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Abstract 

1. Energetics drive emergent ecosystem processes, shaping behavior and 

population dynamics in response to environmental conditions. While energy 

budget models can be used to effectively link resource dynamics to fitness 

outcomes, they often lack empirical grounding for energy allocation under 

resource constraints.  

2. Here, we introduce the Pattern-Informed Energetics (PIE) framework, which 

leverages diverse observations to infer parameters governing energy 

allocation processes. Using a rodent case study, we informed and tested PIE 

against 40 observed patterns, including population dynamics, morphometrics, 

energetics, and life-history traits, assessing its ability to replicate experimental 

results and predict responses to climate scenarios.  

3. Model calibration constrained key parameters, enabling the emergence of 

biologically realistic energy allocation curves. When applied independently to 

conditions replicating a litter manipulation experiment, PIE successfully 

captured observed shifts in offspring growth, survival, and maternal 

investment across environmental and experimental contexts. Scenarios of 

historical and projected climates revealed strong trait–demography 

relationships, including links between reproductive investment, population 

peaks, phenology, metabolic rates, and life-history traits. These patterns 

intensified under future scenarios, highlighting the framework’s capacity to 

capture shifts in allocation-driven dynamics under environmental change. 

4. Our findings suggest that PIE can capture key ecological responses to 

environmental variation, offering a promising approach for exploring how 

changes in energy allocation may influence traits and population trajectories 

under different scenarios. By linking energy allocation to emergent empirical 

patterns, PIE can strengthen the integration of physiological insights into 

predictive models, improving our understanding of species' responses to 

environmental change while accounting for their evolved life histories. 
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Introduction 

Amid unprecedented environmental change, accurately forecasting biodiversity 

responses is essential for understanding and managing ecosystem dynamics. 

Despite extensive effort, species declines and ecosystem disruptions persist (Ceballos 

et al., 2017). Predictive models can guide conservation measures by identifying 

drivers of change, prioritizing actions, and maximizing the use of limited resources 

(Dietze, 2017; Urban et al., 2016). However, model accuracy remains limited by gaps in 

understanding the processes driving species and ecosystem dynamics (Pilowsky et 

al., 2022). Given the diverse, multiscale, and nonlinear disruptions humans elicit in 

nature (Gilman et al., 2010), process-explicit models that integrate ecological theory 

with empirical data are essential for improving predictions and informing policy 

(Johnston et al., 2019; Urban et al., 2022). 

Energy balance is a fundamental process shaping animal survival, reproduction, and 

population and community dynamics (Burger et al., 2021; Sibly et al., 2013; Szangolies 

et al., 2024). Environmental change can disrupt energy acquisition and allocation, 

potentially compromising fitness (e.g., Clairbaux et al., 2021). In life-history theory, 

animal metabolisms are viewed as evolutionary adaptations tailored to specific 

environments, wherein the allocation of limited resources among survival, activity, 

growth, and reproduction is constrained by trait trade-offs (Ricklefs & Wikelski, 2002; 

White et al., 2022). Understanding these trade-offs can improve predictions of 

population responses to environmental stressors (Sibly et al., 2013). 

Energy budget models have been applied for over 70 years to address diverse 

questions, from fisheries management to climate impacts on wildlife (Boyd et al., 

2018; Desforges et al., 2021; Winberg, 1956). Approaches vary in their assumptions 

about allocation—from hierarchical prioritization (Sibly et al., 2013) to fixed fractions in 

Dynamic Energy Budget theory (Kooijman, 2000) and optimization-based strategies 
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(McNamara & Houston, 1996)—but their relative predictive performance remains 

under-evaluated.  While models inevitably simplify nature, integrating empirical 

observations into mechanistic projections can improve our understanding of 

population responses and guide strategies to mitigate biodiversity loss. 

Technological advancements provide unprecedented insights into animal 

physiology, morphology, and demography, offering opportunities to refine energy 

budget models (e.g., Chimienti et al., 2020). Approaches such as pattern-oriented 

modeling (POM) and statistical inference (Gallagher et al., 2021; Grimm & Railsback, 

2012; Hartig et al., 2011) allow for the derivation of key energetic parameters that are 

currently difficult or impossible to measure empirically, reducing reliance on arbitrary 

thresholds or assumptions of optimal behavior. A key gap remains in understanding 

how suboptimal energy intake influences allocation between competing demands 

of survival, activity, reproduction, and growth (McHuron et al., 2022; Pontzer & 

McGrosky, 2022; Sibly et al., 2013). Observing allocation processes per se remain 

infeasible, and even related empirical patterns, such as reproductive performance, 

remain scarce (but see Beltran et al., 2023; Bright Ross et al., 2021; Christiansen et al., 

2014; Van Benthem et al., 2017). Yet, diverse existing patterns can inform energy 

allocation dynamics without relying on threshold-based or optimality assumptions. 

These patterns can help uncover the context-dependent relationships governing 

energy allocation while accounting for the inherent uncertainty and variation within 

and between species. 

Here, we introduce the Pattern-Informed Energetics (PIE) framework (Figure 1B), an 

energy budget modeling approach that derives context-dependent energy 

allocation strategies directly from empirical patterns, improving ecological realism. 

PIE provides mechanistic insights into the emergence of trait variation, driven by 

phenotypic plasticity, competitive interactions, and natural selection, and predicts 

population-level responses to environmental change. This approach allows for 

allocation strategies to emerge from the patterns they drive, such as morphometrics 

and growth, reproductive investment and success, and population dynamics. We 

illustrate the PIE framework using a bioenergetic model for terrestrial homeotherms, 

with bank vole (Myodes glareolus) populations as a case study. Using Approximate 

https://www.zotero.org/google-docs/?GfUSWh
https://www.zotero.org/google-docs/?XuiDQk
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Bayesian Computation (ABC) for inverse parameterization, we derive allocation 

strategies and validate the model with POM by replicating a real-world litter 

manipulation experiment (Figure 1A). We then apply PIE to forecast population 

responses under future environmental scenarios using the Normalized Difference 

Vegetation Index (NDVI) as a proxy for food availability (Tucker & Sellers, 1986). By 

leveraging diverse empirical knowledge to infer the values of parameters that shape 

some of the most elusive yet vital energetic processes driving animal fitness 

(McHuron et al., 2022; Sibly et al., 2013), the PIE approach can shed light on the 

driving forces behind the evolution of life history strategies and offers potential for 

improved predictive power. 

Materials and methods 

Model description 

PIE provides a flexible, data-driven framework for simulating wildlife energetics 

within a dynamic, spatially explicit environment. It reveals how variation in 

morphology, metabolism, and life-history traits can emerge from underlying energy 

allocation strategies. While the conceptual approach for deriving energy allocation 

curves is broadly applicable, model parameterization and validation are based on 

empirical data from bank voles, with the presented energy budget model, 

incorporating PIE, transferable to other terrestrial mammals. 

A full TRACE document, including an ODD protocol (Grimm et al., 2014, 2020; 

Schmolke et al., 2010), sensitivity analyses, and calibration details, is available as 

supplemental material. The model is freely available at 

https://figshare.com/s/f68336510e6fb8201613. 

Developed in NetLogo v6.2.0 (https://ccl.northwestern.edu/netlogo/), the model 

simulates interactions between animal agents and a 20x50-cell toroidal landscape. 

Each 10m×10m cell may contain food resources which replenish over time, with 

energy content and dry mass informed by vole forage data. The model runs on a 

30-minute timestep during the active breeding season (day 90–273), excluding 

winter due to its relatively limited influence on key processes.  

https://www.zotero.org/google-docs/?UmVjAi
https://www.zotero.org/google-docs/?GXzEy0
https://www.zotero.org/google-docs/?9BVZS9
https://www.zotero.org/google-docs/?9BVZS9
https://doi.org/10.6084/m9.figshare.28390238.v1
https://ccl.northwestern.edu/netlogo/


 

The model includes two entities: landscape cells and animal agents. Animals are 

characterized by dynamic state variables tracking morphometrics, energy dynamics, 

and reproduction, with only female adults modeled. Each timestep involves: (1) 

movement decisions, (2) energetic costs, (3) resource consumption, and (4) updates 

to tissue stores, reproduction, and survival. 

Movement is represented implicitly, with animals moving at speeds drawn from a 

gamma distribution fitted to empirical data. Although movement is not spatially 

tracked, its consequences are modeled through foraging cell selection and transport 

costs. 

Energy expenditure is calculated sequentially across maintenance, transport, 

reproduction, and lean mass growth (Figure 1B). Maintenance costs scale 

allometrically with body mass, while locomotion costs include both postural and 

speed-related components. Reproductive costs cover pregnancy and lactation, 

based on allocation curves and maternal condition. Lean mass deposition includes 

structural growth and protein use for metabolic costs, with realized growth also 

determined using allocation curves. 

Food intake is shaped by energy demand, stomach capacity, hunger, body condition, 

and local resource availability. Animals attempt to ingest food to offset their energy 

shortfall, constrained by stomach volume and clearance rates. Digestive capacities 

adjust dynamically, particularly during lactation, to reflect increased energy needs, 

consistent with empirical data. Hunger is modeled using dual-intervention theory 

(Speakman, 2014): increasing at low body fat, decreasing at high body fat, and 

remaining stable at intermediate levels. 

After foraging, animals update their energy balance and adjust tissue stores. 

Surpluses lead to lean and fat mass deposition, while deficits trigger catabolism. 

Tissue dynamics follow Forbes’ theory (Forbes, 2009), where protein use/deposition 

increases as body fat decreases, and are grounded in rodent data. Mortality risk, 

including starvation and abortion, is assessed daily based on energy stores. 

Reproductive events are triggered by calendar day and reproductive status. At 

year-end, overwinter mortality occurs, and resource levels are reset. 

https://www.zotero.org/google-docs/?KXTBbA
https://www.zotero.org/google-docs/?oqo4uN


 

Model calibration 

Twelve uncertain parameters were calibrated using POM. Calibration occurred in two 

stages: (1) resource parameters were adjusted to match empirical bank vole 

population densities, and (2) ten sigmoidal parameters shaping allocation curves 

linking body condition to growth, reproduction, and survival were determined using 

16 empirical patterns. 

To ensure realistic abundances, maximum resource levels (g/cell) and accumulation 

rates (g/timestep) were tested across 25 simulations, with densities compared to 

several empirical studies. The best-fitting combination minimized the mean absolute 

deviation from the median empirical density (14.2 voles/ha). 

To explore the influence of body condition on energy allocation and survival, we used 

rejection approximate Bayesian computation (ABC) (van der Vaart et al., 2016) to test 

500,000 parameter combinations shaping energy allocation and survival curves. 

Model outputs were compared to 16 empirical patterns, with error assessed using R 

statistical software (R Core Team, 2021). The 30 best-fitting parameter sets were 

retained to balance accuracy and uncertainty (Boult et al., 2019; van der Vaart et al., 

2016). 

Model evaluation 

After calibration, we assessed the model’s ability to replicate the results of an 

empirical litter manipulation experiment (Koivula et al., 2003), which examined the 

effects of manipulated litter size on weanling number, body mass, subsequent 

breeding attempts, and maternal survival in wild bank voles over three years 

(1996–1998) in Konnevesi, Finland. Litter manipulation is a classic life-history research 

method where litter sizes are experimentally altered in females post-birth to explore 

the costs and trade-offs of reproduction (Koivula et al., 2003; Koskela, 1998; Oksanen 

et al., 2001). 

We replicated resource conditions at the experimental site using the NDVI3g dataset 

(1990–1999), interpolated to daily resolution. A linear relationship between NDVI and 

https://www.zotero.org/google-docs/?eTX77n
https://www.zotero.org/google-docs/?W9ajhw
https://www.zotero.org/google-docs/?tSQIYi
https://www.zotero.org/google-docs/?tSQIYi
https://www.zotero.org/google-docs/?7Ca7Fg
https://www.zotero.org/google-docs/?typSD1
https://www.zotero.org/google-docs/?typSD1


 

food availability was adopted as a pragmatic solution in lieu of empirical data 

defining these dynamics. NDVI values (0-1) were scaled to a 0–2 modifier for 

maximum resource levels, where 1 maintained the calibrated value, 0 reduced 

resources to zero, and 2 was double the calibrated value. Pregnant females were 

assigned to ‘Enlarged’ (+2 pups), ‘Reduced’ (−2 pups), or ‘Control’ groups. We tracked 

population abundance and 12 patterns related to birth, weaning, and reproduction 

(13 patterns total; Table S8.2). To account for stochasticity, we ran 100 simulation 

replicates, with outputs analyzed in R following empirical results. 

As a more general evaluation, we compared model outputs to an additional 11 

independent empirical patterns (Table S8.1). Outputs from 150 simulations were 

collected at the end of the fifth simulation year, with further tracking into the sixth 

year for survival rates. Visual comparisons assessed model agreement with empirical 

data. 

Scenario details 

To assess the model’s ability to project trait variation and population trajectories, we 

ran future simulations for Konnevesi, Finland again using NDVI-driven resource 

dynamics. We collected data on 13 individual traits (energetics, morphometrics, 

reproduction) and population abundance, either seasonally or annually, under 

historical and projected resource dynamics. These predictions are not absolute 

forecasts due to the exclusion of factors like predation and site-specific resource 

availability (food items, energy densities, etc.). Instead, they illustrate the model’s 

capacity to reveal how resource dynamics drive trait variation and population 

dynamics, mediated through individual energy dynamics. 

NDVI data was obtained from the Terra MODIS mission (MOD13Q1; Didan, 2021) at 

250m spatial and 16-day temporal resolution (2000-2022) for a 4 km² area at the 

study site (62°37'N, 26°17'E), accessed via the MODISTools package in R (Tuck et al., 

2014). NDVI values were averaged for each observation day to capture seasonal 

dynamics and incorporated into the model as in the litter manipulation experiment 

(see ‘Model evaluation’). 

https://www.zotero.org/google-docs/?lZNWlt
https://www.zotero.org/google-docs/?CGUseH
https://www.zotero.org/google-docs/?CGUseH


 

Projections through 2099 were generated using a linear mixed-effects model with 

mean NDVI as the response variable and monthly temperature, and precipitation as 

predictors. Fixed effects included linear and quadratic terms for precipitation and 

minimum temperature, with random intercepts for year to account for annual 

variability. More complex models (including solar radiation and lagged predictors) 

did not significantly improve fit (assessed via AIC and R²), so we proceeded with the 

simpler model. Projected monthly minimum temperature and precipitation data 

came from three Global Climate Models (GCMs) (CNRM-CM6-1-HR, EC-Earth3-CC, 

AWI-CM-1-1-MR; Döscher et al., 2022; Semmler et al., 2018; Voldoire, 2019) under 

SSP245, SSP585, and historical emissions scenarios from the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) accessed via the Copernicus Climate Data 

Store (https://cds.climate.copernicus.eu/). 

To better capture within-year NDVI dynamics, we explored alternative scenarios 

projecting average annual NDVI while simulating within-annual changes using 

randomly selected years from observed data. Projections were interpolated to daily 

NDVI changes and averaged across the three GCMs, producing one projection per 

emissions scenario. 

We ran simulations for three scenarios (two emissions scenarios: SSP245, SSP585; two 

projection approaches for SSP585) for 100 years with 500 repetitions to account for 

stochasticity from ABC parameter combinations and other sources. Six observation 

days per year (two each in spring, summer, and fall) were used to observe all relevant 

agents. Thirteen traits were recorded for 2018-2022 (observed) and 2094-2098 

(projected), with population abundance collected on each observation day from 

2018-2099.  

Six traits (body mass, body condition, field metabolic rate, locomotion costs, energy 

allocation to reproduction/growth) were averaged for adults (>45 days old). Three 

traits (litter size, body mass of neonates/pups) were collected for events between 

observations and assigned to the next observation day. The final four traits (lifetime 

reproductive success, age at first birth, number of litters, age at death) were updated 

at parturition or death and averaged annually. Body mass, metabolic rate, and 

https://www.zotero.org/google-docs/?Df2sEd
https://cds.climate.copernicus.eu/


 

energy allocation reflect immediate physiological responses, while lifetime 

reproductive success and longevity provide insights into life-history traits. 

Outcomes were analyzed using R, calculating mean and coefficient of variation for 

each output across observed and projected periods. Within-year dynamics were 

visualized using generalized additive models, while across-year trends and 

trait-population relationships were explored with linear models. Pearson correlation 

coefficients (r) were calculated for 171 trait-population combinations (mean and CV of 

13 traits and six outcomes; df = 498) to identify general trends for each period. 

Though we did not examine how trait-population relationships change within or 

between years, the model allows for such analyses. 

 

Results 

Calibration of population densities, energy allocation, and survival 

Model calibration for realistic vole densities resulted in maximum resource levels of 

140 g/grid cell and accumulation rates of 0.011 g/timestep, yielding 14.4 ± 13.7 

females/hectare, peaking in mid-summer (empirical mean: 17.5 ± 11.8 

females/hectare; TRACE Section 6.1).  

Using inverse parameterization with ABC and POM (TRACE Section 6.2), we found 

outputs from the 30 best-performing parameter combinations to closely match 

empirical patterns (Figure 2A-M), with minor discrepancies primarily attributed to 

conflicts between patterns. Posterior distributions were substantially narrowed, 

effectively identifying a subset of plausible values consistent with observations 

(TRACE Figure S6.4). However, parameters representing curve slopes showed less 

reduction. Further analysis showed that these parameters were positively correlated 

with their corresponding midpoints (e.g., the slope and midpoint shaping the growth 

allocation curve; TRACE Figure S6.5), indicating they were difficult to estimate 

independently, with slope variation having less impact on outputs than midpoints. 



 

The 30 selected parameter combinations were used in simulations (Figure 2N-P), 

with variation across runs to account for uncertainty. 

Model evaluation and replication of a litter manipulation experiment 

Model outputs closely aligned with 13 observed patterns from the empirical litter 

manipulation experiment (Figure 3), demonstrating strong agreement across 

multiple ecological and life-history dimensions. Seasonal population density 

dynamics were accurately captured, including mid-summer peaks and year-specific 

variations such as higher early-summer densities in 1997 (Figure 3A). The model also 

effectively replicated declines in weanling body mass due to both seasonality and 

litter size manipulation (Figure 3B), with offspring mass at weaning reduced in 

Enlarged litters, highlighting its ability to capture how maternal investment and 

environmental conditions influence offspring growth. Litter size at weaning followed 

observed seasonal trends, with the largest litters in mid-summer and smallest in late 

summer (Figure 3C). Female survival patterns were also well represented, with lowest 

survival in late summer and among females with enlarged litters (Figure 3D). 

Some discrepancies remained, particularly in the relationship between birth litter 

size and litter size at weaning. While the model successfully predicted smaller 

weaned litters for reduced litters, as observed, it tended to overestimate litter size at 

weaning overall and failed to reflect that larger birth litters did not lead to larger 

weaned litters, particularly in early- and mid-summer. These differences may reflect 

underlying biological processes not explicitly represented in the current model 

structure, such as preferential feeding or infanticide. Nevertheless, the weaker 

correlation in late summer mirrored the observed pattern of more consistent litter 

sizes across manipulation groups. 

Additional tests against independent empirical data on energy dynamics, survival, 

life history, and morphometrics further supported model accuracy (TRACE Section 

8.1). Field metabolic rates and food consumption across age classes aligned closely 

with findings from nine separate studies. These patterns reflect emergent total 

metabolisms shaped by behavior, energy costs, and allocation strategies, making the 

strong agreement especially encouraging. 



 

Scenarios of resource variation impacts on individual traits and population 

dynamics 

Scenarios revealed strong seasonal and interannual variation in population density. 

Under historical conditions (2018–2022), populations peaked in late summer, with 

occasional early summer peaks. Under projected conditions (2094–2098), densities 

followed similar trends but with higher peak values.  

Correlations between traits and population metrics revealed distinct patterns (Figure 

5G). Under observed conditions, maximum offspring abundance (Apeak) was 

negatively correlated with storage levels (SL) (r = -0.54, 95%CI: [−0.60,−0.48]; Figure 

5D) and offspring mass at weaning (mwean) (r = -0.65, 95%CI: [−0.70,−0.59]). Timing of 

peak adult (TApeak) and offspring (TOpeak) abundance were negatively correlated with 

locomotion costs (ML) and age at first birth (age1st birth) (TApeak-ML: r = -0.64, 95%CI: 

[−0.69,−0.59]; TApeak-age1st birth: r = -0.72, 95%CI: [−0.76,−0.68]; TOpeak-ML: r = -0.50, 95%CI: 

[−0.57,−0.43]; TOpeak-age1st birth: r = -0.84, 95%CI: [−0.87,−0.82]). Positive correlations were 

observed between the peak adult (Apeak) and offspring (Opeak) abundance and 

longevity (agedeath) (Apeak-agedeath: r = 0.61, 95%CI: [0.55,0.66] (Figure 5C); Opeak-agedeath: r 

= 0.55, 95%CI: [0.48,0.60]), as well as between the timing of minimum adult 

abundance (TAmin) and age at first birth (age1st birth) (r = 0.56, 95%CI: [0.50,0.62]). 

Under projected conditions, most correlations remained, with slightly stronger 

effects across all output combinations (sum absolute r: Historic: 52.9; Projected: 56.0) 

(Figure 5H). Timing-related population metrics (TApeak, TOpeak, and TAmin) showed the 

greatest increases. The strong negative correlation between minimum adult 

abundance (Amin) and total metabolic rate (Mtot) held across both time periods 

(Projected: r = -0.55, 95%CI: [-0.61,-0.48]; Figure 5F), related to trends with allocation to 

reproduction (MR) and lean mass deposition (MLM) (Amin-MR : r = -0.52, 95%CI: 

[-0.58,-0.45]; Amin-MLM : r = -0.49, 95%CI: [-0.55,-0.42]). Strong positive relationships 

between peak adult (Apeak) and offspring (Opeak) abundance and litter size at weaning 

(LSW) and lifetime reproductive success (LRS) also remained across periods 

(Projected: Apeak-LSW: r = 0.80, 95%CI: [0.77,0.83] (Figure 5E); Apeak-LRS: r = 0.79, 95%CI: 



 

[0.75,0.82]; Opeak-LSW: r = 0.71, 95%CI: [0.67,0.75]; Opeak-LRS: r = 0.57, 95%CI: [0.51,0.63]). All 

correlations described here were significant (p < 0.001, n = 500 per combination). See 

Appendix Figures A2 and A3 for full correlation matrices.  

The model predicted a slight increase in population density throughout the century 

(Historical: 15.7 ± 2.0; Projected: 16.8 ± 2.7 female voles/hectare; Figure 5C). In 

alternative scenarios which retained observed within-year NDVI dynamics, 

correlations were slightly weaker (sum absolute r: 52.0; Figure A4), but population 

densities increased to 18.5 ± 2.8 females/hectare. Under the SSP245 scenario, 

correlation patterns remained similar, with stable population densities (Projected: 

15.2 ± 2.1 females/hectare; Figure A5). 

 

Discussion 

Allocation remains among the most daunting energetic processes to measure 

empirically (McHuron et al., 2022; Sibly et al., 2013). Using a PIE approach, we 

successfully informed allocation dynamics by applying inverse parameter estimation, 

leveraging patterns in morphometrics, energy expenditure, and life history which 

emerge from allocation processes. This approach allowed allocation to be dynamic 

and incorporate uncertainty, producing model outputs that reliably matched 

observations. Notably, the model successfully recreated complex empirical patterns 

in morphometrics, reproduction, survival, and density under conditions mimicking a 

field experiment, demonstrating its predictive power for real-world biological 

processes. By addressing key uncertainties in energetics, this approach can improve 

predictions of organismal responses to environmental change, particularly those 

affecting foraging efficiency and resource dynamics. 

Individual-based bioenergetic models are increasingly used for predicting ecological 

responses to change (Pirotta, 2022; Rose et al., 2024). The PIE approach can 

strengthen these models by tailoring energy allocation dynamics to species-specific 

information, making it particularly valuable for applied contexts such as conservation 

and management. Beyond applied uses, PIE can also provide insights into 

https://www.zotero.org/google-docs/?kEcY2t
https://www.zotero.org/google-docs/?e3ogBq


 

fundamental ecological and evolutionary questions, including the emergence and 

consequences of individual variation (Bolnick et al., 2011; Dammhahn et al., 2018). By 

integrating plasticity and dynamic variation in energetics, morphometrics, and life 

history traits, the approach directly links these traits to resource environments. Since 

allocation strategies may be shaped by selection, influencing pace-of-life differences 

across and potentially within species (Stearns, 1989, 2000), extensions investigating 

eco-evolutionary dynamics could offer valuable insights into the role of resource 

dynamics in selection processes. Moreover, its grounding in first principles allows for 

assessing the combined effects of multiple, co-occurring environmental changes 

(Orr et al., 2020; Pirotta et al., 2022). 

When replicating conditions of the real-world experiment in Koivula et al. (2003), the 

model effectively reproduced field observations and provided a mechanistic 

explanation for its successes and limitations. Notably, it excelled in predicting 

seasonal dynamics, showing lower averages for litter size, offspring mass, litter mass 

at weaning, and female survival in late summer, consistent with reproductive 

trade-offs under resource limitation and high population densities (Koivula et al., 

2003; Koskela, 1998). It also captured allocation-driven trends, such as reduced 

survival and smaller weaning masses in females with enlarged litters. However, the 

model failed to fully capture the common finding that larger birth litters do not yield 

more weaned offspring (Koskela, 1998; Mappes et al., 1995; Oksanen et al., 2001). 

Although females with enlarged litters had lower offspring survival, this effect was 

too weak to equalize weaned litter sizes. This gap may reflect unmodeled maternal 

behaviors, such as selective feeding or infanticide. Additionally, weaned litter sizes 

were generally larger than observed, likely due to missing non-energetic factors like 

predation and dispersal (Mazurkiewicz & Rajska, 1975). Despite this, the model 

successfully captured complex seasonal and experimental dynamics, demonstrating 

that its implemented mechanisms can reproduce high-level ecological patterns. 

When applied to scenarios, the model demonstrated how changes in individual traits 

due to environmental shifts relate to broader ecological patterns, such as adult and 

offspring abundance, timing of population peaks, and reproductive success. While 

causal relationships were not assessed here due to matters of design, these could be 
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explored in future studies. The model highlighted key factors shaping ecological 

responses, such as correlations between body mass and peak abundance, and 

reproductive costs influencing the timing of population fluctuations. Life-history 

traits like longevity, lifetime reproductive success, and litter size at weaning typically 

corresponded with higher abundances but were often negatively associated with 

morphometric and energetic factors, such as body mass and total metabolic costs, 

and age at first birth.  

Interestingly, although an inverse relationship between body mass and peak 

abundance aligns with broader mass–abundance patterns—where resource 

limitations cap total biomass or individual numbers (Damuth, 1981, 1987; Scheffer, 

1955), cyclical rodents like bank voles often show increased body size during 

population peaks, a phenomenon known as the Chitty effect (Chitty & Chitty, 1962). 

This effect, associated with higher survival and suppressed reproduction, is thought 

to result from energy being redirected toward growth (Johannesen & Andreassen, 

2008; Oli, 1999) and may be heritable (Sundell et al., 2019). Although the model did 

not produce true population cycles, it showed that increased longevity was 

associated with higher peak abundances. The absence of cyclical dynamics likely 

reflects missing drivers such as shifts in energy allocation, predation, dispersal, and 

social interactions (e.g. Radchuk et al., 2016). However, the model’s mechanistic 

flexibility makes it well-suited for testing alternative hypotheses and exploring the 

conditions under which cycles might emerge, with detailed consideration of 

energetic factors. 

By bridging micro-level processes (e.g., energy expenditure and morphometrics) 

with macro-level patterns (e.g., population density), this approach advances 

understanding of how individual responses to environmental variability drive broader 

shifts in population dynamics. Research indicates that physiological constraints 

shape life history strategies both across (Healy et al., 2019) and within (Burton et al., 

2011) species, with trait-demography relationships documented in small mammals 

and seabirds (Jenouvrier et al., 2015, 2018; Van Benthem et al., 2017). This approach 

provides a mechanistic understanding of these trait correlations, shedding light on 

the resource-driven pathways linking environmental change to population outcomes 
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(Manzo, 2022). Moreover, findings suggest potential conservation implications, such 

as the association between higher locomotive costs and reduced peak population 

abundance. In European brown hares (Lepus europaeus), increased activity behavior, 

and consequently higher locomotive costs, have been linked to changes in resource 

dynamics (Ullmann et al., 2018). The model’s results suggest that such impacts could 

relate to a decline in adult abundance.  

Model projections suggest population density will increase with rising resource 

availability, forecasting a 7.0% rise in average annual density and a 13.1% increase in 

peak abundance by century’s end. However, NDVI rose by 21.5% over this period, 

indicating that resource and population responses are not strictly proportional. 

While NDVI is a common proxy for resource availability (Boult et al., 2019; Howard et 

al., 2024; Karunarathna et al., 2024), it doesn’t always reflect consumable resources. 

Despite this, it remains valuable for capturing seasonality and relative differences. 

The choice of an appropriate proxy should depend on study objectives and 

system-specific considerations, with alternatives including the Enhanced Vegetation 

Index (Huete et al., 2002), precipitation, or direct food availability measures (Howard 

et al., 2024). Other ecological drivers, such as masting events (Reil et al., 2015), 

predation (Radchuk et al., 2016), interspecific competition (Eccard & Ylönen, 2002, 

2003), and habitat structure (Ecke et al., 2002), also shape vole populations but were 

excluded here for model tractability. Future studies aiming for absolute predictions 

should integrate empirical data on these factors. Additionally, while the three 

selected GCMs provided high-resolution climate projections, they represent only a 

subset of available CMIP6 models (Eyring et al., 2016). 

The PIE framework itself relies on key assumptions. Grounding allocation dynamics 

in empirical patterns supports model realism but assumes those patterns accurately 

represent system function. However, measurement error, study conditions, and 

sample size can all affect the accuracy and transferability of empirical patterns 

(Gallagher et al., 2021). Addressing these challenges requires integrating multiple 

patterns across ecological levels, as done here (Gallagher et al., 2021; Grimm & 

Railsback, 2012). Tools like the virtual ecologist approach (Zurell et al., 2010) can help 

reduce biases by simulating outputs under conditions comparable to observations. 
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Additionally, while patterns are treated as static, they often depend on local context 

(e.g., habitat, climate, species interactions) and may shift through plasticity, 

adaptation, or evolution (Edelaar & Bolnick, 2019). For long-term forecasts, 

incorporating adaptive and evolutionary dynamics may be essential (Wortel et al., 

2023). Ideally, understanding how patterns vary over time and space would refine 

model processes, but in lieu of such rare data, using diverse empirical patterns can 

still support realistic model behavior (Grimm, 2005). 

Understanding ecological systems requires models that incorporate assumptions 

and imperfect data, but the urgency of environmental change demands that we 

make full use of available tools and knowledge to address emerging threats and 

safeguard biodiversity (Mouquet et al., 2015; Urban et al., 2016). Energy forms a 

fundamental link between environmental conditions and animal fitness. As such, 

advances in empirical knowledge of physiology and energy allocation can improve 

how models capture physiological and life history diversity (e.g. White et al., 2022). 

While such improvements increase realism, they also introduce complexity, which is 

unnecessary for some questions, but essential for others requiring detailed links 

between environments and fitness. The predictive value of the PIE approach has yet 

to be tested against alternative frameworks (e.g., Kooijman, 2000; Mangel, 2015; Sibly 

et al., 2013), and more broadly, few comparisons exist among current energy 

allocation models. Additionally, trade-offs in metabolism and energy allocation 

remain poorly resolved, particularly regarding plasticity and the drivers of intake and 

expenditure (Halsey, 2018, 2021; Laskowski et al., 2021; Speakman, 2014). The model 

presented here offers a platform to explore these dynamics, but robust inter-model 

comparisons—supported by statistical validation and multivariate spatiotemporal 

data—are needed to assess predictive gains (Pilowsky et al., 2022). Determining when 

detailed energetic modeling is necessary for accurate forecasts can help advance 

predictive ecology. 

The fundamental concept of the PIE framework, where energy allocation curves are 

informed by empirical patterns, is not limited to the specific model presented here. It 

can be incorporated into other bioenergetic modeling approaches (e.g., Kooijman, 

2000; Sibly et al., 2013), guiding allocation based on nutritional status in a way that 
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reflects observed patterns. By leveraging empirical patterns, researchers can avoid 

ad hoc approaches to inform energy allocation dynamics, making PIE a valuable 

approach for researchers developing bioenergetic models. Moreover, the presented 

energy budget model is transferable to other terrestrial homeotherms, given 

sufficient data, though movement processes may need adaptation for non-central 

place foragers. In applying the approach to new systems, we suggest using patterns 

in relationships between energy demand, intake, and body condition, with outcomes 

measured via morphometrics, reproduction, and survival. Emerging empirical 

methods are increasingly capturing relevant patterns, enhancing the PIE 

framework’s applicability. For instance, recent studies link body condition and mass 

gain to reproductive performance in species like polar bears (Ursus maritimus), 

badgers (Meles meles), and elephant seals (Mirounga angustirostris) (Archer et al., 

2023; Beltran et al., 2023; Bright Ross et al., 2021). These advances provide directly 

applicable patterns for PIE that offer immense potential for improving the realism 

and accuracy of bioenergetic models.  

Conclusion 
Although the direct measurement of energy allocation processes remains 

challenging, the PIE framework offers a robust alternative by leveraging empirical 

patterns to inform these processes in predictive models. This approach enables 

dynamic allocation, incorporates uncertainty, and enhances model realism. By 

accurately reproducing a wide range of observed patterns (40 in total), the model 

shows promise for both theoretical and applied ecology. Though not without 

limitations, the PIE framework is adaptable and well-suited to predicting individual 

and population responses to environmental change. Integration with existing 

modeling methods, supported by growing empirical datasets, can greatly improve 

bioenergetics modeling and deepen ecological understanding. Applying the PIE 

approach at the community level may also help reveal species interactions and 

energy flows, offering powerful insights into biodiversity and ecosystem responses, 

insights that are increasingly critical in the face of ongoing and accelerating 

environmental change. 
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Figure 1. A) Schematic representing key inputs and outputs of the model 

development, testing, and application process. B) Key processes underlying the 

energy budget framework, with light grey lines indicating interactions between 



 

processes. The sigmoidal functions associated with growth and reproduction 

represent the allocation of energy to these processes. Within the PIE approach, 

energy allocation is guided by body-condition-dependent relationships, which result 

from model calibration to empirical patterns. 

 

 



 

 



 

Figure 2. Comparison of model predictions for the 30 best-fitting parameter 

combinations against the empirical patterns used for calibration (empirical data 

depicted in black or grey) for A) total body mass, B) percent body fat of living animals, 

and C) percent body fat at death, D) mother body mass and E) food intake, F) total 

litter mass with pup age, G) mother peak food intake, H) energy use, and I) milk 

transfer with litter size, J) litter size at weaning, K) neonate mass, L) weanling mass by 

litter size, and M) field metabolic rate of non-lactating animals by body mass. Outputs 

from individual parameter sets are shown in unique colors, with combined results in 

purple. Colored point ranges represent the median and 95% CIs for each individual 

parameter set, with light purple points in A, D-I, and M representing individual 

simulation data points. In panels B-F, J, and K, the grey rectangle indicates the range 

of empirical values used to assess pattern fit, while the grey shaded region in D-F 

represents the mean ± SE of the empirical data. For panels A, G, H, I, and M, empirical 

relations are shown as solid black lines. In panel L, fit was defined qualitatively as a 

negative relationship, with illustrative points (mean ± SE) from two independent 

empirical studies (Koskela, 1998; Oksanen et al., 2001). In panels A and L, colored lines 

represent von Bertalanffy and linear relationships fit to outputs for each parameter 

set. Panels N-P show the selected allocation relationships of the 30 best-fitting 

parameter sets, illustrating the association between body fat percentage and 

allocation to N) growth, O) pregnancy, and P) lactation. Approximate Bayesian 

computation (ABC) was used to evaluate 500,000 parameter combinations, assessing 

fit with median absolute scaled error for univariate or multivariate patterns and a 

pass/fail approach for linear relationships. See supplementary TRACE document 

section 6 “Model output verification” for more details and further patterns used in 

model development. 
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Figure 3. Comparison of model outputs with empirical data from the litter 

manipulation experiment in Konnevesi, Finland for 1996-1998 (Koivula et al. 2003). A) 

Seasonal population density dynamics per year (proportion of maximum value) 

(mean ± SE), B) offspring body mass (in grams) at weaning , C) litter size (count pups) 

at weaning , and D) mother survival (%) to the next breeding period (means ± 95% 

CIs). Insets panels in B and D display the seasonal averages (means ± 95% CIs), with 

the dotted line in panel D representing 100% survival. Predictions were generated 

from 100 simulation replicates. All observed estimates were taken directly from plots 

presented in Koivula et al. (2003). 

 



 

 

Figure 4. Characteristics of the site used for the replication of a real-world 

experiment in model evaluation and for scenario simulations in Konnevesi, Finland 

(A). For the scenarios, B) seasonal variations in observed resource dynamics, 

represented by NDVI, are shown with colored lines indicating individual years 

(2000–2022) that drove historical resource dynamics. C) Projected future resource 

dynamics under the SSP585 emissions scenario, generated based on projected 

temperature and precipitation changes. Dark lines in B and C represent GAM 

predictions. 

 

 



 

 

 Figure 5. Predicted temporal variations in population dynamics, life history, and 

morphometric traits under observed and projected resource dynamics, based on the 

SSP585 emissions scenario. In A, C, D, and G, results are shown for 2018–2022, while B, 

E, F, and H depict results for 2094–2098. Changes in annual averages of adult female 

population density over the simulated period are illustrated in I. Panels A and B show 



 

within-year changes in adult female population density, while G and H display 

correlation matrices between a subset of population-level outputs (x-axis) and 

individual-level traits (y-axis). Exemplary relationships are shown for the historic 

period between C) average longevity (in days) and peak adult abundance (count 

animals) and D) body condition (storage level as percent body fat) and peak offspring 

abundance (count animals). For the projected period, relationships are shown 

between E) litter size at weaning (count pups) and peak offspring abundance (count 

animals) and F) total metabolic rate (in kJ per day) and minimum adult population 

size (count animals). Densities in A, B, and I were collected at weekly intervals over 

each five-year period, with annual averages computed per simulation for I. Outputs in 

C–H were derived from averages of traits and population metrics recorded on six 

observation days per year (two each in spring, summer, and fall), totaling 30 days per 

time period per simulation. Correlations thus reflect broad time-period-level 

relationships, acknowledging that this resolution neglects within- and between-year 

variations. In A-F and I, colored points and lines represent outputs from each 

simulation replicate. In G and H, yellow represents negative and pink denotes 

positive correlations, determined via the Pearson correlation coefficient, with 

increasing saturation representing stronger effect size. Abbreviations used in G and 

H include: m = body mass (g), SL = storage level (% body fat), mneo = neonate mass (g), 

mwean = weaning mass (g), ML = locomotion costs (J day⁻¹), MR = reproduction costs (J 

day⁻¹), MLM = cost of lean mass growth (J day⁻¹), Mtot = total metabolic rate (J day⁻¹), 

age1st birth = age at first birth (days), agedeath = longevity (days), LPY = number of litters 

per year (N), LSW = litter size at weaning (N pups), LRS = lifetime reproductive success 

(N pups weaned), Apeak = peak adult abundance (N), TApeak = timing of peak adult 

abundance (day of year), Opeak = peak offspring abundance (N), TOpeak = timing of peak 

offspring abundance (day of year), Amin = adult minimum abundance (N), and TAmin = 

timing of minimum adult abundance (day of year). Predictions were generated from 

500 simulation runs, with thick lines representing generalized additive model (GAM) 

predictions in A and B and linear model predictions in C-F and I. For alternative 

scenarios, see Appendix Figures A2-6. 
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