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Abstract 36 

Airborne environmental DNA (airborne eDNA) analysis leverages the globally ubiquitous 37 
medium of air to deliver broad species distribution data and support ecosystem monitoring across 38 
diverse environments. As this emerging technology matures, addressing critical challenges and 39 
seizing key opportunities will be essential to fully realise its potentially transformative impact. In 40 
June 2024, the Southern eDNA Society convened over 100 researchers, industry leaders, and 41 
biodiversity management stakeholders in a landmark workshop to evaluate the current state of 42 
airborne eDNA research and chart a course for future development. Participants explored 43 
opportunities for integrating airborne eDNA into existing monitoring systems, but they 44 
unanimously agreed that research must first be applied to improving understanding of airborne 45 
eDNA ecology. The workshop emphasised the importance of collaborative engagement with 46 
stakeholders – including government agencies, Indigenous communities, and citizen scientists – 47 
to ensure practical and ethical implementation. This summary highlights actionable 48 
recommendations from the workshop, such as addressing outstanding questions about airborne 49 
eDNA ecology, refining sampling strategies, and fostering early, sustained stakeholder 50 
collaboration. By addressing these challenges, airborne eDNA analysis can become a 51 
transformative tool for biodiversity, biosecurity, and conservation monitoring on a global scale. 52 
Its ability to detect diverse taxonomic groups—including fungi, plants, arthropods, microbes, and 53 
vertebrates—positions airborne eDNA as a pivotal technology for holistic terrestrial biodiversity 54 
assessments that transcend traditional, species-focused monitoring approaches.  55 

Keywords: airborne eDNA, biodiversity, biosecurity, monitoring, terrestrial, Southern eDNA 56 
Society, implementation, aerobiology, aeolian, conservation   57 
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Introduction 58 

Amid a growing global biodiversity crisis, decision-makers require accurate and timely species 59 
distribution and occurrence data. Over the last decade, environmental DNA (eDNA) analysis has 60 
become a widely used surveillance tool, particularly within aquatic ecosystems. Sequencing DNA 61 
shed by organisms in the environment has enabled time- and cost-effective, non-invasive 62 
biodiversity assessments (Ficetola et al., 2008; Pawlowski et al., 2020; Rodriguez‐Ezpeleta et al., 63 
2021). As the field evolves, new eDNA methods continue to emerge, with airborne eDNA analysis 64 
being one of the latest additions (Bohmann & Lynggaard, 2023; Johnson & Barnes, 2024). 65 
Airborne eDNA is derived from bioaerosols, which encompass a diverse array of organic 66 
materials. These include (1) microorganisms such as viruses, bacteria, microalgae, and unicellular 67 
fungi; (2) propagules like pollen and spores released by plants and fungi; and (3) biological 68 
fragments, including excretions, cells, and tissue pieces from plants, animals, and microbes 69 
(Després et al., 2012). While the definition of “airborne eDNA” remains an unresolved point in 70 
the field, for practical purposes, we define it here as DNA extracted from any biological material 71 
captured in air samples. This broad definition acknowledges the methodological consistency 72 
required across different bioaerosol sources. Given its ability to capture DNA from diverse 73 
sources, airborne eDNA analysis has been applied across multiple fields, including biodiversity 74 
assessments (Clare et al., 2022), detection of rare or elusive species (N. Garrett et al., 2023b), 75 
monitoring of  GMOs and invasive species (Trujillo-González et al., 2022), tracking of allergenic 76 
pollen (Kraaijeveld et al., 2015), and pathogen surveillance (Sanders et al., 2023). Together, these 77 
applications facilitate cross-disciplinary ecological and evolutionary research enabling 78 
comprehensive ecosystem health monitoring.  79 

Airborne eDNA analysis holds immense promise for monitoring applications across diverse 80 
ecosystems, capturing genetic material from air to complement substrate-restricted eDNA 81 
methods. This unique potential could enable broad-scale biodiversity assessments in locations 82 
where other monitoring methods are impractical. However, the methodology remains nascent, 83 
sharing many challenges with established eDNA sources like water, such as imperfect detection 84 
and sensitivity to environmental conditions (Johnson, Cox, et al., 2021; Rowney et al., 2021). 85 
Rather than deterring progress, these challenges underscore the need for targeted research and 86 
methodological innovation. Variation in sample collection and analysis, although expected in an 87 
emerging field, has prompted studies on sampling method effects (Mark D Johnson et al., 2019), 88 
detection limits (Foster et al., 2023), and source estimation for airborne eDNA (Gusareva et al., 89 
2022; Lennartz et al., 2021), emphasising the importance of quantifying methodological impacts 90 
on data robustness, repeatability, and reliability. Recognising this momentum, Johnson & Barnes 91 
(2024) recently reviewed the field’s growth, challenges, and potential future directions, identifying 92 
key hurdles still to be addressed (Johnson & Barnes, 2024).  93 
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In June 2024, over 100 researchers, industry leaders and management stakeholders convened in 94 
Canberra, Australia, both in person and virtually, for a pivotal two-day workshop hosted by the 95 
Southern eDNA Society (SeDNAS, https://sednasociety.com/, accessed 13 September 2024). 96 
Participants from 30 institutions and eight countries evaluated the current state of airborne eDNA 97 
research, identified key challenges, and outlined strategic pathways for future development. While 98 
acknowledging the long-standing use of eDNA metabarcoding and targeted species detection in 99 
airborne microbial community and pollen and fungal spore studies, the workshop primarily 100 
focussed on the use of airborne eDNA for detecting macro-organisms. The workshop revealed that 101 
many challenges faced by airborne eDNA analysis are shared with other forms of eDNA, such as 102 
aquatic or soil-based methods, but a subset of challenges – such as accounting for exceptionally 103 
low DNA concentrations and establishing appropriate field controls – are unique to the medium of 104 
air. Key discussions at the workshop centred around four key questions: (1) What might airborne 105 
eDNA data be used for? (2) How is airborne eDNA currently collected and processed? (3) What 106 
are key questions about airborne eDNA ecology that need to be answered? (4) How do we as 107 
researchers engage effectively with airborne eDNA stakeholders? Here, we summarise the 108 
workshop outputs, provide insights into the advances and future directions of airborne eDNA 109 
technology, and offer a workshop statement to summarise current community consensus on the 110 
emerging field (see Box 1).  111 

 112 

Box 1. Southern eDNA Society Airborne eDNA Workshop Joint Statement 113 

“Airborne eDNA analysis is a potentially powerful biomonitoring tool, however we must 114 
improve our understanding of airborne eDNA ecology, sampling strategy impacts, signal 115 
variability and sensitivity. With validation, airborne eDNA tools may become standard in 116 

biodiversity, biosecurity and conservation applications.”  117 
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Airborne eDNA applications  118 

Interest in airborne eDNA has grown rapidly following proof-of-concept studies demonstrating its 119 
utility in detecting vertebrates (Clare et al., 2021) and plants that rely on insect or animal 120 
pollination rather than wind dispersal (M. D. Johnson et al., 2019). These studies paved the way 121 
for early applications of airborne eDNA analysis in terrestrial biodiversity assessments (Bohmann 122 
& Lynggaard, 2023; Clare et al., 2022; Lynggaard et al., 2022; Lynggaard et al., 2024). The utility 123 
of airborne eDNA extends beyond targeted species detection to monitoring across the tree of life. 124 
Its ability to simultaneously identify microorganisms, plants, and animals enables a broader 125 
understanding of ecosystem dynamics and facilitates the development of comprehensive 126 
biodiversity baselines. In addition, its potential for broad-scale taxonomic monitoring offers 127 
unparalleled opportunities to detect shifts in community composition and biodiversity health. 128 
When paired with traditional survey techniques such as camera traps, manual handling, and visual 129 
surveys (Johnson, Fokar, et al., 2021; Roger et al., 2022), as well as complementary forms of 130 
eDNA (Runnel et al., 2024), airborne eDNA may improve detection of terrestrial and arboreal 131 
species that may otherwise be underrepresented or undetected (Banchi et al., 2020). 132 

In the context of a changing climate and increasingly interconnected world, airborne eDNA 133 
analysis enables rapid detection of plant and animal pests and identification of incursion pathways, 134 
offering valuable data for biosecurity applications (Kestel et al., 2022; Sanders et al., 2023; 135 
Trujillo-González et al., 2022). Its potential spans all phases of the invasion curve – from pre-136 
biosecurity breach and early detection to containment and eradication monitoring – highlighting 137 
its future role as a critical tool in biosecurity monitoring (Bell et al., 2024). For example, airborne 138 
eDNA has been shown to complement visual monitoring approaches for detecting pest species 139 
incursions, such as the successful detection of the invasive hemlock woolly adelgid in North 140 
America, a species native to Japan (Geller & Partridge, 2025). 141 

Airborne eDNA collection offers an opportunity to sample in inaccessible regions and at 142 
previously unattainable scales. Not unlike other eDNA approaches, airborne eDNA analysis may 143 
allow for access to remote or challenging locations, including burrows and mountain-tops and 144 
enhance monitoring of sensitive or cryptic species (Lynggaard et al., 2024). The possible 145 
simplicity of airborne eDNA capture lends kindly to the expansion of sampling density through 146 
citizen scientist initiatives (Madden et al., 2016), mirroring those currently in use in aquatic 147 
systems (Biggs et al., 2014). To increase sampling scale affordably, an opportunity is emerging in 148 
repurposing existing sample collection infrastructure – such as pollen, spore or pollution 149 
monitoring stations (Littlefair et al., 2023).  150 

Airborne eDNA collection 151 

Platforms used to collect airborne eDNA vary widely in design and material composition, 152 
generally falling into two categories: passive or active samplers. The choice between these 153 
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methods depends equally on monitoring goal and project resources, as passive samplers are 154 
typically simpler and more cost-effective, while active samplers tend to be more complex and 155 
expensive. 156 

Passive samplers rely on natural air movement to collect eDNA. With simpler designs requiring 157 
lower maintenance, passive sampling can be deployed at higher density to increase temporal and 158 
spatial replication, leading to more precise detection probability and occupancy estimates, and 159 
reducing the effect of random variation due to fluctuating environmental conditions (Burian et al., 160 
2021; Whittington et al., 2015). Examples of passive samplers include Big Spring Number Eight 161 
dust traps (Johnson et al., 2023; Mark D Johnson et al., 2019), modified Wilson and Cooke towers, 162 
marble-filled pan traps (Mark D Johnson et al., 2019), filter and funnel sedimentation traps 163 
(Schlegel et al., 2024), and sticky traps (Runnel et al., 2024). Some studies have also explored 164 
opportunistic passive sampling methods, such as collecting spiderwebs to capture airborne eDNA 165 
(Gregoric et al., 2022; Newton et al., 2024; Xu et al., 2015). 166 

In contrast, active samplers use powered equipment, such as fans, to intentionally draw air through 167 
or onto a particle collection system, including filters, impingers, or cyclonic separators. This 168 
method may increase the volume of air sampled over a given time period, which would impact the 169 
effective test area and detection probability, though further research is needed to quantify this 170 
effect.  Examples of active samplers include cyclonic air-samplers (Brennan et al., 2019; Roger et 171 
al., 2022), dry cyclone samplers (Brennan et al., 2019), computer fan-powered 3D-printed filter 172 
frames (N. Garrett et al., 2023b; Lynggaard et al., 2022), and repurposed pollution monitoring 173 
stations (Littlefair et al., 2023). 174 

As new systems are developed and tested, variation in platform design is expected to increase. To 175 
guide this innovation, workshop attendees identified key attributes for airborne eDNA samplers 176 
(Figure 1). The desired features of a sampling platform directly relate to the scale and longevity of 177 
the monitoring objectives. Broadly, we have classified collection platforms into those suitable for 178 
long-term and short-term monitoring. Long-term monitoring platforms would be designed to 179 
deliver repeated sampling tailored to a target site or application (e.g., pest monitoring in 180 
agricultural systems or biodiversity assessments at long-term research sites). Conversely, short-181 
term monitoring platforms would be designed to deliver mobile and flexible sampling appropriate 182 
for a wider variety of research questions (e.g., establishing invasion fronts in biosecurity controls 183 
efforts or supporting citizen science initiatives). Long-term monitoring platforms might emphasise 184 
durability, automation, and robust data management while short-term platforms might prioritise 185 
portability, simplicity, and affordability to enhance accessibility. Regardless of the approach, 186 
attendees underscored that before any method or device can be widely adopted for monitoring 187 
purposes, critical sampling parameters must be validated to ensure reliable and accurate data 188 
generation. 189 
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  190 

Figure 1. Key attributes of airborne eDNA collection platforms 191 

Ideal airborne eDNA collection devices will balance critical common attributes with fit-for-purpose design. For long-192 
term monitoring, platforms should prioritise durability, sample integrity, and seamless integration into existing 193 
infrastructure while minimising maintenance. Short-term monitoring platforms, particularly for citizen science 194 
initiatives, should emphasise simplicity, cost-effectiveness, and user-friendly interfaces. Both types of devices should 195 
incorporate features that ensure reliable sampling and downstream processing. 196 

Advancing understanding of factors influencing airborne eDNA 197 

detection 198 

A comprehensive understanding of environmental and technical parameters is critical for effective 199 
airborne eDNA monitoring. It is broadly understood that eDNA generation, persistence and 200 
degradation (i.e., eDNA ecology) can be impacted by temperature, humidity, and other 201 
environmental factors and introduces variability in species detection (Barnes et al., 2021; Barnes 202 
et al., 2014; Harrison et al., 2019; Jo & Minamoto, 2021; Shogren et al., 2017). Additionally, a 203 
broad range of technical factors, such as sampling and analytical methodology, influence data 204 
composition. While we cannot eliminate all sources of variability in airborne eDNA datasets, we 205 
can characterise and account for them. Insights into factors influencing detection variability from 206 
other substrates, such as soil and water, may be applicable to DNA carried in the air, however, not 207 
all features may be mirrored across eDNA sources. Airborne eDNA also presents unique 208 
challenges, such as potentially very low DNA concentrations, rapid particle sedimentation, and the 209 
influence of complex air currents, all of which necessitate specific investigation. Without insight 210 
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into these factors, conservation or biosecurity actions informed by airborne eDNA data may risk 211 
misinterpretation and inefficiency due to the introduciton of detection error. Thus, investigation 212 
and validation of a diverse range of parameters will be essential for progressing the utility of 213 
airborne eDNA analysis (Atkinson & Roy, 2023; Bohmann & Lynggaard, 2023).  214 

Recognising the significance of factors impacting species detection, workshop attendees compiled 215 
a list of critical parameters that may require validation (Table 1), noting that the need for validation 216 
will depend on study objectives. While the field works toward understanding these factors, it will 217 
be important to communicate study limitations when reporting results to account for 218 
uncharacterised sources of detection variability. Importantly, airborne eDNA studies should 219 
clearly articulate their experimental design, use of controls, and data analysis approach to facilitate 220 
identification of potential sources of detection error.  221 

While not unique to air sampling, eDNA-derived biodiversity data is prone to error from several 222 
major sources, including, contamination of DNA in the workflow, inefficient DNA capture, 223 
misidentification of DNA, and changing taxonomies (Burian et al., 2021; Furlan et al., 2020; N. 224 
Garrett et al., 2023a; N. R. Garrett et al., 2023). Based on discussions at the Workshop, we have 225 
developed a four-part framework for articulating sources of error in eDNA datasets (Figure 2). In 226 
this framework, errors are divided into four categories: (1) false negative detections, where DNA 227 
present in the environment is not captured; (2) false negative identifications, where captured DNA 228 
cannot be accurately identified; (3) false positive detections, where DNA is correctly identified 229 
but should not be present in the sample; and (4) false positive identifications, where DNA is 230 
misidentified. Each of these errors stems from different sources, including data collection and 231 
assignment, and therefore requires tailored mitigation strategies. For example, improving detection 232 
methods may address false negatives, while enhanced bioinformatic pipelines and reference 233 
databases can reduce the likelihood of false positive identifications. 234 

eDNA datasets are often complicated by false positive detections from laboratory contaminants 235 
and ubiquitous signals from humans, agricultural plants and animals, and common fungi. While 236 
detection of common contaminants is not unique to airborne eDNA (Sepulveda, Hutchins, et al., 237 
2020), sampling air presents a unique challenge in that every step of the collection and analysis 238 
process is unavoidably conducted in the presence of potentially contaminating air sources. For this 239 
reason, it is critical to establish appropriate controls for field sampling and laboratory processing 240 
as current methodologies may not adequately address contamination issues specific to airborne 241 
eDNA. While most studies include standard blank extraction controls, some have instituted 242 
negative filter controls (e.g., filters not exposed to air in the field) see (Roger et al., 2022), and 243 
others also include laboratory air controls (e.g., filters exposed to laboratory air) see (Littlefair et 244 
al., 2023). By using controls to remove background signals, airborne eDNA datasets will be more 245 
informative and reliable for management questions. 246 
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Sources of error stemming from DNA identification can have broad-reaching impacts on 247 
management decisions made from eDNA data. For example, biodiversity estimates can be skewed 248 
by both forms of false identification. The complexity of this problem was illustrated in a recent 249 
study surveying bat biodiversity using airborne eDNA (N. Garrett et al., 2023b; N. R. Garrett et 250 
al., 2023). In this study, Garrett et al (2023a/b) attempted to trace reference sequence provenance 251 
and manually curate their identifications using taxon-specific expert advice to confirm species 252 
identification but still could not conclusively confirm all detections. Continued improvement of 253 
bioinformatics pipelines and reference databases will reduce the likelihood of false identifications. 254 
Advanced data processing tools can enhance the reliability of eDNA data interpretation, 255 
accounting for error which cannot otherwise be eliminated through control of characterised 256 
variables (Burian et al., 2021). Data processing tools which apply hierarchical occupancy or 257 
process-based models have been shown to mitigate the impact of error sources through the 258 
estimation of uncertainty related to species detection (McClenaghan et al., 2020). 259 

While best practices in field and laboratory protocols and data interpretation remain important, 260 
they are insufficient on their own to negate all sources of error. However, as has been observed in 261 
aquatic ecosystem monitoring, data error should not deter managers from utilising eDNA data 262 
when eDNA monitoring stands to deliver a means of cost-effective non-invasive species detection 263 
(Jerde, 2021). 264 

 265 

  266 
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Table 1. Key parameters requiring validation for reliable airborne environmental DNA 267 
(eDNA) monitoring 268 

A non-exhaustive list of critical parameters requiring validation to ensure the reliability of airborne eDNA monitoring. 269 
Parameters are grouped into four categories: Technical/experimental, Environmental factors, Ecology of target 270 
species, and Detection limits. For each category, specific parameters, the validation required, and examples of relevant 271 
studies are provided. The δ symbol indicates studies or recommendations made for aquatic eDNA, highlighting 272 
transferable knowledge from existing eDNA research.  273 

Category Parameters Validation Required Examples 

Technical/experimental 
 

• Sampling methods 
• Sampling density 
• Replication 
• Sample preservation 
• Bioinformatics 
• Controls 

 

Comparisons of sampling methods (e.g., 
active versus passive).  
 
Optimisation of sampling materials.  
 
Effects of sampling design (e.g., height 
of sampler, sampling duration, air 
volume), DNA preservation solutions 
and contamination.  
 
Selection of bioinformatic cutoffs.  
 
Identification of appropriate controls.  

Sampling and processing effects on 
terrestrial plant detection (Mark D Johnson et 
al., 2019) 
 
Sampling impacts on airborne viral detection 
(Chang et al., 2023) 
 
Aquatic study recommendations (Goldberg 
et al., 2016) d 

 
Sampling and extraction effects in freshwater 
systems (Deiner et al., 2015) d 

Environmental factors • Weather 
• UV irradiance 
• Human activity 

Impact of humidity, temperature, wind 
direction and speed, UV index, 
precipitation, air pressure, and local 
human activity on DNA transport and 
persistence.  

Seasonal weather impact on tree species 
detection (Hanson et al., 2024) 
 
Combined influence of seasonality and 
human activity on plant detection (Johnson, 
Cox, et al., 2021) 
 
Environmental influence over eDNA particle 
size in freshwater systems (Barnes et al., 
2021) d 
 
eDNA persistence in controlled freshwater 
system (Barnes et al., 2014) d 

Ecology of target species • Habitat 
• Behaviour 
• Life cycle 
• Species mobility 
• DNA shedding rates 
• Shed DNA form 

Influence of species biology on DNA 
shedding, DNA distribution and 
detection. 

Source locations of eukaryotic species 
detected in atmospheric dust (Aalismail et 
al., 2021) 
 
Influence of tree species biology on detection 
(M. D. Johnson et al., 2019) 
 
Influence of land-use type and seasonality on 
airborne bacterial and fungal community 
composition (Anees-Hill et al., 2022; Bowers 
et al., 2011; Caliz et al., 2018) 

Detection limits • Sensitivity 
• Inhibition 
• Error Estimation 

Minimum detection thresholds.  
 
Identification of likely inhibitors. 
 
Estimating and accounting for error 
using analysis tools.  

qPCR inhibition in indoor air samples 
(McDevitt et al., 2007) 
 
Defining detection limits (Klymus et al., 
2020) 
 
PCR inhibition in freshwater systems 
(Buxton et al., 2017; Jane et al., 2015) d 

 

Improving reliability of eDNA data 
interpretation using statistical models 
(Burian et al., 2021) 
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 274 

Figure 2. Framework for addressing errors in airborne eDNA analysis 275 

Framework for understanding error in eDNA analysis, highlighting four distinct error categories and distinct mitigation strategies. 276 
Green and tan indicate positive and negative conclusions, respectively, with the upper and lower halves describing detection and 277 
identification errors, respectively. 278 

 279 

Building partnerships and trust in airborne eDNA 280 

As airborne eDNA research matures, models of stakeholder engagement used in water and soil 281 
eDNA sampling can be adopted to encourage successful implementation (Morisette et al., 2021). 282 
To facilitate stakeholder engagement, early and sustained collaboration with agencies, industries, 283 
academic institutions, citizen scientists, and Indigenous communities will be required (Bonicalza 284 
et al., 2024). Given the complexity of integrating genetic data with climatic and ecological 285 
information, engaging stakeholders from the outset ensures that research approaches are fit-for-286 
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purpose and ethically sound. Best practices should prioritise co-designing studies with Indigenous 287 
communities, respecting local contexts and protocols, and adhering to FAIR and CARE data 288 
governance principles (www.gida-global.org/care) (Hutchins et al., 2023; Kukutai & Black, 2024). 289 
Frameworks such as the Te Mata Ira and Te Nohonga Kaitiaki Guidelines for Genomic Research 290 
with Māori and on Taonga Species from Genomics Aotearoa (Hudson et al., 2021) and the United 291 
States’ National Aquatic eDNA Strategy (Goodwin et al., 2024) provide guidance on Indigenous 292 
engagement and should inform study development. Early and intentional engagement with 293 
Indigenous communities and management agencies can align scientific goals with practical needs, 294 
fostering mutually beneficial and culturally respectful outcomes (Handsley-Davis et al., 2021; 295 
Newton et al., 2025; Wilcox et al., 2008). 296 

Stakeholders may approach airborne eDNA analysis with cautious optimism, given its relative 297 
early stage as a monitoring tool (Polling et al., 2024) and the need to build confidence in the 298 
reliability of eDNA data for biosecurity and conservation management (Sepulveda, Nelson, et al., 299 
2020). Effective stakeholder engagement requires researchers to clearly communicate current 300 
limitations, set realistic expectations, and emphasise the technology’s role as a complementary 301 
tool rather than a substitute for traditional methods. Integrating airborne eDNA analysis with 302 
established sampling techniques such as camera traps (Polling et al., 2024), visual surveys 303 
(Johnson, Fokar, et al., 2021), and acoustic monitoring (N. Garrett et al., 2023b), provides an 304 
opportunity to build confidence through corroborative evidence. To facilitate adoption, it is 305 
essential to co-design protocols with stakeholders, ensuring alignment with regulatory processes 306 
and practical applications. Developing well-defined sampling protocols and robust controls, 307 
modelled on those established in aquatic eDNA studies (Deiner et al., 2018; Deiner et al., 2015; 308 
Goldberg et al., 2016; Minamoto et al., 2016), will ultimately contribute to end-user adoption of 309 
airborne eDNA methods.  310 

The simplicity and accessibility of air sampling provides a powerful opportunity to engage 311 
communities in citizen science initiatives, expanding monitoring capabilities (Palmer et al., 2017) 312 
while fostering environmental awareness and education (Isley et al., 2022; Sbrocchi, 2015). By 313 
involving citizen science in data collection, programs can leverage public interest and participation 314 
to enhance sampling density and geographic coverage. To ensure the success and sustainability of 315 
these program, it is essential to follow established frameworks for citizen-scientist engagement 316 
that emphasise clear goals, transparent data management, and adaptable protocols (Kieslinger et 317 
al., 2017). An additional benefit of such initiatives is the potential to create biobanking repositories 318 
of samples collected by citizen scientists, generating valuable time-series data for future research 319 
(Jarman et al., 2018). Ultimately, effective communication and ongoing collaboration between 320 
scientists and participants will be pivotal in building trust and maximising the impact of airborne 321 
eDNA initiatives, fostering a shared commitment to biodiversity monitoring and conservation. 322 

 323 
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Clear skies ahead? 324 

Advancing airborne eDNA analysis as a monitoring tool may transform biodiversity and 325 
biosecurity management through the provision of rapid, non-invasive insights into ecosystems at 326 
previously unattainable scales. Realising its potential is reliant on overcoming numerous 327 
challenges, particularly those concerned with evaluating collection methods, addressing the 328 
complexities of airborne eDNA ecology, and accounting for data error. Through focused 329 
collaborative research, the field will transition from experimental research to practical application 330 
– which is required to bridge the gap between eDNA research and policy (Lodge, 2022). 331 

Integrating airborne eDNA with other monitoring methods, such as remote sensing and traditional 332 
field surveys, could expand the scope and resolution of ecosystem assessments, aligning with 333 
broader 'one health' approaches that link environmental, animal, and human health (Childress et 334 
al., 2024; Farrell et al., 2021). Using airborne eDNA analysis as a complementary tool broadens 335 
understanding of ecosystems, improving our capacity to detect biodiversity loss and biosecurity 336 
threats that otherwise go unnoticed. In the future, data generated through airborne eDNA analysis 337 
has the potential to become a cornerstone of large-scale monitoring networks, similar to 338 
wastewater surveillance for tracking disease outbreaks like COVID-19 (Bogler et al., 2020). 339 
Integration of this monitoring tool into global initiatives like GBiOS could revolutionise how 340 
biodiversity is monitored through the provision of standardised data to inform rapid, evidence-341 
based management decisions (Gonzalez et al., 2024). The capacity of airborne eDNA to integrate 342 
genetic information from a wide range of taxonomic groups makes it an ideal candidate for such 343 
global initiatives. By providing a unified framework for biodiversity monitoring, airborne eDNA 344 
can facilitate the development of global datasets that support comparative ecological research and 345 
guide policy at an international scale. 346 

If the significant challenges are overcome, airborne eDNA analysis has the potential to 347 
revolutionise environmental monitoring, offering innovative ways to observe and protect 348 
ecosystems. To realise the potential of this emerging tool, sampling methods should be refined, 349 
and robust parameter validation established. Insights gained using airborne eDNA analysis could 350 
set new benchmarks in biodiversity, biosecurity, and conservation practices, seeing the technology 351 
integrated as a routine part of ecosystem management. As the field matures, airborne eDNA 352 
analysis has the potential to transition from an experimental approach to a reliable tool, guiding 353 
decision-making at local, national, and global scales and safeguarding natural resources for future 354 
generations. 355 
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