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Abstract 

Ecosystem processes emerge from complex interactions between environmental 

conditions, individual behavior, fitness, and population dynamics. Energetics is a 

central mechanism driving these relationships, and individual-based energy budget 

models have emerged as powerful tools for linking resource dynamics to fitness. 

However, these models often lack an empirical foundation for how organisms 

allocate energy to fitness-related processes when resources are limited. Here, we 

introduce the Pattern-Informed Energetics (PIE) framework, a novel approach that 

leverages diverse empirical data sources to infer key parameters governing energy 

allocation. Using a rodent case study, we rigorously calibrated and evaluated PIE 

against multiple observed patterns, including in population dynamics, 

morphometrics, energetics, and life-history traits, assessing its ability to replicate 

experimental results and predict responses to future climate scenarios. Our findings 

demonstrate that PIE can mechanistically predict how environmental change 

shapes traits and population trajectories, offering a robust framework for improving 

biodiversity forecasting. By linking energy allocation to emergent ecological patterns, 

PIE strengthens the integration of physiological insights into predictive models, 

advancing our understanding of species' responses to environmental change while 

accounting for their evolved life histories. 

 

 

 

 

 

 

 

Introduction 

 



Amidst unprecedented environmental change, we face an urgent need to deepen 

our understanding of ecological dynamics and enhance our ability to predict 

responses to change. Despite considerable conservation efforts, progress remains 

limited in halting population declines, species extirpations, and the loss of entire 

branches of the tree of life, with cascading repercussions for ecosystem functions 

(1–4). Accurate predictive models are needed to forecast biodiversity change, identify 

its drivers, guide data collection, prioritize conservation efforts, and develop effective 

strategies to maximize the use of limited time and resources (4, 5). Predictive models 

increasingly guide ecosystem management and conservation (6–8), yet our ability to 

anticipate environmental impacts on species and communities remains hindered by 

gaps in understanding the processes driving biodiversity dynamics (3). Given the 

diverse, multiscale, and nonlinear disruptions humans elicit in nature (9), 

process-explicit models are vital to understand complex interactions and feedbacks 

between threats and biodiversity responses (4, 10, 11). These models can serve as 

platforms for weaving ecological knowledge and theory into tools that advance 

understanding of species and ecosystem dynamics under change and provide much 

needed projections for conservation management and policy (3). 

A key mechanism through which changes in environmental conditions affect animal 

fitness is by disrupting individual energy balance. Resource availability and 

behavioral shifts in altered environments can limit foraging success or increase 

metabolic costs. These disruptions influence energy allocation to maintenance, 

growth and reproduction, which in turn shape population vital rates (12) and 

community dynamics (13). As such, energy represents the fundamental currency of 

biological fitness, mediating survival and reproduction according to the laws of 

energy and mass balance (14). The ability to meet energetic demands, driven by basal 

metabolism, activity, reproduction, and tissue production, determines an individual’s 

fitness (15, 16). In life-history theory, animal metabolisms are viewed as products of 

evolutionary adaptations tailored to specific environmental contexts, wherein the 

allocation of limited resources between survival, activity, growth, and reproduction is 

constrained by trade-offs among traits that are suited for their habitats (17, 18). 

Environmental changes can disrupt these evolved strategies, potentially leading to 

 



mismatches that upset energy balance and impact reproduction and survival (e.g., 

Clairbaux et al., 2021). To link environmental changes and animal behavior to fitness 

outcomes and population-level impacts, process-explicit models incorporating 

individual energy budgets are essential (12). 

The history of ecological energy budget models spans over 70 years (e.g., Winberg, 

1956). These models have been applied to diverse systems and questions, including 

the effects of management decisions on mackerel (Scomber scombrus) fisheries (21), 

climate and habitat changes on African elephant (Loxodonta africana) populations 

(22), and thermogenic dynamics in muskoxen (Ovibos moschatus) (23). To address 

this broad range of purposes, diverse energy budget models have been developed, 

each based on distinct assumptions about the dynamics governing energy 

expenditure and allocation. These assumptions range from hierarchical prioritization 

of metabolic processes favoring survival (12) to fixed-fraction allocation in Dynamic 

Energy Budget (DEB) theory (24) and optimization-based approaches (25, 26). 

Despite this diversity, the relative performance and predictive power of these 

approaches remain under-evaluated (27). Moreover, many modern empirical insights 

remain under considered in energy budget modeling, such as mechanisms 

regulating body adiposity (28, 29) and energy intake (30), non-linearities in metabolic 

fuel use and deposition (31, 32), and variations in energy use associated with 

pace-of-life (17, 33, 34). While models will always be simplifications of nature, and not 

all processes are relevant to every model's purpose, incorporating advancements in 

physiological understanding, such as reserve regulation, nonlinear fuel use, and 

inter-individual variation in energetics, can drive more mechanistic projections of 

populations under change. These advancements can enhance our ability to 

understand how populations respond to environmental stressors and inform 

strategies to mitigate biodiversity loss and ecosystem disruptions 

Advances in technology and data collection techniques, which have generated an 

ever-growing trove of detailed physiological, morphological, and demographic data 

from both captive and wild settings, present an opportunity for a more strategic 

integration of this knowledge in informing or testing energy budget models (e.g., 

Chimienti et al., 2020). Datasets from both classical and emerging approaches offer 

 



opportunities for improving the estimation of energetic parameters that are 

currently difficult or impossible to measure empirically. Approaches such as 

pattern-oriented modeling (POM) (36, 37) and statistical inference (38) hold promise 

for addressing these gaps.  

A significant gap in the literature concerns how suboptimal energy intake affects the 

allocation of energy between competing demands such as survival, activity, 

reproduction, and growth (12, 39, 40). Current methodologies often rely on arbitrary 

thresholds or optimization-based approaches to determine when animals should 

halt resource allocation to processes such as reproduction or growth (12, 39), which 

may not reflect the feedbacks and adaptive behaviors of real-world systems (41). 

Empirical studies linking energy balance or reserves to their effects on processes 

related to metabolism, such as reproduction probability, remain limited (but see 

Beltran et al., 2023; Bright Ross et al., 2021; Christiansen et al., 2014; Van Benthem et 

al., 2017). Collecting such data remains challenging, particularly for cryptic, rare, or 

elusive species that cannot be studied through captive or repeated experimentation. 

Nevertheless, recent studies have illuminated patterns in animal morphometrics, 

physiology, behavior, and life history that offer insights into evolved energy allocation 

strategies without relying on assumptions rooted in thresholds or optimal behavior. 

By employing statistical inference and POM, it is possible to elucidate parameters 

driving the context-dependent relationships governing energy allocation in a 

species-specific manner, while considering the inherent uncertainty and variation 

within and between species. 

Here, we introduce the Pattern-Informed Energetics (PIE) framework (Figure 1B), an 

energy budget modeling approach that departs from traditional fixed-allocation 

models by deriving context-dependent strategies directly from empirical patterns, 

offering greater ecological realism. The PIE framework provides mechanistic insights 

into the emergence of individual trait variation, driven by phenotypic plasticity, 

competitive interactions, and natural selection, and can be used to predict the 

impacts of environmental change on population dynamics and persistence. This 

approach allows for allocation strategies to emerge from the patterns they drive, 

such as morphometrics and growth, reproductive investment and success, and 

 



population dynamics. Additionally, it incorporates underutilized physiological 

insights, including dual intervention point and Forbes’ theories (28, 32), which link 

body fat regulation and metabolic fuel use to body condition.  Although PIE is 

relevant to all animals, the bioenergetic model structure we implement here for 

illustrative purposes is generic to terrestrial homeotherms, with bank vole (Myodes 

glareolus) populations serving as a case study. Using Approximate Bayesian 

Computation (ABC) for inverse parameterization (46), we derive allocation strategies 

and then rigorously evaluate the fitted model following POM by replicating an 

empirical litter manipulation experiment and comparing it to additional 

independent patterns (Figure 1A). As a demonstration of the framework’s capacity for 

mechanistic understanding of the emergence of individual trait variation and for 

predicting the impacts of environmental change on population dynamics and 

persistence, we apply the model to future environmental scenarios, using normalized 

difference vegetation index (NDVI)(47) as a proxy of food availability. We reveal 

emerging patterns in energetic, morphological, and life history trait variation among 

populations and forecast changes in population abundance based on projected 

future climate-driven alterations in food availability. By leveraging diverse empirical 

knowledge to infer the values of parameters that shape some of the most elusive yet 

vital energetic processes driving animal fitness (48, 49), the PIE approach can shed 

light on the driving forces behind the evolution of life history strategies and offers 

potential for improved predictive power. 

 



 

Figure 1. Schematic representing key inputs and outputs of the model 

development, testing, and application process A). Key processes underlying the 

energy budget framework B), with light grey lines indicating interactions between 

 



processes. The sigmoidal functions associated with growth and reproduction 

represent the allocation of energy to these processes. Within the PIE approach, 

energy allocation is guided by body-condition-dependent relationships, which result 

from model calibration to empirical patterns. 

 

Results 

Model calibration of population densities, energy allocation relationships, and 

mortality 

To ensure that the model represented realistic population densities of bank voles, we 

initially calibrated the resource parameters of the model to empirical density 

estimates (50–53). Details regarding model development and testing can be found in 

the supplemental TRACE document (54, 55). This calibration yielded maximum 

resource levels of 140 g per 10 m x 10 m grid cell and resource accumulation rates of 

0.011 g per 30-minute timestep, resulting in average population densities of 14.4 ± 13.7 

females per hectare, with peaks in mid-summer (empirical mean of 17.5 ± 11.8 females 

per hectare; TRACE Section 6.1). These initial parameter values were used to ensure 

realistic population densities in the model for subsequent calibration and evaluation 

steps, while the maximum resource level was adjusted in the replication of the 

empirical litter manipulation experiment and in scenarios to simulate seasonal and 

projected resource dynamics. 

To parameterize the underlying relationships linking animal body condition to 

energy allocation for growth, pregnancy, and lactation, as well as survival, we 

employed an inverse parameterization approach using ABC and POM (details in 

TRACE Section 6.2). This allowed us to determine the values of ten parameters by 

fitting them to 16 empirical patterns derived from bank vole morphometrics, 

reproduction, and energetics. The parameter sets from the 30 best performing 

combinations, determined using median absolute scaled error, were found to fit the 

empirical patterns quite well (Figure 2), with only a few minor discrepancies which 

were primarily attributed to conflicts between the patterns themselves. 

 



When comparing prior and posterior distributions for the selected parameter sets, 

the parameter space was considerably reduced, effectively identifying a subset of 

plausible values consistent with the observed data (TRACE Figure S23). However, 

three parameters—the slopes of the relationships between storage level and growth, 

pregnancy, and reproduction—showed less reduction in their parameter space. 

Further analysis of parameter correlations revealed that these slope parameters were 

positively correlated with their corresponding midpoint parameters (e.g., the slope 

and midpoint shaping the growth allocation curve) (TRACE Figure S24). This 

correlation indicated challenges in estimating these parameters independently, as 

variations in slopes were less influential on model outputs than the midpoints of the 

relationships. 

We retained the 30 selected parameter combinations (Figure 2N-P) and employed 

each of them independently in model simulations, with the curves varying among 

simulation runs to consider uncertainty in model outcomes. 

 



 

 



 

Figure 2. Comparison of model predictions for the 30 best-fitting parameter 

combinations against the empirical patterns used for calibration (empirical data 

depicted in black or grey) for A) total body mass, B) percent body fat of living animals, 

and C) percent body fat at death, D) mother body mass and E) food intake, F) total 

litter mass with pup age, G) mother peak food intake, H) energy use, and I) milk 

transfer with litter size, J) litter size at weaning, K) neonate mass, L) weanling mass by 

litter size, and M) field metabolic rate of non-lactating animals by body mass. Outputs 

from individual parameter sets are shown in unique colors, with combined results in 

purple. Colored point ranges represent the median and 95% CIs for each individual 

parameter set, with light purple points in A, D-I, and M representing individual 

simulation data points. In panels B-F, J, and K, the grey rectangle indicates the range 

of empirical values used to assess pattern fit, while the grey shaded region in D-F 

represents the mean ± SE of the empirical data. For panels A, G, H, I, and M, empirical 

relations are shown as solid black lines. In panel L, fit was defined qualitatively as a 

negative relationship, with illustrative points (mean ± SE) from two independent 

empirical studies (56, 57). In panels A and L, colored lines represent von Bertalanffy 

and linear relationships fit to outputs for each parameter set. Panels N-P show the 

selected allocation relationships of the 30 best-fitting parameter sets, illustrating the 

association between body fat percentage and allocation to N) growth, O) pregnancy, 

and P) lactation. Approximate Bayesian computation (ABC) was used to evaluate 

500,000 parameter combinations, assessing fit with median absolute scaled error for 

univariate or multivariate patterns and a pass/fail approach for linear relationships. 

See supplementary TRACE document section 6 “Model output verification” for more 

details and further patterns used in model development. 

 

Model evaluation and replication of a litter manipulation experiment 

To assess the model's ability to replicate real-world observations, we simulated an 

empirical litter manipulation experiment conducted on wild bank voles in Konnevesi, 

Finland in 1996-1998 (50). Litter manipulation experiments represent a classic 

 



approach in life-history research, where litter sizes of females which have recently 

given birth are experimentally increased or decreased. Such studies have been used 

to assess the costs and trade-offs associated with reproduction across various species 

and settings, from laboratory environments to outdoor enclosures and the wild (50, 

56, 57).  

Model outputs were found to be in strong agreement with the 13 observed patterns 

related to population density and the effects of manipulated litter size on weanling 

number and body mass, subsequent breeding attempts, and maternal survival 

(Figure 3). The model captured the seasonal dynamics in population density, with the 

highest values observed in late summer and the lowest in early summer across all 

years. It also reflected differences between years, such as the relatively high early 

summer density and low late summer density in 1997 compared to 1996 and 1998 

(Figure 3A). 

Observed declines in weanling body mass with both season and manipulation group 

were also replicated by the model (Figure 3B), highlighting its ability to reflect 

complex biological processes, such as how varying environmental conditions and 

maternal investment strategies influence offspring growth.  

Simulated litter size at weaning is driven by the female's provisioning during 

lactation and offspring mortality due to starvation, and outputs varied between 

manipulation groups and seasons (Figure 3C). The model reproduced observed 

seasonal patterns, with the largest litter sizes in mid-summer and lowest in late 

summer. However, the model predicted an overall overestimation of litter size at 

weaning compared to empirical observations. Additionally, while the model did 

predict the smallest litter sizes at weaning for reduced litters, as observed, it did not 

sufficiently capture the pattern that increased litter sizes at birth did not necessarily 

result in larger litter sizes at weaning, particularly during early and late summer. 

Instead, the model tended to predict a positive correlation between litter size at birth 

and weaning across all seasons. However, this effect was less pronounced in late 

summer, where litter sizes were more consistent across manipulation groups.  

 



In contrast, the model effectively captured the decline in female survival across 

different seasons and treatment groups, with the lowest survival rates in late summer 

and among females with enlarged litters (Figure 3D). Although there were some 

inconsistencies, such as the absence of manipulation group effects in early summer 

and lower survival rates among control litters in late summer, the model still 

demonstrated a strong alignment with empirical data, considering the complexity of 

these patterns. 

 

 

Figure 3. Comparison of model outputs with empirical data from a litter 

manipulation experiment in Konnevesi, Finland for 1996-1998 (50). A) Seasonal 

population density dynamics per year (proportion of maximum value) (mean ± SE), B) 

offspring body mass (in grams) at weaning , C) litter size (count pups) at weaning , 

and D) mother survival (%) to the next breeding period (means ± 95% CIs). Insets 

panels in B and D display the seasonal averages (means ± 95% CIs), with the dotted 

line in panel D representing 100% survival. Predictions were generated from 100 

simulation replicates. All observed estimates were taken directly from plots 

presented in Koivula et al. (2003). 

 



 

Further tests of the model against independent empirical patterns of 

state-dependent energy consumption and expenditure, survival, life history, and 

morphometrics, were also observed to be in strong agreement (TRACE Section 8.1). In 

particular, the total daily field metabolic rates for nonreproducing and lactating 

animals, as well as the daily food consumption of juvenile, nonreproducing, pregnant, 

and lactating females, closely matched empirical data from nine independent 

studies. These patterns, at higher levels of temporal coverage, represent the 

emergent total metabolism of animals which is driven by their behavior, costs, and 

allocation strategies and, as such, the agreement found here is particularly 

encouraging.  

More details on model evaluation, including full description of pattern values, 

observation strategies, and sources, are found in Appendix Section 8. 

Scenarios of impacts of temporal variation in resource dynamics on individual 

traits and population dynamics 

With the model successfully replicating key empirical patterns during the evaluation 

phase, we extended its application to future scenarios. This allowed us to investigate 

how individual-level trait variation influences population dynamics and to project 

how population abundance might respond to climate-driven changes, offering a 

deeper understanding of the mechanisms linking individual energetics to ecological 

outcomes under shifting environmental conditions. 

Resource availability in Konnevesi for recent years was characterized using the 

normalized difference vegetation index (NDVI) from 2000 to 2022, derived from the 

Terra MODIS mission (58) (Figure 4A), providing a baseline for assessing both 

historical trends and future projections. Projected NDVI dynamics, based on 

minimum temperature and precipitation data from three global circulation models 

(GCMs), were used to determine resource availability through 2099 (Figure 4B). 

Simulations were run for this 100 year period with 500 repetitions, collecting outputs 

across six observation days per year (two in spring, summer, and fall). Thirteen traits 

 



were observed in the final five years of both the observed (2018–2022) and projected 

(2094–2098) periods. Trait values, including body mass, total metabolic rates, and 

costs of locomotion reproduction, and lean mass deposition, were averaged across all 

adult individuals (or relevant age groups) for each observation day. Traits like litter 

size and body mass at weaning were taken as averages for birth and weaning events 

occurring between observation days, while others, such as lifetime reproductive 

success and age at death, were updated annually. These traits were selected for their 

ecological relevance in understanding how resource availability impacts individual 

fitness and population dynamics. Measures of body mass, metabolic rate, and energy 

allocation reflect immediate physiological responses, while metrics like lifetime 

reproductive success and longevity provide insights into key life-history traits.  

 

 

 



Figure 4. Characteristics of the site used for the replication of a real-world 

experiment in model evaluation and for scenario simulations in Konnevesi, 

Finland (A). For the scenarios, B) seasonal variations in observed resource dynamics, 

represented by NDVI, are shown with colored lines indicating individual years 

(2000–2022) that drove historical resource dynamics. C) Projected future resource 

dynamics under the SSP585 emissions scenario, generated based on projected 

temperature and precipitation changes. Dark lines in B and C represent GAM 

predictions. 

 

To identify general trends across time periods, we used assessed correlations 

between all individual-level traits and population metrics for each simulation in each 

period (df = 498). While we did not explicitly examine how relationships between 

traits and population metrics change within the year or between years, the output of 

our model allows for such analyses to be conducted. 

Under the observed vegetation dynamics from 2018 to 2022, average population 

density varied strongly throughout the year, with the lowest values found in late fall 

and early spring (Figure 5A). Population dynamics were primarily characterized by 

strong peaks occurring from late August to early September, though in some years, 

the peak occurred during early summer in late June. Under projected conditions for 

2094 to 2098 (Figure 5B), density patterns remained similar, though peak densities 

were on average higher. 

Correlations between averages and variations in 13 individual traits related to 

energetics, morphometrics, and reproduction, and six population-level outcomes 

revealed distinct patterns (Figure 5G, see ‘Scenarios’ in the Methods section for 

descriptions and units). Under observed conditions, strong negative relationships 

were found between maximum offspring abundance (Apeak) and both storage levels 

(SL) (r = -0.54, 95%CI: [−0.60,−0.48]; Figure 5D) and mass of offspring at weaning 

(mwean) (r = -0.65, 95%CI: [−0.70,−0.59]). Additionally, there were strong negative 

correlations between the timing of peak adult abundance (TApeak) and timing of peak 

offspring abundance (TOpeak) (both as day of year) and both locomotion costs (ML) and 

 



age at first birth (age1st birth) (TApeak-ML: r = -0.64, 95%CI: [−0.69,−0.59]; TApeak-age1st birth: r = 

-0.72, 95%CI: [−0.76,−0.68]; TOpeak-ML: r = -0.50, 95%CI: [−0.57,−0.43]; TOpeak-age1st birth: r = 

-0.84, 95%CI: [−0.87,−0.82]). Positive correlations were observed between the peak 

number of adults (Apeak) and offspring (Opeak) and longevity (agedeath) (Apeak-agedeath: r = 

0.61, 95%CI: [0.55,0.66] (Figure 5C); Opeak-agedeath: r = 0.55, 95%CI: [0.48,0.60]). 

Additionally, a positive relationship was found between the timing of minimum adult 

abundance (TAmin) and age at first birth (age1st birth) (r = 0.56, 95%CI: [0.50,0.62]). 

Under projected conditions for 2094 to 2098, many of these correlations held, with 

slightly higher effect sizes across all 171 output combinations (sum absolute r: 

2018-2022: 52.9; 2094-2098: 56.0) (Figure 5H). Stronger effects were primarily found 

for timing-related population-level outputs (TApeak, TOpeak, and TAmin). The strong 

negative relationship between minimum adult abundance (Amin) and total metabolic 

rate (Mtot) held across both time periods (2094-2098: r = -0.55, 95%CI: [-0.61,-0.48]; 

Figure 5F), related to trends with allocation to reproduction (MR) and lean mass 

deposition (MLM) (Amin-MR : r = -0.52, 95%CI: [-0.58,-0.45]; Amin-MLM : r = -0.49, 95%CI: 

[-0.55,-0.42]). Additionally, strong positive relationships between peak adult (Apeak) and 

offspring (Opeak) abundance and litter size at weaning (LSW) and lifetime 

reproductive success (LRS) remained across both periods (2094-2098: Apeak-LSW: r = 

0.80, 95%CI: [0.77,0.83] (Figure 5E); Apeak-LRS: r = 0.79, 95%CI: [0.75,0.82]; Opeak-LSW: r = 

0.71, 95%CI: [0.67,0.75]; Opeak-LRS: r = 0.57, 95%CI: [0.51,0.63]). Full matrices, including 

analyses of both mean values and variation in outputs, are provided in Appendix 

Figure S31 and Figure S32.  All presented correlations were significant at p < 0.001 (n = 

500 per combination).  

Overall, the model predicted a general increase in adult female vole density for the 

remainder of the century (Figure 5C). As a whole, average population density (mean ± 

SD) increased slightly from 2018-2022 to 2094-2098 (15.7 ± 2.0 vs. 16.8 ± 2.7 female 

voles per hectare, respectively; mean ± 1SD).  

 

 



 

 Figure 5. Predicted temporal variations in population dynamics, life history, and 

morphometric traits under observed and projected resource dynamics, based on 

the SSP585 emissions scenario. In A, C, D, and G, results are shown for 2018–2022, 

while B, E, F, and H depict results for 2094–2098. Changes in annual averages of adult 

female population density over the simulated period are illustrated in I. Panels A and 

 



B show within-year changes in adult female population density, while G and H 

display correlation matrices between a subset of population-level outputs (x-axis) 

and individual-level traits (y-axis). Exemplary relationships are shown for the historic 

period between C) average longevity (in days) and peak adult abundance (count 

animals) and D) body condition (storage level as percent body fat) and peak offspring 

abundance (count animals). For the projected period, relationships are shown 

between E) litter size at weaning (count pups) and peak offspring abundance (count 

animals) and F) total metabolic rate (in kJ per day) and minimum adult population 

size (count animals). Densities in A, B, and I were collected at weekly intervals over 

each five-year period, with annual averages computed per simulation for I. Outputs in 

C–H were derived from averages of traits and population metrics recorded on six 

observation days per year (two each in spring, summer, and fall), totaling 30 days per 

time period per simulation. Correlations thus reflect broad time-period-level 

relationships, acknowledging that this resolution neglects within- and between-year 

variations. In A-F and I, colored points and lines represent outputs from each 

simulation replicate. In G and H, yellow represents negative and pink denotes 

positive correlations, determined via the Pearson correlation coefficient, with 

increasing saturation representing stronger effect size. Abbreviations used in G and 

H include: m = body mass (g), SL = storage level (% body fat), mneo = neonate mass (g), 

mwean = weaning mass (g), ML = locomotion costs (J day⁻¹), MR = reproduction costs (J 

day⁻¹), MLM = cost of lean mass growth (J day⁻¹), Mtot = total metabolic rate (J day⁻¹), 

age1st birth = age at first birth (days), agedeath = longevity (days), LPY = number of litters 

per year (N), LSW = litter size at weaning (N pups), LRS = lifetime reproductive success 

(N pups weaned), Apeak = peak adult abundance (N), TApeak = timing of peak adult 

abundance (day of year), Opeak = peak offspring abundance (N), TOpeak = timing of peak 

offspring abundance (day of year), Amin = adult minimum abundance (N), and TAmin = 

timing of minimum adult abundance (day of year). Predictions were generated from 

500 simulation runs, with thick lines representing generalized additive model (GAM) 

predictions in A and B and linear model predictions in C-F and I. For alternative 

scenarios, see Appendix Figures A2-6. 

 

 



Alternative scenarios were explored to address limitations in the statistical model, 

which failed to fully capture drivers of some within-year NDVI patterns, such as the 

flattening of NDVI in summer (Figure 4A). In these scenarios, observed within-year 

NDVI dynamics were preserved, but their mean values were adjusted to align with 

the statistical model’s projected average annual NDVI. These scenarios resulted in 

slightly weaker correlations overall (sum absolute r: 52.0) (Figure S33). However, 

average annual population density was higher by the end of the simulation period 

(18.5 ± 2.8 female voles per hectare; mean ± 1SD). Similar results were observed under 

the SSP245 emissions scenario (sum absolute r: 52.5), although average annual 

population densities remained fairly constant over the projection period (2094-2098: 

15.2 ± 2.1 female voles per hectare; mean ± 1SD) (Figure S34). 

Discussion 

Allocation processes are among the most daunting energetic processes to measure 

empirically (12, 39). Using a PIE approach, we successfully informed these allocation 

curves by applying inverse parameter estimation and leveraging measurable 

patterns driven by underlying allocation dynamics, such as in morphometrics, energy 

expenditure, and life history. This approach allowed energy allocation patterns to be 

dynamic and incorporate uncertainty, and the model reliably reproduced the 

empirical patterns it was compared against. Notably, the model’s ability to accurately 

recreate complex empirical patterns related to animal morphometrics, reproduction, 

survival, and density when applied to conditions mimicking an empirical litter 

manipulation experiment underscores the approach’s predictive power in simulating 

real-world biological processes. By better informing some of the most uncertain 

aspects of animal energetics, this approach can greatly enhance our capacity to 

predict how organisms will respond to environmental changes, particularly those 

affecting foraging efficiency and resource dynamics. Individual-based bioenergetic 

models are increasingly recognized as powerful tools for predicting the effects of 

change on animal populations (Pirotta, 2022; Rose et al., 2024). The PIE approach has 

the potential to elevate these models by precisely fitting energy allocation dynamics 

to the unique needs of individual species. This capability makes the approach highly 

suitable for applied cases, such as informing policy and management decisions.  

 



Moreover, PIE allows us to address fundamental questions in ecology and evolution, 

including those related to the emergence and consequences of individual variation 

(33, 61), by integrating plasticity and dynamic variation in individual energetics, 

morphometrics, and life history traits and directly linking these traits to the resource 

environment. Additionally, as these allocation strategies may themselves be subject 

to selection, leading to observed differences in pace of life both between and 

potentially within species (62, 63), investigating eco-evolutionary dynamics could 

offer valuable insights into the role of resource dynamics in selection processes. 

Furthermore, since the model is grounded in first principles, it could be particularly 

useful for assessing the combined effects of multiple co-occurring environmental 

changes (64, 65). 

By replicating the conditions of the real-world experiment (50), the model effectively 

reproduced empirical observations and provided a mechanistic explanation for its 

successes and limitations. Notably, it excelled in predicting seasonal dynamics, 

showing lower averages for litter size, offspring mass, litter mass at weaning, and 

female survival in late summer, consistent with reproductive trade-offs under 

resource limitation and high population densities (50, 56, 66). The model also 

captured qualitative trends driven by allocation processes, such as smaller weaning 

masses for offspring from enlarged litters and reduced survival and subsequent litter 

masses in females with larger initial litters. However, a key discrepancy emerged: the 

phenomenon where enlarging litter size at birth does not increase the number of 

offspring successfully weaned, commonly observed in vole litter manipulation 

studies (56, 57, 67), was not adequately captured in model outputs. While females 

with enlarged litters did lose the most offspring, this effect was not strong enough to 

equalize litter size at weaning. These gaps may stem from unmodeled maternal 

behaviors, such as selective feeding or infanticide in enlarged litters, which could 

influence offspring outcomes. Additionally, litter sizes at weaning were generally 

larger than observed in the empirical data. Offspring survival in the wild is likely 

influenced by various non-energetic factors, such as predation, and since the 

empirical study observed animals at a minimum of 30 days old, dispersal processes 

may have already been at play (Mazurkiewicz & Rajska, 1975), reducing the observed 

number of successfully weaned offspring. These factors likely contributed to the 

 



model’s overestimation of empirical results. Despite this limitation, the model 

successfully captured complex seasonal and experimental dynamics, demonstrating 

that its implemented mechanisms can reproduce high-level ecological patterns. 

When applied to scenarios, the model demonstrated how changes in individual traits 

due to environmental shifts relate to broader ecological patterns, such as adult and 

offspring abundances, as well as the timing of population peaks and reproductive 

success. While the causality of these relationships was not assessed here due to 

matters of design, it could be explored in future studies. The model highlighted key 

factors shaping the responses of individuals and populations to environmental 

change, as assessed via correlations between individual-level traits and population 

metrics. For example, body mass was linked to the peak abundance of both offspring 

and adults, while reproductive costs influenced the timing of peak and minimum 

adult abundance. Life-history traits like longevity, lifetime reproductive success, and 

litter size at weaning typically corresponded with higher abundances but were often 

negatively associated with morphometric and energetic factors, such as body mass 

and total metabolic costs, and age at first birth. 

While an inverse relationship between body mass and peak abundance is consistent 

with broader mass-abundance patterns, where resource limitations constrain the 

number of individuals or total biomass in an environment (68–70). However, in 

cyclical rodents, like bank voles, body size tends to increase during the population 

increase and peak phases, a phenomenon known as the Chitty effect (71). These 

phases have also been associated with enhanced survival and suppressed 

reproduction, with the hypothesis that this suppression redirects energy toward 

body growth, resulting in the Chitty effect (72, 73). Evidence suggests that this 

increased allocation to growth may be heritable (74). Although increased longevity 

was observed with higher peak abundances, true cyclical population dynamics were 

not seen in the model, likely due to the absence of driving factors such as these shifts 

in energy allocation patterns, as well as predation, dispersal, and social factors (e.g. 

Radchuk et al., 2016). Nonetheless, the model’s mechanistic flexibility allows for 

testing alternative hypotheses to explore conditions under which such cycles might 

emerge, while considering detailed energetic factors. 

 



By bridging the gap between micro-level processes (such as energy expenditure and 

morphometrics) and macro-level phenomena (such as population density), these 

findings shed light on how individual-level alterations in response to environmental 

variability relate to broader shifts in population dynamics. Previous research suggests 

that physiological constraints drive life history strategies both across (76) and within 

species (77), with trait-demography relationships documented in species like small 

mammals and seabirds (45, 78, 79). This approach offers a mechanistic 

understanding of how these trait correlations arise through competition for 

resources and energy allocation, providing valuable insights for identifying causal 

pathways linking environmental change to emergent population outcomes (80). 

Moreover, findings suggest potential conservation implications, such as the 

association between higher locomotive costs and reduced peak population 

abundance. In European brown hares (Lepus europaeus), increased activity behavior, 

and consequently higher locomotive costs, have been linked to changes in resource 

dynamics (81). The model’s results suggest that such impacts may relate to a decline 

in adult abundance.  

Population density was predicted to increase under projected resource availability, 

with scenarios forecasting a 7.0% rise in average annual density and a 13.1% increase 

in peak abundance within a year by the end of the century. However, NDVI increased 

by 21.5% over this period, suggesting that even when implemented as a direct 

relationship, resource availability and ecological responses may not be 1:1, even in 

simplified settings such as here, where only density- and resource-dependent factors 

were considered. 

In generating the presented scenarios, several assumptions were made that may 

have influenced findings. One key assumption in this study was that NDVI serves as a 

reliable proxy for resource availability. Although NDVI has been proposed or applied 

in this context, particularly for herbivores (22, 82, 83), it does not necessarily reflect 

the actual availability of resources consumed by the target species. Despite this 

limitation, NDVI can still be useful for capturing seasonality, offering a comparative 

measure of relative differences and enabling the quantification of temporal and 

spatial patterns in model outcomes. Depending on the modeling effort's goal and 

 



the study system, the best-suited proxy should be determined, which may be NDVI, 

other vegetation indices such as the Enhanced Vegetation Index (84), abiotic 

measures like precipitation, or ideally more direct estimates of food availability, when 

available (82). Certain processes, such as masting events (e.g., Reil et al., 2015), 

predation (Korpela et al., 2014; Radchuk et al., 2016), interspecific competition (Eccard 

& Ylönen, 2002, 2003), and site-specific habitat structure (Ecke et al., 2002), are known 

to influence vole population dynamics and could influence predictions. However, 

they were not incorporated here to maintain the model's tractability and specific 

scope. In cases requiring absolute forecasts, these factors should be informed by 

empirical data when possible. Moreover, the three GCMs used to drive projections 

represent a limited selection of available GCMs within CMIP6 (85). The selected GCMs 

provided the high spatial and temporal resolution needed for the temperature and 

precipitation values used in the projections. Despite these limitations, the model 

outcomes effectively demonstrated how variations in resource dynamics can 

influence trait changes and population patterns under potential future conditions, 

providing valuable insights into ecological responses to environmental shifts. 

In addition to the assumptions underlying the demonstrative scenarios, the 

proposed PIE framework also relies on several key assumptions in its formulation. 

Firstly, using empirical patterns to inform the allocation dynamics grounds the 

model dynamics in observed knowledge of the study system. However, this approach 

inherently assumes that these patterns can be trusted as accurate indicators of a 

system's functioning. Factors such as measurement or reporting error, study 

conditions (e.g., field versus lab settings), sample size, and variability in methodology 

could all affect the accuracy and transferability of empirical patterns (36). These 

challenges can be met by using multiple and diverse patterns spanning various 

levels of the ecological hierarchy modeled, and we adhered to this practice here (36, 

37). Additionally, methods like the virtual ecologist approach (86) can be employed to 

collect pattern outputs under conditions similar to the empirical observations, 

thereby minimizing the effect of contextual differences between the model and 

observations. Moreover, the current approach implicitly assumes that many of these 

patterns remain static over time. However, many patterns are driven by local context 

(e.g., habitat structure and climate, resource availability, inter- and intraspecific 

 



interactions) and may change through adjustment (e.g., phenotypic plasticity), local 

adaptation, and evolutionary processes (e.g., Edelaar & Bolnick, 2019). Particularly 

when making predictions under changing conditions and under longer timescales, it 

may be crucial to consider evolution and adaptation (88). Ideally, an understanding of 

how specific patterns vary across time and space would best inform model 

processes. In lieu of such rare knowledge sources, considering a diverse range of 

patterns has been shown to suffice in driving realistic model behavior (89). 

While our understanding of ecological systems necessitates incorporating 

assumptions and imperfect data sources into models, the rapid pace of 

environmental change compels us to leverage available tools and knowledge to 

address emerging threats and safeguard biodiversity (5, 90). Given that energy serves 

as a crucial link between environmental conditions and animal fitness, 

advancements in empirical knowledge of animal physiology, coupled with a more 

direct approach to informing allocation patterns, can enhance the representation of 

diverse physiological and life history patterns in predictive models (18). Although this 

approach offers a pathway to better inform energetic processes and represent 

species more accurately, it inevitably introduces added complexity. This complexity 

might exceed what is necessary for certain research questions, yet it is indispensable 

for others that demand a detailed understanding of energetic dynamics. Any realized 

gains in predictive power of the PIE approach have not yet been assessed in 

comparison to other methods that represent energy dynamics and allocation 

patterns (e.g. Kooijman, 2000; Mangel, 2015; Sibly et al., 2013). In reality, there has been 

minimal work comparing existing approaches in this manner. Animal metabolism 

and allocation trade-offs are inherently complex phenomena, and the roles of 

plasticity and drivers of energy intake and expenditure remain unresolved (28, 92–94). 

The complex model presented here offers a tool for assessing these influences, yet 

rigorous inter-model comparisons, grounded in statistical validation and utilizing 

independent, spatiotemporally explicit multivariate data, will be needed for assessing 

any improvements in predictive performance (3). Understanding under which 

conditions the consideration of animal energetics at various levels of detail is 

necessary or can improve our ability to make robust population predictions is 

essential for the advancement of predictive ecology.  

 



The fundamental concept of the PIE framework, where energy allocation curves are 

informed by empirical patterns, is not limited to the specific model structure 

presented in this study. This approach could be integrated into existing energy 

budget modeling methodologies (12, 24) to drive allocation processes based on 

animal nutritional status in a manner consistent with empirical knowledge. By 

leveraging empirical patterns, researchers can avoid ad hoc approaches to inform 

energy allocation dynamics, making the PIE framework a valuable tool for those 

implementing bioenergetics models. Moreover, the full model structure can be 

readily applied to other terrestrial homeotherms, provided relevant data are available. 

Although movement and foraging processes may need updating if animals are not 

central place foragers, the core principles of the PIE framework remain applicable. In 

applying the model to other systems, we suggest using patterns that generally relate 

to the dynamics between energy demand, energy intake, and body condition, with 

outcomes measured in terms of morphometrics, reproductive output, and survival. 

Emerging empirical methods are additionally increasingly capturing more directly 

applicable patterns in wild settings, further enhancing the potential of the PIE 

framework. For example, recent studies have linked body condition and mass gain to 

reproductive performance and success in polar bears (Ursus maritimus), badgers 

(Meles meles), and elephant seals (Mirounga angustirostris) (42, 43, 95). These 

advancements in empirical methods provide patterns that can be readily 

incorporated into the PIE structure, offering immense potential for improving the 

accuracy and realism of bioenergetic models.  

Conclusion 

Although the direct measurement of energy allocation processes remains 

challenging, the PIE framework offers a robust alternative by leveraging empirical 

patterns to inform these processes in predictive models. This approach not only 

allows for dynamic energy allocation but also incorporates uncertainty in allocation 

processes, enhancing model realism and reliability. By accurately reproducing a 

variety of observed patterns (40 in total), the model presented here demonstrates its 

potential for both theoretical and applied ecological research. Despite requiring 

assumptions and facing inherent limitations, the PIE framework's adaptability makes 

 



it a valuable tool for predicting organism- and population-level responses to 

environmental changes. Integrating this approach with existing methodologies and 

applying it to other species, especially with emerging empirical data, promises 

significant advancements in bioenergetic modeling and our understanding of 

ecological dynamics. Additionally, applying this framework at the community level 

could uncover species interactions and energy flows within ecosystems, offering 

deeper insights into biodiversity and ecosystem responses to changing conditions. 

Such advancements are crucial for protecting species in the face of ongoing and 

accelerating environmental change. 

Materials and methods 

Model description 

In this study, we introduce the Pattern-Informed Energetics (PIE) framework — a 

novel agent-based energy budget modeling approach which considers empirical 

patterns in a system in driving energy allocation processes. PIE offers a versatile 

framework for representing species energetics through data-driven energy allocation 

strategies as a basis for revealing the emergence of individual variation in metabolic, 

morphological, and life history traits and for predicting the impacts of environmental 

change. Our approach utilizes recent advancements in animal bioenergetics, 

simulating the energetics of wildlife populations within a dynamic, spatially-explicit 

environment. The model is composed of three primary modules, one related to 

movement behavior of simulated agents, another to energetic processes, and one for 

the life-history processes of mortality and reproduction. To ensure the realism and 

accuracy of the model, we parameterized and rigorously tested it using empirical 

data from the bank vole (M. glareolus). However, when sufficient empirical 

knowledge exists, it would be straightforward to adapt the model for other terrestrial 

mammal species. 

In the subsequent sections, we offer a concise overview of the model. For readers 

seeking in-depth details, the comprehensive model description can be found in the 

TRACE document (54, 55), available as a supplemental PDF online. This document 

 



adheres to the Overview, Design concepts, Details (ODD) protocol (96, 97), assuring 

that our model's design, implementation, testing, and application are thoroughly 

documented and well-aligned with their intended purpose. The model, which was 

implemented in Netlogo v6.2.0 (https://ccl.northwestern.edu/netlogo/), is 

open-source and can be downloaded from 

https://github.com/CaraAGallagher/PIEmodel. 

Entities and scales 

The model includes two entities: landscape cells and animal agents. 

Landscape cells are square grid units which can contain food resources. These cells 

have a variable resource level, ranging from zero to a maximum value, which was 

initially calibrated for base simulations and then adjusted for different model 

scenarios (details provided below). Resource cells undergo replenishment during the 

animal foraging phase, with the rate of replenishment determined by the resource 

accumulation rate per timestep and the time elapsed since the last foraging event 

took place at that location. Similar to the maximum resource value, the resource 

accumulation rate was initially calibrated for baseline simulations and subsequently 

modified to align with climate predictions in the various scenarios. 

In the model, resources are represented as generic food items not associated with 

any specific species but linked to vegetation dynamics. These resources' energy 

density and dry matter are based on empirical data for bank vole forage (Meese, 

1969). The proportion of the landscape covered with resource cells was set at 0.75, 

and the spatial distribution of food resources (i.e., fragmentation level) was controlled 

using a global variable. Each grid cell spans 10 m x 10 m, a size chosen to allow for 

realistic population densities, computational feasibility, and the inclusion of multiple 

landscape cells within an individual's home range. The model's landscape is depicted 

as consisting of 20x50 cells, encompassing a total area of 100,000 square meters, 

which resulted in sufficient levels of variability in local vole densities and 

corresponding resource levels. The model landscape has open boundaries, i.e., it is 

toroidal and not bounded at the extents. 

 



Animal agents are characterized by their morphometrics, energetics, age, movement 

speed, and individual trait values, while pregnant and or lactating animals are further 

characterized by state variables related to reproduction. Morphometric state variables 

relate primarily to lean and adipose masses and storage levels of animals and their 

dependent offspring, energetic state variables are used to track the cost of each 

metabolic process, energy intake values, and storage dynamics, while reproductive 

state variables characterize the costs of pregnancy and lactation and number, sex, 

and age of offspring. Only female animals are simulated beyond the weaning stage. 

Consequently, any individuals born as male are removed from the model at weaning. 

The model advances in 30-minute steps, allowing for fine-scale activity patterns and 

energy budget dynamics to be modeled, while remaining computationally feasible. 

To simplify the model and focus on the active breeding period, overwintering was 

omitted. This species exhibits a seasonal reproductive cycle, with winter typically 

characterized by reduced metabolic rates and limited activity, which have minimal 

impact on the key processes modeled. Although overwinter breeding has been 

observed under resource supplementation (98), mechanisms linking the initiation of 

breeding to environmental conditions were not included (e.g., Eccard & Ylönen, 2001), 

and thus overwinter breeding was not considered here.. As a result, each year begins 

on day 90 and ends on day 273 to encompass the breeding period. Metabolic 

calculations are in units of energy per unit time (J 30min-1). Model runs continue 

either until all animal agents have died or until a specified final timestep, 

corresponding to 10 years for calibration and 100 years for scenarios. A 5-year burn-in 

period was sufficient to filter out initial unstable dynamics. 

Process overview and scheduling 

In each timestep, animals first decide whether to move based on their current satiety 

and energy balance. Animals that are not satiated have an increasing probability of 

initiating movement as their energy balance decreases. Once a decision to move is 

made, animals proceed to randomly select a cell within a specific distance, 

corresponding to empirical home range radii observed in bank voles (67, 100–106) 

where they intend to forage during that timestep. This movement behavior is 

 



represented implicitly through consumption effects on the selected cell, assuming 

animals move continuously throughout the 30-minute timestep at an average speed. 

No territorial dynamics are assumed and animals can overlap in their home ranges. 

The speed of movement is determined by randomly selecting values from a gamma 

distribution shaped using empirical data for mean and maximum speeds observed 

in bank voles (107), which influences their transport cost. 

All animals then undergo energy budget calculations for each time step, sequentially 

assessing energy expenditure in the following order: basal maintenance, transport 

costs, reproduction (if applicable), and lean mass growth. 

Maintenance costs are modeled based on body mass following an allometric 

relationship fit to empirical data for vole respiration. 

Animals that remain stationary in a timestep are assumed to be at rest with no 

associated movement costs. In contrast, foraging animals incur activity costs, which 

are determined by two distinct processes: the first for calculating postural costs, 

which are the energetic costs associated with maintaining an upright or particular 

body position while standing or moving (108), and the second for incremental costs 

of transport (109), which are the additional costs required to propel the body forward. 

Both costs vary allometrically with body mass, but incremental costs are additionally 

driven by movement speed. Total locomotion costs are determined as the sum of 

these two processes. 

The reproduction procedure involves assessing the independent costs of pregnancy 

and lactation. Pregnant animals calculate their pregnancy costs based on the energy 

required to fuel maximum fetal and placental growth (12, 110, 111). Nursing animals 

determine their lactation costs based on the maintenance and maximum potential 

growth costs of their offspring, taking into consideration inefficiencies associated 

with milk production and assimilation as well as the reduced thermogenetic capacity 

of neonates (112–114). However, for simplicity, nursing behavior is not explicitly 

modeled; instead, lactation demands are incurred and allocated on a per-timestep 

basis, regardless of whether the mother went foraging in a given timestep. Allocation 

to pregnancy and lactation is modified using the calibrated allocation curves based 

 



on the mother’s body mass, with realized neonate and offspring growth depending 

on allocation in that timestep. 

Lean mass deposition occurs throughout an animal's life in the model. It 

encompasses the growth of structural mass as animals mature and the utilization of 

protein as a metabolic fuel to cover metabolic costs through stored tissues. To 

calculate these costs, animals determine the maximum potential lean mass growth 

based on their current body mass, using growth curves fit to extremely large 

individuals (115). Subsequently, actual lean mass growth is realized following a 

process similar to that used for reproduction, where allocation to lean mass 

dynamics is determined by considering the calibrated allocation curve and the 

animal's current storage level. 

Once energy expenditure calculations are complete, animals then attempt to 

consume food resources from the selected grid cell for foraging. The amount of 

energy consumed in a timestep varies based on a variety of factors including animal 

energy expenditure, their stomach capacity, hunger, energy balance, body fat 

percentage, and the amount of food available on the resource cell. The amount an 

animal attempts to eat is based on their current energy expenditure and negative 

energy balance, with stomach dynamics limiting the total capacity for ingestion. 

Maximum stomach fill and clearance rates are also dynamic and respond to changes 

in energy demand, particularly during the high demand period of lactation, 

reflecting documented changes in alimentary capacity in various rodent species 

(116–118). Hunger is represented following duel point intervention theory (28), which 

posits that hunger intensifies at low body fat percentages, driven by the need to 

ensure survival during periods of illness-induced fasting, while it diminishes at high 

body fat percentages due to elevated risks of predation. Resource cells encountered 

by an animal update their resource levels before the first animal consumes resources 

from that cell in the timestep. If an animal has not fed on that cell for several 

timesteps, then the cells will replenish their values according to the per timestep 

resource accumulation rate, up to the maximum resource level. As animals consume 

food, the cell's resource level decreases proportionally to the amount consumed. 

 



Animals keep track of their energy balance, and any unmet food requirements are 

recorded so that they can attempt to make up for deficits in following timesteps.   

Once both energetic costs and ingested energy are calculated, the overall energy 

balance is adjusted accordingly. 

Based on resulting energy balance, animals update their adipose and lean mass 

tissue stores. When energy balance is positive, they employ anabolic processes to 

deposit body tissues. Conversely, when energy balance is negative, catabolic 

processes break down tissues to mobilize energy for metabolic requirements. The 

proportion of each tissue deposited or mobilized is determined by the animal's 

current body condition, guided by Forbes’ theory (32) and supported by empirical 

data from three studies on rats (Rattus norvegicus) (119–121). 

Once per day, the model updates the ages of animals and mortality events due to 

maximum age and starvation can occur. The probability of adults and dependent 

offspring to starve, as well as the occurrence of abortions, is determined by the 

animal storage level and the calibrated survival functions. On the last day of the year, 

overwinter mortality occurs, and resource levels are reset to their maximum values. 

Conception, birth, and weaning processes are triggered when reaching the relevant 

day of year, gestation day, or days since mating, respectively. 

Calibration 

While many parameters used in the model were well-understood and could be 

based on literature values for bank voles, there were twelve parameters whose values 

were uncertain and required calibration. This calibration process followed a 

pattern-oriented modeling approach (36, 37) and was carried out in two stages. The 

first stage aimed at determining the values of two resource cell parameters using 

empirical population densities. The second stage utilized 16 empirical patterns to 

determine relationships between storage level and energy allocation to growth, 

pregnancy, and lactation, as well as between storage level and adult, offspring, and 

embryo mortality.  

 



To ensure the model simulated realistic animal abundances for the simulated spatial 

extent, we calibrated parameters determining the maximum level and accumulation 

rate of resources in each cell. Population densities were then compared with 

empirical data from bank vole studies, using four articles (50–53) with 13 recorded 

values of mean female population densities (assuming a 1:1 sex ratio) resulting in the 

median:  14.2 voles per hectare (range 4.4 to 41.4). The parameters were varied over 

ranges between 40 - 200 g for the maximum resources and 0.005 to 0.025 g per 30 

minute timestep for the resource accumulation rate and 25 simulations were run for 

a 10 year period for each combination of these values. Following the initial 5 year 

burn-in period, densities were collected weekly from 100 randomly selected suitable 

sites (total area of one hectare) and the median densities were compared to the 

empirical data. The combination which minimized the mean absolute deviation from 

the empirical median value was selected.  

Despite extensive knowledge of energy expenditure, the link between body 

condition and energy allocation to growth, reproduction, and survival remains poorly 

understood, hindering efforts to model environmental impacts on population 

dynamics (39). Yet direct parameterization remains challenging, if not impossible, for 

most species due to limited understanding of these relationships. In this study, we 

used 16 empirical patterns of vole morphometrics, reproduction, and energetics 

(details in Table S26) to calibrate ten sigmoidal parameters linking animal body 

condition to growth, pregnancy, lactation, and survival. A Bayesian approximation 

method, known as rejection approximate Bayesian computation (ABC) (46), was 

employed and the model was executed with 500,000 parameter combinations, with 

relevant outputs collected for each of the 16 empirical patterns after the burn-in 

period. The median absolute scaled error was then calculated for each pattern to 

assess fit for uni- or multivariate patterns, while linear relationship patterns were 

evaluated using a pass or fail approach. For univariate patterns, error was determined 

by comparing each point to the empirical observation, with error calculated across all 

collected values. For multivariate patterns, error was assessed along the relevant 

variable (e.g., per day in the lactation period for lactation-related patterns Figure 

2D-F). The 30 best fitting parameter combinations were retained to select for 

 



well-fitting runs while also considering uncertainty in the posterior distributions (22, 

46).   

Sensitivity analysis 

A comprehensive global sensitivity analysis was conducted on all model parameters 

to identify their influence on seven model outputs, related to animal morphometrics, 

reproduction, and population densities, and to quantify the variance contribution 

attributed to each of the most impactful parameters. Initially, we used the improved 

Morris' elementary effects method (122, 123) to screen all 60 model parameters, 

determine sensitivity indexes from the mean of estimated elementary effects, and 

create a parameter ranking based on their level of influence from the least to the 

most influential. Next, a variance-based sensitivity analysis following the method of 

Sobol (2001) was used to estimate first-order and total-effect indices for the ten most 

influential parameters identified in the Morris screening. The “sensitivity” package in 

R was used in both phases for experiment design and sensitivity index calculations 

(125). 

Evaluation 

Following the successful calibration of the model, we used the 30 best-fitting 

parameter sets  identified using ABC and compared model outputs to 11 additional 

patterns to assess its ability to capture various aspects of bank vole energetics, life 

history, and morphometrics. Details of the 11 patterns, their sources, and values are 

available in Supplementary Table S33. In this evaluation phase, 150 simulations were 

conducted. Outputs were collected at the end of the fifth simulation year, with 

further tracking of surviving animals in the sixth year for survival rates. Model outputs 

were visually compared to empirical patterns to assess their agreement.  

To further assess the model's ability to replicate empirical observations, we simulated 

a litter manipulation experiment on bank voles under wild conditions (50). In this 

study, the effects of manipulated litter size on weanling number and body mass, 

subsequent breeding attempts, and maternal survival were assessed over three years 

(1996–1998) in free-ranging bank voles in central Finland. To replicate the empirical 

 



resource environment, we used the Normalized Difference Vegetation Index (NDVI) 

as a proxy for resource availability, with data interpolated to a daily resolution from 

the extended global NDVI3g product (GIMMS) for the years 1990–1999, covering the 

study period and allowing for six years of burn-in. 

The assumption of a linear relationship between NDVI and food availability was 

adopted as a pragmatic solution in lieu of empirical data defining these dynamics. To 

operationalize this, the 0–1 NDVI value was converted to a 0–2 modifier of the 

calibrated parameter controlling the maximum resource level in a resource cell. 

Under this approach, a value of 1 represented no change to the calibrated value, 0 

reduced the maximum food resources to zero, and 2 doubled this value. While this 

linear assumption could be tested in future studies, it resulted in realistic seasonal 

dynamics during the evaluation step, supporting its utility for modeling resource 

availability in this context. We allowed any increases in NDVI to increase the food 

levels of resource patches once per day equal to the amount increase in maximum, 

but decreases were only enforced through the use of the maximum resource level as 

a hard cap.  

We closely followed the empirical approach, selecting pregnant females with similar 

masses (15.7 to 32.4 g) and assigning them to manipulation groups (‘Enlarged’ + 2 

pups, ‘Reduced’ - 2 pups, or ‘Control’). We observed the total abundance of animals 

and 12 additional patterns related to birth, weaning, and subsequent birth for each 

selected animal seasonally (13 patterns in total; TRACE Table S34). To account for 

stochasticity, 100 simulation replicates were conducted, and outputs were analyzed 

in alignment with the empirical results. 

Scenario details 

To assess the model's potential for identifying variations in traits and projecting 

population trajectories over time, we used the model for future projections for the 

same Konnevesi region from the litter manipulation experiment used for model 

evaluation, with resource dynamics again driven by NDVI. We collected values for 13 

individual traits—related to energetics, morphometrics, and reproduction—as well as 

population abundance, either seasonally or annually, depending on relevance. We 

 



then predicted future responses at this site under projected changes in temperature 

and precipitation, again collecting the same trait and population dynamics outputs. 

We acknowledge that our predictions are not absolute forecasts due to the exclusion 

of factors like predation and site-specific details, such as the energy density of locally 

available food items. Instead, these projections demonstrate the model's capability to 

reveal the role of resource dynamics in the emergence of population-level variations 

in traits and dynamics, mediated through individual energetics as driven by the PIE 

framework. 

As a proxy for seasonal resource dynamics, the normalized difference vegetation 

index (NDVI) was obtained for a 4 km² area centered on the study site's coordinates 

(62°37'N, 26°17'E) from the Terra MODIS (Moderate Resolution Imaging 

Spectroradiometer) mission (58) (Figure 3B). The product used, MOD13Q1, accessed 

via the MODISTools package in R (126), provided NDVI at a 250 m spatial resolution 

and 16-day temporal resolution from January 1, 2000, to December 30, 2022. NDVI 

values were averaged across all spatial cells at the site to capture mean seasonal 

vegetation dynamics. These NDVI-driven resource dynamics were incorporated into 

the model in the same way as in the litter manipulation experiment described in the 

evaluation step. 

Projections up to the year 2099 were developed by applying a linear mixed-effects 

model to the observed NDVI data, using floored values of temperature and 

precipitation per month as inputs and mean NDVI as the response variable. Our fixed 

effects included linear and quadratic terms for precipitation (pr and pr^2) and 

minimum temperature (tasmin and tasmin^2), with a random intercept for the year 

to account for annual variability. Monthly averages of precipitation and minimum 

temperature were obtained from three models (CNRM-CM6-1-HR, EC-Earth3-CC, 

AWI-CM-1-1-MR (127–129)) under two emissions scenarios (SSP245, SSP585) and 

historical levels, as part of the Coupled Model Intercomparison Project Phase 6 

(CMIP6) accessed from the Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/). 

 



Model fits to the MODIS NDVI data were evaluated and compared against more 

complex statistical structures, incorporating variables such as incoming solar 

radiation and lagged temperature and precipitation values (1–12 month intervals), 

based on their demonstrated benefits in predicting rodent population dynamics (83). 

Because more complex structures did not significantly improve model fit (assessed 

via AIC and R²), we proceeded with the simpler structure presented above (Figure 4C 

& Appendix Figure S30). 

To better consider observed within year dynamics in NDVI (Figure 4B), we explored 

alternative scenarios. In these, we retained the average annual NDVI projected by the 

statistical model but used a randomly selected year from the observed NDVI data to 

simulate within-annual changes, adjusted to center around the projected average for 

that year. This approach preserved the magnitude of within-year variations while 

aligning with the mean projected value. All projections were interpolated to daily 

NDVI changes and averaged across the three GCMs, yielding one projection per 

emissions scenario. 

These 3 scenarios (two emissions scenarios, SSP245 and SSP585, and two projection 

approaches tested for SSP585), each covering 100 simulation years, were run with 500 

repetitions to account for stochasticity from ABC parameter combinations and other 

sources. Six observation days were selected within a year (two in spring (day of year 

121 and 152), two in summer (181, 213), and two in fall (244, 272)) to observe values for 

all relevant agents. Thirteen traits were observed in 2018-2022 (the last five years of 

the observed data) and in 2094-2098 (the last five years of the projections), while 

population abundance was collected on each observation day from 2018 to 2099. 

Of the trait values, six were collected as the average value for all adult individuals 

(aside from growth, where all individuals >45 days old were observed) on each 

observation day: body mass (in g), body condition (% body fat), field metabolic rates 

(i.e., total metabolic rate excluding production costs), locomotion costs, and energy 

allocation to reproduction and growth (all in J day⁻¹). Three traits—litter size at 

weaning, and body mass of neonates and pups at weaning (both in g)—were 

calculated as averages for events occurring between observation days. Since animals 

 



could give birth or wean between dates, values were assigned to the next scheduled 

observation day, ensuring all events between observations were included in the 

calculations. The final four traits—lifetime reproductive success (N pups weaned), age 

at first birth (days), number of litters per year (N), and age at death (days)—were 

updated at birth or death, when relevant, and taken as annual averages for all 

animals that either died during the year or survived until its end. 

The outcomes were compared using the statistical software R (130) by computing the 

mean and coefficient of variation for each output across the observed (2018-2022) 

and projected (2094-2098) periods for each simulation. Within-year dynamics in 

population abundance were visualized using generalized additive models, while 

across-year trends and visualized relationships between individual-level traits and 

population outcomes illustrated with linear models. Pearson correlation coefficients, 

r, were used to assess correlations between pairs of outputs per simulation replicate 

(171 unique combinations of the mean and CV of 13 traits and six population 

outcomes), focusing on the magnitude of r to determine strength and directionality 

of relationships.  
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modelling and decision support: documenting model development, testing, 
and analysis using TRACE. Ecol. Modell. 280, 129–139. 
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1. Problem formulation 
 

This TRACE element provides supporting information on: The decision-making 
context in which the model will be used; a precise specification of the question(s) that 
should be answered with the model, including a specification of necessary model 
outputs; and a statement of the domain of applicability of the model, including the 
extent of acceptable extrapolations. 
 
Summary: 

Climate and land use change have been identified as the major drivers of 
ecosystem decline in terrestrial systems, and understanding the impacts of 
these drivers on population dynamics is crucial for effective conservation 
strategies. Here we present a novel agent-based energy budget modelling 
approach, called Pattern-Informed Energetics (PIE). This innovative 
framework incorporates a wide range of morphological and physiological 
traits of individual animals, allowing population-level traits and densities to 
emerge from low-level individual foraging success. Notably, the model allows 
energy allocation strategies to emerge through a high level of empirical 
grounding, rather than being imposed. By simulating the potential impacts 
of environmental change on the survival and reproduction of populations, 
the model can be used to test basic and applied research questions related 
to species energetics, behavior, and ecology under natural and 
human-driven dynamics. 

 
Global declines in ecological systems are being driven at large by land use and climate 
change (131). These factors directly affect the survival of populations by altering 
environmental conditions, including changes in resource availability. Alterations in 
resource availability can have far-reaching impacts on the distribution and abundance 

 



of species, mediated through effects on individual fitness and population dynamics. 
To address this pressing issue, we present an agent-based energy budget modelling 
approach, called the Pattern-Informed Energetics (PIE) framework, which can flexibly 
model the energetics of species and allow for the emergence of empirically-driven 
energy allocation strategies. 

Our model incorporates variation in a wide range of morphological and physiological 
traits of individual animals which give rise to population-level traits and densities that 
are dependent on the foraging success of individuals. By simulating the energy 
balance of individuals and populations in dynamic ecosystems, researchers can use 
our model to investigate the potential impacts of environmental change on the 
survival and reproduction of populations. Therefore, our model has significant 
potential for informing conservation strategies and mitigating the impacts of land use 
and climate change on the natural world. 

Changes in environmental conditions have played a critical role in shaping the 
immense variation in metabolic traits found throughout the animal kingdom. Our 
modelling framework captures metabolic adaptations that are crucial in determining 
the energy balance of individuals and populations, thereby influencing their survival 
and reproductive success. The proposed model can be applied to a wide range of 
questions concerning the impacts of changes in landscape structure and resource 
availability on population survival over various spatiotemporal scales, ranging from 
near- to long-term timescales. 

Though the model was developed using a case study focused on bank vole 
populations (Myodes glareolus), it can be readily applied to other terrestrial, 
homeothermic animals given the availability of relevant data. However, depending on 
the specific system and research question, certain aspects of the model may require 
modifications, such as movement behavior or landscape configuration. 

The PIE modelling approach represents a valuable tool for predicting the effects of 
changing environmental conditions on populations, developing effective conservation 
strategies, and investigating a wide variety of questions related to the energetics, 
behavior, and ecology of species in the face of environmental change. 

 
 

2. Model description 
 

This TRACE element provides supporting information on: The model. Provides a 
detailed written model description. For individual/agent-based and other simulation 
models, the ODD protocol is recommended as standard format. For complex 
submodels it should include concise explanations of the underlying rationale. Model 
users should learn what the model is, how it works, and what guided its design. 
 

 



Summary: 
Here we present the model description following the ODD (Overview, Design 
concepts and Details) protocol for describing Individual-Based Models (IBMs) 
(96, 97). The model, which was implemented in Netlogo v6.2.0 
(https://ccl.northwestern.edu/netlogo/), is open-source and can be 
downloaded from https://github.com/CaraAGallagher. 

 

2.1. Purpose and patterns 
In the animal kingdom, changes in environmental conditions can play a key role in 
mediating the selection of alternative metabolic phenotypes through their impacts 
on individual fitness. These variations can contribute to the diversity of energy use 
and life history traits observed among different species and allow animals to cope 
with changing conditions, such as occurring with climate change. In this model, we 
simulate the energetics of wildlife populations in a spatially-explicit and temporally 
dynamic environment by incorporating recent advancements in our understanding 
of the processes that shape animal energetics. The model considers trade offs 
experienced during periods of food limitation, allowing for the assessment of 
questions related to changes in resource availability, behavioral adaptation, and 
population persistence. To ensure that the modeled processes are realistic and 
capture detailed knowledge of the energetics of a specific species, the model has 
been parameterized and tested against empirical data for the bank vole (Myodes 
glareolus). However, when sufficient empirical knowledge exists, it would be 
straightforward to adapt the model for any terrestrial mammal species. 

Empirical patterns were used in both model calibration and evaluation. For model 
calibration, 16 patterns were used to evaluate the outcomes of potential values of 10 
unknown parameters. These patterns came from a variety of published sources and 
were selected as they were thought to be driven by the relationships which were 
being parameterized. See Section 6 for details on model calibration. Twenty four 
additional patterns were reserved for model evaluation, consisting of datasets which 
were not considered during earlier model development stages. All patterns and their 
associated fit criteria are described in Sections 6 and 8 below.  

 

2.2. Entities, state variables, and scales  
The model comprises two entities: landscape cells and individual animal agents.  

Landscape cells are square grid cells characterized by their position and whether 
they contain food resources (resource-cell). Cells which do contain food are 
additionally characterized by their resource level (resource-level) and the last 
timestep when an animal agent consumed their resources (last-eaten) (Table S1). 
Here food represents growth or accumulation of generic food resources, rather than 
relating to any specific food item, with associated parameters, such as the maximum 
resource levels (max-resources), resource growth rates (r-growth-ts), and energy 

 



content (ED-food) and dry matter content (DM-food) of food stuffs being either 
calibrated in the case of max-resources and r-growth-ts (see Section 6) or taken as an 
average for bank vole food items in (132) for ED-food and DM-food. The proportion of 
the landscape covered by food cells and landscape fragmentation levels are set at 
initialization using the sliders perc-resource-cells and fragmentation-level, 
respectively, with both values bounded between 0 and 1.  

Each grid cell covers 10mx10 m. This cell size was selected as it allowed for the 
simulation of empirical population densities, while remaining computationally 
feasible and allowing for individuals to have a number of landscape cells within their 
home range (see Submodels Section 2.7.1) . The total spatial extent of the landscape 
is 20x50 grid cells, covering an area of 100,000 m2. This landscape size was selected as 
it resulted in sufficient levels of variability in local vole densities and corresponding 
resource levels. The model landscape has open boundaries, i.e., it is toroidal and not 
bounded at the extents.  

Animal agents are characterized by 18 base state variables related to their 
morphometrics, energetics, age, movement speed, and individual trait variation, 
while pregnant and or lactating animals are further characterized by an additional 17 
state variables related to reproduction (Table S1). Morphometric state variables relate 
primarily to the lean and adipose masses and storage levels of animals and their 
dependent offspring, energetic state variables are used to track the cost of each 
metabolic process, energy intake values, and storage dynamics, while reproductive 
state variables characterize the costs of pregnancy and lactation and number, sex, 
and age of offspring. All animals above weaning age are represented as female, as 
such animals which are born male are removed from the model at weaning. 

The model proceeds in discrete timesteps of 30 minutes. This interval was selected as 
it allowed for fine scale activity patterns and energy budget dynamics to be 
modelled, while remaining computationally feasible for exploring questions 
demanding long-term projections. When the option to skip the overwinter period is 
selected, each year begins on day 90 and ends on day 273 to encompass the 
breeding period. Otherwise, each year consists of 365 days. Metabolic calculations are 
in units of energy per unit time (J ts-1). Model runs continue until either all animal 
agents have died or up to a specified final timestep.  

 

Table S1. State variables used in the model. 

State variable Code Description [unit] Type 

Landscape cells 

 resource-level Food resource level of a cell [g] Float 

 last-eaten Timestep where resources were last consumed from cell 
[unitless] Integer 

Agents 

 

https://www.codecogs.com/eqnedit.php?latex=U%5Bc%5D#0
https://www.codecogs.com/eqnedit.php?latex=t_e#0


 mass Mass [kg] Float 

 lean-mass Mass of lean (non-adipose) tissues [kg] Float 

 adipose-mass Mass of adipose tissues [kg] Float 

 age Age in days [days] Integer 

 storage-level Storage level (ratio of adipose stores to total mass) [unitless] Float 

 pregnancy-status Pregnancy status [true or false] Boolean 

 lactation-status Lactation status [true or false] Boolean 

 m-BMR Basal metabolic rate [J ts-1] Float 

 m-move Metabolic cost of transport [J ts-1] Float 

 m-growth Metabolic cost of lean mass deposition [J ts-1] Float 

 move-speed Movement speed [m ts-1] Float 

 daily-activity List tracking if movement occurred in a timestep [unitless] List 

 food-debt Value tracking negative energy balance [J] Float 

 energy-assimilated Energy from food resources [J] Float 

 energy-mobilized Energy from mobilized tissues [J] Float 

 stomach-fill Consumed food held in stomach [g] List 

 daily-m-tot List tracking daily expenditure of the last 48 timesteps [g] List 

 daily-ingestion 
List tracking the amount of food ingested in the last 48 
timesteps [g] List 

For pregnant or lactating females: 

 n-emb Number of embryos [N] Integer 

 mass-emb Mass of embryo [kg] Float 

 mass-pl Mass of placental tissue [kg] Float 

 gest-mass Gestational mass (total mass of embryos and placentae) [kg] Float 

 m-growth-emb Metabolic cost of growth of embryo [J ts-1] Float 

 m-preg Metabolic cost of pregnancy [J ts-1] Float 

 ds-mating Days since mating [days] Float 

 n-off Number of offspring [N] Integer 

 mass-off Mass of dependent offspring [kg] Float 

 SL-off Storage level of offspring [unitless] Float 

 lean-mass-off Lean mass of dependent offspring [kg] Float 

 sex-off Sex of dependent offspring [“male” or “female”] String 

 m-BMR-off Basal metabolic rate of dependent offspring [J  ts-1] Float 

 m-growth-LM-off Metabolic cost of lean mass growth of offspring [J ts-1] Float 

 m-lact Metabolic cost of lactation [J ts-1] Float 

 ds-birth Days since giving birth [days] Float 

 t-mating-offset 
Offset between -15 and 15 days for variation in breeding season 
start [days] Integer 

 
2.3. Process overview and scheduling 

 

https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=m_%7BLM%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Badi%7D#0
https://www.codecogs.com/eqnedit.php?latex=age#0
https://www.codecogs.com/eqnedit.php?latex=SL#0
https://www.codecogs.com/eqnedit.php?latex=ps#0
https://www.codecogs.com/eqnedit.php?latex=ls#0
https://www.codecogs.com/eqnedit.php?latex=M_B#0
https://www.codecogs.com/eqnedit.php?latex=M_L#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BLM%7D#0
https://www.codecogs.com/eqnedit.php?latex=v#0
https://www.codecogs.com/eqnedit.php?latex=A_d#0
https://www.codecogs.com/eqnedit.php?latex=FD#0
https://www.codecogs.com/eqnedit.php?latex=EA#0
https://www.codecogs.com/eqnedit.php?latex=EM#0
https://www.codecogs.com/eqnedit.php?latex=SF#0
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At the beginning of each timestep, animals are randomly assessed to determine if 
they should move (move), based on their current satiety and energy balance (see 
Figure S1). If it is determined that they should move, they do so. 

After going through the movement process, animals then go through their energy 
budget processes (energy-budget). First they calculate their energetic costs for the 
timestep (energy-costs), going through each of the metabolic processes, basal 
maintenance (basal-maintenance), cost of transport (cost-of-transport), 
reproduction (reproduction), and lean mass growth (growth-lean-mass), in that 
order. After cost calculation, animals update records of total energy use and output 
monitors (update-records). 

Animals then proceed to consume resources from their local grid cell (energy-intake) 
if they are available and the animal's current hunger and satiety levels allow for it (see 
the Submodels section below for a full description of the energy intake procedure). 
The food levels in each resource cell are dynamically changing and are only updated 
on the first occasion that an animal encounters a food cell in a given timestep 
(resources-grow). Each food cell keeps track of the last time its resources were 
consumed (last-eaten). During the energy intake procedure, animals encountering a 
food cell that has not updated its resource levels for that timestep update it based on 
the time since last eaten and the resource accumulation rates per timestep 
(r-growth-ts), up to the maximum resource level (max-resources). After updating 
resource values, animals consume resources from the cell, and the food level drops 
accordingly to the amount consumed. 

After both energetic costs and ingested energy are determined, the overall energy 
balance is updated (energy-allocation). It is then evaluated whether the animals can 
meet their current costs based solely on the ingested energy (energy-assimilated), or 
if they need to draw on any body reserves (energy-mobilized). 

Based on their energy balance, animals update their adipose and lean mass tissue 
stores (storage-dynamics). Anabolic processes result in the accumulation of body 
tissue for animals with a positive energy balance, while catabolic processes result in 
tissue breakdown for those that mobilized energy, and the proportion of each tissue 
deposited or mobilized (pro-storage-perc) depends on the current body condition of 
the animal (storage-level). Following the tissue updates (lean-mass & adipose-mass), 
animals then adjust their total body mass (mass) and storage levels. 

Once a day, in daily-tasks, the model updates daily monitors and ages of animals 
(age), and mortality due to old age (mortality-max-age) and starvation 
(mortality-starvation) can occur. If it is the last day of the year (yearly-tasks), the 
model resets the year and updates yearly monitors. Additionally, overwinter mortality 
occurs (mortality-overwinter), and resource levels are reset to their maximum values. 
Finally, if overwintering skipping is enabled (overwinter-skip?), animals surviving 
winter undergo growth to cover the skipped period. 

 



 

Figure S1. Flowchart of model process execution order. Only adult females are modelled explicitly. 
Diamond-shaped symbols (in red) indicate decisions made by agents and parallelograms indicate 
calculations. Blue elements indicate actions taken by animals and orange elements are relevant for 
both agent and environmental variables. A detailed description of all elements of this flow diagram can 
be found in the submodel section below. 

 
2.4. Design concepts  
2.4.1. Basic principles 
To understand the relationships between changes in environmental conditions and 
population level metabolic traits and fitness, this model is constructed on the 
foundation of established physiological theory and eco-evolutionary concepts. The 
central feature of the model is the energy budget, which is shaped by energy 
allocation dynamics inversely parameterized using empirical data. This 
comprehensive approach enables the model to capture the intricate interplay 
between environmental factors, metabolic traits, and population-level outcomes in a 
biologically realistic and detailed manner. 

The modelled energy budgets are based on physiological principles (12, 133) and 
mathematical models of energy expenditure (134). Feedbacks occur between energy 
budget components such as through links between body condition and energy 
intake and allocation to growth and reproduction and between energy balance and 
likelihood of activity in a timestep. The dual intervention point model (28) inspired 

 



links between body condition and “hunger” (represented as a modifier of energy 
intake) such that body condition only modifies hunger at low or high levels, with no 
influence occurring at intermediate levels. Additionally, the relationship between 
body condition and the ratio of metabolic fuels catabolized or anabolized is inspired 
by Forbes’ theory (31, 32), but parameterized using empirical data from three rat 
studies (119–121). 

 

2.4.2. Emergence 
At the population-level, abundance and distributions of metabolic trait values and 
their outcomes on total energy use, growth, reproduction, and survival all emerge 
from individual foraging success and resulting fitness-mediated selection. In 
particular, the key emergent outcomes which were used to evaluate scenarios were 
adult body mass, age at first birth, basal metabolic rate, interbirth intervals, neonate 
body masses, litter size, number of litters per year, weaning body mass, activity 
patterns, average lifespan, and population densities.  

Several aspects of the energy budget are informed using imposed metabolic 
equations. These include the relationships between body condition and energy 
intake and metabolic fuel use, between body size and movement speed and the 
costs of movement, and the additive nature of total energy use (see ODD Element 
2.7.2). 

 

2.4.3. Adaptation 

Individuals adapt their energy allocation based on state-dependent feedback from 
their environment and body condition. Foraging rates increase when body condition 
is low and decrease when reserves are sufficient. The decision to embark on a 
foraging trip is influenced by the current energy balance, with a higher likelihood of 
foraging as energy balance becomes more negative. Females allocate less energy to 
reproduction as their reserves decline, leading to higher probabilities of abortion 
during pregnancy and pup mortality during lactation. Lean mass deposition 
depends on current condition, while the ratio of metabolic fuels (proteins and lipids) 
used in catabolic versus anabolic processes also varies with reserves. 

 
2.4.4. Objectives  
Animals attempt to maximize their fitness by balancing their energy intake with 
activity and other metabolic costs, and by adjusting their allocation of available 
energy to various physiological processes based on their body condition. When their 
energy intake is insufficient, animals use stored body tissues to cover the costs, and 
as storage levels decrease, they increasingly rely on protein catabolism, which 
reduces their metabolic rate. However, if body stores continue to decline, animals 

 



face an increasing risk of mortality. At low body condition, animals prioritize critical 
survival processes over non-essential ones, such as growth or reproduction, resulting 
in tradeoffs (Sibly et al., 2013) (see ODD Element 2.7.2 for more details). 

 

2.4.5. Learning 
Animals in the model do not learn. 

 

2.4.6. Prediction 
Animals in the model do not make predictions. 

 

2.4.7. Sensing 
Animals can directly sense their storage levels and energy balance (represented by 
food-debt, see Tables 2.1 and 2.15) and make decisions based on their current 
nutritional state, e.g., to move, reduce allocation to growth or reproduction, or to alter 
their energy consumption. 

 

2.4.8. Interaction 
Mediating interactions occur in the model through competition for available food 
resources. Animals can continue to feed on a food cell until its resources are fully 
exhausted (a resource-level of 0), and cells replenish their resources at a set rate 
(r-growth-ts). 

 
2.4.9. Stochasticity 
The probability of survival due to starvation (mortality-starvation), the percentage of 
animal’s dying in the overwinter period (mortality-overwinter), the probability of 
conception (pregnancy-status = “true”), the number of embryos implanted (n-emb), 
the initiation of breeding at the start of the season (t-mating-offset), the probability 
of moving in a timestep, and the landscape cell foraged in (see move) are all 
associated with stochasticity in the model. In all these cases, the variation 
represented is considered important, as it may have consequences, but its 
mechanistic basis is unknown or considered not relevant for the purpose of the 
model. 

Additionally, food cells are placed randomly within the landscape (setup-landscape). 
Each map generation results in a unique landscape containing the specified 
percentage cover of resource cells (perc-resource-cells) which are distributed based 
on the value of fragmentation-level.  

 



 

2.4.10. Collectives 
Mothers and dependent offspring in the model act as collectives. They move and 
forage as one unit. Though offspring are assumed to be entirely dependent on their 
mother's milk until weaning when they are created as new entities (see 
Reproduction in Submodels section 2.7.2.1.3).  

 

2.4.11. Observation 
The observed outputs of the model differ between the various model development 
stages (for details see TRACE Sections 6, 7, and 8).  

For calibration, outputs related to 16 empirical patterns were collected from the 
model during the entirety of the fifth simulation year (to allow for four years of 
burn-in before collection). Neonate and weaning masses were recorded at birth and 
weaning events, along with litter size and whether the mother successfully weaned 
an offspring, relative to the mother’s body mass. Once per day animal total and lean 
body mass by age, lactating mother mass, food intake, and total litter mass in 
relation to pup age, mother peak food intake, energy use, and milk transfer by litter 
size, animal body fat percent (either when alive or at death), and field metabolic rate 
by body mass were recorded.   

In the sensitivity analysis, seven model outputs were observed, including body mass 
of adults, neonates, and weaned offspring, age at first birth, litters per year, litter size 
at birth, and population density. 

For model evaluation, state-dependent field metabolic rates and energy intake 
(meaning per age class), survival rates, mass-specific basal metabolic rates, litter size, 
number of litters per year, neonate and weanling body masses, survival, and local 
population densities were observed.   

For scenario testing, we observed 13 individual traits—related to energetics, 
morphometrics, and reproduction—as well as population abundance, either 
seasonally or annually, depending on relevance. 

 

2.5. Initialization 
Upon initialization, a number of simulated animals are placed randomly in the 
landscape based on the value of the input parameter n-animals. Animals are 
initialized with identical arbitrary starting values of 0.01 kg mass, 20 days of age, and 
a storage-level equal to half of the maximum value ( ) (19.9% body fat). 𝑆𝐿−𝑚𝑎𝑥

2

Lean-mass is then calculated as mass  (1 - storage-level) and adipose-mass as ×
mass  storage-level. The variables pregnancy- and lactation-status are set to “false”. ×

 



Lists used for tracking stomach-fill, daily-activity, daily-ingestion, and daily-m-tot 
(energy use) are each initialized as empty lists (i.e., “[]”). 

The mating period of individuals is set to occur between days 90 and 273 (50, 57, 135) 
and in the default setting (overwinter-skip? is set to “true”) the day is set to 90. This 
feature permits the model to skip over the non-breeding period, and consequently, 
the start and end days of the year are adjusted to five days prior to or after the 
beginning or conclusion of the mating period, respectively. The number of timesteps 
occurring per day (ticks-per-day) and cell size in meters (cell-size-m) are set to 48 
and 10, respectively.   

Food cells are placed in the landscape randomly in the setup-landscape procedure 
based on specified input parameters fragmentation-level and perc-resource-cells, 
which determine the distribution and total coverage of resources in the landscape, 
respectively. Landscapes are generated as follows: all grid cells are initialized with 
resource-cell set to “false” and their color (pcolor) set to brown. The total number of 
cells which should become resource cells (cover) is then calculated using the total 
count of cells and the perc-resource-cells parameter. Then, while the number of 
created resource cells is lower than cover, a random cell is asked if its resource-cell 
value is equal to “true” and it has any neighboring cells with resource-cell set to 
“false”. If so, then it asks one of its neighbors with resource-cell set to “false” to 
become a resource cell (resource-cell = “true”). If not, it generates a random float 
value between 0 and 1 and checks if this value is less than 1 minus the 
fragmentation-level parameter value. If this check returns true, and the cell is not 
currently a resource cell, it then becomes a resource cell (resource-cell = “true”). This 
occurs until the number of resource cells is equal to cover. Then all resource cells set 
their resource-level to the maximum value (max-resources) and set their color to 
green.  

All additional parameters in Table S2 are initialized at their specified values.  

Simulation experiments are identical in setup beyond varying parameter values, e.g., 
running with fragmentation-level parameter values of 0.9 versus 0.99. 

 

 



Table S2. Model environment parameter definitions and values. 

Symbol Value Code Description [units]  

 48 ticks-per-day Timesteps per day [unitless] 

 10 cell-size-m Cell size [m] 

 140 max-resources Maximum resources in a resource cell [g] 

 0.75 perc-resource-cells 
Proportion of the map covered by resource 
cells [Prop] 

 0.011 r-growth-ts Resource accumulation in a timestep [g] 

 0.9 fragmentation-level Fragmentation level of habitat [unitless] 

 100 n-animals 
Number of animals created at initialization 
[N] 

 
 
2.6. Input data 
In model evaluation and scenario analyses, normalized difference vegetation index 
(NDVI) data are used to drive within- and between-year variations in resource 
availability. 

 

2.7. Submodels 
The proposed model utilizes a comprehensive approach to examining the 
relationship between the temporal and spatial variability of environmental resources 
and the energy balance, survival probabilities, and reproductive success of animals. 
By incorporating these factors, the model serves as a valuable tool for assessing the 
population-level impacts of environmental changes at a high temporal and spatial 
resolution. The movement and energy budget modules of the model have been 
specifically parameterized for bank voles, yet they possess a level of generality that 
allows for their adaptation to other terrestrial mammals, provided that adequate 
data are available for parameterization. 

The model is composed of three primary modules, one related to movement 
behavior of agents (move), another to energetic processes (energy-budget), and one 
for the life-history processes of mortality and reproduction (demographics) (Figure 
S2). Each module will be described in its own section, along with relevant parameters 
and equations, below.  
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Figure S2. Schematic depicting the model's three distinct modules. 

 

2.7.1. Move (move) 
The movement procedure is composed of several steps. First animals determine 
their probability of moving in a timestep (move-prob) based on their energy balance 
following Eq. 1 (Table S4). This probability is based on the negative energy balance of 
animals (food-debt) compared to daily requirements (represented as the amount of 
food needed to meet those requirements). Animals then check whether their 
stomach capacity has been reached (stomach-fill) and set their movement 
probability to zero if this is the case, so that animals with already full stomachs do not 
engage in foraging bouts. They then roll a random float value with a maximum of 
one and compare this value to their movement probability. If the random number 
falls below the movement probability, then the animal will not move in that timestep, 
setting its movement speed (move-speed) to 0 and adding a 0 to the end of its daily 
activity list (daily-activity). If instead the number is greater than the movement 
probability (which is more likely as the animal’s food debt continues to accrue), then 
the animal will then proceed to engage in a foraging bout. To do this it will first check 
if it is on its home range core cell (home-c) and, if not, move there. Then it will select 
its move-speed for the timestep randomly from a gamma distribution shaped by 
empirical values of mean and maximum speeds (speed-mean & speed-max; Table 
S3). This speed is then converted to meters per half hour and a 1 is added to the end 
of its daily activity list (daily-activity) to indicate that it moved in that timestep. 
Animals then pull their home range radius (HRr) randomly from within the range of 

 



empirical values (HR-r-min & HR-r-max; Table S3) and randomly pick one cell within 
their home range radius to forage in for the timestep (foraging-cell). 

 

Table S3. Movement module parameter definitions and values. 

Symbol Value Code Description [units] Source 

 0.166 speed-mean Mean movement velocity [m s-1] 
(107) 

 0.822 speed-max Maximum movement velocity [m s-1] 

 11.2 HR-r-min Minimum home range radius [m] 
(67, 100, 102–106, 136) 

 32.2 HR-r-max Maximum home range radius [m] 

 

 

Table S4. Movement module equations.  

Eq. # Description [units] Code Symbol Equation Source 

1 Probability of moving in a 
timestep [Prob ts-1] 

move-prob 
 

 

- 

 
 

2.7.2. Energy budget (energy-budget) 
The energy budget module is a multi-step process that is broken up into several 
procedures. It includes the four procedures related to calculating energetic costs: 
basal-maintenance, cost-of-transport, reproduction, and growth-lean-mass. 
Additionally, there is a procedure for energy intake (energy-intake), one for allocating 
energy from assimilated food resources and updating energy balance 
(energy-allocation), and another for determining storage dynamics 
(storage-dynamics). Furthermore, the procedure executing the replenishment of 
resource cells (resources-grow) is also called in this module, as it is triggered by the 
energy-intake procedure. 

Animals first calculate their energetic expenditure, with the costs of activity being 
based on energy balance and allocation to reproduction and growth determined 
based on body condition, i.e., percent body fat (Figure S3). Storage levels additionally 
drive potential energy intake through modifiers on attempted intake rates in a 
timestep following the dual intervention point model (28), details below in 
storage-dynamics.  

The description below will follow the order in which these processes are executed in 
the full model (Figure S3). See Table S1 for an overview of the state variables involved 
in the energy budget module. 
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Figure S3. Key processes underlying the energy budget module. Light grey lines indicate interactions 
between processes. 

 
2.7.2.1. Energy costs 

2.7.2.1.1. Basal metabolic rate (BMR) (basal-maintenance) 
Maintenance costs are modelled based on body mass following an allometric 
relationship fit to empirical data for vole respiration (Eqn. 2 in Table S6). See TRACE 
Section 3 for details on the empirical data used and how parameters were estimated.  

 

 

Table S2.5. Basal metabolic rate procedure parameter definitions and values. 

Symbol Value Code Description [units] Source 

 6053.1 B0 Normalization constant [unitless]  (137–139) 

 

https://www.codecogs.com/eqnedit.php?latex=B_0#0


 0.64 gamma Allometric scaling exponent [unitless] 

 
 

Table S6. Basal metabolic rate procedure equations.  

Eq. # Description [units] Code Symbol Equation Source 

2 Maintenance costs [J ts-1] m-BMR   (12, 140) 

 

2.7.2.1.2. Cost of transport (cost-of-transport) 
Animals which do not move in a timestep do not accrue any activity costs (see move 
module for a description of when animals decide to move).  For animals which do 
move, costs of activity are broken up into two processes: the first for calculating 
postural costs, which are the energetic costs associated with maintaining a particular 
body position while standing or moving, and the second for incremental costs of 
transport, which are the additional costs required to move the body forward. Both 
costs vary allometrically with body mass, but incremental costs are additionally 
driven by movement speed. Total costs are determined as the sum of these two 
processes (see Equation 3 in Table S8). Postural costs were parameterized using 
empirical data for rodents, while incremental costs follow an allometric relationship 
(109). See TRACE Section 3 for details on the empirical data used and how 
parameters were estimated.  

 

Table S7. Cost of transport procedure parameter definitions and values. 

Symbol Value Code Description [units] Source 

 4.7 intercept-pcot 
Intercept of the postural cost function [J 
ts-1] (141–143) 

 0.63 slope-pcot 
Slope of the postural cost function 
[unitless] (141–143) 

 10.6 intercept-icot 
Intercept of the incremental cost of 
transport function [J kg-1 m-1] (109) 

 -0.29 slope-icot 
Slope of the incremental cost of transport 
function [unitless] (109) 

 
 

Table S8. Cost of transport procedure equations.  

Eq. # Description [units] Code Symbol Equation Source 

3 Cost of transport  
[J ts-1] 

m-move   (144, 145) 
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2.7.2.1.3. Reproduction (reproduction) 
The reproduction procedure can be broken up into the independent costs of 
pregnancy and lactation. As with all other energetic processes, these procedures are 
executed every timestep for relevant animals, here those that are pregnant and or 
lactating. All parameters and equations associated with these two processes can be 
found in Tables S9 and S10, respectively. 

Animals which are pregnant begin the pregnancy procedure by first checking 
whether they have reached the end of the gestation period (if ds-mating >= t-gest). If 
so, they then skip the rest of the pregnancy procedure and execute give-birth (see 
Section 2.7.3.1.2 below). But if not, animals then check whether the number of days 
since mating (ds-mating) is greater than zero. A value of less than zero represents an 
implantation delay (t-0) which occurs when an animal which already has dependent 
offspring becomes pregnant. Animals which are in this delayed implantation stage 
skip the rest of the pregnancy procedure and only advance their ds-mating 
parameter by 30 minutes (the timestep length). Animals which have implanted 
embryos instead execute all pregnancy related functions, starting with the 
calculation of the maximum growth of each embryo in the timestep 
(max-growth-emb) based on the current embryo mass (mass-emb), the fetal growth 
constant (emb-growth-c), and the asymptotic fetal mass (emb-mass-inf) (Equation 
4). The parameters emb-growth-c and emb-mass-inf were determined using 
empirical data, see TRACE Section 3 for details on the empirical data used and 
parameter value determination. This mass is then converted to energy required for 
both fat and protein components (e-fat and e-pro, respectively) based on the 
percentage of each component in fetal tissue (percent-fat-emb and 
percent-pro-emb) and the energy densities (ED-fat and ED-pro) and deposition 
efficiencies (DE-fat and DE-pro) of fat and protein (Equations 5 and 6). The total 
energy needed to fuel structural growth (m-growth-emb) is then calculated as the 
sum of e-fat and e-pro (Equation 7). Since placental tissue also grows alongside 
embryonic development, animals which have been gestating for more than 9.35 days 
(the period after which placental mass was no longer negligible for mice in (110) 
calculate their placental growth in a timestep (max-growth-pl) based on ds-mating 
(Equation 8). This is then converted to the cost of placental growth (m-growth-pl) 
using the energy density (ED-pl) and deposition efficiency (DE-pl) of placental tissue 
(Equation 9). After determining m-growth-emb and m-growth-pl, the actual amount 
of energy allocated to pregnancy (as a proportion; perc-allo-preg) is then calculated 
based on the animal’s storage-level and the calibrated parameters preg-prob-const 
and preg-prob-mid (Equation 10, see TRACE Section 6 for allocation curves for each 
of the 30 selected parameter sets). The total energy allocated to pregnancy is then 
updated by multiplying the sum of the costs of m-growth-emb and m-growth-pl by 
the number of embryos (n-emb) and then adjusting this value using perc-allo-preg 
(Equation 11). The embryo, placental, and gestation masses (mass-emb, mass-pl, and 
gest-mass) are then updated accordingly (Equations 12- 14). At the end of the 
procedure, the parameter ds-mating is advanced by 30 minutes (the length of one 
timestep).  

 



Animals that are lactating start the lactation procedure by first checking if it is time 
to wean their offspring (if ds-birth >= t-nurs) and, if so, then skip lactation to execute 
the wean procedure (see Section 2.7.3.1.3 for details). If not, they then check whether 
the offsprings’ total masses, lean masses, or storage levels (mass-off, lean-mass-off, 
or SL-off) have dropped below zero, in which case lactation should be halted and the 
mortality-starvation procedure run to ensure that these offspring die. If these cases 
aren’t met, then animals proceed to calculate their lactation costs. These costs can 
be broken up into two processes, one for calculating offspring BMR costs 
(m-BMR-off) and the second for producing tissue for offspring structural growth 
(m-growth-lm-off).  Offspring maintenance costs are calculated similarly to adult 
costs except here they are modified to represent the reduced thermogenic capacity 
of neonate rodents (113, 114) using the parameter  off-BMR-red (Equation 15). The total 
costs of m-BMR-off are a sum of individual values. Maximum lean mass growth (in 
kg; max-growth-lm-off) is again modelled following the same process as for adults, 
but here using lean-mass-off as an input (Equation 16). To convert this mass into 
energy, the percent protein of lean mass tissue (lean-mass-perc-pro) is determined 
based on the age of the offspring (ds-birth) following Equation 17, then multiplied by 
the energy density of protein (ED-pro) to get the energy density of lean mass tissue 
(ED-lean-mass-off). Following Equation 18, the total growth costs for lean mass are 
determined using max-growth-lm-off and ED-lean-mass-off and inefficiencies of 
growth accounted for using the parameter off-growth-eff (Equation 19). The actual 
amount of energy allocated to lactation (as a proportion; perc-allo-lact) is then 
calculated based on the animal’s storage-level and the calibrated parameters 
lact-prob-const and lact-prob-mid (Equation 20). This allocation curve differs from 
others in that the allocation proportion spans between 0 and 2 (as opposed to 0 - 
1)(see TRACE Section 6 for allocation curves for each of the 30 selected parameter 
sets). This is due to the fact that mothers with sufficient energy stores should 
additionally allocate energy to the development of offspring energy stores (i.e., body 
fat) in addition to basic maintenance and lean mass growth costs. After calculating 
perc-allo-lact, animals then estimate their cost of lactation (m-lact-est) based on 
m-BMR-off, m-growth-lm-off, the number of offspring (n-off), and the efficiency of 
milk production (milk-prod-eff) (Equation 21), then adjust this value by perc-allo-lact 
to calculate their realized lactation costs for the timestep (m-lact) (Equation 22). The 
milk energy that is available to offspring (milk-energy-output) is determined by 
reducing this value by the milk production efficiency (milk-prod-eff) (Equation 23). 
Then based on the amount of energy allocated to lactation relative to offspring costs, 
animals go through a series of checks following Figure S4. For animals which 
allocate more than m-lact-max to lactation, their offspring grow maximally 
(Equation 24) and deposit additional energy into adipose tissue (Equation 25). For 
those which allocate less than m-lact-max but more than offspring maintenance 
costs (m-BMR-off), then m-BMR-off is covered and offspring grow suboptimally. And 
for those which allocate less than m-BMR-off, the offspring mobilize their own 
tissues to fulfill maintenance and halt growth for the timestep. At the end of the 
procedure, offspring mass and storage level (mass-off and SL-off) are updated 

 



following Equations 26 and 27, and ds-birth is advanced by 30 minutes (one 
timestep).  

 

 

Table S9. Reproduction procedure parameter definitions and values. 

Symbol Value Code Description [units] Source 

Pregnancy 
 [2, 9] n-emb-range 

Range of number of conceived embryos 
[N] (135, 146–148) 

 0.112 emb-growth-c Fetal growth constant [day-1]  (149) 

 6.9 10-8 × emb-mass-init Fetal mass at conception [g] (149) 

 19.957 emb-mass-inf Asymptotic fetal mass [g] (149) 

 0.38 percent-fat-emb Fetal body composition-Fat [Prop] (150, 151) 

 0.102 percent-pro-emb Fetal body composition-Protein [Prop] (150, 151) 

 3,249.9 ED-pl Energy density of placental tissue [J g-1] (152) 

 0.501 DE-pl 
Deposition efficiency of placental tissue 
[Prop] (153) 

 - preg-prob-const 
Logistic pregnancy investment steepness 
constant [unitless]  

Calibrated 

 - preg-prob-mid 
Logistic pregnancy investment logistic 
midpoint [unitless]  

Calibrated 

Lactation 
 0.501 off-BMR-red 

Relative offspring basal costs multiplier 
[Prop] (113, 114) 

 0.880 off-growth-eff Efficiency of offspring growth [Prop] (154) 

 0.825 milk-prod-eff 
Efficiency of producing milk from body 
stores [Prop] (155, 156) 

 - lact-prob-const 
Logistic lactation investment steepness 
constant [unitless]  

Calibrated 

 - lact-prob-mid 
Logistic lactation investment logistic 
midpoint [unitless]  

Calibrated 

 
 

Table S10. Reproduction procedure equations.  

Eq. # Description [units] Code Symbol Equation Source 

Pregnancy 

4 Fetal growth rate [g ts-1] 
max-growth

-emb 
 

 (111) 

5 
Energy for fetal fat 
deposition [J ts-1] 

e-fat  
 

- 
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6 
Energy for fetal protein 
deposition [J ts-1] 

e-fat  
 

- 

7 
Fetal tissue investment [J 
ts-1] 

m-growth- 
emb 

  (112) 

8 Placental growth rate [g ts-1] 
max-growth

-pl 
 

 (110) 

9 
Placental tissue investment 
[J ts-1] 

m-growth-p
l 

 
 

- 

10 
Allocation to pregnancy 
based on storage level 
[unitless] 

perc-allo-pre
g 

 

 
- 

11 
Total cost of pregnancy [J 
ts-1] 

m-preg   - 

12 Update embryo mass [kg] mass-emb  
 - 

13 Update placental mass [kg] mass-pl  
 - 

14 
Update gestational mass 
[kg] 

gest-mass  
 

- 

Lactation 

15 
Offspring maintenance costs 
[J ts-1] 

m-BMR-off  

 

(12, 140) 

16 Offspring growth rate [g ts-1] 
max-growth

-lm-off  

(12) 

17 
Offspring lean mass protein 
content [unitless] 

lean-mass-p
erc-pro 

  (150, 151) 

18 
Energy density of offspring 
lean mass [J kg-1] 

ED-lean-ma
ss-off 

  - 

19 
Offspring costs of lean mass 
growth [J ts-1] 

m-growth-l
m-off 

 
 (112) 

20 
Allocation to lactation based 
on storage level [unitless] 

perc-allo-lac
t 

 
 

- 

21 
Estimated cost of lactation [J 
ts-1] 

m-lact-est  
  

- 

22 Total cost of lactation [J ts-1] m-lact   - 

23 Milk energy output [J ts-1] 
milk-energy-

output 
  (113) 

24 Offspring lean mass [kg] 
lean-mass-o

ff 
 

 

- 

25 Offspring adipose mass [kg] 
adipose-ma

ss-off 
 

 

- 

26 Offspring total mass [kg] mass-off    

 

https://www.codecogs.com/eqnedit.php?latex=e_%7Bpro%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5Cfrac%7B%5CDelta%20m_%7Bemb%7D%7D%7B1000%7D%5Ccdot%5C%3A%25_%7Bemb%2Cpro%7D%5Ccdot%5C%3AED_%7Bpro%7D%7D%7B%5Cvarepsilon_%7Bpro%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bemb%2Ct%7D#0
https://www.codecogs.com/eqnedit.php?latex=e_%7Bfat%7D%20%2B%20e_%7Bpro%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20m_%7Bpl%7D#0
https://www.codecogs.com/eqnedit.php?latex=(-0.542%20%2B%200.079%20%5Ccdot%20ds_%7Bmating%7D-0.002%20%5Ccdot%20ds_%7Bmating%7D%5E2)%20-%20m_%7Bpl%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bemb%2Cpl%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5CDelta%20m_%7Bpl%7D%5Ccdot%20ED_%7Bpl%7D%7D%7BDE_%7Bpl%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ckappa_%7BP%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B1%2Be%5E%7B-k_P(%5Cfrac%7BSL%7D%7BSL_%7Bmax%7D%7D-c_P)%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BP%7D#0
https://www.codecogs.com/eqnedit.php?latex=(n_%7Bemb%7D%20%5Ccdot%20(M_%7Bemb%2Ct%7D%20%2B%20M_%7Bemb%2Cpl%7D))%5Ccdot%20%5Ckappa_P#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bemb%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bemb%7D%2B(%5Ckappa_P%20%5Ccdot%20%5CDelta%20m_%7Bemb%7D)#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bpl%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bpl%7D%2B(%5Ckappa_P%20%5Ccdot%20%5CDelta%20m_%7Bpl%7D)#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Bgest%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bm_%7Bemb%7D%20%5Ccdot%20n_%7Bemb%7D%20%2B%20m_%7Bpl%7D%20%5Ccdot%20n_%7Bemb%7D%7D%7B1000%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BB%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bi%3Doff%5C%23%7D%5E%7Bn_%7Boff%7D%7DB_0m_%7Boff%7D%5C%3B%5E%5Cgamma%5Ccdot%5Cvarepsilon_%7BB%2Coff%7D%5Ccdot%20ITV_%7BB%2Coff(i)%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20m_%7BLM%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bk%7D%7Bt_d%7D(m_%7BLM%2C%5Cinfty%7D%5C%3A%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5Ccdot%20m_%7BLM%2Coff%7D%5C%3A%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D-m_%7BLM%2Coff%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%25_%7Bpro%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=0.23(1-e%5E%7B-0.06(ds_%7Bbirth%7D%2B10.19)%7D)#0
https://www.codecogs.com/eqnedit.php?latex=ED_%7BLM%7D#0
https://www.codecogs.com/eqnedit.php?latex=%25_%7Bpro%2Coff%7D%5Ccdot%20ED_%7Bpro%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BLM%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B%5CDelta%20m_%7BLM%2Coff%7D%5Ccdot%20ED_%7BLM%7D%7D%7B%5Cvarepsilon_%7BG%2Coff%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ckappa_L#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B1%2Be%5E%7B-k_L(%5Cfrac%7BSL%7D%7BSL_%7Bmax%7D%7D-c_L)%7D%7D%20%5Ccdot%202#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BLact%2Ce%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7BM_%7BB%2Coff%7D%2Bn_%7Boff%7D%20%5Ccdot%20M_%7BLM%2Coff%7D%7D%7B%5Cvarepsilon_%7Bmp%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BLact%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BLact%2Ce%7D%5Ccdot%20%5Ckappa_L#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bmp%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BLact%7D%5Ccdot%20%5Cvarepsilon_%7Bmp%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7BLM%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7BLM%2Coff%7D%20%2B%20%5CDelta%20m_%7BLM%2Coff%7D%2C%20%20%5Cquad%20if%20M_%7BLact%7D%20%3E%20M_%7BLact%2Ce%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7BLM%2Coff%7D%20%2B%20%5Cfrac%7B%5Cfrac%7BM_%7Bmp%7D-M_%7BB%2Coff%7D%7D%7Bn_%7Boff%7D%7D%5Ccdot%20%5Cvarepsilon_%7BG%2Coff%7D%7D%7BED_%7BLM%7D%7D%2C%20%20%5Cquad%20%20if%20M_%7BLact%7D%20%3C%20M_%7BLact%2Ce%7D%5C%3B%20%5C%26%20%5C%3B%20M_%7Bmp%7D%20%3E%20M_%7BB%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7BLM%2Coff%7D%20-%20%5Cfrac%7B%5Cfrac%7BM_%7BB%2Coff%7D-M_%7Bmp%7D%7D%7Bn_%7Boff%7D%7D%20%5Ccdot%20%20%5Cfrac%7B%20%5Cfrac%7BED_%7Bpro%7D%7D%7B1000%7D%5Ccdot%20%5Cgamma_%7Bmob%7D%7D%7B%5Cfrac%7BED_%7Bfat%7D%7D%7B1000%7D%5Ccdot%20SL_%7Boff%7D%2B%5Cfrac%7BED_%7Bpro%7D%7D%7B1000%7D%5Ccdot%20%5Cgamma_%7Bmob%7D%7D%7D%7BED_%7BLM%7D%7D%2C%20%20%5Cquad%20otherwise#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Badi%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Boff%7D%20%5Ccdot%20SL_%7Boff%7D%20%2B%20%5Cfrac%7B%5Cfrac%7BM_%7BLact%7D-M_%7BLact%2Ce%7D%7D%7Bn_%7Boff%7D%7D%5Ccdot%20DE_%7Bfat%7D%7D%7BED_%7Bfat%7D%5Ccdot(1-%25_%7Bw%2Cadi%7D)%7D%2C%20%20%5Cquad%20%20if%20M_%7BLact%7D%20%3E%20M_%7BLact%2Ce%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Boff%7D%20%5Ccdot%20SL_%7Boff%7D%2C%20%20%5Cquad%20%20if%20M_%7BLact%7D%20%3C%20M_%7BLact%2Ce%7D%5C%3B%20%5C%26%20%5C%3B%20M_%7Bmp%7D%20%3E%20M_%7BB%2Coff%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Boff%7D%5Ccdot%20SL_%7Boff%7D%20-%20%5Cfrac%7B%5Cfrac%7BM_%7BB%2Coff%7D-M_%7Bmp%7D%7D%7Bn_%7Boff%7D%7D%20%5Ccdot%20%20%5Cfrac%7B1-%20%5Cfrac%7BED_%7Bpro%7D%7D%7B1000%7D%5Ccdot%20%5Cgamma_%7Bmob%7D%7D%7B%5Cfrac%7BED_%7Bfat%7D%7D%7B1000%7D%5Ccdot%20SL_%7Boff%7D%2B%5Cfrac%7BED_%7Bpro%7D%7D%7B1000%7D%5Ccdot%20%5Cgamma_%7Bmob%7D%7D%7D%7B(1-%25_%7Bw%2Cadi%7D)%5Ccdot%20ED_%7Bfat%7D%7D%2C%20%20%5Cquad%20otherwise#0
https://www.codecogs.com/eqnedit.php?latex=m_%7Boff%7D#0
https://www.codecogs.com/eqnedit.php?latex=m_%7BLM%2Coff%7D%2Bm_%7Badi%2Coff%7D#0


27 
Offspring storage level 
[unitless] 

SL-off  
  

 
 

 

Figure S4. Lactation procedure flowchart for assessing offspring lean mass and adipose deposition 
based on maternal investment in a timestep. 

 

2.7.2.1.4. Lean mass dynamics (growth-lean-mass) 
Lean mass deposition can happen throughout life in the model as animals both 
grow in structural mass as they mature and use protein as a metabolic fuel when 
covering metabolic costs using stored tissues (see storage-dynamics for details). To 
estimate lean mass costs, animals first determine the protein content of their lean 
mass tissue (lean-mass-perc-pro) based on their age (Equation 28 in Table S12; 
Section 3.1.5; Figure S5). They then update the energy content of their tissue 
(ED-lean-mass) using the percent protein from Eqn. 28 and the energy content of 
protein (ED-pro)(Equation 29). Allocation to lean mass deposition (as a proportion; 
perc-allo-growth-lm) is then calculated based on the animal’s storage-level and the 
calibrated parameters growth-lm-prob-const and growth-lm-prob-mid (Equation 30, 
see TRACE Section 6 for allocation curves for each of the 30 selected parameter sets). 
Following this step, the lean mass deposition rate (lean-mass-depo) is calculated 
following a Von Bertalanffy growth curve fit to empirical data and modified using 
perc-allo-growth-lm (Equation 31). Finally, the total cost of lean mass deposition 
(m-lean-mass) is then calculated following Equation 32. Any actual addition of lean 
mass does not occur until the storage-dynamics procedure (below).  
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Table S11. Lean mass deposition procedure parameter definitions and values. 

Symbol Value Code Description [units] Source 

 23.5 ED-pro Protein energy density [kJ g-1]  (140, 151, 157, 158) 

 0.735 DE-fat Deposition efficiency of fat [Prop] (159) 

 0.444 DE-pro Deposition efficiency of protein [Prop] (159) 

 - growth-lm-prob-const 
Logistic lean mass deposition investment 
steepness constant [unitless]  

Calibrated 

 - growth-lm-prob-mid 
Logistic lean mass deposition investment 
logistic midpoint [unitless]  

Calibrated 

 0.0264 growth-lm-inf Asymptotic lean mass [kg]  (115, 150, 151, 160–162) 

 0.0964 growth-lm-k Lean mass growth constant [day-1]  (115, 150, 151, 160–162) 

 
 

Table S12. Lean mass deposition procedure equations.  

Eq. # Description [units] Code Symbol Equation Source 

28 
Lean mass protein content 
[unitless] 

lean-mass-perc-p
ro 

 
 (150, 151) 

29 
Energy density of lean mass [J 
kg-1] 

ED-lean-mass   - 

30 
Allocation to lean mass 
deposition based on storage 
level [unitless] 

perc-allo-growth-l
m 

 
 

- 

31 
Lean mass deposition rate [kg 
ts-1] 

lean-mass-depo  
 

(12) 

32 Cost of lean mass deposition 
[J ts-1] 

m-lean-mass  
 (112) 
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Figure S5. Relationship between age (in days) and the protein content of lean mass tissue (%). 
Fitted relationship shown in the green line, while grey points represent empirical data (150, 151). 

 

2.7.2.2. Update records of total energy use and other monitors 
(update-records) 
In this step animals update their total energy use (M) as the sum of all metabolic 
costs calculated in the timestep (Table S13). This value is then added to the list 
daily-m-tot to keep track of costs experienced over the last 48 timesteps (1 day).  

Additionally, any outputs used for calibration, sensitivity analysis, or evaluation steps 
(see TRACE Sections 6 - 8) are collected in this procedure.  

 

Table S13. Equation used for updating total energy use.  

Eq. # Description [units] Code Symbol Equation Source 

33 Total energy use [J ts-1] m-tot   - 

 
2.7.2.3. Energy intake (energy-intake) 
The amount of energy consumed in a timestep varies based on a variety of factors 
including animal energy costs, their stomach capacity, energy balance, and the 
amount of food available on the resource cell they encounter in a foraging bout.  

A series of calculations are performed in this procedure, starting with the 
determination of variables related to the stomach capacity of animals. First, a 
modifier (stomach-mod) is calculated which augments a base equation for mammal 
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gut transit time (stomach-clear-rate) and maximum stomach fill (stomach-fill-max). 
This modifier is based on the elevation of the metabolic costs of basal metabolic rate, 
pregnancy, and lactation over the basal maintenance costs of an animal of the same 
size (Equation 34). This allows animals with elevated costs due either to reproductive 
constraints or increased maintenance costs to achieve a relatively higher stomach 
capacity and reduced clearance time, which have both been documented in rodent 
species (see Section 4). The modifier is then used to calculate stomach-clear-rate 
and stomach-fill-max following equations 35 and 36.  

Following the determination of stomach capacity and clearance rate, the ingestion 
rate required to meet energetic requirements for the timestep (IR-timestep) is then 
calculated. To do so, the total energetic requirements (m-tot) is reduced by the losses 
associated with the heat increment of feeding (m-HIF). After which, this value is 
converted to food mass using the assimilation efficiency of food (AE-food), heat 
increment of feeding (as a proportion; HIF), and energy density of food items 
(ED-food) (Equation 37). To adjust this value by the current storage-level of animals, 
another modifier is calculated, here called the IR-mod. This process is rooted in the 
dual intervention point model (28), which posits that body fat is regulated at two 
distinct points. Specifically, the hypothesis proposes that animals attempt to increase 
their fat stores at low body fat percentages, where the potential for surviving periods 
of fasting due to illness becomes a concern. Conversely, hunger decreases at high 
body fat percentages, as the risks associated with predation increase dramatically. To 
implement this hypothesis into the model, first a scaled version of the storage-level 
(SL-scaled) is calculated depending on whether the current storage level falls over 
the upper intervention point (UIP) or below the lower intervention point (LIP) 
(Equation 38). Here, as a first implementation of dual intervention point theory into 
an energy budget model, we assumed a symmetrical curve with an unregulated 
zone centered around the midpoint of potential body fat values, allowing for a 
tolerance of plus and minus 1.5% body fat. This resulted in a LIP of 18.4% and UIP of 
21.4% body fat, though these values can be reparameterized with empirical data 
when available, potentially leading to asymmetrical curves or variations in the 
distances between the UIP and LIP. SL-scaled is then fed into Equation 39 to 
determine IR-mod for the timestep (see Figure S6 for the resulting relationship of 
IR-mod with storage-level).  

To allow animals to keep track of their energy balance and make up for lost foraging 
opportunities (following Gallagher et al., 2021), a variable was introduced called 
food-debt. This variable is updated twice during the energy-intake procedure, the 
first time being after the values for IR-timestep and IR-mod are calculated to 
determine the total amount of food that an animal would need to eat to meet its 
energetic and storage requirements. In this step, the product of IR-timestep and 
IR-mod is added to the current value of food-debt (Equation 40). Animals that are 
actively foraging at a given timestep (as determined by a non-zero move-speed, as 
described in Sections 2.7.1 and 2.7.2.1.2) will interact with the cell in which they are 
foraging by asking it to update its resource-level via the execution of the 

 



resources-grow procedure (detailed in Section 2.7.2.5). This update is contingent 
upon the cell having a resource-level below the max-resources and not having 
already run the resources-grow procedure during that timestep. They then run a 
series of comparisons to assess how much food should be consumed (IR-real). First, 
an initial value of IR-real is determined to be equal to either the food-debt, 
resource-level of the cell, or IR-max based on their relative values (Equation 41). This 
value is then compared to stomach-fill-max to ensure that animals do not exceed 
their stomach capacity (Equation 42). Food-debt is then reduced by IR-real (Equation 
43), stomach-fill is updated, and values for metabolizable energy intake (MEI), losses 
associated with the heat increment of feeding (m-HIF), and assimilated energy 
(energy-assimilated) are calculated following equations 44, 45, and 46, respectively.   

It is important to note that, as currently implemented, the model primarily 
represents reactive behavior in animals, where they attempt to meet their costs and 
maintain their body stores. The model does not currently incorporate anticipatory 
behaviors, such as seasonal hyperphagia, which can be observed in some species. 
However, this is an area that could be explored in future developments of the model, 
particularly for applications that require a more detailed understanding of these 
behaviors. 

 

Table S14. Energy intake procedure parameter definitions and values. 

Symbol Value Code Description [units] Source 

 0.0507 stomach-fill-perc 
Stomach fill as proportion of body mass 
[Prop]   (132) 

 0.836 AE-food Assimilation efficiency of food [Prop]  (132, 164–166) 

 0.228 HIF 
Heat increment of feeding as a proportion 
of ingested energy [Prop] (167, 168) 

 0.67 DM-food Dry matter content of foodstuffs [Prop] (132) 

 12281.1 ED-food 
Energy density of foodstuffs [J g-1 wet 
mass] (132) 

 
 

Table S15. Energy intake procedure equations.  

Eq. # Description [units] Code Symbol Equation Source 

34 Stomach fill modifier [Prop] stomach-mod   
- 

35 Stomach clear rate [ts-1] stomach-clear-rate   (169)(base equation) 

36 Maximum stomach fill [g] stomach-fill-max  
 

- 

37 
Total potential ingestion rate 
for a timestep [g ts-1] 

IR-timestep  
 

(170) 

38 
Scaled storage level from 0 to 
1 [unitless] 

SL-scaled   
Based on theory in  (28) 
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39 
Ingestion rate modifier based 
on scaled storage level 
[unitless] 

IR-mod  
 
 

 

Based on theory in  (28) 

40 
Record of unmet food 
requirements [g] 

food-debt   (163) 

41 Ingestion rate [g ts-1] IR-real  
 
 

 
(163) 

42 
Realized ingestion rate 
adjusted for stomach fill [g 
ts-1] 

IR-real  
 

 
- 

43 
Update record of unmet food 
requirements [g] 

food-debt   (163) 

44 
Metabolizable energy intake 
[J ts-1] 

MEI   - 

45 
Heat of increment of feeding 
[J ts-1] 

m-HIF   - 

46 Assimilated energy [J ts-1] energy-assimilated   - 

 

 

Figure S6. Relationship between body fat (storage-level, %) and the ingestion rate modifier 
parameter IR-mod (proportion).  

 

2.7.2.4. Energy allocation (energy-allocation) 
After costs are estimated in the energy-budget and ingestion determined in 
energy-intake, these costs are compared here in the energy-allocation procedure to 
assess the net amount of energy assimilated or mobilized in the timestep 
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(energy-assimilated and energy-mobilized, respectively). To do this, animals check 
whether the value of energy-assimilated they calculated in the energy intake step 
exceeds their total energy expenditure (m-tot reduced by the heat increment of 
feeding, m-HIF). If so, they simply reduce their assimilated energy by this value 
(energy-assimilated - (m-tot - m-HIF)). If not, they use the available assimilated 
energy and mobilize the remainder by calculating the difference between energy 
use and intake ((m-tot - m-HIF) - energy-assimilated), resetting energy-assimilated 
to zero, and adding the remainder to energy-mobilized to be catabolized from stored 
tissues in the storage-dynamics procedure.  

 

2.7.2.5. Adipose and lean mass dynamics (storage-dynamics) 
The storage-dynamics procedure simulates the dynamics of animal protein and fat 
stores based on their current storage-level and the amount of energy either 
assimilated or mobilized, as determined by the energy-allocation process. The 
procedure begins by calculating the ratio of metabolic fuels that should be used at 
the current storage-level, referred to as the protein contribution to storage dynamics 
(pro-storage-perc; as described in equation 47). This allows the model to simulate the 
way animals primarily deposit or mobilize adipose tissue when at high body 
percentages, while catabolizing or synthesizing progressively more lean mass as 
stores decline (as illustrated in Figure S7). This procedure is based on Forbes' theory 
(32), which posits that there is a dynamic relationship between protein and fat stores 
and the way these stores are utilized in response to changes in body composition.   

The amount of lean mass mobilized or synthesized is first calculated in terms of 
energy as the product of either energy-mobilized or energy-assimilated and 
pro-storage-perc (Equations 48 & 49). Adipose dynamics instead use the inverse of 
pro-storage-perc and are instead determined in units of mass using the parameters 
for the deposition efficiency and energy density of fat (DE-fat and ED-fat) and the 
percent water of adipose tissue (perc-water-adi) (Equations 50 & 51). The total 
change in lean mass stores, called the energy flux from lean mass (e-diff), is then 
calculated by comparing the sum of the energy deposited as lean mass in the 
growth-lean-mass procedure (Equation 32) and the amount of lean mass 
synthesized due to positive energy balance (determined in energy-allocation) to the 
amount of energy mobilized as lean mass (Equation 52). Then depending on 
whether this value is negative (a net mobilization of lean mass tissue) or positive (net 
deposition), animals use the relevant energy content and deposition efficiency 
parameters to calculate the mass of lean mass either catabolized or deposited 
(lean-mass-change; Equation 53). 

Based on the resulting changes in lean and adipose mass, the animal then updates 
its state variables lean-mass, adipose-mass, mass, and storage-level (Equations 54 - 
57). A final check is done to ensure that the storage levels and mass of animals do not 
drop below zero. If they do, then the animal dies.  

 



Table S16. Adipose and lean mass dynamics procedure parameter definitions and values. 

Symbol Value Code Description [units] Source 

 39.1 ED-fat Fat energy density [kJ g-1]  (151, 157, 158) 

 19.1 ED-cpro 
Energy density of catabolized protein [kJ 
g-1] (140, 157) 

 0.015 gamma-mobilize Fuel partitioning constant [Unitless] (119–121) 

 0.119 perc-water-adi Water percent in adipose tissue [Prop] (171, 172) 

 0.398 SL-max Maximum storage level [Prop] Maximum value in Fedyk 1974 +1SD, 
adjusted for water content 

 
 

Table S17. Adipose and lean mass dynamics procedure equations.  

Eq. # Description [units] Code Symbol Equation Source 

47 Protein contribution to storage 
dynamics [unitless] 

pro-storage-perc 
  (31) 

48 Lean mass synthesized [J ts-1] 
lean-mass-synthesized

-energy 
  - 

49 Lean mass mobilized [J ts-1] 
lean-mass-mobilized-e

nergy 
  - 

50 Adipose synthesized [kg ts-1] adipose-synthesized  
 

- 

51 Adipose mobilized [kg ts-1] adipose-mobilized  
 

- 

52 Energy flux from lean mass [J ts-1] e-diff   - 

53 Realized lean mass flux [kg ts-1] lean-mass-change 

 

 

 

- 

54 Update lean mass [kg] lean-mass   - 

55 Update adipose mass [kg] adipose-mass   - 

56 Update total mass [kg] mass   - 

57 Update storage level [unitless] storage-level  
 

- 
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Figure S7. Relationship between body fat (storage-level; %) and the contribution of protein to 
mobilized or synthesized metabolic fuels (%). Fitted relationship shown in the blue line, while grey 
points represent empirical data. 

 

2.7.2.5. Resource growth dynamics (resources-grow) 
The resources-grow procedure is executed by resource cells, and is triggered by 
animals foraging on a resource cell during the energy-intake process (see Section 
2.7.2.3 above). The procedure begins by estimating the amount of food that should 
be accumulated (r-growth) based on: 1) the number of timesteps that have passed 
since the last replenishment of resources, and 2) the parameter determining the 
amount of resource accumulation per timestep (r-growth-ts). The cell then increases 
its resource-level by the calculated r-growth value. The procedure concludes by 
checking if the resource-level would exceed the maximum resources, and if so, it 
reduces the resource-level to max-resources.  

 
2.7.3. Life-history processes (demographics) 
The processes modelled in the life history module (demographics) can be broken up 
into those which affect reproductive (give-birth and wean) and mortality 
(mortality-max-age, mortality-starvation, and mortality-overwinter) rates (Figure S8).  

 

 



 

Figure S8. Life history processes driving population demographics. 

 

2.7.3.1. Reproduction  
The model includes three procedures, conceive, give-birth, and wean, which 
simulate life history events related to reproduction. These procedures utilize a set of 
parameters that pertain to the timing and duration of the reproductive stages of 
conception, birth, and weaning (as outlined in Table S18).  

 

Table S18. Life history procedure parameter definitions and values for reproductive processes. 

Symbol Value Code Description [units]  Source 

 [121, 273] t-mating Mating days [day of year]  (50, 57, 135) 

  45 t-mature Age of female maturity [days]   (57, 173, 174) 

 0.22 prob-ovul 
Probability of ovulation on a given day 
[Prob] (175) 

 4 t-0 
Implantation delay for lactating females 
[days] (146, 176) 

 20 t-gest Gestation time [days]  (50, 164, 176) 

 21 t-nurs Nursing time [days]  (57, 164, 177, 178) 

 

2.7.3.1.1. Conception (conceive) 
Once per day, animals which are not pregnant check if they should conceive 
offspring. First they ensure that they are of age (> t-mature) and that the day of the 
year falls within the breeding period (adjusted for the pregnancy and lactation 
lengths as animals outside of this period should not have dependent offspring). If all 
conditions are met, animals then pull a random float value which is less than 1 and 
compare this to the chance of implantation (prob-ovul) of 0.22, based on the 
ovulation cycle of 4.5 days reported for bank voles (175). If the random value is less 
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than preg-chance, animals proceed to get pregnant and initialize a suite of state 
variables for the pregnancy period (Table S19). 

 

Table S19. State variables updated in the conceive procedure. 

Description [unit] Code Updated value 

Pregnancy status [true or false] pregnancy-status true 

Days since mating [days] ds-mating 0,          if lactation-status = false 
-t-0,     if lactation-status = true 

Number of embryos [N] n-emb U(n-emb-range) 
Mass of embryo [g] mass-emb emb-mass-init 
Mass of placental tissue [g] mass-pl 0 

 

2.7.3.1.2. Give birth (give-birth) 
At the start of the pregnancy procedure (see Section 2.7.2.1.3 above), pregnant 
animals first check if the number of days since mating (ds-mating) has reached the 
gestation length (t-gest). If so, these animals then execute the give-birth procedure.   

In the rare chance that animals already have dependent offspring, they first wean 
(wean) these offspring before giving birth.  They then initialize a suite of state 
variables for the lactation period (Table S20). Animals then finish by calling the 
lactation procedure (Section 2.7.2.1.3 above) to calculate their lactation costs for the 
timestep.  

 

Table S20. State variables updated in the give-birth procedure. 

Description [unit] Code Updated value 

Pregnancy status [true or false] pregnancy-status false 
Lactation status [true or false] lactation-status true 
Number of offspring [N] n-off n-emb 
Number of embryos [N] n-emb 0 
Mass of dependent offspring [kg] mass-off mass-emb / 1000 
Storage level of offspring [unitless] SL-off percent-fat-emb 
Mass of embryo [g] mass-emb 0 
Mass of placental tissue [g] mass-pl 0 
Lean mass of dependent offspring [kg] lean-mass-off mass-off × (1 -  SL-off) 
Gestational mass (combined mass of 
embryos and placentae) [kg] gest-mass 0 

Days since mating [days] ds-mating 0 
Metabolic cost of pregnancy [J ts-1] m-preg 0 

 

2.7.3.1.3. Wean offspring (wean) 
At the start of the lactation procedure (see section 2.7.2.1.3 above), animals with 
dependent offspring first check if the number of days since giving birth (ds-birth) 

 



has reached the duration of the nursing period (t-nurs). If so, then animals execute 
the wean procedure.  

At the start of the procedure, animals set their lactation-status to false. They then 
create a new animal for each offspring (n-off) by asking the cell they are on to 
“sprout” one agent per offspring. Upon creation, each new turtle retains its mass, 
storage-level, adipose-mass, lean-mass, and age values (from prior to weaning).  The 
animal then sets its pregnancy- and lactation-status variables to false and initializes 
the lists stomach-fill, daily-ingestion, daily-activity, and daily-m-tot to empty (“[]”; see 
Table S1 for variable details). It then selects its home range core cell (home-c) by first 
checking if there are any available resource cells which are not the home-c of 
another animal. If so, the animal randomly selects one of these empty resource cells, 
if not, then it selects a resource cell at random and sets this cell as its home-c.  

As the mothers go through this process of weaning their offspring one by one, they 
reduce their n-off value by one until all offspring are sprouted. They then reset their 
lactation variables to the values in Table S21.  

 

Table S21. State variables updated in the wean procedure. 

Description [unit] Code Updated value 

Lactation status [true or false] lactation-status false 
Days since giving birth [days] ds-birth 0 
Mass of dependent offspring [kg] mass-off 0 
Storage level of offspring [unitless] SL-off 0 
Lean mass of dependent offspring 
[kg] lean-mass-off 0 

Basal metabolic rate of dependent 
offspring [J ts-1] m-BMR-off 0 

Metabolic cost of lean mass growth 
of nursing offspring [J ts-1] m-growth-lm-off 0 

Metabolic cost of lactation [J ts-1] m-lact 0 

 

2.7.3.2. Mortality 
Mortality in the model is simulated through three independent processes: 
senescence (mortality-max-age), starvation (mortality-starvation), and overwinter 
mortality (mortality-overwinter). These processes are governed by a set of 
parameters, which are described in Table S22. In addition, three equations used for 
determining starvation-related mortality are also provided in Table S23. 

 

 

 



Table S22. Mortality procedure parameter definitions and values. 

Symbol Value Code Description [units]  Source 

 620 t-max-age Maximum age [days]  (115, 150, 162, 173) 

 - surv-prob-const 
Logistic survival probability steepness 
constant [unitless]  

Calibrated 

 - surv-prob-mid Logistic survival probability logistic 
midpoint [unitless]  

Calibrated 

 - surv-mod-emb Embryo survival probability modifier 
[unitless] 

Calibrated 

 - surv-mod-off Offspring survival probability modifier 
[unitless] 

Calibrated 

 
0.288 [0.2, 

0.632] 
winter-surv Female mean overwinter survival 

probability (range in brackets) [Prop] (56, 57, 179–181) 

 
 

Table S23. Mortality procedure equations.  

Eq. 
# 

Description [units] Code Symbol Equation Source 

58 Survival probability [unitless] surv-prob  
 

(182, 183) 

59 
Embryo survival probability 
[unitless] 

surv-prob-emb  
 
- 

60 
Offspring survival probability 
[unitless] surv-prob-off  

 
- 

 

2.7.3.2.1. Mortality due to reaching the maximum age (mortality-max-age) 
This procedure is called once per day as part of the daily-tasks procedure. For this, 
animals simply check if their age exceeds the parameter value for maximum age 
(t-max-age), and, if it does, they die. Aging also occurs within the daily-tasks 
procedure.  

  

2.7.3.2.2. Mortality due to starvation (mortality-starvation) 
The starvation-related mortality procedure (mortality-starvation) is called once per 
day, also within the daily-tasks procedure, though a check also occurs at the start of 
the lactation procedure to ensure any offspring which should die do so before the 
start of the lactation calculations.  

This procedure is broken into three parts: one to assess adult mortality, another for 
determining when abortions occur, and the third for determining dependent 
offspring death. All follow the same general approach, but differ in their calculation 
of survival probability and which variables are affected when a death occurs.  
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For adult mortality, animals first determine their survival probability (surv-prob) 
based on their current storage-level and the calibrated parameters surv-prob-const 
and surv-prob-mid (see Equation 58 in Table S23). Then animals roll a random-float 
with a maximum value of 1 and if this value exceeds their surv-prob value, they die.  

When assessing whether any abortions should occur, animals calculate the embryo 
survival probability (surv-embryo-prob) based on the storage-level of the mother and 
the calibrated parameters surv-prob-const, surv-prob-mid, and surv-mod-embryo 
(see Equation 59 in Table S23). They then assess whether each individual embryo 
should die by rolling a random-float with a maximum value of 1 for each embryo 
(temporary variable prob-emb) and then checking if prob-emb exceeds 
surv-embryo-prob. If it does, then that embryo dies and the variables n-emb and 
gest-mass are updated accordingly. If by the end of the check, all embryos have died 
(n-emb = 0), then the females set their pregnancy-status variable to false and the 
values of the variables mass-pl, mass-emb, ds-mating, and m-preg all to zero.  

The process of determining when dependent offspring mortality occurs is similar to 
that of abortion, except here the survival probability (surv-prob-off) depends on the 
storage level of the offspring itself (SL-off) and the calibrated parameters 
surv-prob-const, surv-prob-mid, and surv-mod-off (see Equation 60 in Table S23). 
Again animals roll a survival probability value for each offspring (temporary variable 
prob-off) and compare this to the surv-prob-off value. Additionally a check is done to 
assess whether offspring have a mass, lean mass, or storage level value below zero. If 
any of these conditions are met, then the offspring dies and the mothers variable 
n-off is updated accordingly. If all offspring die, then the mother ceases nursing and 
resets lactation related variables to the values in Table S21.  

2.7.3.2.3. Overwinter mortality (mortality-overwinter) 
When the model is set up to skip the winter period (the default setting of 
overwinter-skip? = true), overwinter mortality is triggered on the last day of the year. 
In this procedure, the observer first selects the year's overwinter mortality value 
(yr-overwinter-mortality) using a random pull from the winter-surv range (see Table 
S22). Then the observer randomly asks a number of animals equal to the population 
size multiplied by yr-overwinter-mortality (rounded) to die.  

 

 

3. Data evaluation 
 

This TRACE element provides supporting information on: The quality and sources 
of numerical and qualitative data used to parameterize the model, both directly and 
inversely via calibration, and of the observed patterns that were used to design the 
overall model structure. This critical evaluation will allow model users to assess the 
scope and the uncertainty of the data and knowledge on which the model is based. 

 



 
Summary: 

The model is composed of 60 parameters, primarily concerning the 
computation of animal energetics. In this section, we outline how certain 
parameter values were established. We have divided this description into 
three categories: 1) data employed for parameters acquired during the fitting 
of equations to empirical observations, 2) data utilized for inverse 
parameterization or calibration of parameters, and 3) data acquired directly 
from literature sources to determine parameter values. For comprehensive 
tables containing parameter values and sources categorized by each model 
procedure, please refer to Section 2. For additional information on model 
calibration, please refer to Section 6. 

 
 

3.1. Data used to fit model equations 

The values of parameters driving several relationships in the model were obtained by 
fitting models to empirical data obtained from peer reviewed literature. This approach 
was used to inform parameters related to basal metabolic rate, costs of transport, fetal 
and adult growth, and metabolic fuel use. 
 
3.1.1. Basal metabolic rate 

To derive the allometric relationship used to calculate basal metabolic costs (BMR), 
empirical values of bank vole BMR and body masses (n = 172) were pulled from three 
publications (137–139) and converted to units of Joules per 30 min. We used the basic 
equation format from the metabolic theory of ecology (184): 

 
to fit four alternative models to the data in R statistical software (130) using the lm 
function from the base package “stats” and the gls function from the “nlme” package 
(185). Data from control and herbivorous lines were utilized where relevant, as these 
lines exhibited similar BMR values. We assessed model fit using AIC and determined 
that a simple gls model, fitting log transformed BMR and body mass, provided the 
best fit (AIC of -491.6) (Figure S9). The interspecific scaling exponents obtained of 0.64 
was comparable to the value of 0.618 ± 0.04 found for small (<500 g) rodents in (186). 
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Figure S9. The relationship between body mass and basal metabolic rate. Red line represents the 
fitted equation used in the model and grey points are empirical values pulled from the three literature 
sources, with color and shape denoting the exact source for each point.  

 

It's important to consider that using total body mass to estimate basal metabolic rate 
(BMR) may introduce inaccuracies as it includes adipose tissue, which is relatively 
metabolically inert. This means that an animal with a higher fat mass may have a 
higher BMR than it should based on its lean mass, and vice versa for lean animals. 
However, if the storage levels of the empirical animals are accurately modeled, this 
shouldn't result in any deviations (see calibration of this pattern in Section 6). Though 
it's also worth noting that plasticity in BMR could also produce similar patterns (93, 
187–189), but this is likely driven by different mechanisms. 
 
If values for lean mass, including metabolically active adipose tissues such as brown 
fat, are available for the empirical animals, it may be better to fit the relationship to 
these values instead of total body mass. However, in the current implementation, 
these data were not available. 
 
3.1.2. Cost of transport 

To determine the total cost of transport for an animal moving at a specific speed, two 
cost components need to be considered: postural costs associated with maintaining 
an elevated posture and incremental costs associated with moving the body forward 
at that movement speed. Incremental costs were calculated using the universal 
allometric relationship presented in (109). However, since there are no similar 

 



relationships available for postural costs, we estimated these costs using literature 
values (141–143), which presented data for similarly sized rodents (n = 5). We employed 
the basic equation format shown below and the gls function from the “nlme” package 
(185) to estimate parameter values: 

 
Representing postural costs as mass-dependent aligns with empirical findings (108, 
190), and, though few, the resulting postural cost parameter values fit the empirical 
data well (Figure S10). 
 

 
Figure S10. The relationship between body mass and the postural cost of transport (or the costs of 
maintaining an upright posture). Orange line represents the fitted equation used in the model and 
grey points are empirical values pulled from the three literature sources, with color and shape denoting 
the exact source for each point.  

 

Although we would have preferred to use more than the five data points available, 
the estimated postural costs, along with the calculated basal maintenance and 
incremental costs, resulted in total metabolic costs of activity that were consistent 
with empirical patterns (see Figure S16). 

 
3.1.3. Fetal growth curves 

To establish the maximum fetal growth rates, we utilized empirical fetal masses from 
at birth and 10 - 15 days of development (50, 149). To ensure that our curve represented 
maximal growth, which can be reduced with decreasing storage level of the mother 
(see Section 2), we selected only the highest values for each date from the two 
literature sources. Subsequently, we fit these maximal values with a Gompertz 
equation (111) (Figure S11). 
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Figure S11. The relationship between the fetal day of development (or day in the gestation period) 
and fetal masses. Yellow line represents the fitted equation used in the model and grey points are 
empirical values pulled from Koivula et al. 2003 and Ożdżeński & Mystkowska 1976, with color and shape 
denoting whether each point corresponds to the maximum, mean, or minimum value reported for that 
day.  

 
3.1.4. Lean mass growth curves 

To determine the parameter values driving the lean mass deposition rates associated 
with somatic growth, we fitted Von Bertalanffy curves to empirical data of bank vole 
body mass (12). These values were extracted from six literature sources, comprising 134 
data points. However, as some of the animals did not have lean mass measurements, 
we estimated lean mass for these animals based on the relationship between body 
mass and adiposity in (150). We fitted two curves, one to all points, representing the 
average lean mass growth across all studies, and the other a maximum growth curve, 
using a subset of animals identified as extremely large in (115)(Figure S12). The 
maximum growth curve drove maximum lean mass growth in model simulations, 
which was then modified based on storage level (see Section 2), while the average 
growth curve was used as a calibration pattern (see Section 6). 
 

 



 
Figure S12. The relationship between age and lean mass. Light green line represents the fitted 
equation used in the model for maximum growth and the dark green line was used as a pattern for 
model calibration. Grey points are empirical values pulled from six literature sources. Inferred lean 
masses are shown as triangles, measured lean masses as circles. 

 
3.1.5. Lean mass percent protein and mobilization 

To model lean mass deposition and mobilization, the protein content of lean mass 
tissue is required. However, this value is known to vary with age in bank voles (150, 151). 
To represent this relationship, values for protein content of lean mass were taken from 
two empirical studies (150, 151) and a Von Bertalanffy curve was fit to the dataset. This 
revealed that protein content increased with age for young animals, then stabilized at 
values of 22% protein at ~90 days of age (see Figure S5).  
 
Animals typically follow the stages of mammalian starvation, which involve glycogen 
use (Stage I), switching to primarily fat use as glycogen stores are exhausted (Stage II), 
and then switching to increased protein catabolism as fat stores decrease (Stage III). 
Though glycogen dynamics are not represented in this model (due to their low 
influence on long-term energy balance and the complexity required to implement), 
the increasing use of lean mass with starvation was estimated following Forbes’ 
theory (32). Using Eqn. 8 in (31), we fit this relationship to values from three rat studies 
(119–121). To obtain more representative values of protein use, the average storage 

 



levels were used rather than only initial values. This resulted in a curve that was similar 
to but slightly more conservative with protein use compared to the ones presented in 
(31). This allows the model to simulate the way animals primarily deposit or mobilize 
adipose tissue when at high body fat percentages, while catabolizing or synthesizing 
progressively more lean mass as stores decline. The curve was fitted using nls in the 
“stats” package in R (130) and produced a gamma value of 0.015 (see Figure S7 for the 
resulting curve). 
 
3.2. Data used to calibrate uncertain parameters 

For all but 12 model parameters, parameterization could be done directly using 
literature values. For these 12 parameters, calibration was done in two stages. As the 
calibration process is provided in great detail in section 6, here we will only present 
the description of the data sets used as patterns for evaluating parameter fits.  
 
For the first calibration step, two parameters related to environmental resource 
availability and renewal were calibrated using empirical values of bank vole population 
density. We gathered empirical population densities from multiple studies (50–53) 
that reported mean population densities of bank voles across various sites and years 
during the spring to autumn period, resulting in a total of 13 values. As the male to 
female ratios were not provided in these studies and the model focuses only on 
female animals, we assumed a 1:1 ratio for males and females. The mean empirical 
female population densities were found to be 17.5 ± 11.8 (SD), with a median density of 
14.2 and a range of 4.4 to 41.4 voles per hectare. While we initially aimed to obtain 
season-specific values to ensure the modelled densities followed described 
population cycles, we observed large variability in the data across studies, indicating 
significant inter- and intra-annual fluctuations in population size and spatial 
heterogeneity in this species (50–53). 
 
For the second calibration step, we extensively researched and analyzed 27 literature 
sources to obtain the necessary data for generating 16 empirical patterns used in 
Section 6.2. These literature sources included: (50, 56, 57, 67, 115, 146, 150, 151, 162, 173, 
176, 191–199). The details for each of the patterns can be found in Table S6.3. In many 
cases, we had to manually extract data from published plots using Automeris 
WebPlot digitizer v4.5 (200). These patterns were used to parameterize sigmoidal 
functions, which were then described by ten parameters to relate animal body 
condition to growth, pregnancy, lactation, and adult, offspring, and embryo survival. 
For additional information on this calibration step, please refer to Section 6.2. 
 
 
3.3. Data used directly from literature values 

For all other parameters, data were available from the literature to directly 
parameterize each of their values. While the majority of these values were obtained 
from studies on bank voles, for some parameters we had to refer to closely related 

 



species to locate the necessary data. The sources for these values included other 
rodent species, particularly rats and mice (113, 119–121, 141–143, 152–155, 159, 167, 168, 171, 
172). Additionally, three literature sources were relevant to mammals in general (140, 
156, 157) and one represented a relationship applicable to all animals (109). For specific 
information on where each of these sources was used, please refer to the tables in 
Section 2. 
 

 

4. Conceptual model evaluation 
 

This TRACE element provides supporting information on: The simplifying 
assumptions underlying a model’s design, both with regard to empirical knowledge 
and general, basic principles. This critical evaluation allows model users to understand 
that model design was not ad hoc but based on carefully scrutinized considerations. 
 
Summary: 

In Figure S1, you can find a flowchart that illustrates the conceptual model. In 
this section, we provide the reasoning behind the following aspects of the 
model: 1) the development of the energy budget model and allocation 
strategy, 2) the emphasis on female animals, 3) the representation of basal 
metabolic rate, 4) the link between energy use and alimentary capacity, 5) 
the exclusion of predation, and 6) the simplistic representation of animal 
movement. For more details on the model's simplifying assumptions, refer to 
Sections 2 and 3. 

 

4.1. Energy budget and allocation  

Food availability plays a crucial role in driving population dynamics, and IBMs can 
incorporate energy budgets to capture this relationship. However, there is currently no 
consensus on the best approach for modeling energy budgets, as different methods 
make varying assumptions (12), and there has been no direct evaluation of alternative 
methodologies.  

Rather than somewhat arbitrarily selecting between the allocation strategies of the 
kappa-rule driven Dynamic Energy Budget framework (24) or the strict hierarchical 
structure of the Sibly et al. (2013) approach, we have instead developed a framework 
which assumes that allocation to non-survival related energetic processes (growth, 
pregnancy, and lactation) changes dynamically with body condition and which allows 
this relationship to emerge from grounding the model to empirical data. The 
parameters that drive this relationship are calibrated using relevant empirical 
patterns, ensuring that the final allocation strategies produce accurate energetic 
outputs (see Section 6). 

 



Though body condition may not be the only driver of energy allocation to these 
processes, other physiological and health-related factors and even experience (201) 
may also play a role. Nonetheless, from an evolutionary perspective, body condition is 
a crucial indicator of nutritional status. Here, we have employed a logistic function to 
establish relationships between body condition and energy allocation to reproduction, 
growth, and survival, as has been observed between reproductive success or mortality 
and body size or condition-related metrics in bank voles and other animals (43, 
202–204). However, if other relationships, or even thresholds, align more closely with 
empirical knowledge for a particular study system, they could also be implemented in 
this framework. 

Additionally, we here assume that during the modelled summer breeding season 
animals are in their thermoneutral zone and therefore we omit direct representation 
of thermoregulatory costs. Though these costs could be incorporated either using 
biophysical or heat loss models (163, 205) or observed thermoregulatory curves (206) if 
extending into the winter period or for relevant questions.  

 



 
Figure S14. Comparison of energy budget frameworks. The top panel represents the basic framework 
proposed by Sibly et al. (2013), the middle panel represents the Dynamic Energy Budget framework 
developed by Kooijman (2000), and the bottom panel represents the updated framework proposed 
here, in which energy allocation is determined by body-condition driven relationships calibrated to 
empirical data, represented by the sigmoidal functions connected to reproduction and growth.  
 
 

Energy intake of animals depends on the food availability of the landscape, energy 
content of ingested food, food replenishment rates, and spatial distribution of food 
cells. 

 



 
Here, in this model implementation, the food in the landscape represents a general 
food source and does not correspond with any particular species. Instead we used an 
average energy conversion constant for a unit of food from the diets presented in 
Meese (1969). However, for more specific inquiries, different diets or qualities can be 
assessed by incorporating specific resource fields into the model with accompanying 
energy conversion amounts if known. 
 
The food replenishment rates and maximum resource values of food cells were 
calibrated to result in population density values consistent with empirical predictions 
(see Section 6). These parameters were here taken as constants and do not vary 
seasonally or between resource patches. However, for the purpose of addressing our 
research questions outlined in Section 1, this simplified representation was sufficient 
for theoretical testing on long-term scales while also maintaining model tractability. 
However, for more specific inquiries, it may be necessary to incorporate more detailed 
representations of landscapes. For example, the seasonality of resources could be 
implemented, particularly when extending the model to cover the winter season. 
 
In this model, the spatial distribution and number of food cells are incorporated as 
input parameters rather than representing any real landscape. This allows for testing 
of the theoretical research questions presented in Section 1.  
 
4.2. Representation of female animals 

As a simplifying assumption, only female animals are represented in the model 
post-weaning. In individual-based population models, it is not uncommon to only 
represent female animals due to their unique reproductive biology and the need to 
track population growth. Since, for many species including bank voles, female animals 
are typically responsible for gestation, lactation, and parental care, they have a more 
direct impact on population dynamics than males. However, modeling only females 
can also have limitations, such as not accounting for male-male competition, 
potential sex-specific differences in behavior and resource use, and intraspecific 
resource competition, particularly in resource-limited environments (207). 
 
4.3. Plasticity in alimentary capacity  

During periods of high energy expenditure, such as during lactation or when basal 
metabolic rate is elevated, the alimentary capacity of some animals may undergo 
changes to enable processing of increased energy intake. This can involve alterations 
in gut size or processing time. Changes in alimentary capacity have been 
documented in various rodent species (116–118) and may be particularly relevant for 
species with the ability to tolerate low ambient temperatures, relatively large litter 
sizes, short gestation periods, and high rates of postnatal growth (208). Importantly, 
an increase in energy intake without a corresponding increase in processing capability 

 



would lead to a higher number of foraging bouts and consequently, increased 
predation risk (209–211). 
 
To address the need for rodents to increase their alimentary capacity during periods of 
high energy expenditure, we incorporated variations in both maximum gut fill and 
processing time (or clearance rate) based on relative energy expenditure (see Section 
2.7.2.3). Although the empirical relationship between these metrics is unknown, the 
relative scaling used produced realistic outcomes for both energy intake (Sections 6 & 
8) and activity budgets (Section 5). However, it should be noted that these values are 
likely to plateau at some point in nature, and the extreme values (maximum and 
minimum gut size and clearance rate) are currently unknown empirically. Therefore, it 
is possible that the model may produce unrealistic alimentary capacities in some 
extreme cases. Once knowledge of these processes is empirically demonstrated, it 
should be incorporated into the model to ensure the most accurate representation of 
the adaptive capacity of the gut. 
 
This approach is different from other methods that rely on functional response 
relationships or daily maximum ingestion rates. In our model, daily consumption 
emerges as a function of activity patterns, stomach capacity, and energy expenditure. 
This is supported by empirical evidence of stomach capacity being reached within a 
30 minute period (the model timestep) in prairie voles (Zynel & Wunder, 2002). 
 
4.4. Exclusion of predation and competitive effects 

Despite its significant role in small rodent population dynamics (75), the current 
version of the model does not account for predation. This omission was a deliberate 
decision to simplify the model and maintain its tractability. However, as a 
consequence, the changes in population dynamics and metabolic traits represented 
in the model may not align with those observed if predation were included. Future 
iterations of the model could potentially incorporate predation and evaluate its 
differential effects on individuals based on their activity state. For example, foraging 
animals may be at a higher risk of predation than resting individuals. 

Similarly, interspecific and intraspecific socially-driven competitive effects were not 
considered, despite existing evidence of these processes affecting bank vole fitness 
(213). This decision was again made to maintain tractability. However, these processes 
could influence population dynamics and may be included in future developments of 
the model when applied to questions in this direction.  
 
4.5. Movement representation 

Animal movement in the model is represented through a simplistic central place 
foraging approach (see Section 2.7.1 for movement module details). Each animal 
departs from a core cell when foraging to visit a single patch located at a realistic 
distance from their core cell, though this movement is represented only implicitly (i.e., 

 



the animal remains in the core cell but selects and consumes resources from the 
selected cell). The decision to move is based on the animal's energy balance, and the 
speed of movement is pulled independently from an empirical distribution. This 
relatively basic and theoretical representation of animal movement behavior was 
deemed sufficient for addressing our research questions while still maintaining model 
tractability. However, for more specific inquiries, a higher level of detail in the 
representation of movement behaviors may be necessary. 
 
 

 

5. Implementation verification 
 

This TRACE element provides supporting information on: (1) whether the computer 
code for implementing the model has been thoroughly tested for programming 
errors and (2) whether the implemented model performs as indicated by the model 
description. 
 
Summary:  

As part of the model development process, the computer code underwent 
rigorous testing to ensure that each subsequent step was initiated only after 
the model had successfully passed a wide range of visual and statistical 
tests. Submodels were visually inspected for performance using the NetLogo 
graphical user interface (GUI), and model output was exported to compare 
against empirical relationships. To ensure accuracy, various testing methods 
were employed to confirm that the model operated as described in the 
TRACE. The model was further verified by simulating a cohort of animals to 
test its performance at the individual level over time. 

 
 
 

We conducted thorough testing of the model to ensure that each submodel and the 
model as a whole functioned as expected. Early in the development process, we 
encoded the basic model in an early version of Netlogo with a homogenous 
landscape and simplified movements (correlated random walk) to carefully proof the 
energy budget code. The final NetLogo version of the model underwent systematic 
inspection using built-in NetLogo features such as monitors, plots, and print 
statements. Debug code was included throughout the model, controlled by the 
parameter "debug", which is still present in the final program. Following a unit testing, 
integration testing, and system testing approach, each energy budget procedure was 
first independently tested, then tested in combination in the order outlined in Figure 
S3, eventually testing the entire model as a whole. Some key verification results will be 
presented in detail below, which demonstrate that the model functions as expected.  
 

 



5.1. Lean mass growth  
To ensure that the growth of lean mass followed the intended allocation process, 
where animals with higher storage levels increase allocation to lean mass growth and 
reach larger adult body sizes, we closely monitored the lean masses of animals with 
predetermined storage levels. To accomplish this, we disabled the mobilization and 
deposition of lean mass and adipose tissues due to differences in energy balance, 
thereby ensuring that any observed growth was reflective of the lean mass dynamics 
procedure (TRACE section 2.7.2.1.4.). Additionally, overwinter skipping was disabled to 
ensure continuous growth curves. We conducted 30 simulation runs for each of the 
tested storage levels and calculated the average and standard deviation for each level, 
as depicted in Figure S15. The output from these simulations was found to be 
satisfactory, falling within the expected range when compared to the average and 
maximum growth models derived from empirical data. 
 

 
Figure S15. Lean mass growth for animals with predetermined storage levels. The colored lines 
represent the mean value of the model outputs from 30 simulation runs, while the shaded areas 
indicate standard deviations. The average and maximum growth curves, derived from empirical data, 
are shown as large black lines for comparison. 
 
 

 
5.2. Activity, cost of transport, and metabolic fuel use 

To ensure that the model accurately represented animal activity and the associated 
costs of transport, several model components were examined in detail. One such 
component was the metabolic cost of moving at a particular running speed. In the 
model, animals draw their movement speed from a gamma distribution based on 
empirical values (for details, see TRACE section 2.7.1). To evaluate whether the 

 



increases in movement costs with running speed were reasonable, we collected data 
on the costs of activity and basal metabolic rates for all animals once per day for 100 
simulation runs. We then compared these outputs to available empirical relationships 
from other rodent species. The resulting fits fell within the empirical relationships, 
with variations attributable to differences in animal body mass (Figure S16). These 
findings confirm that the model provides a reasonable representation of animal 
energy expenditure during locomotion. 
 

 
Figure S16. Metabolic costs of activity, measured as the combined costs of movement and basal 
metabolic rate (in W), for animals moving at various running speeds (in meters per minute). The 
orange points represent the average costs at each speed and orange lines are 95% confidence intervals 
for outputs gathered daily from 100 simulation runs. Grey shaded lines show the relationships derived 
from literature sources, with the empirical animal mass denoted in the figure legend. 

 
Additionally, we assessed the total proportion of the day that voles spent being active. 
To accomplish this, we recorded the average activity rate of all animals daily, which 
was calculated based on the previous day's data. Our analysis revealed that, on 

 



average, animals spent approximately 29.5 ± 26.1% of their time moving and foraging, 
while the rest of the time was spent resting (Figure S17). This value was similar to the 
percentage of time active found for lactating female voles in (214), which reported a 
range of 19% to 50% (mean 34%), suggesting that modeled voles spend a similar 
amount of time being active as observed in real-life voles, particularly those in 
reproductive states similar to those represented in the model outputs. 
 
 

  
Figure S17.  Average percentage of time spent either moving (dark orange) or resting (light orange) 
in outputs from 100 simulations. The data represent the average behavior of all animals in simulation 
year 5 and highlight the relative proportion of time spent foraging versus in rest. 

 
To verify that animals were mobilizing a metabolic fuel ratio that was appropriate for 
their current storage level, we collected data on the mass of mobilized lean and 
adipose tissue for all animals daily in simulation year 5. Our analysis showed that the 
mass of adipose tissue mobilized outweighed that of lean mass until storage levels 
dropped below approximately 7% (Figure S18). Below this point, the proportion of lean 
mass mobilized increased relative to adipose tissue, which is consistent with the 
intended model process and reflects the inefficiency of catabolizing lean mass tissue. 

 



 
Figure S18.  Average mass mobilized (A) and proportion of metabolic fuels used (B) (in terms of 
mass) by animals as a function of their storage level. Green lines represent mobilization of lean mass 
tissue, while blue lines represent adipose catabolism. The filled regions depict plus or minus one 
standard deviation from the mean. Outputs were averaged over 100 simulation runs. 
 

 
 
5.3. Cohort follow  

To further verify the model, a subset of animals consisting of the offspring of the first 
ten reproducing females in simulation year 5 were tracked from birth until the end of 
the simulation year (ending at the overwinter skipped period) for 100 simulation 
replicates. This cohort analysis allowed us to monitor changes in structural and total 
body mass, survivorship, and total energetic costs over time (see Figure S19), and 

 



revealed key aspects of the energy budget. Specifically, the added mass associated 
with gestational periods can be seen as two distinct peaks in Figure S19A, and were 
accompanied by an increase in lean mass, likely due to elevated energy consumption 
during this period. Each of these peaks was then followed by a slight decline in lean 
body mass, attributed to the high energetic demands of lactation. These early-born 
animals had, on average, two successful litters during the simulation year (Figure 
S19C) and exhibited high early survival rates (Figure S19B) which declined after 
reaching reproductive maturity (aligning with periods of population peaks; see Figure 
S20). Additionally, the reduced costs experienced by dependent offspring and the 
increases in the heat increment of feeding (HIF) associated with the lactation period 
could be observed (Figure S19). An interesting output was an increase in activity costs 
towards the end of the simulation year. This coincided with the strongest period of 
survivorship decline and represents increased competition during this period. Overall 
this cohort analysis allowed for a visual inspection of the energy budget over time and 
confirmed that key aspects of the energy budget and demographic modules 
functioned as intended.  
 

 
Figure S19. Various outputs of a cohort of voles tracked for one simulation year, including (A) the 
average lean and total body mass at the age of surviving voles, (B) survivorship, and (C) the average 
energetic costs of surviving voles broken down into individual energetic costs. All outputs are based on 
100 simulations in which the offspring of the first ten reproducing females were tracked from birth. In 
panel B, individual colored lines represent the outputs from individual runs, while the thicker black line 

 



depicts the average survivorship across all runs. In C, inefficiencies associated with milk digestion are 
not depicted. 

 
 

6. Model output verification 
 

This TRACE element provides supporting information on: (1) how well model 
output matches observations and (2) how much calibration and effects of 
environmental drivers were involved in obtaining good fits of model output and data. 

 
Summary:  

The model's uncertain parameters were calibrated through a two-stage 
approach that employed empirical patterns of the bank vole species and the 
approximate Bayesian computation method. In the first calibration step, we 
ensured that resource parameters produced realistic population densities. 
For the second calibration, we focused on energy allocation parameters and 
used 16 empirical patterns to assess model fit. The final model output was in 
good agreement with the empirical data. 

 
While many parameters used in the model were well-understood and could be 
based on literature values for bank voles, there were twelve parameters whose values 
were uncertain and required calibration. This calibration process was carried out in 
two stages. The first stage was aimed at determining the values of two resource cell 
parameters, based on empirical population densities (6.1. Density calibration). The 
second stage utilized 16 empirical patterns to establish the relationship between 
storage level and energy allocation to growth, pregnancy, and lactation, as well as 
between storage level and adult, offspring, and embryo mortality (6.2. Energy 
allocation and survival). Each step will be detailed separately below. Base values were 
used for landscape configuration (see Table S24). 
 
6.1. Density calibration 
To first ensure that the model included a realistic number of animals for the 
represented spatial extent, the resource parameters max-resources-base and 
r-growth-ts were calibrated and the resulting population densities were compared 
with available empirical data for bank voles. Empirical population densities were 
obtained from four articles (50–53) which recorded the mean population density of 
bank voles, spring to autumn, across multiple sites and years, producing a total of 13 
values. A 1:1 male to female ratio was assumed, as the relative ratios for male and 
female voles were not reported, and the model only represents female animals. This 
resulted in mean empirical female population densities of 17.5 ± 11.8 (SD), a median 
density of 14.2, and a range of 4.4 to 41.4 voles per hectare. 
To enable the reproduction of empirical patterns we followed a “virtual ecologist” 
approach (86), where a patch-set was introduced, called dens-cells, which consisted 

 



of 100 randomly selected suitable habitat cells (resource-cells) covering 1 hectare in 
total. Only resource-cells were selected to ensure that the simulated “trapping sites” 
would not be placed in unsuitable habitats, as would be the case in empirical studies. 
The population densities per hectare were then estimated for each parameter 
combination by summing the number of animals located on the dens-cells. The 
parameter max-resources-base was varied between 40 and 200 g in increments of 
20, and r-growth-ts was varied between 0.005 and 0.025 g in increments of 0.002, 
after a preliminary exploration of values that produced stable populations without 
crashing or growing beyond the empirical values. Simulations were run for 10 years, 
with 25 repetitions for each parameter combination, and the first 5 years were 
discarded as burn-in. The population densities were collected weekly on the 
dens-cells, within the simulation period and the period covered by the literature 
records (between days 121 and 278 of the year). All density values were then 
compared to the median value of 14.2 female voles per hectare from the empirical 
data, and the absolute value of any deviations from the median were averaged for all 
timesteps for each parameter combination (Table S24). The combination that best fit 
the data (minimized the average difference) was a max-resources-base of 140 g and 
a r-growth-ts value of 0.011 g per timestep (Figure S20). 
 

Table S24. Results for the best fitting 10 parameter combinations in the calibration of the 
maximum resource level, maxR, and the resource accumulation per timestep, rGrow. The selected 
values are shown in bold. 

max-resources
-base r-growth-ts Mean Median Standard 

deviation 
Mean absolute 

deviation 

140 0.011 14.4 10 13.7 0.186 

120 0.013 13.9 9 12.7 0.267 

140 0.009 13.9 9 13.6 0.289 

100 0.015 13.7 10 11.6 0.454 

180 0.007 14.7 8 17.1 0.464 

160 0.009 14.7 8 15.8 0.488 

120 0.015 14.8 10 12.9 0.55 

80 0.017 13.6 10 10.9 0.554 

100 0.017 14.8 10 12.2 0.555 

60 0.021 13.6 11 9.71 0.578 

 
 
 

 



 
Figure S20. Population density of voles (not including dependent offspring) over five simulation years 
in 25 replicate runs from the accepted parameter combination in the calibration step. Mean density 
from model outputs is represented by the purple-colored line and the standard deviation depicted 
using the filled area. The mean value of the empirical data plus and minus its standard deviation is 
shown in the dark grey rectangle, while the full range of empirical values is shown in light grey. The 
dashed grey line indicates the median value in the empirical data. 
 

 
6.2. Energy allocation and survival calibration 
Despite the abundance of knowledge regarding parameters associated with energy 
expenditure in various species, the interplay between body condition and its impact 
on energy allocation for growth, reproduction, and mortality remains largely elusive 
(39). Understanding these relationships is pivotal for accurately describing the 
dynamics of populations and linking environmental changes to their impacts, and as 
such, they are crucial parameters in bioenergetic models. However, due to the 
limited understanding of these relationships, direct parameterization remains a 
challenge. In light of this, many bioenergetic studies have resorted to incorporating 
rough estimates of body condition in emaciated animals as threshold values to 
determine the failure of reproduction or the occurrence of mortality. However, there 
is a scarcity of evidence to support the existence of such threshold values, and 
nonlinear relationships, rather than stepwise or threshold based relationships, have 
been supported by observations of increased reproductive success, offspring growth, 
and survival with increasing body size and condition (43, 44, 202, 215). In view of this 
knowledge, in the present study, we aimed to calibrate sigmoidal functions 
described by 10 parameters to relate animal body condition to growth, pregnancy, 
lactation, and adult, offspring, and embryo survival: the growth slope and midpoint 
(growth-lm-prob-const & growth-lm-prob-mid), pregnancy slope and midpoint 
(preg-prob-const & preg-prob-mid), lactation slope and midpoint (lact-prob-const & 
lact-prob-mid), and survival slope, midpoint, and modifiers for embryo and offspring 
survival (surv-prob-const, surv-prob-mid, surv-mod-emb, & surv-mod-off). 

 



A Bayesian approximation method, known as rejection approximate Bayesian 
computation (ABC) (46), was employed to calibrate these ten parameters. The 
method followed a pattern-oriented modelling approach (36, 37), utilizing 16 
empirical patterns as a basis for comparison. To sample the parameter space, the R 
package nlrx (216) was used. We followed a Latin hypercube sampling strategy and 
drew from uniform prior distributions with minimum and maximum specified in 
Table S25. The model was then executed with 500,000 parameter combinations, with 
relevant outputs collected for each of the 16 empirical patterns, as detailed in Table 
S26. 
 

Table S25. Ranges of values used to generate the parameter 
space for the energy budget calibration. 

Parameter name Minimum Maximum 

growth-lm-prob-const 10 50 
growth-lm-prob-mid 0 0.2 

preg-prob-const 10 50 
preg-prob-mid 0 0.2 
lact-prob-const 10 50 
lact-prob-mid 0 0.2 

surv-prob-const 20 120 
surv-prob-mid 0 0.1 

surv-mod-embryo 0 2 
surv-mod-off 0 2 

 
 

Table S26. Empirical patterns used for calibrating the energy budget module. All outputs collected in simulation year 5. The 
"Value" column indicates whether the patterns were represented by a range (denoted as "R") or a single value (denoted as "SV") 
for comparison to model outputs. 

Pattern description When collected Value Fit 
threshold Source 

1.  Fetal mass at birth At birth R: Range between 1 - 2.5 g 0 (50) 

2.  Birth mass by litter 
size At birth SV: Negative relationship 0 (194) 

3.  Total body mass by 
age Once per month SV: von Bertalanffy curve per 

age in days 0.36 (115, 150, 151, 160–162) 

4.  Lean mass by age Once per month SV: von Bertalanffy curve per 
age in days 0.36 (115, 150, 151, 160–162) 

5.  Lactating mother 
mass by pup age 

Daily between 
lactation days 0 to 15 SV: Mean values per day 0.265 (197) 

6.  Lactating mother 
food intake by pup age 

Daily between 
lactation days 0 to 15 SV: Mean values per day 0.36 (197) 

7.  Total litter mass by 
pup age 

Daily between 
lactation days 0 to 15 SV: Mean values per day 0.36 (197) 

8.  Mother peak food 
intake by litter size 

Once on lactation  
day 15  SV: Trendline per litter size 0.36 (197) 

9.  Mother peak energy 
use by litter size 

Once on lactation  
day 15  SV: Trendline per litter size 0.36 (197) 

10. Mother peak milk Once on lactation  SV: Trendline per litter size 0.36 (197) 

 



transfer by litter size day 15  
11. Pup mass at weaning 
by litter size At weaning SV: Negative relationship 0 (56, 57, 198) 

12. Litter size at birth At birth R: Between 3.6 - 6.1 offspring 0.36 (50, 146, 164, 173, 176, 191, 197) 

13. Litter size at weaning At birth R: Between 1.28 - 5.28 
offspring 0.36 (50, 56, 67, 164, 192, 195, 196) 

15. Range of percent 
body fat Once per month R: Between 3 - 29% body fat 0 (150, 151, 199) 

16. Percent body fat of 
animals at death At death R: Below 3% body fat 0 (150, 151, 199) 

17. Field metabolic rate 
by body mass Once per month SV:  Average of two allometric 

relationships per body mass 0.36 (193, 217) 

 

To evaluate the fit of each parameter combination, outputs were collected after the 
fifth year of simulation at specific intervals, as indicated in Table S26. The median 
absolute scaled error was then calculated for each pattern by comparing the output 
to either a single value or a range (as indicated by “R” or “SV” in the Value column in 
Table S26). If the pattern had a single value target, the absolute scaled error was 
calculated by taking the difference between the output and the target value:  

 

If the pattern was represented by a range, the output was considered to fit the 
pattern if it fell within the range and was assigned a value of 0. If the output was 
outside of the range, the absolute scaled error was computed based on the range 
itself: 

 

 

The median value across all points was used to represent the overall fit of the 
simulation for each pattern. Linear relationship patterns (2 and 11) were evaluated 
differently, with a negative slope being considered a pass (0) and a positive slope 
being considered a fail (1). The outputs were filtered based on maximum values for 
each pattern fit, as specified in Table S26. These values were selected because they 
resulted in the best fit to the data, with some adjustments made for patterns that 
needed to be constrained to 0 (patterns 1, 2, 11, 14, and 15) or which required slightly 
lower thresholds to best fit (pattern 5) (Figure S21). 

 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cleft%7C%20%5Cfrac%7Boutput%20-%20pattern%7D%7Bpattern%7D%20%5Cright%7C#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%7C%20%5Cfrac%7Boutput%20-%20pattern%5C%3Aupper%5C%3Alimit%7D%7Bpattern%5C%3Aupper%5C%3Alimit%20-%20pattern%5C%3Alower%5C%3Alimit%7D%20%5Cright%7C%2C%20%5Cquad%20if%20output%20%3E%20pattern%5C%3Bupper%5C%3Blimit#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%7C%20%5Cfrac%7Bpattern%5C%3Alower%5C%3Alimit%20-%20output%7D%7Bpattern%5C%3Aupper%5C%3Alimit%20-%20pattern%5C%3Alower%5C%3Alimit%7D%20%5Cright%7C%2C%20%5Cquad%20if%20output%20%3C%20pattern%5C%3Blower%5C%3Blimit#0


 
Figure S21. Resulting fits for each pattern in all completed runs of the calibration step, with the fits 
represented in grey and the acceptance threshold for each pattern shown as a purple line. 
 
The parameter combinations resulting from model calibration were found to fit the 
empirical patterns quite well, with only a few minor discrepancies. These 
discrepancies can be attributed to conflicts between the patterns themselves, 
particularly in the case of lactating mother body mass by pup age (pattern 5; Figure 
S22D) and total body mass by age (pattern 3; Figure S22B). The laboratory animals 
used for pattern 5 had a considerably higher average body mass than those used for 
pattern 3, which made it difficult to fit both patterns tightly without sacrificing one or 
the other. Despite this, the resulting fit is a good compromise, as it fits both patterns 
fairly well and ultimately corresponds to the mean body mass from the PanTHERIA 
database (218) used for model evaluation (see Section 8 below). However, this 
discrepancy did result in slightly lower values for mother food intake and energy use, 
as these patterns were also obtained from the same literature source (Figure S22, 
Panels G & H). Nevertheless, these values were in accordance when adjusted for mass 
and were deemed to be acceptable fits. 

 



 
Figure S22. Comparison of model predictions  for the 30 best fitting parameter combinations with 
the 16 empirical patterns used for calibration (depicted in black or grey) for (A) neonate mass, (B) total 
and (C) lean body mass with age, mother (D) body mass, (E) food intake, and (F) total litter mass with 
pup age, mother peak (G) food intake, (H) energy use, and (I) milk transfer with litter size, (J) neonate 

 



and (K) weanling mass by litter size, litter size at (L) birth and (M) weaning, storage level of (N) living and 
(O) dead animals, and (P) field metabolic rate by body mass. The figure shows outputs from individual 
parameter sets using unique colors and combined results are shown in purple. For panels A, D, E, F, L, M, 
N, and O, the grey rectangle denotes the range of empirical values used to assess pattern fit, while the 
purple box plot shows the model results for all accepted parameter combinations, and colored point 
ranges are medians and 95% CIs for each individual parameter set. For panels B, C, G, H, I, and P, the 
empirical values are represented by the solid black line. For panels J and K, fit was defined qualitatively 
as a negative relationship, and as such, only illustrative points (mean ± s.e.) from two independent 
empirical studies (56, 57) are shown in K. In panels B and C and J and K, the colored lines denote von 
Bertalanffy and linear relationships fit to outputs from each of the individual parameter sets. 
Additionally, in panels B and C, dark grey triangles represent measured empirical values, and light grey 
triangles are inferred (see Data evaluation). Light purple points in B-I and P represent individual data 
points from the model. 
 
When observing the posterior distributions for the selected parameter sets, the 
parameter space was considerably reduced for all except three parameters, 
growth-lm-const, preg-prob-const, and lact-prob-const (Figure S23). Though, when 
correlations between parameters were assessed, it became clear that these 
parameters were each fairly positively correlated with their corresponding midpoint 
parameters (Figure S24).  
 

 



 
Figure S23. Resulting density curves of parameter values after calibration of the model using 
approximate Bayesian computation. Each parameter has been scaled between 0 and 2 for ease of 
comparison, and the uniform prior distributions for are shown at the top of the plot. The colored curves 
and corresponding boxplots represent the posterior distribution for each calibrated parameter. 

 



 
Figure S24. Correlation between calibrated parameters in the model, where each cell in the matrix 
represents the correlation coefficient between two parameters. The color and intensity of the cell 
indicate the strength and direction of the correlation, with warmer colors representing positive 
correlations and cooler colors representing negative correlations. The size of the circle in each cell 
denotes the magnitude of the correlation coefficient. 
 
 
As a final check, the population density values for each of the parameter sets were 
compared to the mean and median (± 1SD) of the empirical density values (see 
section 6.1. Density calibration above) (Figure S25). While the average values were a 
bit low compared to the empirical values, they fell well within the reported range and 
as such were accepted.  
 

 



 
Figure S25. Population density outputs (in female voles per hectare) for mean (top) and median 
(bottom) densities for the 30 best-fitting parameter sets. The large dashed black line denotes the 
empirical literature value for each metric, while the grey region indicates this value plus or minus the 
standard deviation of literature values. The thin dotted lines represent the minimum and maximum 
observed values. The density curve depicts the relative density of model outputs. 
 
The selected parameter combinations resulted in the 30 relationships seen in Figure 
S26. Each of these parameter sets was utilized independently in model simulations, 
with the curves varying among simulation runs to consider uncertainty in the model 
results. 
 

 



 
Figure S26. Relationships resulting from the calibration step of the model, depicting the 30 
best-fitting parameter sets. These curves illustrate the association between body fat percentage and 
allocation to growth (top left), pregnancy (middle left), lactation (bottom left), and the probability of 
adult (top right), embryo (middle right), and offspring (bottom right) survival. The  thick purple line 
represents the average across outputs. Each curve is utilized directly in a model simulation, with the 
curves varying between simulations to introduce uncertainty in model predictions. 
 
Having completed the calibration process, we affirm that the model was effectively 
fit to the data with regards to population densities and the relationships between 
body condition and vital rates, thus demonstrating that energy utilization in the 
modeled animals closely aligns with that observed in their wild and captive 
counterparts. 
 
 

 

7. Model analysis and application 
 

 
This TRACE element provides supporting information on: (1) how sensitive model 

 



output is to changes in model parameters (sensitivity analysis), and (2) how well the 
emergence of model output has been understood. 
 
Summary:  

We conducted a two-part global sensitivity analysis to identify the most 
influential parameters to the outputs of seven modelled metrics, which 
related to animal morphometrics, reproduction, and population densities. 
Initially, we used the Morris method to screen all model parameters and 
create a parameter ranking based on their level of influence from the least 
to the most influential. Next, we performed a variance decomposition 
analysis using the Sobol method to identify the contribution of the ten most 
influential parameters to the variance in model outputs. We were able to 
clearly identify key parameters for some output metrics, while for others, 
variance resulted from the interaction of various factors in the model. 

 
Following (219) (see associated TRACE document section 7), we performed a 
comprehensive global sensitivity analysis on the parameters of our model to 
determine which parameters had the greatest influence on the model outcomes and 
to quantify the variance contribution attributed to each of the most impactful 
parameters. The sensitivity analysis was executed in two phases, beginning with a 
screening of all 60 parameters of the model. During this phase, the values of the 
parameters were varied over five levels, with the central value being the value used in 
the calibrated model. The parameters were then ranked based on their effect on 
seven model outputs, which included body mass of adults, neonates, and weaned 
offspring, age at first birth, litters per year, litter size at birth, and population density. 
These outputs were selected due to their representation of different levels of 
organization, ranging from individual-level to population-level variables, and their 
utilization in evaluating the model and scenarios derived from the PanTHERIA 
database (218). 
 
The second phase of the sensitivity analysis involved the application of a full variance 
decomposition technique (124, 220) on the same outputs for the ten parameters that 
were determined to be the most influential during the Morris screening. Both phases 
of the sensitivity analysis were executed by running the model for three years and 
collecting the mean of all outputs at the conclusion of this three-year period. 
 
For the screening of parameters, we employed the improved version of Morris’ 
elementary effects method (122, 123) and utilized the mean of the distribution of the 
estimated elementary effects to calculate a sensitivity index for each parameter. In 
regards to variance decomposition, we followed the advanced techniques of Sobol et 
al. (2001) and Saltelli et al. (2010) to estimate the first-order and total-effect indices of 
each of the ten most influential parameters. Both phases of the sensitivity analysis 
were facilitated using the sensitivity package (125) in R to design the experiments and 
calculate sensitivity indexes. 
 

 



7.1. Screening of influential parameters 

The initial step in evaluating the sensitivity of the model parameters was the 
application of the improved Morris Elementary Effects Screening Method (122, 123). 
This approach, which is based on individually randomized one-factor-at-a-time 
designs (221), has been deemed an efficient method for identifying influential 
parameters in IBMs. The method entails estimation of the relative effects of changes 
in the values of the input parameters, referred to as "elementary effects," and 
subsequent statistical analysis to determine their relative importance to the model 
output. In accordance with the TRACE methodology presented by Ayllón et al. (2016), 
the sensitivity measure was estimated as the mean of the distribution of the absolute 
values of the elementary effects, which serves as a proxy for the total sensitivity index. 

Each of the 60 model parameters were varied over five levels, with the central value 
corresponding to the value used in the final calibrated model (as detailed in Table 
S27). The parameters were subject to a maximum increase or decrease of 20%. The 
number of tested settings is determined by the product of the number of 
elementary effects computed per parameter and the number of parameters, plus 
one. In this case, with 50 elementary effects selected, the total number of model runs 
was calculated as 50 × (60 + 1) = 3050. 

 
Table. S27.  The parameter values used in the Morris screening global sensitivity analysis. Full parameter details can be 
found in the corresponding module in TRACE Section 2. Central values from calibrated parameters (denoted with *) 
were selected as the average value of each parameter in the selected parameter sets.  

Parameter code Lower extreme Lower median Central value Upper median Upper extreme 

Landscape parameters:      
perc-resource-cells 0.6 0.675 0.75 0.825 0.9 

max-resources-base 112 126 140 154 168 

r-growth-ts 0.0088 0.0099 0.011 0.0121 0.0132 

fragmentation-level 0.64 0.72 0.8 0.88 0.96 

n-animals 80 90 100 110 120 
Move parameters:      
speed-mean 0.1328 0.1494 0.166 0.1826 0.1992 

speed-max 0.6576 0.7398 0.822 0.9042 0.9864 

HR-r-min 9.04 10.17 11.3 12.43 13.56 

HR-r-max 26.56 29.88 33.2 36.52 39.84 
Energy budget parameters:      
B0 4842.48 5447.79 6053.1 6658.41 7263.72 

gamma 0.512 0.576 0.64 0.704 0.768 

intercept-pcot 3.76 4.23 4.7 5.17 5.64 

slope-pcot 0.504 0.567 0.63 0.693 0.756 

intercept-icot 8.48 9.54 10.6 11.66 12.72 

slope-icot -0.232 -0.261 -0.29 -0.319 -0.348 

 



n-emb-mid 4.4 4.95 5.5 6.05 6.6 

emb-growth-c 0.0896 0.1008 0.112 0.1232 0.1344 

emb-mass-init 5.52E-08 6.21E-08 6.90E-08 7.59E-08 8.28E-08 

emb-mass-inf 15.9656 17.9613 19.957 21.9527 23.9484 

percent-fat-emb 0.0304 0.0342 0.038 0.0418 0.0456 

percent-pro-emb 0.0816 0.0918 0.102 0.1122 0.1224 

ED-pl 2599.92 2924.91 3,249.90 3574.89 3899.88 

DE-pl 0.4008 0.4509 0.501 0.5511 0.6012 

preg-prob-const* 18.2984 20.5857 22.873 25.1603 27.4476 

preg-prob-mid* 0.0384 0.0432 0.048 0.0528 0.0576 

off-BMR-red 0.4008 0.4509 0.501 0.5511 0.6012 

off-growth-eff 0.704 0.792 0.88 0.968 1.056 

milk-prod-eff 66 74.25 82.5 90.75 99 

lact-prob-const* 22.6224 25.4502 28.278 31.1058 33.9336 

lact-prob-mid* 0.0872 0.0981 0.109 0.1199 0.1308 

ED-pro 18.8 21.15 23.5 25.85 28.2 

DE-fat 0.588 0.6615 0.735 0.8085 0.882 

DE-pro 0.3552 0.3996 0.444 0.4884 0.5328 

growth-lm-prob-const* 23.2408 26.1459 29.051 31.9561 34.8612 

growth-lm-prob-mid* 0.0408 0.0459 0.051 0.0561 0.0612 

growth-lm-inf 0.02112 0.02376 0.0264 0.02904 0.03168 

growth-lm-k 0.07712 0.08676 0.0964 0.10604 0.11568 

stomach-fill-perc 0.04056 0.04563 0.0507 0.05577 0.06084 

AE-food 0.6688 0.7524 0.836 0.9196 1.0032 

HIF 0.1824 0.2052 0.228 0.2508 0.2736 

DM-food 0.536 0.603 0.67 0.737 0.804 

ED-food 9824.88 11052.99 12281.1 13509.21 14737.32 

ED-fat 31.28 35.19 39.1 43.01 46.92 

ED-cpro 15.28 17.19 19.1 21.01 22.92 

gamma-mobilize 0.012 0.0135 0.015 0.0165 0.018 

perc-water-adi 0.0952 0.1071 0.119 0.1309 0.1428 

SL-max 0.3184 0.3582 0.398 0.4378 0.4776 
Life history parameters:      
t-mating-start 96.8 108.9 121 133.1 145.2 

t-mating-end 218.4 245.7 273 300.3 327.6 

t-mature 36 40.5 45 49.5 54 

prob-ovul 0.176 0.198 0.22 0.242 0.264 

t-0 3.2 3.6 4 4.4 4.8 

t-gest 16 18 20 22 24 

t-nurs 16.8 18.9 21 23.1 25.2 

t-max-age 496 558 620 682 744 

 



surv-prob-const* 75.7344 85.2012 94.668 104.1348 113.6016 

surv-prob-mid* 0.0144 0.0162 0.018 0.0198 0.0216 

surv-mod-emb* 0.4016 0.4518 0.502 0.5522 0.6024 

surv-mod-off* 0.5064 0.5697 0.633 0.6963 0.7596 

winter-surv-mid 0.3328 0.3744 0.416 0.4576 0.4992 

 

The Morris screening revealed that, for the simulated conditions, one parameter, the 
deposition efficiency of fat (DE-fat), was the most influential on all output patterns 
(Table S28). When using a value of 40% of the maximum value found as a threshold, 
three outputs were predominantly influenced by this parameter (Table S28). 
Additionally, again using a threshold of 40%, 45 of the parameters were found to be 
influential on the number of litters per year. However, closer inspection of the 
outputs revealed that this result was not indicative of a high number of parameters 
being highly influential, but rather that these parameters were equally but only 
slightly influential. The 10 parameters found to be the most sensitive to the simulated 
conditions, based on the sum of the outputs (excluding litters per year) in Table S27, 
and their potential mechanisms of influence on the model are outlined in Table S29. 
In the same table, methods for obtaining values for these parameters for 
reapplication of the model are suggested. Special care should be taken in calibrating 
or parameterizing these parameters, as well as any others found to be influential, in 
the absence of well-known empirical measurements. 
 

Table S28. Morris method results from the complete sensitivity analysis of the model displayed as a percentage of 
maximum sensitivity (represented by the * index) found at the end of simulation year three for each of the seven model 
outputs of focus: body mass of adults, neonates, and weaned offspring, age at first birth, litters per year, litter size at birth, 
and population density. Sensitivity values over 40% of the maximum are shown in bold. Any parameter which had a 
sensitivity value of over 40% is shown in bold. Parameters with the strongest influence which were ID’d for the following 
Sobol analysis are shown in blue. 

Parameter code Adult body 
mass 

Neonate 
body mass 

Weaning 
body mass 

Age at 
first birth 

Litters 
per year 

Litter size at 
birth 

Population 
density 

perc-resource-cells 12.8 2.4 6.7 19.4 52.2 11.8 26.8 

max-resources-base 14.5 3.6 6.0 29.2 43.7 15.8 26.7 

r-growth-ts 7.6 1.4 2.3 17.9 52.8 11.4 20.3 

fragmentation-level 16.7 5.6 7.5 21.9 36.7 11.6 18.7 

n-animals 7.6 1.8 2.4 9.3 33.3 6.5 15.8 

speed-mean 12.1 3.0 6.3 18.3 51.1 16.7 38.5 

speed-max 12.2 4.2 6.1 27.3 34.9 12.2 17.7 

HR-r-min 12.8 1.8 3.4 32.2 65.2 14.4 24.9 

HR-r-max 14.8 5.6 6.0 43.0 32.4 16.4 14.1 

B0 18.1 1.6 5.0 17.9 41.8 9.3 24.4 

gamma 25.3 9.6 18.5 39.3 63.9 20.5 36.5 

intercept-pcot 17.8 2.0 4.0 31.3 49.9 8.8 18.2 

slope-pcot 27.6 5.4 11.5 32.6 79.5 18.8 39.0 

intercept-icot 22.8 2.1 2.3 33.3 70.1 17.0 19.2 

slope-icot 6.8 1.0 1.3 13.2 33.3 8.2 18.5 

n-emb-mid 19.6 1.0 1.9 16.2 28.3 23.1 25.9 

 



emb-growth-c 37.9 56.7 25.6 42.8 81.6 25.7 19.8 

emb-mass-init 25.6 11.4 10.5 33.9 63.6 24.0 23.3 

emb-mass-inf 17.0 14.6 5.2 21.0 30.5 6.0 25.3 

percent-fat-emb 7.2 3.9 2.0 23.2 48.0 13.2 27.5 

percent-pro-emb 29.8 12.8 10.9 25.5 40.8 17.7 17.2 

ED-pl 7.2 1.0 1.9 19.1 55.5 9.4 22.5 

DE-pl 17.0 3.2 6.4 20.6 47.1 15.8 22.0 

preg-prob-const 28.2 6.0 6.0 19.8 50.6 9.2 26.0 

preg-prob-mid 9.8 3.2 2.4 21.3 45.4 9.8 23.3 

off-BMR-red 26.7 2.6 8.4 18.3 42.0 10.3 19.8 

off-growth-eff 7.6 1.7 6.1 7.8 27.1 5.0 22.8 

milk-prod-eff 13.1 2.0 7.6 14.8 25.9 9.3 26.2 

lact-prob-const 20.9 3.0 6.4 13.2 67.8 13.1 18.6 

lact-prob-mid 12.7 3.1 7.3 38.3 57.7 14.5 35.0 

ED-pro 28.0 2.2 8.4 30.5 75.8 9.9 21.8 

DE-fat 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

DE-pro 12.7 2.9 3.8 16.3 45.8 9.6 26.0 

growth-lm-prob-const 19.5 2.1 3.5 23.7 61.2 11.7 19.6 

growth-lm-prob-mid 24.8 1.6 2.7 17.0 35.5 7.7 26.0 

growth-lm-inf 40.0 3.6 11.1 24.4 56.0 9.7 25.6 

growth-lm-k 21.8 3.3 18.9 28.5 47.1 13.9 18.6 

stomach-fill-perc 35.3 7.6 10.0 27.7 32.0 15.4 24.0 

AE-food 30.3 13.5 8.3 23.8 64.3 15.8 36.0 

HIF 29.2 15.8 19.7 29.2 59.8 12.3 25.7 

DM-food 16.1 3.4 8.0 26.0 51.8 12.7 21.0 

ED-food 17.7 2.7 4.1 16.8 30.1 7.3 35.6 

ED-fat 28.7 1.8 6.8 24.3 64.4 11.9 28.3 

EC-pro 38.9 7.0 6.9 30.0 77.4 17.9 23.3 

gamma-mobilize 12.6 1.3 1.6 19.7 49.0 4.5 24.0 

perc-water-adi 19.9 11.9 8.8 32.5 57.1 16.3 21.8 

max-SL 33.7 11.2 15.6 42.3 78.4 23.6 33.1 

t-mating-start 34.4 6.3 8.2 53.3 72.2 29.2 20.7 

t-mating-end 28.7 3.4 5.6 66.4 43.3 10.3 33.8 

t-mature 7.0 2.5 3.3 29.6 47.5 14.2 21.8 

prob-ovul 16.4 1.4 2.4 12.0 34.8 5.1 22.1 

t-0 15.9 8.2 11.0 24.3 45.0 13.5 21.4 

t-gest 30.8 67.4 27.1 21.4 56.8 5.6 21.5 

t-nurs 10.7 4.7 18.2 34.9 73.6 17.0 24.6 

t-max-age 31.2 7.4 4.5 45.9 66.0 19.6 25.5 

surv-prob-const 13.5 1.6 3.5 26.8 75.3 11.5 29.2 

surv-prob-mid 11.4 2.8 2.3 29.1 34.9 9.6 21.0 

surv-mod-emb 15.4 9.7 6.3 21.3 50.1 11.3 17.6 

surv-mod-off 8.3 2.0 3.5 14.3 50.2 6.0 16.4 

winter-surv-mid 14.1 5.2 7.1 31.4 29.9 8.6 28.4 

 

 



 
Table S29. Parameter sensitivity ranking as a percentage of the maximum sensitivity value of the 25 most influential 
parameters identified for each of the model outputs. Sensitivity values over 40% of the maximum are shown in bold. 

  Parameter 
code 

Adult 
body 
mass 

  Parameter 
code 

Neon
ate 

body 
mass 

  Parameter 
code 

Wea
ning 
body 
mass 

  Parameter 
code 

Age 
at 

first 
birth 

  Parameter 
code 

Litter
s per 
year 

  Parameter 
code 

Litter 
size 
at 

birth 

  Parameter 
code 

Popul
ation 

densit
y 

DE-fat 100.0 DE-fat 100.0 DE-fat 100.0 DE-fat 100.0 DE-fat 100.0 DE-fat 100.0 DE-fat 100.0 

growth-lm-in
f 

40.0 t-gest 67.4 t-gest 27.1 t-mating-en
d 

66.4 emb-growth-c 81.6 t-mating-star
t 

29.2 slope-pcot 39.0 

EC-pro 38.9 emb-growth
-c 

56.7 emb-growth
-c 

25.6 t-mating-sta
rt 

53.3 slope-pcot 79.5 emb-growth-
c 

25.7 speed-mean 38.5 

emb-growth-
c 

37.9 HIF 15.8 HIF 19.7 t-max-age 45.9 max-SL 78.4 emb-mass-ini
t 

24.0 gamma 36.5 

stomach-fill-p
erc 

35.3 emb-mass-i
nf 

14.6 growth-lm-k 18.9 HR-r-max 43.0 EC-pro 77.4 max-SL 23.6 AE-food 36.0 

t-mating-star
t 

34.4 AE-food 13.5 gamma 18.5 emb-growth
-c 

42.8 ED-pro 75.8 n-emb-mid 23.1 ED-food 35.6 

max-SL 33.7 percent-pro-
emb 

12.8 t-nurs 18.2 max-SL 42.3 surv-prob-con
st 

75.3 gamma 20.5 lact-prob-mid 35.0 

t-max-age 31.2 perc-water-a
di 

11.9 max-SL 15.6 gamma 39.3 t-nurs 73.6 t-max-age 19.6 t-mating-end 33.8 

t-gest 30.8 emb-mass-i
nit 

11.4 slope-pcot 11.5 lact-prob-mi
d 

38.3 t-mating-start 72.2 slope-pcot 18.8 max-SL 33.1 

AE-food 30.3 max-SL 11.2 growth-lm-i
nf 

11.1 t-nurs 34.9 intercept-icot 70.1 EC-pro 17.9 surv-prob-co
nst 

29.2 

percent-pro-e
mb 

29.8 surv-mod-e
mb 

9.7 t-0 11.0 emb-mass-i
nit 

33.9 lact-prob-con
st 

67.8 percent-pro-e
mb 

17.7 winter-surv-
mid 

28.4 

HIF 29.2 gamma 9.6 percent-pro-
emb 

10.9 intercept-ico
t 

33.3 t-max-age 66.0 t-nurs 17.0 ED-fat 28.3 

ED-fat 28.7 t-0 8.2 emb-mass-i
nit 

10.5 slope-pcot 32.6 HR-r-min 65.2 intercept-icot 17.0 percent-fat-e
mb 

27.5 

t-mating-end 28.7 stomach-fill-
perc 

7.6 stomach-fill-
perc 

10.0 perc-water-a
di 

32.5 ED-fat 64.4 speed-mean 16.7 perc-resource
-cells 

26.8 

preg-prob-co
nst 

28.2 t-max-age 7.4 perc-water-a
di 

8.8 HR-r-min 32.2 AE-food 64.3 HR-r-max 16.4 max-resource
s-base 

26.7 

ED-pro 28.0 EC-pro 7.0 ED-pro 8.4 winter-surv-
mid 

31.4 gamma 63.9 perc-water-a
di 

16.3 milk-prod-eff 26.2 

slope-pcot 27.6 t-mating-sta
rt 

6.3 off-BMR-red 8.4 intercept-pc
ot 

31.3 emb-mass-init 63.6 max-resource
s-base 

15.8 DE-pro 26.0 

 



off-BMR-red 26.7 preg-prob-c
onst 

6.0 AE-food 8.3 ED-pro 30.5 growth-lm-pr
ob-const 

61.2 DE-pl 15.8 preg-prob-co
nst 

26.0 

emb-mass-ini
t 

25.6 HR-r-max 5.6 t-mating-sta
rt 

8.2 EC-pro 30.0 HIF 59.8 AE-food 15.8 growth-lm-pr
ob-mid 

26.0 

gamma 25.3 fragmentatio
n-level 

5.6 DM-food 8.0 t-mature 29.6 lact-prob-mid 57.7 stomach-fill-p
erc 

15.4 n-emb-mid 25.9 

growth-lm-pr
ob-mid 

24.8 slope-pcot 5.4 milk-prod-eff 7.6 max-resourc
es-base 

29.2 perc-water-ad
i 

57.1 lact-prob-mid 14.5 HIF 25.7 

intercept-icot 22.8 winter-surv-
mid 

5.2 fragmentatio
n-level 

7.5 HIF 29.2 t-gest 56.8 HR-r-min 14.4 growth-lm-inf 25.6 

growth-lm-k 21.8 t-nurs 4.7 lact-prob-mi
d 

7.3 surv-prob-mi
d 

29.1 growth-lm-inf 56.0 t-mature 14.2 t-max-age 25.5 

lact-prob-con
st 

20.9 speed-max 4.2 winter-surv-
mid 

7.1 growth-lm-k 28.5 ED-pl 55.5 growth-lm-k 13.9 emb-mass-inf 25.3 

perc-water-a
di 

19.9 percent-fat-e
mb 

3.9 EC-pro 6.9 stomach-fill-
perc 

27.7 r-growth-ts 52.8 t-0 13.5 HR-r-min 24.9 

 

 



 
Two parameters which relate to basal metabolic rate and transport costs of animals, 
gamma and slope-pcot, had a substantial effect on the model's outputs. Gamma 
determines the exponent of the allometric relationship between body mass and 
basal metabolic rate, while slope-pcot represents the exponent of the relationship 
between body mass and postural costs of transport - the energy required to maintain 
an upright posture associated with standing or moving. These parameters dictate 
the relative metabolic costs that animals incur based on their body size. Although 
the debate on the existence of universal scaling exponents is very much ongoing, at 
least in regard to maintenance costs, here and in many cases data may exist for the 
study species and closely related species to parameterize these parameters directly. 
 
The parameter emb-growth-c, which represents the fetal growth constant, was 
found to have a strong impact on various model outputs, including the neonate body 
mass, age at first birth, and the number of litters per year. Since this parameter 
determines the maximum rate of fetal growth and thus the cost of embryonic tissue 
production, its influence on neonate mass outputs and, subsequently, on offspring 
survival and reproductive costs is expected. Fetal masses were available in this study, 
and similar data should be obtainable for many other mammalian species. When 
available, empirical values should be used, but neonate masses and literature-based 
relationships could be used to estimate this parameter when data are not available. 
 
Two parameters related to the storage dynamics submodel were found to be  highly 
influential on model outputs. These two parameters were the maximum storage level 
(SL-max) and energy density of fat (ED-fat). They affect an animal's ability to store 
energy and access it during times of food scarcity, thereby influencing storage levels, 
energy allocation to growth and reproduction, and ultimately survival. Although 
empirical data on the storage levels of animals can be readily obtained for many 
species, determining the maximum storage levels can be more challenging. Though 
allometric relationships may be useful when data are unavailable (222). Furthermore, 
the deposition efficiencies of fat are not well-understood, and values are only 
available for a few species, mainly rodents. It is important to note that while the 
DE-fat values were derived from rodent species, specific empirical data for bank voles 
was unavailable, and the extent of variability between species for this parameter is 
unknown. 
 
Additionally, one parameter influencing the energetic costs of digestion, or the heat 
increment of feeding, HIF, was identified as being relatively influential. 
This parameter controls the amount of energy generated as waste heat when 
digesting food resources, and therefore determines the amount of energy available 
from ingested food which is available for other physiological processes such as 
growth, reproduction, and maintenance. In nature, the heat increment of feeding is 
influenced by various factors such as diet composition, food quantity, and 
environmental conditions, and it can vary significantly among different mammal 
species. Therefore, it may not be well understood for all mammals, and empirical 
measurements may not be available for many species. In some cases, values from 
similar species may be used, or the parameter may be calibrated following a 
pattern-oriented modelling approach. 
 
 
 

 



Finally, four parameters related to animal demographics were found to have a 
significant impact on model outputs: the start and end of the mating period 
(t-mating-start & t-mating-end), the gestation period (t-gest), and the maximum 
age (t-max-age). These parameters control the timing of demographic events and 
therefore affect reproductive and mortality rates in the model. Altering the start and 
end of the mating period changes the length of time available for reproduction, 
allowing for more or fewer litters per year. The gestation period influences the time 
spent gestating and size of offspring at birth and therefore the costs associated with 
pregnancy, lactation, and offspring survival. Finally, the maximum age determines 
the longest time individuals can survive before succumbing to senescence. However, 
these parameters are generally well-understood and can be obtained directly from 
empirical studies for many species. 
 
 
 

Table S30. Parameters which were found to have the highest influence on model outputs (calculated as the 
summation of their sensitivity indices for all model outputs aside from the number of litters per year) in the 
global sensitivity analysis ranked in order of decreasing influence.  

Parameter code Sensitivity considerations 

gamma 

This parameter determines the exponent of the relationship between the body mass 
of animals and their basal maintenance costs. Values for this parameter can be 
obtained from empirical data, when available. See Section 3 for how this was done in 
this parameterization. 

slope-pcot 

This parameter represents the exponent of the relationship between the body mass 
and the postural cost of transport, which, for some species of mammals, empirical 
estimates exist or are obtainable. Values from empirical measurements should be 
used here and, when available, though in this case values needed to be obtained 
from other small rodents. See Section 3 for how this was done in this 
parameterization. 

emb-growth-c 

This parameter represents the fetal growth constant, which, for many species of 
mammals, empirical data exist to determine its value. The growth constant 
determines the maximum rate at which neonate mass is deposited during fetal 
development, while actual deposition rates depend on mother allocation to 
pregnancy. Values from empirical measurements should be used here.  See Section 
3 for details on this parameterization. 

DE-fat 

The energy density of catabolized protein differs from the “true” energy content of 
protein from its heat of combustion due to urinary losses occuring with the process 
of catabolism. This parameter converts energy to mass whenever animals catabolize 
stored lean mass tissue. While empirical values exist for some species, data was not 
available for bank voles, and the extent of variability between mammals for these 
parameters remains unknown. Empirical values should be used here, ideally for the 
species which the model represents.  

HIF 

This parameter controls the heat increment of feeding, or the energetic costs 
associated with digestion, in the model. While estimates may be available for some 
mammal species, it is likely to be unknown for many others. Moreover, in reality, this 
parameter is influenced by diet. In the absence of empirical measurements, values 
from similar species may be used as a substitute (as done here). Alternatively, this 
parameter can be calibrated. 

max-SL This parameter controls the maximum body fat percentage of animals in the model. 
This parameter is obtainable for many species and values from empirical 

 



measurements should be used. Additionally, existing allometric relationships may be 
used when empirical values are not available.  

t-mating-start 

This parameter sets the start of the breeding season in the model and, when 
overwinter skipping is enabled, determines the first simulated day of the year (five 
days before the beginning of the mating season). The breeding season is typically 
known for many mammal species, so it is recommended to obtain values for this 
parameter from empirical data, where possible. 

t-mating-end 

This parameter sets the end of the breeding season in the model and, when 
overwinter skipping is enabled, determines the last simulated day of the year (five 
days after the end of the mating season). The breeding season is typically known for 
many mammal species, so it is recommended to obtain values for this parameter 
from empirical data, where possible. 

t-gest 

This parameter represents the length of the gestation period in the model. The 
values of this parameter are fairly well known in mammal species and, as such, 
empirical data should be used when available.  

t-max-age 

This parameter represents the maximum age of animals in the model. The values of 
this parameter are fairly well known in mammal species and, as such, empirical data 
should be used when available. Alternatively allometric and or phylogenetic 
relationships may be available for use when species-specific values are unknown.  

 

7.2. Prioritization of parameters 
 
For the ten parameters found to be the most highly influential on the selected model 
outputs (all except for the Number of litters per year) using the Morris method for the 
current simulation conditions we applied a variance-based sensitivity analysis 
following the method of Sobol (2001). For assessing parameter sensitivity, we again 
used the seven model outputs: body masses of adults, neonates, and weaned 
offspring, age at first birth, litters per year, litter size at birth, and population density. 
We ran this analysis to estimate the effect of these highly influential parameters on 
the variance of model outputs and to assess the contribution arising from 
interactions between these parameters on model output variance. This analysis was 
run using the sensitivity package in R (125) and the input parameter combinations 
were designed using two latin hypercube sampling matrices (lhs package in R; (223) 
with values constrained between the extreme low and extreme high values 
determined for each of the parameters as used previously in the Morris method 
(Table S27).  As outputs were not centered, we used the soboljansen function to 
design the sensitivity analysis. A total of 6000 model runs were performed, with a 
sampling matrix size of 500 and ten parameters sampled, calculated as m × (p + 2) 
where m is the size of the Monte Carlo sampling matrix and p is the number of 
parameters sampled.  
 
When looking at the first-order indices, the results showed that the DE-fat parameter 
had the greatest impact on the variance of adult, neonate, and weaning body masses 
as well as the litter size at birth and population density, while SL-max had the largest 
impact on the variance of the age at first birth and gamma had the largest impact 
on the number of litters per year (Table S31). 
 
 

 



Table S31. Results of the first-order indices of the Sobol sensitivity analysis for the ten parameters identified as the most 
influential on model outputs using the Morris method. The contribution to the variance in seven model outputs was 
determined for each parameter (mean ± standard error for 1000 bootstrap iterations). Indices found with values greater 
than 15% are shown in bold. 

Parameter code Adult body 
mass 

Neonate 
body mass 

Weaning 
body mass 

Age at 
first birth 

Litters 
per year 

Litter size at 
birth 

Population 
density 

gamma 0.089  
(0.11) 

-0.036  
(0.084) 

0.017  
(0.057) 

-0.059  
(0.084) 

0.167  
(0.135) 

0.121  
(0.061) 

0.109  
(0.065) 

slope-pcot 0.107  
(0.101) 

-0.059  
(0.088) 

-0.009  
(0.057) 

-0.041  
(0.083) 

0.004  
(0.144) 

0.095  
(0.059) 

0.012  
(0.065) 

emb-growth-c 0.073  
(0.088) 

0.182  
(0.085) 

0.03  
(0.058) 

-0.075  
(0.091) 

0.112  
(0.135) 

0.078  
(0.059) 

0.02  
(0.066) 

DE-fat 0.463  
(0.078) 

0.21  
(0.073) 

0.699  
(0.023) 

-0.121  
(0.113) 

0.104  
(0.173) 

0.581  
(0.055) 

0.508  
(0.039) 

HIF 0.106  
(0.107) 

-0.025  
(0.083) 

0.036  
(0.056) 

0.01  
(0.089) 

0.043  
(0.16) 

0.146  
(0.062) 

0.049  
(0.066) 

SL-max 0.116  
(0.107) 

-0.038  
(0.086) 

-0.003  
(0.057) 

-0.173  
(0.102) 

-0.069  
(0.185) 

0.125  
(0.064) 

-0.011  
(0.069) 

t-mating-start -0.024  
(0.103) 

-0.052  
(0.088) 

0.002  
(0.054) 

-0.068  
(0.091) 

0.121  
(0.143) 

0.059  
(0.06) 

-0.007  
(0.066) 

t-mating-end 0.073  
(0.111) 

-0.06  
(0.088) 

0.007  
(0.055) 

0.021  
(0.087) 

0.034  
(0.158) 

0.074  
(0.058) 

-0.005  
(0.07) 

t-gest 0.122  
(0.093) 

0.191  
(0.094) 

0.042  
(0.058) 

-0.08  
(0.079) 

0.104  
(0.155) 

0.085  
(0.063) 

0.005  
(0.064) 

t-max-age 0.04  
(0.108) 

-0.062  
(0.089) 

-0.004  
(0.055) 

-0.067  
(0.078) 

-0.012  
(0.142) 

0.09  
(0.059) 

0.023  
(0.062) 

 
To gain a more comprehensive understanding of the influence of input parameters 
on the model output variance, we additionally evaluated the total-effect indices. 
These indices provide insight into the combined effect of a parameter, taking into 
account its interactions with all other input parameters. The low sum of first order 
sensitivity indices indicates that the impact of parameter interactions on the variance 
of model outputs cannot be ignored and must be taken into consideration in this 
analysis. 
 
The results of the total-effects analysis showed that DE-fat had a large impact on all 
model outputs when indirect effects were taken into account (Table S32). 
Additionally, SL-max was also found to be important for the age at first birth, the 
number of litters per year, and the litter size at birth. The parameters slope-pcot, 
t-mating-start, and t-max-age were found to have both low first-order indices and 
low total-effect indices, suggesting that these parameters may have a weak or 
negligible effect on these model outputs (Figure S27). While variance in three of the 
outputs, adult body mass, weaning body mass, and population density was primarily 
driven by one parameter, DE-fat, age at first birth and the number of litters per year 
had relatively high sensitivity indices for all of the input parameters. This indicates 
that interactions between parameters and processes play a crucial role in driving the 
variance of these outputs and, accordingly, minimal impacts were observed for 
changes in each parameter individually for these two outputs (Figure S27).  

 



 
 
 
 

Table S32. Results of the total-effect indices of the Sobol sensitivity analysis for the ten parameters identified as the most 
influential on model outputs using the Morris method. The contribution to the variance in seven model outputs was 
determined for each parameter (mean ± standard error for 1000 bootstrap iterations). Indices found with values greater 
than 40% are shown in bold. 

Parameter code Adult body 
mass 

Neonate 
body mass 

Weaning 
body mass 

Age at 
first birth 

Litters 
per year 

Litter size at 
birth 

Population 
density 

gamma 0.241  
(0.041) 

0.02  
(0.005) 

0.037  
(0.004) 

0.423  
(0.065) 

0.447  
(0.062) 

0.224  
(0.036) 

0.225  
(0.022) 

slope-pcot 0.219  
(0.042) 

0.01  
(0.003) 

0.024  
(0.006) 

0.306  
(0.047) 

0.386  
(0.074) 

0.14  
(0.029) 

0.124  
(0.018) 

emb-growth-c 0.12  
(0.03) 

0.366  
(0.04) 

0.083  
(0.008) 

0.388  
(0.06) 

0.344  
(0.052) 

0.183  
(0.033) 

0.104  
(0.012) 

DE-fat 0.755  
(0.086) 

0.529  
(0.062) 

0.865  
(0.056) 

0.811  
(0.066) 

0.923  
(0.1) 

0.923  
(0.06) 

0.826  
(0.06) 

HIF 0.288  
(0.041) 

0.068  
(0.012) 

0.108  
(0.013) 

0.403  
(0.05) 

0.561  
(0.079) 

0.319  
(0.044) 

0.224  
(0.028) 

SL-max 0.289  
(0.049) 

0.049  
(0.01) 

0.077  
(0.01) 

0.705  
(0.076) 

0.842  
(0.11) 

0.407  
(0.045) 

0.234  
(0.032) 

t-mating-start 0.185  
(0.045) 

0.01  
(0.004) 

0.01  
(0.003) 

0.375  
(0.06) 

0.383  
(0.066) 

0.123  
(0.027) 

0.105  
(0.014) 

t-mating-end 0.269  
(0.05) 

0.014  
(0.004) 

0.02  
(0.005) 

0.694  
(0.07) 

0.504  
(0.085) 

0.177  
(0.033) 

0.152  
(0.016) 

t-gest 0.149  
(0.029) 

0.404  
(0.038) 

0.094  
(0.009) 

0.38  
(0.055) 

0.571  
(0.08) 

0.22  
(0.037) 

0.104  
(0.014) 

t-max-age 0.253  
(0.048) 

0.008  
(0.003) 

0.012  
(0.004) 

0.275  
(0.053) 

0.303  
(0.063) 

0.13  
(0.028) 

0.067  
(0.008) 

 
 
 
 

 



 
 

Figure S27. Impacts on seven key model outputs (rows) by the ten parameters (columns) varied in 
the Sobol sensitivity analysis. Parameter values were scaled between 0 and 1 using their minimum 
and maximum values and results are presented for each of the 6000 simulation runs. Black lines 
represent GAMs fit to the outputs. The three body mass related outputs (Adult body mass, Neonate 
body maxx, and Weaning body mass) are in units of grams, Age at first birth is in days, and Litters per 
year, Litter size at birth, and Population density are all counts (N). The colors of individual points 
represent the submodel to which that parameter belongs, with red for maintenance, orange for activity, 
yellow for reproduction, dark blue for storage, purple for energy intake, and light blue for mortality. 

 
 

 

 



8. Model output corroboration 
 

This TRACE element provides supporting information on: How model predictions 
compare to independent data and patterns that were not used, and preferably not 
even known, while the model was developed, parameterized, and verified. By 
documenting model output corroboration, model users learn about evidence, which, 
in addition to model output verification, indicates that the model is structurally 
realistic so that its predictions can be trusted to some degree. 
 
Summary:  

Following the calibration process, the model was subjected to a thorough 
two phase evaluation utilizing independent data pertaining to bank vole 
energetics, mortality, morphometrics, life history, and population densities. 
The first phase focused on diverse energetic and trait patterns found across 
literature. The outcomes of this evaluation demonstrated that the model 
predictions were in good agreement with the empirical patterns. For the 
second phase, we replicated an empirical bank vole litter manipulation 
experiment in the wild to assess the model’s accuracy in reflecting 
observations when applied to a specific system. The model successfully 
reproduced key patterns, including seasonal fluctuations in population 
density, weaning mass, and survival dynamics, closely aligning with 
empirical results for most metrics. While some discrepancies were noted, 
such as overestimation of litter size at weaning and deviations in neonate 
body mass in late summer, overall, we were satisfied with the model’s 
performance in capturing complex reproductive and survival trends both 
across reproductive status (litter size) and season. Based on this, the model 
was deemed appropriate for utilization in scenario simulations. 

 
8.1. Initial evaluation against diverse patterns 
 
After successfully calibrating the model, we evaluated it against 11 additional patterns 
to assess its ability to capture various aspects of bank vole energetics, life history, and 
morphometrics. The objective was to ensure that the model outputs were in 
agreement with values for bank voles in several energetic studies and in the 
PanTHERIA database (218). The 11 patterns and their associated sources and values 
can be found in Table S33. 
 
For this evaluation step, 150 simulations were run (5 repetitions per parameter set; 
see Section 6 for details), and outputs were collected in simulation year 5 (with 
additional tracking of surviving animals in year 6 for pattern 19). The interval with 
which each output was collected can be found in Table S33.  

Almost all of the evaluation patterns displayed good model fits, with a few minor 
deviations (Figure S281). There was a slight discrepancy in the mortality pattern 
between days 50-200 (Figure S28C), which was likely due to the inclusion of 
overwinter skipping and the one-time application of overwinter mortality, though 
the model accurately captured early and late survival percentages. The age at first 
birth also posed a challenge in evaluation as animals born early in the breeding 
season mature quickly enough to breed within that season, while others only breed if 

 



they survive to the spring of the following year (Figure S28E), which follows empirical 
knowledge of this species (224). This made it difficult to accurately evaluate pattern 
fit. Nevertheless, the majority of animals breed in the year of their birth, with a 
median age at first breeding of 68 days, compared to the empirical value of 83.22 
days, while the mean (± 1 SD) was 111.1 ± 88.7 days. Despite the difficulties posed by 
the gap between the breeding seasons, the overlap between these values were taken 
as close enough to consider the fit sufficient. 

 
Table S33. Empirical patterns used in initial model evaluation. All outputs collected in simulation year 5. 

Pattern When collected Value Source 

17. State-dependent field 
metabolic rate Once per week 

Mean with error (in kJ day) for 2 
states: Reproducing & 

Nonreproducing 
(137, 197, 199, 225, 226) 

18. State-dependent food 
consumption Once per week 

Mean with error for 4 states: 
Juvenile, Nonreproducing, 

Pregnant, & Lactating 
(132, 164–166, 197) 

19. Survival rates At death Survivorship curve covering 16 
months (227) 

20. Adult body mass Once per week 20.73 g (218) 

21. Age at first birth At birth 83.22 days (218) 

22. Mass-specific basal 
metabolic rate Once per week 26.25 J g-1 30min-1 (218) 

23. Litter size At birth 4.31 offspring (218) 

24. Litters per year Once at end of year 3.5 litters year-1 (218) 

25. Neonate body mass At birth 1.83 g (218) 

26. Weaning body mass At weaning 9.43 g (218) 

27. Population density Once per day 18.5 females ha-1 (218) 

 
Similarly, evaluating the model fit for the numbers of litters born per female per year 
posed a bit of a challenge (Figure S28H). While females born in the previous season 
which had a full breeding season to reproduce had 4.2 ± 0.5 litters per year, 
compared to the empirical value of 3.5, females born within a breeding season only 
had the opportunity to have 1-2 litters with most not breeding at all (55.1%) (a mean 
number of litters of 0.6 ± 0.8). While it is likely that the value in the PanTHERIA 
database corresponds to the potential of an animal breeding over the entire 
breeding season (similar to other records of “up to” 4 or 5 litters per year (174, 228), it 
is unclear under exactly which conditions this value was collected under. As such, we 
decided to use a minimum age of 130 days to primarily include animals which had 
nearly the entire breeding season to reproduce for further analyses (2.5 ± 1.0, mean ± 1 
SD). Furthermore, the mass-specific basal metabolic rates in the model were slightly 
lower than the reported values in the database (Figure S28F), though the difference 
was minimal even on a daily scale (a reduction of 0.3 g of food per day). The BMR 
calculations in the model were based on data from multiple animals and studies (see 
Section 3, Data evaluation, for details), while the value in the database represents a 
single value from an unknown number of individuals, thus some variance is 
expected. 

 



While use of the PanTHERIA database led to some some overlap with the types of 
patterns used in the calibration section (litter size at birth, neonate mass, and 
population density), the patterns used here from PanTHERIA represent distinct 
datasets from those used to generate the calibration patterns. The results of this 
evaluation indicated that the model fits were generally quite satisfactory. 

 
Figure S28. Comparison of model predictions (depicted in blue) with eleven empirical patterns 
(depicted in grey) for various traits, including (A) state-dependent field metabolic rates, (B) 
state-dependent food consumption, (C) survivorship curve, (D) adult body mass, (E) age at first birth, (F) 
mass-specific metabolic rate, (G) litter size at birth, (H) number of litters per year, (I) neonate mass, (J) 

 



weanling mass, and (K) population density. For (A) and (B), the points represent the mean values, and 
whiskers represent the error estimates from the studies. For (D) through (F), dashed lines represent the 
single value estimates from the PanTHERIA database. Blue diamonds represent the mean value from 
the model outputs, and the filled area represents the density curve. Model outputs are presented from 
150 simulation replicates. 
 
 
8.3. Replication of empirical litter manipulation experiment 

To further evaluate the model's ability to reproduce empirical observations, we 
replicated the conditions and evaluated key outputs of a litter manipulation 
experiment conducted on bank voles under wild conditions (50). Litter manipulation 
experiments represent a classic approach in small mammal reproductive studies, 
where litter sizes of females which have recently given birth are experimentally 
increased or decreased. Such studies have been used to assess the costs and 
trade-offs associated with reproduction across various species and settings, from 
laboratory environments to outdoor enclosures and the wild (50, 56, 57).  

In the selected study, the effects of manipulated litter size on weanling number and 
body mass, characteristics of subsequent breeding attempts, and maternal survival 
were assessed over three years in free-ranging bank voles in Konnevesi, central 
Finland. Empirical values were manually extracted from published plots using 
Automeris WebPlot digitizer v4.5 (200).  

To replicate the study conditions and sampling design, several adjustments were 
made to the model. The mating period was set from day 130 to day 279 of the 
simulation year, and the maximum number of embryos at birth was increased from 9 
to 10 to better match the study's findings. To mimic the empirical resource 
environment, the Normalized Difference Vegetation Index (NDVI) (47) was used as a 
proxy for changes in resource availability. NDVI data were obtained from the extended 
global NDVI3g product (third generation Global Inventory Modeling and Mapping 
Studies (GIMMS)(229)) at a bi-weekly resolution for 1990 to 1999 at the study site. This 
data was accessed using the “gimms” package in R (230) and interpolated to a daily 
resolution. The 0-1 NDVI values were converted into a 0-2 modifier variable, which 
adjusted the calibrated maximum resource level parameter (see Section 6 for details). 
A value of 1 maintained the calibrated value as is, a value of 0 reduced the maximum 
food resource level to zero, and a value of 2 doubled the maximum level. When NDVI 
values increased, food levels in resource patches rose once per day by the 
corresponding increase in the maximum level, while any decreases in NDVI were 
enforced only by capping values to the maximum resource level.  

Outputs were collected following the empirical approach as closely as possible. In 1996 
to 1998, a number of pregnant females with masses similar to those of the empirical 
animals (15.7 to 32.4 g, excluding neonate and placental tissues) were selected, using a 
maximum number of the year-, season-, and manipulation group-specific sample size. 
At the time of birth, the litter size of selected females was updated to match the 
empirical values for their assigned manipulation group (‘Enlarged’ or ‘E’, ‘Reduced’ or 
‘R’, and ‘Control’ or ‘C’). The observation dates were selected to align with the seasonal 
sampling method outlined in the original paper: simulation day 135 for early summer, 

 



day 181 for mid-summer, day 243 for late summer, and day 298 for autumn. For all 
observation dates, the total abundance of independent individuals was recorded to 
compare with the reported density dynamics. The selected mothers were tracked 
throughout the stages of birth, weaning, and subsequent births, during which 12 key 
patterns were observed for each animal (Table S34). No new females were tracked in 
autumn, in accordance with the empirical study. One hundred simulation replicates 
were run to account for stochasticity from ABC parameter combinations and other 
sources, with outputs analyzed similarly to the empirical results (see Table S34 for 
details). Since animals in the empirical study couldn't be measured precisely at 
weaning, independent individuals older than 30 days were observed for weaning 
transition patterns. To account for this minimum age, the model collected outputs at 
37 days to provide some flexibility in the observations. 

Table S34. Empirical patterns used in the replication of a litter manipulation experiment. Outputs were collected for 
selected females during relevant life history events across 100 simulation replicates, corresponding to the years 
1996-1998. All empirical patterns are sourced from Koivula et al., 2003. 

Pattern Unit When collected Grouping for Analysis 

28. Relative population density Proportion of maximum 
density (N per hectare) Seasonally Year & Season 

29. Litter size at birth N offspring Birth Season & Manipulation group 

30. Litter size at weaning N offspring Weaning Season & Manipulation group 

31. Litter size at second birth N offspring Second birth Manipulation group 

32. Offspring body mass at 
birth grams Birth Season 

33. Offspring body mass at 
weaning grams Weaning Season & Manipulation group 

34. Weaning success % Weaning Manipulation group 

35. Litter mass at birth grams Birth Season & Manipulation group 

36. Litter mass at weaning grams Weaning Season & Manipulation group 

37. Litter mass at second birth grams Second birth Manipulation group 

38. Reproductive effort  
(litter mass × mean neonate 
mass0.75 / mother’s mass0.75) 

unitless Birth Season 

39. Survival of mother voles to 
next sampling season % Seasonally - subsequent 

sampling season Season & Manipulation group 

40. Mothers which gave birth 
to a subsequent litter % Second birth Manipulation group 

 
The model was found to be able to accurately replicate the majority of the empirical 
patterns (Figure S29). It captured the seasonal dynamics in population density, 
showing the highest values in late summer and the lowest in early summer. Notably, it 
also reflected some relative trends between years, such as the highest density in early 
summer and the lowest in late summer in 1997 compared to 1996 and 1998 (Figure 
S29A). 

At birth, patterns in litter size (Figure S29B) served as a 'sanity check,' as these values 
were imposed for selected females. In contrast, litter mass (Figure S29H) and 
reproductive effort (Figure S29K) at birth emerged from neonate body mass (Figure 
S29E), driven by energy intake and allocation of the mother during gestation. While 

 



the model outputs closely matched the empirical results for these patterns early in 
the year (early and mid-summer), the model's prediction of strong declines in neonate 
body mass in late summer resulted in relatively low litter mass values for that season.  

At weaning, litter size was determined by the female's provisioning during lactation, 
and the outputs varied between manipulation groups and seasons (Figure S29C). The 
model reproduced observed seasonal patterns, with the largest litter sizes in 
mid-summer and lowest in late summer. However, offspring survival in the wild is 
likely influenced by various non-energetic factors, such as predation, and as the 
empirical study observed animals at a minimum of 30 days old, dispersal processes 
could already be at play (231). These factors likely led to an overall overestimation of 
litter size at weaning in the model compared to observations. While the model did 
capture the finding that litter reductions resulted in the smallest litters at weaning, it 
did not sufficiently capture the pattern that increased litter sizes at birth did not 
necessarily result in larger litter sizes at weaning, particularly during early and late 
summer. Instead, the model tended to predict that larger weaning litter sizes 
correlated positively with litter size at birth across all seasons. This effect was minimal 
in late summer though, where litter sizes were fairly consistent across manipulation 
groups. The phenomenon where increased litters at birth do not lead to increased 
litter size at weaning has been documented in litter manipulation experiments, but 
the underlying mechanism remains unknown (56, 57, 67). This discrepancy could be 
due to maternal behaviors not represented in the model, such as preferential feeding 
or infanticide in cases of enlarged litters. 

Despite these challenges, the model accurately captured the observed declines in 
weanling body mass with both season and manipulation group (Figure S29F). 
However, due to the elevated litter size in the model, total litter mass at weaning 
remained higher than in the empirical study, though this deviation was again less 
pronounced in late summer (Figure S29I). The probability of a mother successfully 
weaning at least one pup was found to be similar to the empirical pattern (Figure 
S29G), with on average slightly higher values in the model results (mean: Observed: 
55.9%; Modelled: 62.6%). Both the empirical and model results found no differences 
across treatment groups. 

For mothers that gave birth to subsequent litters, the litter size at birth closely 
matched the empirical observations (Figure S29D). The model also successfully 
replicated the finding that manipulation groups affected subsequent litter mass, with 
females from enlarged litters having smaller litter masses at birth (mean ± S.E. pups: 
Observed: R: 11.2 ± 0.71, C: 10.26 ± 0.38, E: 9.79 ± 0.77; Modeled: R: 9.22 ± 0.18, C: 8.74 ± 
0.16, E: 8.24 ± 0.17) (Figure S29J). However, the model's average litter mass was lower 
than the empirical findings (mean: Observed: 10.4 g; Modeled: 8.7 g), due to smaller 
average neonate sizes in late summer (Figure S29E). The proportion of females 
producing subsequent litters was also similar between the model and empirical 
results (Figure S29M), with no consistent pattern observed across manipulation 
groups (mean: Observed: R: 56%, C: 56.3%, E: 53.4%; Modeled: R: 50%, C: 31%, E: 48%). 

Female survival to the next breeding period represents a truly emergent pattern, 
driven by both energy allocation, foraging success, and mortality processes. The 

 



model successfully captured the decline in survival across seasons and treatment 
groups (Figure S29L), showing the lowest survival rates in late summer and among 
females with enlarged litters. While there were some discrepancies, such as the lack of 
an effect of manipulation group in early summer and relatively low survival of control 
females in late summer, the model still aligned surprisingly well with the empirical 
data, especially given the complexity of the pattern. 

 

 



Figure S29. Comparison of model outputs with empirical data from the litter manipulation 
experiment in Koivula et al. 2003 for the years 1996-1998. (A) Seasonal population density dynamics per 
year (proportion of maximum value), litter size (count pups) at (B) birth and (C) weaning, and (D) 
subsequent litters, body mass (in grams) of (E) neonates and (F) weanlings, (G) probability (%) of 
successfully weaning at least one pup, total litter mass (in grams) at (H) birth, (I) weaning, and (J) 
subsequent litters, (K) reproductive effort at birth (see Table S34 for calculation), (L) female survival (%) to 
the next breeding period, and the (M) proportion (%) of females producing subsequent litters. Model 
outputs are presented from 100 simulation replicates.  Model results are shown in color, and empirical 
findings are in black or grey, with shapes indicating the grouping for analysis: squares for 1996, upward 
triangles for 1997, downward triangles for 1998, circles for litter manipulation groups, and diamonds for 
seasons. Statistics for each pattern were matched to those used in the empirical study for comparability: 
mean ± S.E. is used in panels A, D, E (with the full range in lightest grey), J, and K; mean ± 95% CI is used 
in panels B, C, F, I, and L; and mean alone is used in panels G, H, and M. Insets in panels F and L display 
the average mean and 95% CI across seasons. 
 

 
 

10. Appendix figures 
 

 

Figure S30. Fit of statistical model (in color) to observed NDVI dynamics (in grey) 

for Konnevesi, Finland. Observations from winter are not shown as this period was 

skipped in simulations. NDVI values were obtained from the Terra MODIS mission 

(Didan, 2021). 

 



Figure S31. Correlations between individual-level traits and population metrics 

under observed vegetation dynamics, 2018 to 2022. Pink represents negative 

correlations and yellow denotes positive correlations, determined via Pearson 

correlation coefficients, with increasing saturation representing stronger 

relationships. Abbreviations used include: Apeak = peak adult abundance (N), TApeak = 

timing of peak adult abundance (day of year), Opeak = peak offspring abundance (N), 

TOpeak = timing of peak offspring abundance (day of year), Amin = adult minimum 

abundance (N), and TAmin = timing of minimum adult abundance (day of year), LRS = 

lifetime reproductive success (N pups weaned), age1st birth = age at first birth (days), 

LPY = number of litters per year (N), agedeath = longevity (days), m = body mass (g), SL = 

body condition (% body fat), Mtot = total metabolic rate (J day⁻¹),  ML = locomotion 

 



costs (J day⁻¹), MR = reproduction costs (J day⁻¹), MLM = cost of lean mass growth (J 

day⁻¹),  LSW = litter size at weaning (N pups), mneo = neonate mass (g), and mwean = 

weaning mass (g). Both the average ‘(Mean)’ and variation ‘(CV)’ were analyzed for 

each output. Predictions were generated from 500 simulation runs per site. 

 

Figure S32. Correlations between individual-level traits and population metrics 

under projected vegetation dynamics, 2094 to 2098. Pink represents negative 

correlations and yellow denotes positive correlations, determined via Pearson 

correlation coefficients, with increasing saturation representing stronger 

relationships. Abbreviations used include: Apeak = peak adult abundance (N), TApeak = 

timing of peak adult abundance (day of year), Opeak = peak offspring abundance (N), 

 



TOpeak = timing of peak offspring abundance (day of year), Amin = adult minimum 

abundance (N), and TAmin = timing of minimum adult abundance (day of year), LRS = 

lifetime reproductive success (N pups weaned), age1st birth = age at first birth (days), 

LPY = number of litters per year (N), agedeath = longevity (days), m = body mass (g), SL = 

body condition (% body fat), Mtot = total metabolic rate (J day⁻¹),  ML = locomotion 

costs (J day⁻¹), MR = reproduction costs (J day⁻¹), MLM = cost of lean mass growth (J 

day⁻¹),  LSW = litter size at weaning (N pups), mneo = neonate mass (g), and mwean = 

weaning mass (g). Both the average ‘(Mean)’ and variation ‘(CV)’ were analyzed for 

each output. Predictions were generated from 500 simulation runs per site. 

 



 

Figure S33. Predicted spatial and temporal variations in population dynamics, life 

history, and morphometric traits under observed and projected resource 

dynamics for shifted NDVI projections, where average annual NDVI was retained 

from the statistical model projections while within year dynamics were driven by 

the observed data. These simulations were run under emissions scenario SSP585. 

For more details, refer to the caption of Figure 5.  

 

 



 

Figure S34. Predicted spatial and temporal variations in population dynamics, life 

history, and morphometric traits under observed and projected resource 

dynamics across the ten study sites for emissions scenario SSP245. For more 

details, refer to the caption of Figure 5.  
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