individual in a data set. These PC scores represent a weighted sum of gene 251 
expression of the genes within the module. As before, PC scores for a module’s 252 
expression– which might summarize the expression of dozens to hundreds of genes– 253 
can be used as ‘traits’ in Lande-Arnold style analyses.  254 
 255 
Several investigators have applied this approach, relating gene coexpression module 256 
PC scores to aspects of plant performance, size, or life history traits that are likely to be 257 
under strong selection (e.g., Palakurty et al. 2018, Josephs et al. 2020, Brown and Kelly 258 
2022). For example, Brown and Kelly (2022; Figure 1 path (d)) found that PC1 scores 259 
from twenty gene coexpression modules could explain 47% of variation in flower size in 260 
Mimulus guttatus. They used permutation testing to verify that these modules indeed 261 
significantly predicted flower size, and that the observed co-expression modules 262 
performed significantly better than random groupings of genes of the same size. In 263 
other words, the coexpression modules contain biological signal in predicting traits (in 264 
this case, flower size) beyond a random grouping of genes in the transcriptome. Flower 265 
size is not itself a fitness component, but is under strong selection in Mimulus guttatus 266 
(Mojica and Kelly 2010), suggesting that transcriptomic variation affecting flower size 267 
can also potentially affect fitness. Interestingly, while several studies have related eigen-268 
gene expression from coexpression modules to performance and fitness traits, to our 269 
knowledge none have used the PC rotations of Chong et al. (2018) to estimate selection 270 
gradients for expression of the individual genes within the module.  271 
 272 
The use of gene co-expression modules entails a few benefits and drawbacks that are 273 
worth considering. Co-expression modules have the benefit that individual genes 274 
appear in one and only one module. As a consequence, the interpretation of the 275 
expression of the entire module is more straightforward than the output of a PCA, where 276 
the expression of each gene will load onto all the PC axes. Discrete, non-overlapping 277 
modules, in our view, might offer greater biological interpretation of the types of genes 278 
(or GO categories) that are associated with any given module. One drawback of 279 
coexpression modules, or PC scores summarizing the expression levels of genes within 280 
a module (eigen-gene expression), is that the scores summarizing multiple modules are 281 
not guaranteed to be uncorrelated across a sample, in contrast to a PCA using all of the 282 
data. As a consequence, understanding selection on multiple modules simultaneously 283 
requires a multiple regression and the estimation of selection gradients. 284 
 285 
Machine Learning 286 
 287 
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There is great enthusiasm for machine learning approaches in evolutionary biology 288 
(Schrider and Kern 2018). While this field is moving quickly and a full review is beyond 289 
our scope here (see Schrider and Kern 2018 for an entry point), there are several 290 
features of these algorithms that suggest promise in the context of measuring selection 291 
on gene expression. Machine learning approaches often focus on overall prediction 292 
rather than individual parameter estimation. In this context, it would be to predict relative 293 
fitness from expression of the set of genes for which investigators have expression, 294 
rather than hypothesis testing about the individual contribution of any one gene’s 295 
expression. Several features of the mechanics of how the algorithms work aid this. First, 296 
data are often split into “training” and “testing” sets, which can prevent overfitting and 297 
noise being fit to the model, and allow an evaluation of the overall performance of the 298 
model. Second, many of the approaches identify features (gene expression in this case) 299 
in a way that reduces the overall number of parameters that are estimated, which is a 300 
start towards addressing the issue of the scale of the transcriptome. Third, in many 301 
cases the output of a machine learning algorithm is a measure of importance, rather 302 
than a parameter estimate like a selection differential or gradient– for example, the 303 
expression of these genes are important in determining whether an individual survives 304 
or dies before reproduction. 305 
 306 
Assuming that as an evolutionary biologist one has managed to implement one of the 307 
many machine learning algorithms available, and obtained a list of genes (features) 308 
whose expression is related to a fitness component, how does one make that 309 
information compatible and conversant with traditional measures of selection like 310 
differentials or gradients? One potential way forward is to use this reduced set of 311 
genes– that having survived cross-validation, evaluation in the testing data set, and 312 
acceptable performance metrics– appear to have expression that predicts relative 313 
fitness to estimate selection differentials and gradients the traditional way. In other 314 
words, one can use machine learning algorithms to identify an important subset of 315 
genes to focus on, and then traditional selection analysis to estimate selection 316 
differentials and gradients. 317 
 318 
In Henry and Stinchcombe’s (2025) study, they used machine learning classification 319 
algorithms to determine which genes’ expression were important for determining 320 
whether an individual set seed versus failed to set seed. After model fitting, they 321 
identified 278 genes whose expression was identified as important for determining 322 
whether an individual set seed or failed to set seed; 29 of these genes were also 323 
identified with PCA, having strong selection gradients for their expression. Interestingly, 324 
the distribution of selection differentials and gradients for the expression of these 29 325 
genes was bimodal, with few instances of weak (near-zero) selection. In other words, 326 
the machine learning classifier identified genes whose expression was important for 327 
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successfully setting seed and these genes showed the strongest patterns of phenotypic 328 
selection.  329 
 330 
Regularized regression  331 
 332 
Many evolutionary biologists (including ourselves!) find aspects of machine learning to 333 
be a bit of a black box: its hard to fully visualize the functions and models being fit by 334 
the algorithms. This is especially in the case of neural networks where the output of one 335 
function is used as the input for another, in a series of layers. Fortunately, there’s a set 336 
of statistical techniques closely related to machine learning– and indeed used by some 337 
machine learning algorithms– that is closer to the typical statistical toolkits of practicing 338 
evolutionary biologists While to our knowledge regularized regression has not been 339 
used to estimate selection on gene expression, several features suggest that it could be 340 
useful. 341 
 342 
Regularized regression is a useful analytical tool for fitting regressions with many 343 
predictors, varying degrees of multicollinearity between the predictors, and limited data 344 
(Morrisey 2014; Sztepanacz and Houle 2024). In contrast to ordinary least squares 345 
(OLS) univariate or multivariate regressions which estimate parameters by minimizing 346 
the sum of squared errors, regularized regressions minimize functions which include a 347 
penalty (Morrisey 2014; Sztepanacz and Houle 2024). A consequence of this is that 348 
individual parameter estimates are shrunk towards zero (i.e., regularized), which also 349 
reduces their variance. Parameter estimates obtained from regularized regression are 350 
thus biased compared to least-squares estimates, but the overall model predictive 351 
accuracy can be improved, in the presence of a bias-variance trade-off. For these 352 
reasons, regularized regression approaches are likely to be of use in the case of 353 
multicollinearity (Chong et al. 2018; Sztepanacz and Houle 2024).  354 
 355 
Sztepanacz and Houle (2024) performed a simulation study that illustrates the potential 356 
utility of regularized regression for measuring selection on multiple, potentially highly 357 
correlated traits. While their focus was not on gene expression, the lessons likely apply. 358 
They showed that in the face of limited data, and multicollinearity between predictors 359 
(as might be expected with the expression of thousands of genes as traits), regularized 360 
estimates provided more accurate estimates of the total strength of selection and the 361 
overall multivariate direction of selection. The frequentist implementation of regularized 362 
regression, however, does not yield traditional measures of uncertainty like standard 363 
errors and statistical significance for the individual predictors (Morrissey 2014; 364 
Sztepanacz and Houle 2024). While this is a potential limitation for future meta-analyses 365 
which require estimates of uncertainty for parameters, it is important to note that the 366 
importance of a gene’s expression in predicting relative fitness can be judged from the 367 
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magnitude of the estimated parameters, especially because regularized regression 368 
approaches require the predictor data to be scaled to x̄ = 0 and σ =1. In this manner, 369 
gene’s whose expression leads to large estimated coefficients are worthy of further 370 
investigation and follow up. To our knowledge, no one has used regularized regression 371 
to estimate natural selection on gene expression and transcriptomes.  372 
 373 
Measuring Selection Gradients at the Genotypic scale 374 
 375 
In evolutionary quantitative genetics, it is common to distinguish phenotypic selection 376 
from response to selection. The former is the relationship between the multivariate 377 
phenotype and fitness while the latter is determined by the mapping from genotype to 378 
phenotype and requires an additional generation to measure. Separating selection from 379 
response enables an operational division of labor. Field studies without a genetic 380 
component can characterize selection, usually employing the Lande-Arnold regression 381 
framework. Given phenotypic selection estimates, an evolutionary response can be 382 
predicted using estimates of additive genetic variances and covariances from genetic 383 
experiments. Genetic statistics can be estimated from classical breeding designs or 384 
pedigrees or from genomic genotyping of individuals (Lynch and Walsh 1998).  385 
 386 
The separation of selection from response is certainly convenient, but it is encumbered 387 
with serious assumptions (Morrissey et al. 2010). There are many situations in which it 388 
is advantageous to predict fitness from genetic statistics. One downfall of predicting 389 
fitness directly from phenotypic traits (of any variety) is the possibility that the 390 
relationship may be environmentally induced (Mitchell-Olds and Shaw 1987; Price et al. 391 
1988; Rausher 1992). For plant systems, it is easy to envision that individuals growing 392 
in high resource soils (e.g., high N, P, or K) both have higher fitness and also larger 393 
values of traits requiring N and P– for example, size, branching, or plant defense traits. 394 
In this instance, a naive application of the Lande-Arnold approach would detect 395 
selection on these traits even if size, branching, and plant defense have no effect on 396 
fitness at all. In this scenario, both fitness and the other phenotypic traits are 397 
responding, independently, to soil resource variation, and investigators observe an 398 
environmentally induced relationship rather than a causal one. In regression terms, one 399 
has omitted a ‘trait’ (in this case, soil NPK concentrations) that is correlated with both 400 
the predictors and the response variable, leading to inaccurate parameter estimates. 401 
Importantly, such relationships will not lead to responses to selection and evolutionary 402 
change (Rausher 1992). It is highly likely that gene expression, as a trait, will be 403 
environmentally sensitive to aspects of soils, temperature, weather, abiotic and biotic 404 
conditions, and a multitude of other influences. A priori, this suggests that the potential 405 
for environmental covariances to bias estimates of phenotypic selection on gene 406 
expression is high.  407 
 408 
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Fortunately, Rausher (1992; Figure 1, path (g)) provided a solution to this problem: 409 
estimating selection using either breeding values or estimates of genotypic values for 410 
both phenotypes and fitness. While this approach comes at a cost of sample size and 411 
statistical power (Stinchcombe et al. 2002), covariances between fitness and 412 
phenotypes estimated with breeding values reflect genetic relationships, rather than 413 
environmentally induced ones. As a consequence, not only are parameter estimates of 414 
selection more accurate, but they also reflect relationships that have the potential to 415 
produce evolutionary change (Stinchcombe et al 2002). While formal studies remain 416 
rare (but see Stinchcombe et al. 2002 and Hadfield 2008), existing evidence suggests 417 
that many estimates of phenotypic selection on macroscopic traits are highly biased by 418 
environmental covariances (Stinchcombe et al. 2002; Kruuk 2002; Morrissey et al. 419 
2012; Hajduk et al. 2020). 420 

 421 
Figure 2. Selection gradients for expression module ‘Red’ are positive for survival 422 
in all three years. The overall effect of Red on survival to flower (all years 423 
included) is significantly positive (F 1,107 = 6.43, p = 0.013), although only the 2015 424 
regression, where survival was generally low, is significant when considered in 425 
isolation (F1, 38 = 11.07, p < 0.002). 426 
 427 
The breeding value regression approach is as applicable to gene expression as it is to 428 
macro-phenotypes. This is also true for the compression methods discussed in the 429 
previous section (e.g. PCA and WGCNA). They can be applied as readily to breeding 430 
value regressions as to phenotypic regressions. To illustrate, we revisit the gene 431 
expression modules of Brown and Kelly (2022) which were obtained for homozygous 432 
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lines of Mimulus. Many of these same lines were intercrossed to make F1 plants and 433 
then measured for survival and reproductive success in the natural habitat by Troth et 434 
al. (2018). The breeding values (a.k.a. additive genetic values) for the F1 plants are the 435 
average of the values obtained from the parental lines – this is how breeding values 436 
work (Lynch and Walsh 1998). As a consequence, we can use gene expression 437 
estimates obtained in the greenhouse to predict fitness in nature. Over three successive 438 
generations, one expression module (Red) was a consistent predictor of survival to 439 
flower in each of the three field seasons (Fig 2; note that Fig. 2 is path (c) in Fig. 1). In 440 
the greenhouse, genotypes with high values for ‘Red’ are associated with earlier 441 
germination (Brown and Kelly 2022).  442 
 443 
Unlike phenotypes, which are unique features of individual plants, breeding values are 444 
‘portable’; indeed, this is one of their features at the heart of their success in agricultural 445 
applications. They can be carried across experiments whenever genotypes can be 446 
replicated. Portability enables highly powered experiments because gene expression 447 
can be studied on large samples of plants grown under controlled conditions (e.g., the 448 
greenhouse environment). Also, because breeding values of expression are the 449 
predictors of field fitness, we avoid the serious difficulty of environmental factors 450 
inducing spurious correlations between phenotype and fitness. The downside is that 451 
expression levels in the greenhouse could prove to be the “wrong traits.” The same 452 
genes could be expressed in different ways under field conditions than under those 453 
used to obtain breeding values, or different genes could be expressed in response to 454 
different environments. This would be an example of genotype by environment 455 
interaction, where the amount of expression, or which genes are expressed, depends 456 
on the environmental context (greenhouse or field). Of course, this is alway a concern 457 
with RNAseq studies, whether the transcripts sampled from a particular tissue at a 458 
particular life stage are the most relevant determinants of phenotype and/or fitness. 459 
 460 
To date, there has been a great deal more work on the genetic basis of transcriptional 461 
variation than on how this variation affects fitness. Research on the genetics of gene 462 
expression has also been confronting the issue of scale. Above, we discussed PCA and 463 
WGCNA based on the ‘P matrix’, the variances and covariances among plants in the 464 
expression level of each gene (the phenotype). An alternative approach is to partition 465 
the phenotypic variance into genetic and environmental components and then apply the 466 
compression to these underlying components. For example, Blows et al (2015) show 467 
that the genetic component of variation in expression of 8750 genes of Drosophila 468 
serrata could be distilled into the contributions of a much smaller number of underlying 469 
variables using matrix completion methods.  470 
 471 
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A qualitatively different approach to understanding gene expression evolution is to apply 472 
factor analysis or latent factor modelling. While these approaches are more common in 473 
psychology and other disciplines, they have received less adoption in evolutionary 474 
biology (for exceptions, see McGuigan and Bows 2010; Frichot et al. 2013). In the 475 
context of gene expression, the idea is that the expression of each gene is influenced 476 
by a limited number of underlying ‘factors.’ These factors are not directly observed but 477 
can be modeled and estimated from data. Variation in factors can be partitioned into 478 
genetic and environmental components, and through the mapping from the factors to 479 
the expression levels of genes, one can characterize the variances and covariances for 480 
the entire transcriptome. The problem thus shifts from analyzing the genetic variances 481 
and covariances in the expression of thousands of individual genes to understanding 482 
the variances and covariances of a much more limited set of inferred factors. Two 483 
implementation methods– Bayesian Sparse Factor Analysis (BSFA; Runcie and 484 
Mukherjee 2013) and MegaLMM (Runcie et al. 2021)– have been developed that are 485 
suited to predicting the high dimensional structure of genetic variances and covariances 486 
of the transcriptome from a more limited set of variables. These approaches provide a 487 
natural means to reduce the dimensionality of the determination of gene expression 488 
levels from genetic and environmental influences. Correlations between expression 489 
levels emerge when different genes share a common factor. 490 
 491 
Factor analysis could be applied to estimate selection on the transcriptome in either of 492 
two distinct ways. The first would be to apply BSFA or MegaLMM strictly to the 493 
partitioning of transcriptome variation into genetic and environmental components, 494 
without including fitness variables in the model. Given estimated breeding values for 495 
factors, one could predict field fitness in a way analogous to the Mimulus example of Fig 496 
2 (except using factors instead of module eigenvalues). This approach addresses the 497 
scale issue because factors are uncorrelated with each other. Moreover, given the 498 
mapping from factors to expression levels, one can extrapolate from selection gradients 499 
on factors to gradients on individual genes. The second way would be to apply factor 500 
analysis to transcriptomes and fitness measurements simultaneously. This is essentially 501 
adding fitness measures to the list of phenotypes (transcript levels). One then estimates 502 
genetic and environmental covariances among the expression levels of genes 503 
simultaneously with their covariances with fitness. Estimated factors with strong 504 
contributions from fitness would be identified as under selection. Genes whose 505 
expression loaded heavily on those factors are thus under selection. 506 
 507 
The simultaneous approach has the advantage that the sparse factor model directly 508 
estimates the genetic covariance between fitness and gene expression. This is the 509 
predicted change in the mean expression level into the next generation (Robertson 510 
1966, Price 1970, 1972). The two-part method is more consistent with the traditional 511 
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quantitative genetic approach based on regression where we distinguish traits as 512 
independent variables (predictors) and fitness components as dependent variables. 513 
Oftentimes, the joint distribution for traits can be treated with a multivariate normal 514 
distribution. However, fitness components are usually non-normal (e.g. binary for 515 
survivorship, negative binomial for fecundity, etc). It may be easier to accommodate the 516 
differing distributions for transcript variation and fitness components in a regression 517 
framework. A second reason to separate fitness from characterization of transcriptome 518 
variation is that we often expect the relationship between trait values and fitness to be 519 
non-linear due to stabilizing, disruptive, or correlational selection. 520 
 521 
Conclusions 522 
 523 
Several common themes emerged from our overview of techniques for characterizing 524 
selection on the transcriptome even though many techniques are still in areas of active 525 
development. First, at their heart, most of the approaches we have discussed approach 526 
the N-p problem through some form of compression and reduction in the number of 527 
parameters that have to be estimated. As long as the sample sizes for the number of 528 
genes for which expression is measured with sequencing technologies exceeds the 529 
number of individuals in experiments, some form of data reduction or compression will 530 
remain a requirement. 531 
 532 
Second, we perceive distinct analysis paths which investigators can take, based on the 533 
data in hand and the tractability of the system. For species in which it is possible to 534 
perform breeding designs, create known and replicated genotypes, and/or generate 535 
inbred lines, analyses based on breeding values should be pursued. In these systems, 536 
expression can be measured in the greenhouse or growth chamber and fitness 537 
estimates obtained from the same genotypes (or relatives with predictable breeding 538 
values). In the case of inbred lines, successive estimates of transcriptomes, 539 
performance, and fitness could be obtained from immortalized genotypes that are 540 
exposed to a variety of growth conditions. In contrast, for species or systems where it is 541 
difficult to obtain immortalized genotypes– or where cost constraints preclude 542 
characterizing the transcriptomes of many genotypes– estimates of selection on the 543 
transcriptome are more akin to the field studies of selection on macro traits that followed 544 
the Lande and Arnold (1983) paper. The rich picture of how natural selection acts on 545 
morphological, behavioral, and life-history phenotypes is from a set of studies similar in 546 
design to a single-instance measurement of selection on the transcriptome (Henry and 547 
Stinchcombe 2025). We have drastically fewer estimates of selection on transcriptomes 548 
to characterize its strength, mode, and spatial or temporal consistency, perhaps 549 
because the approach and technology are in early development. More than 40 years 550 
ago, Arnold (1983) coined the expression “morphology, performance, fitness” in a 551 
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landmark paper describing how to understand variation in, and selection on, 552 
morphology. We suggest that an important area of research in the next 40 years of 553 
evolutionary biology will be to explore the mapping from gene expression to phenotype 554 
to fitness. 555 
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