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Abstract 38 

Airborne environmental DNA (airborne eDNA) analysis leverages the globally ubiquitous 39 
medium of air to deliver broad species distribution data and support ecosystem monitoring across 40 
diverse environments. As this emerging technology matures, addressing critical challenges and 41 
seizing key opportunities will be essential to fully realise its potentially transformative impact. In 42 
June 2024, the Southern eDNA Society convened over 100 researchers, industry leaders, and 43 
biodiversity management stakeholders in a landmark workshop to evaluate the current state of 44 
airborne eDNA research and chart a course for future development. Participants explored 45 
opportunities for integrating airborne eDNA into existing monitoring systems, but they 46 
unanimously agreed that research must first be applied to improving understanding of airborne 47 
eDNA ecology. The workshop emphasised the importance of collaborative engagement with 48 
stakeholders – including government agencies, Indigenous communities, and citizen scientists – 49 
to ensure practical and ethical implementation. This summary highlights current challenges and 50 
actionable recommendations, including improving our understanding of airborne eDNA ecology, 51 
harmonising sampling methodology (e.g., devices, materials, sampling density, duration), 52 
identifying and mitigating sources of error, and fostering early, sustained stakeholder 53 
collaboration. By addressing these challenges, airborne eDNA analysis can become a 54 
transformative tool for biodiversity, biosecurity, and conservation monitoring on a global scale. 55 
Its ability to detect diverse taxonomic groups—including fungi, plants, arthropods, microbes, and 56 
vertebrates—positions airborne eDNA as a pivotal technology for holistic terrestrial biodiversity 57 
assessments that transcend traditional, species-focused monitoring approaches.  58 

Keywords: airborne eDNA, biodiversity, biosecurity, monitoring, terrestrial, Southern eDNA 59 
Society, implementation, aerobiology, aeolian, conservation   60 
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Introduction 61 

Amid a growing global biodiversity crisis, decision-makers require accurate and timely species 62 
distribution and occurrence data. Over the last decade, environmental DNA (eDNA) analysis has 63 
become a widely used surveillance tool, particularly within aquatic ecosystems. Sequencing DNA 64 
shed by organisms in the environment has enabled time- and cost-effective, non-invasive 65 
biodiversity assessments (Ficetola et al., 2008; Pawlowski et al., 2020; Rodriguez‐Ezpeleta et al., 66 
2021). As the field evolves, new eDNA methods continue to emerge, with airborne eDNA analysis 67 
being one of the latest additions (Bohmann & Lynggaard, 2023; Johnson & Barnes, 2024).  68 

Airborne eDNA is derived from bioaerosols, which encompass a diverse array of organic 69 
materials. These include (1) microorganisms such as viruses, bacteria, microalgae, and unicellular 70 
fungi; (2) propagules like pollen and spores released by plants and fungi; and (3) biological 71 
fragments, including excretions, cells, and tissue pieces from plants, animals, and microbes 72 
(Després et al., 2012). While the definition of “airborne eDNA” remains an unresolved point in 73 
the field, for practical purposes, we define it here as DNA extracted from any biological material 74 
captured in air samples. This broad definition acknowledges the methodological consistency of 75 
approaches used to collect and analyse airborne biological material, whether targeting pollen, 76 
fungal spores, microbes, plant fragments, or vertebrate DNA.  77 

Given its ability to capture DNA from diverse sources, airborne eDNA analysis has been applied 78 
across multiple fields, including detection of invasive species (Trujillo-González et al., 2022; 79 
Sanders et al., 2023), biodiversity assessments (Clare et al., 2022), detection of rare or elusive 80 
species (Garrett et al., 2023a), and tracking of allergenic pollen (Kraaijeveld et al., 2015). 81 
Emerging applications in airborne environmental RNA (eRNA) further extend potential use cases, 82 
particularly for pathogen surveillance (Chia et al., 2020; Bossers et al., 2024). Together, these 83 
advances enable cross-disciplinary ecological and evolutionary research and support 84 
comprehensive ecosystem health monitoring.  85 

Airborne eDNA analysis holds immense promise for monitoring applications across a wide range 86 
of terrestrial environments, with the ability to capture genetic material from air to complement 87 
substrate-restricted eDNA sampling methods. This unique potential could enable broad-scale 88 
biodiversity assessments in locations where traditional field monitoring methods are impractical. 89 
However, the methodology remains nascent, sharing many challenges with established eDNA 90 
sources like water, such as imperfect detection and sensitivity to environmental conditions 91 
(Johnson et al., 2021a; Rowney et al., 2021). Rather than deterring progress, these challenges 92 
underscore the need for targeted research and methodological innovation. Variation in sample 93 
collection and analysis, although expected in an emerging field, has prompted studies on sampling 94 
method effects (Johnson et al., 2019a), detection limits (Foster et al., 2023), and source estimation 95 
for airborne eDNA (Lennartz et al., 2021; Gusareva et al., 2022), emphasising the importance of 96 
quantifying methodological impacts on data robustness, repeatability, and reliability. Recognising 97 
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this momentum, Johnson & Barnes (2024) recently reviewed the field’s growth, challenges, and 98 
potential future directions, identifying key hurdles still to be addressed. 99 

In June 2024, over 100 researchers, industry leaders and management stakeholders convened in 100 
Canberra, Australia, both in person and virtually, for a pivotal two-day workshop hosted by the 101 
Southern eDNA Society (SeDNAS, https://sednasociety.com/, accessed 13 September 2024). 102 
Participants from 30 institutions and eight countries evaluated the current state of airborne eDNA 103 
research, identified key challenges, and outlined strategic pathways for future development.  104 

While acknowledging the long-standing use of eDNA metabarcoding and targeted species 105 
detection in airborne microbial community and pollen and fungal spore studies, the workshop 106 
primarily focused on the use of airborne eDNA for detecting macro-organisms. Discussions 107 
revealed many overlapping challenges with other forms of eDNA, such as aquatic or soil-based 108 
methods, but workshop participants acknowledged that a subset of challenges including 109 
exceptionally low total DNA concentrations and the establishment of appropriate field controls are 110 
unique to the medium of air. The workshop centred around four key questions: (1) What might 111 
airborne eDNA data be used for? (2) How is airborne eDNA currently collected and processed? 112 
(3) What are the key questions about airborne eDNA ecology that need to be answered? (4) How 113 
do we as researchers engage effectively with airborne eDNA stakeholders? Here, we summarise 114 
the workshop outputs, provide insights into the advances and future directions of airborne eDNA 115 
technology, and offer a workshop statement to summarise current community consensus on the 116 
emerging field (see Box 1).  117 

 118 

Box 1. Southern eDNA Society Airborne eDNA Workshop Joint Statement 119 

“Airborne eDNA analysis is a potentially powerful biomonitoring tool, however we must 120 
improve our understanding of airborne eDNA ecology, sampling strategy impacts, signal 121 
variability and sensitivity. With validation, airborne eDNA tools may become standard in 122 

biodiversity, biosecurity and conservation applications.”  123 
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Airborne eDNA applications  124 

Interest in airborne eDNA has grown rapidly following proof-of-concept studies demonstrating its 125 
utility in detecting vertebrates (Clare et al., 2021) and plants that rely on insect or animal 126 
pollination rather than wind dispersal (Johnson et al., 2019b). These studies paved the way for 127 
early applications of airborne eDNA analysis in terrestrial biodiversity assessments (Clare et al., 128 
2022; Lynggaard et al., 2022; Bohmann & Lynggaard, 2023; Lynggaard et al., 2024). The utility 129 
of airborne eDNA extends beyond targeted species detection to monitoring across the tree of life. 130 
Its ability to simultaneously identify microorganisms, plants, and animals allows for the 131 
development of comprehensive biodiversity baselines and offers unparalleled opportunities to 132 
detect shifts in community composition and biodiversity health. When paired with traditional 133 
survey techniques such as camera traps, manual handling, and visual surveys (Johnson et al., 134 
2021b; Roger et al., 2022) and complementary forms of eDNA (Runnel et al., 2024), airborne 135 
eDNA may improve detection of terrestrial and arboreal species that may otherwise be 136 
underrepresented or undetected (Banchi et al., 2020). 137 

In the context of a changing climate and increasingly interconnected world, airborne eDNA 138 
analysis enables rapid detection of plant and animal pests and identification of incursion pathways, 139 
offering valuable data for biosecurity applications (Kestel et al., 2022; Trujillo-González et al., 140 
2022; Sanders et al., 2023). Its potential spans all phases of the invasion curve – from pre-141 
biosecurity breach and early detection to containment and eradication monitoring – highlighting 142 
its future role as a critical tool in biosecurity monitoring (Bell et al., 2024). For example, airborne 143 
eDNA has been shown to complement visual monitoring approaches for detecting pest species 144 
incursions, such as the successful detection of hemlock woolly adelgid populations in eastern 145 
North America (Geller & Partridge, 2025), a species native to Japan that has established as an 146 
invasive pest in affected regions (Havill et al., 2016). Airborne eDNA is also being tested in 147 
agricultural settings, such as honeybee colonies, to evaluate colony health and foraging behaviour, 148 
highlighting its potential for broader applications in agroecological monitoring and biosecurity 149 
(Pepinelli et al., 2025). 150 

Airborne eDNA collection offers an opportunity to sample in inaccessible regions and monitor 151 
biodiversity at spatial, temporal, and replication scales that were previously unattainable using 152 
traditional field-based methods. Like other eDNA approaches, airborne eDNA analysis can 153 
facilitate access to remote or challenging locations, including burrows and mountain-tops and 154 
enhance monitoring of sensitive or cryptic species (Lynggaard et al., 2024). The possible 155 
simplicity of airborne eDNA capture lends kindly to the expansion of sampling density through 156 
citizen scientist initiatives (Madden et al., 2016), mirroring those currently in use in aquatic 157 
systems (Biggs et al., 2014). To increase sampling scale affordably, an opportunity is emerging in 158 
repurposing existing sample collection infrastructure – such as pollen, spore or pollution 159 
monitoring stations (Littlefair et al., 2023), which can generate biodiversity data coupled with 160 
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environmental and meteorological datasets. Many of these infrastructures archive samples, 161 
providing the potential for retrospective analysis of biodiversity trends and historical species 162 
presence using airborne eDNA. 163 

Airborne eDNA collection 164 

Platforms used to collect airborne eDNA vary widely in their design and material composition, 165 
generally falling into two categories: passive or active samplers. The choice between these 166 
methods depends on the monitoring goal and project resources.  167 

Passive samplers rely on natural air movement to collect eDNA. With simple designs requiring 168 
low maintenance, they can be deployed at high density to increase temporal and spatial replication, 169 
delivering precise detection probabilities and occupancy estimates while reducing random 170 
variation due to fluctuating environmental conditions (Whittington et al., 2015; Burian et al., 171 
2021). Passive sampling is particularly advantageous for cost-effective, mobile deployments, 172 
supporting flexible sampling campaigns across many sites. However, passive methods depend on 173 
ambient air movement and may require long deployment times to accumulate sufficient DNA, 174 
especially in environments with low particulate loads. Examples of passive samplers include Big 175 
Spring Number Eight dust traps (Johnson et al., 2023), modified Wilson and Cooke towers, 176 
marble-filled pan traps (Johnson et al., 2019a), filter and funnel sedimentation traps (Schlegel et 177 
al., 2024), and sticky traps (Runnel et al., 2024). Opportunistic methods, such as collecting 178 
spiderwebs to capture airborne eDNA, have also been explored (Xu et al., 2015; Gregoric et al., 179 
2022; Newton et al., 2024). 180 

In contrast, active samplers use powered equipment, such as fans, to intentionally draw air through 181 
or onto a particle collection system, like filters, impingers, or cyclonic separators. These systems 182 
may increase the volume of air sampled over a given time period, impacting the effective test area 183 
and detection probability, though further research is needed to quantify this effect. Although more 184 
complex and power-dependent than passive devices, active samplers enable controlled, 185 
standardised sampling and can deliver higher temporal resolution over extended periods. Examples 186 
of active samplers include cyclonic air-samplers (Brennan et al., 2019; Roger et al., 2022), dry 187 
cyclone samplers (Brennan et al., 2019), computer fan-powered 3D-printed filter frames 188 
(Lynggaard et al., 2022; Garrett et al., 2023a), and repurposed pollution monitoring stations 189 
(Littlefair et al., 2023). 190 

As new collection systems are developed and tested, platform design variation is expected to 191 
increase. To guide this innovation, workshop attendees identified key attributes for airborne eDNA 192 
samplers (Figure 1). The desired features of a sampling platform directly relate to the monitoring 193 
scale, context, and longevity of use.  194 
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We define long-term monitoring platforms as those designed for continuous or repeated sampling 195 
at fixed sites, typically supported by permanent or semi-permanent infrastructure (e.g., pest 196 
monitoring in agricultural systems or biodiversity assessments at long-term research sites). Such 197 
platforms should be durable, low-maintenance, and tamper resistant, with modular or customisable 198 
components that allow different sampling modules, filters, or environmental sensors to be swapped 199 
in or upgraded as monitoring objectives evolve. This flexibility can extend the operational lifespan 200 
of devices and support multi-purpose sampling, for example, switching between general 201 
biodiversity monitoring and targeted surveillance of specific taxa. Features that support DNA 202 
preservation, such as in situ drying, chemical stabilisation, or refrigeration modules, are critical 203 
for maintaining sample integrity during long deployments. Remote monitoring capabilities, such 204 
as real-time environmental sensing, airflow or filter performance tracking, and automated alerts 205 
for maintenance needs, can further enhance data reliability and operational efficiency.  206 

Short-term monitoring platforms are designed for temporary, mobile deployments – ranging from 207 
hours to weeks – for episodic, opportunistic, or event-based monitoring needs like in the case of 208 
establishing invasion fronts in biosecurity controls efforts or supporting citizen science initiatives. 209 
These platforms benefit from simple, low-cost designs that are lightweight, easy to deploy, and 210 
ideally inconspicuous in the field. Their portability makes them especially useful for rapid-211 
response surveys or distributed sampling by non-specialists, such as volunteers. Where these 212 
devices are used in citizen science or for educational purposes, they may be designed with user-213 
friendly packaging and engaging data exploration interfaces to encourage participation.  214 

Across both long- and short-term applications, all platforms should include core attributes such as 215 
standardised sample preparation and storage, systems for collecting contamination controls, and 216 
straightforward decontamination processes. Easy downstream sample processing, such as 217 
automated filter handling and DNA extraction, helps minimise manual handling and accelerates 218 
sample throughput. Additional key features include high sensitivity with in-built replication, 219 
repeatable deployment, and chain-of-custody tracking to ensure data integrity. Optional 220 
enhancements may include integration with meteorological data or point-of-application 221 
diagnostics to improve system utility in specific contexts.  222 

In practice, the distinction between long- and short-term platforms is closely linked to the choice 223 
between passive and active samplers, each offering advantages and limitations depending on the 224 
deployment context. Passive samplers may be preferable for short-term or opportunistic 225 
deployments because of their low cost, ease of transport, and minimal infrastructure needs, 226 
especially when broad spatial coverage is required. However, challenges such as maintaining 227 
exposure consistency and ensuring sufficient DNA accumulation limit their suitability for 228 
continuous long-term monitoring. Active samplers, though more resource-intensive, provide 229 
controlled, standardised sampling and the potential for higher temporal resolution, making them 230 
well-suited to long-term monitoring. Active systems may also be preferred for short-term use when 231 
rapid DNA collection is essential, such as during time-sensitive biodiversity or biosecurity events. 232 



PREPRINT - Pathway to airborne eDNA monitoring 

8 

An integrated approach combining both methods, such as deploying passive samplers across broad 233 
landscapes while maintaining active systems at key sentinel sites, may optimise monitoring 234 
outcomes. Despite their complementary roles, direct performance comparisons between passive 235 
and active systems remain limited (but see Jager et al., 2025), highlighting the need for further 236 
comparative studies. 237 

Regardless of the sampling approach, attendees underscored that critical sampling parameters must 238 
be validated before any method or device can be widely adopted for monitoring purposes to ensure 239 
reliable and accurate data generation. 240 

 241 

 242 

Figure 1. Key attributes of airborne eDNA collection platforms 243 

Ideal airborne eDNA collection devices balance core common attributes with fit-for-purpose design tailored to specific 244 
monitoring needs. Long-term monitoring platforms, typically supported by permanent or semi-permanent 245 
infrastructure, should prioritise durability, sample integrity, low maintenance, and modular/customisable components 246 
that enable evolving monitoring goals. Remote monitoring capabilities can enhance operational efficiency by 247 
providing real-time data on environmental conditions or device performance. Short-term monitoring platforms are 248 
designed for mobile, temporary use and should emphasise simplicity, portability, and cost-effectiveness, especially 249 
when used for rapid-response surveys or citizen science initiatives. In such contexts, engaging packaging and intuitive 250 
data interfaces may encourage participation. Across all platforms, standardised mechanisms for sample preparation 251 
and preservation, systems for collecting contamination controls, straightforward decontamination, and compatibility 252 
with high-throughput downstream processing are critical for ensuring data reliability and usability. 253 
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Advancing understanding of factors influencing airborne eDNA 254 

detection 255 

A comprehensive understanding of environmental, ecological, and technical parameters is critical 256 
for optimising airborne eDNA monitoring. Table 1 summarises key factors identified by workshop 257 
participants that require validation to strengthen confidence in airborne eDNA data.  258 

It is well-established that eDNA generation, persistence, and degradation (i.e., eDNA ecology) can 259 
be influenced by temperature, humidity, UV exposure, and other environmental factors, which 260 
introduce variability in species detection (Barnes et al., 2014; Shogren et al., 2017; Harrison et al., 261 
2019; Barnes et al., 2021; Jo & Minamoto, 2021). Airborne eDNA studies have begun to explore 262 
these influences, demonstrating, for example, the impact of weather and human activity on 263 
detection probabilities (Johnson et al., 2021a; Hanson et al., 2024). Species seasonality (e.g., pollen 264 
release, insect emergence, bird migration) and fluctuating air currents have also been identified as 265 
variables with potential to skew biodiversity assessments if not properly accounted for (Caliz et 266 
al., 2018; Aalismail et al., 2021). These environmental parameters should be routinely recorded 267 
alongside sampling to better contextualise results and allow for identification of potential sources 268 
of variability. 269 

Beyond environmental factors, technical elements such as sampler type, deployment strategy, and 270 
analytical workflows play pivotal roles in shaping data composition. Workshop attendees 271 
identified critical technical parameters requiring validation, including sampling methods, sampling 272 
density and replication, sample preservation, bioinformatic parameters, and controls (Table 1). For 273 
example, sampling methods encompass device design choices such as filters versus sticky traps, 274 
passive versus active systems, or impingement versus filtration, all of which may yield differing 275 
efficiencies (Johnson et al., 2019a; Chang et al., 2023). Sampling density refers to the number of 276 
independently deployed units across a site, while replication reflects technical and experiment 277 
repeats (e.g., number of filters collected per unit or number of qPCR replicates) within each 278 
sample. Sample preservation is especially important in airborne contexts, where low biomass and 279 
environmental exposure can rapidly degrade or contaminate the DNA sample. Field and laboratory 280 
controls are critical for detecting contamination events, while bioinformatic parameters such as 281 
filtering thresholds and taxonomic assignment strategies must be appropriately selected and 282 
transparently described to ensure data comparability. 283 

Although aquatic and soil eDNA studies provide valuable starting points, their insights do not fully 284 
mirror the challenges of airborne eDNA sampling. For example, aquatic-focused studies on DNA 285 
particle size, degradation kinetics, and extraction methods (Barnes et al., 2014; Deiner et al., 2015; 286 
Barnes et al., 2021) offer transferable knowledge but require confirmation under airborne 287 
conditions. Airborne eDNA also presents unique challenges, including potentially very low DNA 288 
concentrations, rapid particle sedimentation, and the influence of complex air currents, all of which 289 
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require dedicated investigation. Without insight into these factors, conservation or biosecurity 290 
actions informed by airborne eDNA data may risk misinterpretation and inefficiency due to 291 
uncharacterised detection error. Thus, investigation and validation of a diverse range of parameters 292 
will be essential for progressing the utility of airborne eDNA analysis (Atkinson & Roy, 2023; 293 
Bohmann & Lynggaard, 2023).  294 

The need for parameter validation will depend on study objectives. While the field works toward 295 
understanding these factors, it is important that airborne eDNA studies clearly communicate study 296 
limitations. Importantly, airborne eDNA studies should clearly articulate their experimental 297 
design, use of controls, and data analysis approach to further facilitate identification of potential 298 
sources of detection error. 299 

Table 1. Key parameters requiring validation for reliable airborne environmental DNA 300 
(eDNA) monitoring 301 

A non-exhaustive list of critical parameters requiring validation to ensure the reliability of airborne eDNA monitoring. 302 
Parameters are grouped into four categories: Technical/experimental, Environmental factors, Ecology of target 303 
species, and Detection limits. For each category, specific parameters, the validation required, and examples of relevant 304 
studies are provided. The δ symbol indicates studies or recommendations made for aquatic eDNA, highlighting 305 
transferable knowledge from existing eDNA research.  306 

Category Parameters Validation Required Examples 

Technical/experimental 
 

• Sampling methods 
• Sampling density 
• Technical and 

experimental 
replication 

• Sample 
preservation 

• Bioinformatics 
• Field and 

laboratory controls 
 

Comparisons of sampling 
methods (e.g., active versus 
passive).  
 
Optimisation of sampling 
materials.  
 
Effects of sampling design (e.g., 
height of sampler, sampling 
duration, air volume), DNA 
preservation solutions and 
contamination.  
 
Selection of bioinformatic 
parameters.  
 
Identification of appropriate 
controls.  

Sampling and processing effects on 
terrestrial plant detection (Johnson et al., 
2019a) 
 
Sampling impacts on airborne viral 
detection (Chang et al., 2023) 
 
Aquatic study recommendations (Goldberg 
et al., 2016) d 

 
Sampling and extraction effects in 
freshwater systems (Deiner et al., 2015) d 

Environmental factors • Weather 
• UV irradiance 
• Human activity 

Impact of humidity, temperature, 
wind direction and speed, UV 
index, precipitation, air pressure, 
and local human activity on DNA 
transport and persistence.  

Seasonal weather impact on tree species 
detection (Hanson et al., 2024) 
 
Combined influence of seasonality and 
human activity on plant detection (Johnson 
et al., 2021a) 
 
Environmental influence over eDNA 
particle size in freshwater systems (Barnes 
et al., 2021) d 
 
eDNA persistence in controlled freshwater 
system (Barnes et al., 2014) d 
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Ecology of target species • Habitat 
• Behaviour 
• Life cycle 
• Species mobility 
• DNA shedding 

rates 
• Shed DNA form 

Influence of species biology on 
DNA shedding, DNA distribution 
and detection. 

Source locations of eukaryotic species 
detected in atmospheric dust (Aalismail et 
al., 2021) 
 
Influence of tree species biology on 
detection (Johnson et al., 2019b) 
 
Influence of land-use type and seasonality 
on airborne bacterial and fungal community 
composition (Bowers et al., 2011; Caliz et 
al., 2018; Anees-Hill et al., 2022) 

Detection limits • Sensitivity 
• Inhibition 
• Error Estimation 

Minimum detection thresholds.  
 
Identification of likely inhibitors. 
 
Estimating and accounting for 
error using analysis tools.  

qPCR inhibition in indoor air samples 
(McDevitt et al., 2007) 
 
Defining detection limits (Klymus et al., 
2020) 
 
PCR inhibition in freshwater systems (Jane 
et al., 2015; Buxton et al., 2017) d 

 

Improving reliability of eDNA data 
interpretation using statistical models 
(Burian et al., 2021) 

Airborne eDNA, like other eDNA approaches, is prone to error from several major sources, 307 
including, contamination of DNA in the workflow, inefficient DNA capture, PCR inhibition, 308 
misidentification of DNA, and changing taxonomies (Furlan et al., 2020; Burian et al., 2021; 309 
Garrett et al., 2023a; Garrett et al., 2023b). Detection sensitivity and inhibition are particularly 310 
critical considerations, as environmental samples often contain low DNA concentrations alongside 311 
potential inhibitors such as dust, soot, and pollen (McDevitt et al., 2007). These factors can 312 
suppress amplification efficiency, leading to underestimation of biodiversity. To improve 313 
confidence in results, validation of detection thresholds, identification of likely inhibitors, and 314 
rigorous error estimation, such as using internal controls and mock community trials, are essential 315 
steps (Klymus et al., 2020; Burian et al., 2021).  316 

To address these challenges systematically, the workshop developed a four-part framework 317 
articulating the main sources of error in eDNA datasets and outlining tailored mitigation strategies 318 
(Figure 2). The framework divides the eDNA workflow into two stages: capture (physical 319 
collection of environmental DNA) and analysis (identification and interpretation of DNA). Errors 320 
arising during capture are classified as detection errors, while those arising during analysis are 321 
classified as identification errors. Together, these stages yield four distinct error types: (1) false 322 
negative detections, where DNA is present in the environment but is not captured; (2) false 323 
negative identifications, where DNA is captured but cannot be accurately identified; (3) false 324 
positive detections, where DNA is correctly identified but originates from outside the target area; 325 
and (4) false positive identifications, where DNA is misidentified as the wrong species. Each 326 
error type requires tailored mitigation strategies, for example, improving detection methods may 327 
address false negatives, while enhanced bioinformatic pipelines and reference databases can 328 
reduce the likelihood of false positive identifications. 329 
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eDNA datasets are often complicated by false positive detections from laboratory contaminants 330 
and ubiquitous signals from humans, agricultural plants and animals, and common fungi. While 331 
detection of common contaminants is not unique to airborne eDNA (Sepulveda et al., 2020a), 332 
sampling air presents a unique challenge in that every step of the collection and analysis process 333 
is unavoidably exposed to ambient air, increasing the risk of contamination at every stage. This 334 
underscores the need for robust controls at both field and laboratory stages, as current 335 
methodologies may not adequately mitigate contamination risks specific to air sampling.  336 

While most airborne eDNA studies have included standard blank extraction controls, some have 337 
instituted negative filter controls (e.g., filters not exposed to air in the field) see Roger et al. (2022), 338 
and others also include laboratory air controls (e.g., filters exposed to laboratory air) see Littlefair 339 
et al. (2023). In addition to these controls, regional baseline monitoring, through both targeted 340 
eDNA surveys and conventional biodiversity assessments, can help contextualise detections by 341 
establishing a reference of species expected to be present in a given area. This approach is 342 
particularly valuable for distinguishing between true local detections and potential false positives 343 
arising from long-distance DNA transport or unexpected environmental contamination.  344 

A further complication is defining the “target ecosystem” for airborne eDNA. Unlike freshwater 345 
aquatic eDNA studies, where the sampling area is often clearly bounded (e.g., a specific pond or 346 
stream), airborne eDNA may reflect biological signals from a much broader or ambiguous source 347 
area. DNA can accumulate from both local and distant sources, complicating the interpretation of 348 
whether a species is truly present at the sampling site. Recent work by Tournayre et al. (2025) has 349 
provided tentative estimates of airborne eDNA transport distances, using a network of 15 350 
repurposed air pollution monitors. They reported a median estimated travel distance of 351 
approximately 18 km, though these estimates are preliminary and specific to the sampler type used 352 
(Digitel 392 DPA-14) and particle size collected (particles ≤ 10 µm). Smaller particles likely 353 
disperse farther, and wind and landscape features may generate complex patterns, underscoring 354 
the need for further empirical research to clarify airborne DNA transport dynamics and the spatial 355 
resolution of airborne eDNA detections. 356 

To support more reliable interpretation, regional datasets could be developed by leveraging 357 
existing environmental monitoring programs, such as national air quality (Littlefair et al., 2023) 358 
and large-scale pollen and fungal spore monitoring networks such as the European Aeroallergen 359 
Network (ean.polleninfo.eu), the US National Allergy Bureau (pollen.aaaai.org), and the 360 
Australian Pollen Allergen Partnership (auspollen.edu.au). Large-scale microbial and dust 361 
monitoring initiatives (Barberán et al., 2015; Tignat-Perrier et al., 2019) also present opportunities 362 
to cross-reference airborne eDNA detections with broader atmospheric biodiversity trends. 363 

Errors related to DNA identification can also have broad-reaching impacts on biodiversity 364 
assessments and management decisions made from eDNA data, for example, both false positive 365 
and false negative identifications can skew biodiversity assessments. The complexity of this 366 
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problem was illustrated in recent studies surveying bat biodiversity using airborne eDNA (Garrett 367 
et al., 2023a; Garrett et al., 2023b). In these studies, Garrett et al (2023a/b) worked at a long-term 368 
bat monitoring site with 35-40 common species, many of which have undergone multiple recent 369 
taxonomic revisions (e.g., Mimon crenulatum reclassified to Gardnerycteris crenulatum and then 370 
to Gardnerycteris keenani). Taxonomic flux and ambiguous reference sequences complicated 371 
species identification, even with taxon-specific expert input and manual curation. Notably, the 372 
study found that closely related species with near-identical barcode sequences simultaneously 373 
increased the risk of false positive identifications (misassigning DNA to the wrong species) and 374 
false negative identifications (downgrading data to genus level or overlooking valid detections). 375 

To mitigate false positive identifications, independent verification methods such as visual surveys, 376 
acoustic monitoring, or camera trapping, are valuable for corroborating eDNA findings, 377 
particularly when detections carry management implications. In the bat study, these validation 378 
efforts were key to distinguishing genuine detections from artefacts arising from taxonomic 379 
ambiguity and regional synonymy, issues that are likely to affect other taxonomic groups, 380 
especially when reference databases lack curation. While independent verification remains best 381 
practice, there is growing interest in determining when airborne eDNA data, particularly for well-382 
characterised systems, can stand alone as sufficient evidence for community assessments. Ongoing 383 
benchmarking and cross-validation efforts will be critical in clarifying where and when this is 384 
appropriate. 385 

Continued improvement of bioinformatics pipelines and reference databases will reduce the 386 
likelihood of false identifications. Advanced data processing tools can enhance the reliability of 387 
eDNA data interpretation, accounting for error which cannot otherwise be eliminated through 388 
control of characterised variables (Burian et al., 2021). For false negative identifications, 389 
expanding the use of multiple genetic markers (e.g., COI, 12S, 16S) can increase taxonomic 390 
coverage and improve resolution. However, this approach introduces additional laboratory 391 
complexity, analytical costs, and potential challenges in marker optimisation. Marker choice must 392 
balance broad taxonomic reach with specificity tailored to monitoring goals. Data processing tools 393 
which apply hierarchical occupancy or process-based models have been shown to mitigate the 394 
impact of error sources through the estimation of uncertainty related to species detection 395 
(McClenaghan et al., 2020). 396 

A major bottleneck remains the availability of reference sequences, particularly for invertebrates 397 
and fungi. Workshop participants strongly advocated for coordinated reference sequencing 398 
initiatives, ideally in partnership with natural history collections (Schmid et al., 2025) to close 399 
these gaps, with a focus on regionally relevant species. Progress on this front will enable greater 400 
confidence in using airborne eDNA as a standalone tool, especially in well-characterised systems 401 
where reference databases are comprehensive. Initiatives such as the Australia’s National 402 
Biodiversity DNA Library (NBDL; research.csiro.au/dnalibrary), which links whole organellar 403 
(mitochondrial and chloroplast) genomes to vouchered specimens and aims to barcode all 404 
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Australian species, exemplify best practice. Similar large-scale efforts include the Barcode of Life 405 
Data System (BOLD; boldsystems.org) (Ratnasingham & Hebert, 2007) and the International 406 
Barcode of Life (iBOL; ibol.org) project, which have made significant advances in building global 407 
barcode libraries. As these resources grow and incorporate rigorous taxonomic validation, they 408 
will reduce reliance on supplementary verification in many contexts. However, workshop 409 
participants cautioned that these goals remain aspirational for many taxa and regions, reinforcing 410 
the continued importance of validation and benchmarking in the near term. 411 

While best practices in field and laboratory protocols and data interpretation remain fundamental, 412 
they are insufficient on their own to negate all sources of error. Nonetheless, as has been shown in 413 
aquatic systems, the presence of some data uncertainty should not deter managers from utilising 414 
eDNA data when it offers a valuable, non-invasive tool for biodiversity and biosecurity monitoring 415 
(Jerde, 2021). 416 

 417 

Figure 2. Framework for addressing errors in airborne eDNA analysis 418 

Framework for understanding error in eDNA analysis, distinguishing four categories of error arising from two key stages of the 419 
workflow: detection (during sample collection) and identification (during data analysis). The  upper and lower halves of the figure 420 
represent detection and identification errors, respectively, while green (left) and tan (right) indicate positive and negative 421 
conclusions. Each error type stems from distinct sources and requires tailored mitigation strategies, illustrated around the perimeter. 422 
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 423 

Building partnerships and trust in airborne eDNA 424 

As airborne eDNA research matures, models of stakeholder engagement used in water and soil 425 
eDNA sampling can serve as useful templates to support successful implementation (Morisette et 426 
al., 2021). Achieving this will require early and sustained collaboration with agencies, industries, 427 
academic institutions, citizen scientists, and Indigenous communities (Bonicalza et al., 2024). 428 
Given the complexity of integrating genetic data with climatic and ecological information, 429 
engaging stakeholders from the outset helps ensures research approaches are fit-for-purpose and 430 
ethically sound.  431 

The use of airborne eDNA raises important ethical concerns, particularly regarding privacy, 432 
consent, and potential misuse. These include risks such as unintended disclosure of sensitive 433 
species locations and potential impacts on Indigenous communities and landowners if data are 434 
collected without consent (Handsley-Davis et al., 2021). Best practices should therefore prioritise 435 
co-design with Indigenous communities, respecting local contexts and protocols, and adhering to 436 
FAIR (Findable, Accessible, Interoperable, Reusable) and CARE (Collective Benefit, Authority 437 
to Control, Responsibility, Ethics) data governance principles (www.gida-global.org/care) 438 
(Hutchins et al., 2023; Kukutai & Black, 2024). Frameworks such as the Te Mata Ira and Te 439 
Nohonga Kaitiaki Guidelines for Genomic Research with Māori and on Taonga Species from 440 
Genomics Aotearoa (Hudson et al., 2021) and the United States’ National Aquatic eDNA Strategy 441 
(Goodwin et al., 2024) provide guidance on ethical Indigenous engagement. Early and intentional 442 
collaboration with Indigenous communities and management agencies helps align scientific goals 443 
with practical needs, fostering mutually beneficial and culturally respectful outcomes (Wilcox et 444 
al., 2008; Handsley-Davis et al., 2021; Newton et al., 2025). 445 

Stakeholders may approach airborne eDNA analysis with cautious optimism, given its relative 446 
early stage as a monitoring tool (Polling et al., 2024) and the need to build confidence in the 447 
reliability of eDNA data for biosecurity and conservation management (Sepulveda et al., 2020b). 448 
Researchers must clearly communicate current limitations and set realistic expectations. For 449 
example, airborne eDNA is currently best suited for presence/absence detection rather than 450 
delivering abundance estimates. Stakeholders should also understand that species detectability can 451 
vary depending on environmental conditions, shedding rates, and site-specific factors. Researchers 452 
should emphasise that airborne eDNA is a complementary tool rather than a substitute for 453 
traditional methods.  454 

Integrating airborne eDNA analysis with established sampling techniques such as camera traps 455 
(Polling et al., 2024), visual surveys (Johnson et al., 2021b), and acoustic monitoring (Garrett et 456 
al., 2023a), offers opportunities to build trust through corroborative evidence. Co-designing 457 
protocols with stakeholders to align with regulatory processes and practical applications will be 458 
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essential. Additionally, developing well-defined sampling protocols and robust controls, modelled 459 
on those established in aquatic eDNA studies (Deiner et al., 2015; Goldberg et al., 2016; Minamoto 460 
et al., 2016; Deiner et al., 2018), will ultimately contribute to end-user adoption of airborne eDNA 461 
methods.  462 

The simplicity and accessibility of air sampling provide a compelling opportunity to engage 463 
communities through citizen science initiatives, expanding monitoring capacity (Palmer et al., 464 
2017) while fostering public awareness and education (Sbrocchi, 2015; Isley et al., 2022). By 465 
involving citizen scientists in data collection, programs can leverage public interest and 466 
participation to boost sampling density and broaden geographic coverage. To ensure the success 467 
and sustainability of these programs, it is essential to follow established frameworks for citizen-468 
scientist engagement that emphasise clear goals, transparent data management, and adaptable 469 
protocols (Kieslinger et al., 2017). An additional benefit of such initiatives is the potential to create 470 
biobanking repositories of samples collected by citizen scientists, generating valuable time-series 471 
data for future research (Jarman et al., 2018). Ultimately, effective communication and ongoing 472 
collaboration between scientists and participants will be crucial for building trust and maximising 473 
the long-term impact of airborne eDNA initiatives, fostering a shared commitment to biodiversity 474 
monitoring and conservation. 475 

 476 

Clear skies ahead? 477 

Advancing airborne eDNA analysis as a monitoring tool may transform biodiversity and 478 
biosecurity management by delivering rapid, non-invasive insights into ecosystems at previously 479 
unattainable scales. However, realising this potential depends on overcoming key challenges, 480 
particularly those related to refining collection methods, deepening our understanding of airborne 481 
eDNA ecology, and managing data uncertainties. Through focused, collaborative research, the 482 
field can transition from experimental trials to practical application, bridging the gap between 483 
eDNA research and policy (Lodge, 2022). 484 

Integrating airborne eDNA with other monitoring methods, such as remote sensing and traditional 485 
field surveys, could expand both the scope and resolution of ecosystem assessments, supporting 486 
broader 'One Health' frameworks that link environmental, animal, and human health (Farrell et al., 487 
2021; Childress et al., 2024). As a complementary tool, airborne eDNA has the potential to broaden 488 
our understanding of ecosystem dynamics and improve early detection of biodiversity loss and 489 
biosecurity threats that otherwise go unnoticed. In the future, data generated through airborne 490 
eDNA analysis could become a cornerstone of large-scale monitoring networks, similar to 491 
wastewater surveillance for tracking disease outbreaks like COVID-19 (Bogler et al., 2020). 492 
Integration of this monitoring tool into global initiatives, such as GBiOS, could revolutionise 493 
biodiversity monitoring by standardising data collection to enable rapid, evidence-based 494 
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management responses (Gonzalez et al., 2024). The method’s ability to integrate genetic 495 
information from a wide range of taxonomic groups makes it an ideal candidate for inclusion in 496 
global monitoring initiatives. In doing so, airborne eDNA can help build comprehensive global 497 
datasets that support comparative ecological research and guide policy at an international scale. 498 

If the significant challenges are overcome, airborne eDNA analysis has the potential to 499 
revolutionise environmental monitoring, offering innovative ways to observe and protect 500 
ecosystems. To realise the potential of this emerging tool, sampling methods should be refined, 501 
and robust parameter validation established. With continued innovation and targeted research, 502 
airborne eDNA analysis could set new benchmarks in biodiversity, biosecurity, and conservation 503 
practices, ultimately becoming a routine component of ecosystem management. As the field 504 
matures, airborne eDNA analysis can evolve from an experimental approach to a reliable tool, 505 
guiding decision-making at local, national, and global scales and safeguarding natural resources 506 
for future generations. 507 
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