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One of the most salient features of metabolic theory is its reliance on predictions derived from 11 

principles of physics and chemistry (Brown et al. 2004). It is what have been called an “efficient 12 

theory”; a theory that from a few principles/assumptions is able to make many predictions 13 

(Marquet et al. 2014). It is therefore useful to know the origin of the principles that derive 14 

temperature-dependence of metabolism to understand how they drive translation of rates from 15 

biochemistry to whole-organism or even ecosystem metabolism and to predict the key features of 16 

thermal performance curves (TPCs), such as the optimum, maximum, and range temperature. 17 

There have been two primary paths forward in generating hypotheses for biological temperature 18 

dependence, or BTD: one rooted in physics, chemistry, and development of the Second Law of 19 

thermodynamics (e.g., Boltzmann, Clausius, Gibbs, Arrhenius, Van’t Hoff, Arrhenius, Eyring) 20 

and one rooted in biology and physiology and the detailed mechanisms of gas exchange in model 21 

organisms (Boyle, Lavoisier, Krogh, Wu). The dominant paradigms for BTD in biology versus 22 

chemistry and physics remained largely separated through the 19th and 20th Century, and only in 23 

the last 20 years have there been concerted efforts to unify them. 24 

The formal scientific study of biological temperature dependence began, perhaps ironically, 25 

simultaneously with that of early ideas about the scaling of circulatory systems, as highlighted by 26 

the work of early 18th Century Dutch physician and chemist Herman Boerhaave (Cook 2007; 27 

Lindemann 2013). He promoted several prescient ideas: 1) the human body is a mechanical, 28 

hydrological structure, 2) components vibrate more frequently at higher temperature and 3) 29 

organisms maintain themselves near what we would now describe as “steady-state.” Boerhaave 30 

viewed illness as an indicator of the body being out of steady-state and was apparently one of the 31 

first to use a thermometer to measure the magnitude of fever. 32 

From Boerhaave’s concepts, another 200 years would pass before biologists would begin to 33 

formally study biological temperature dependence. In the meantime, the first measurements of 34 

gas exchange in animals by Robert Boyle and John Mayow and the various discoveries of 35 

chemist Anton Lavoisier in the later 18th Century set the stage for thinking about organisms as 36 

systems exchanging energy with their environment. However, it is at the turn of the 18th century 37 

that the chains of advances in understanding temperature’s role in biology and physiology versus 38 

chemistry and physics began to diverge.   39 

Advances in understanding the relationships between materials, energy and temperature 40 

proceeded apace in the 19th Century, unencumbered as physicists and chemists were by the need 41 

to measure gas exchange in live organisms.  Spurred by Avogadro’s discovery of chemical 42 

“particles,” or molecules in 1811, theory and concepts related to “macroscopic” physics emerged 43 

by the 1830’s. This approach applies statistical descriptions to understand the collective behavior 44 

of very large numbers of particles. Advances featured the formulation of the Ideal Gas Law by 45 

Benoit Paul Emile Clapeyron, conceptualization and definition of work and heat by Sadi Carnot, 46 

the measurement of heat-work equivalence by James Joule and the concept of kinetic energy 47 

available for work by Josiah Gibbs. Further developments included the formulation of entropy 48 

and the Second Law of Thermodynamics by Rudolf Clausius and Ludwig Boltzmann.  49 

Here we describe the history of the modeling of temperature dependence in physical-chemistry 50 

and biology, focusing on the origins of the Arrhenius equation, their extensions and use (e.g. 51 
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metabolic theory), then we go to the development of the standard thermodynamic theory to 52 

finally briefly mention recent developments based on thermodynamics.  53 

An exploration of Arrhenius kinetics 54 

These breakthroughs in physics, all based on descriptions of moving particles and the probability 55 

of reactants colliding or combining as a function of their kinetic energy, fueled the development 56 

of physical chemistry in the 1880’s (see Figure 2). The first equation attempted to describe the 57 

response of reaction rate was proposed by Ludwig Wilhelmy in 1850 (Laidler 1984). However, 58 

the first, significant contribution to modeling the temperature dependence was made by Jacobus 59 

Van’t Hoff, the first winner of the Nobel Prize for Chemistry in 1901, and the French chemist 60 

Henry LeChatelier in the mid 1870’s formulated the relationship between the energy required for 61 

chemical conversions and equilibrium (when the conversion of a reactant to a product is 62 

balanced by the reverse conversion of product to reactant). Van’t Hoff’s (1884) theory 63 

recognized that reacting compounds, and reactants and catalysts in particular, form an 64 

intermediate “transition state” during the path from reactants to products. The equation proposed 65 

by Van’t Hoff for the temperature dependence of the catalyzed reaction rate under constant 66 

pressure P was 67 

(
𝜕 ln(𝑘)

𝜕𝑇
)

𝑃
=

𝐸𝑎

𝑅𝑇2          (1) 68 

Where k is rate constant, T is absolute temperature in degrees Kelvin, R is the gas constant 69 

(0.00831 kJ mol-1 oK-1), and Ea a constant which subsequently was called “activation energy” 70 

(see below).  71 

Around the end of 19th and beginning of the 20th centuries other models were proposed (see 72 

Laidler 1984) but there was no consensus of which of the models proposed was universal. In this 73 

sense, Arrhenius compiled data from many previous studies on the temperature response of 74 

chemical reactions and fit different models, and found that Vant Hoff’s model fit the data better. 75 

This form, currently used, is an exponentially increasing function of temperature that is obtained 76 

from the direct integration of Eq. (1) (Fig. 2A) 77 

𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇         (2) 78 

where A is a “pre-factor” containing information about the reaction not related to temperature 79 

dependence, e is the natural base and Ea is the “activation” energy for the reaction, T.Besides 80 

demonstrating the convergence of the above equation for the data on reaction rates available at 81 

that time, Svante Arrhenius, also a Novel Prize winner (in 1903), further developed the concept 82 

of “activation energy” (𝐸𝑎) and a fuller description of the molecular kinetics of chemical 83 

reactions during 1889-1901.  84 

The determination of a reaction rate constant k from physical principles has dominated the fields 85 

of physical chemistry and biochemistry for the past 120 years and the mechanism is summarized 86 

in Box 1. In addition, the fundamental thermodynamics involved is critical to understanding both 87 

the past and current state of the field.  88 

 89 
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In summary, what today we know as the Arrhenius equation was originally proposed by Vant 90 

Hoff, and is an empirical (not derived from first-principles) function, but that later was 91 

contextualized and interpreted in further developments in thermodynamics (in the 20th century,. 92 

In this vein, another empirical model was suggested as an extension of the Arrhenius equation 93 

and that proposes a power-law to account for deviations from the exponential phase, the Kooij 94 

(1893) equation 95 

𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇 𝑇𝐶          (3) 96 

Where C is a constant. This early extension paradoxically did not become popular to explain 97 

model deviations from the exponential form in current biological data, perhaps because of the 98 

lack of an interpretation, or principles-based explanation of the C parameter.  99 

Further development of the Arrhenius equation occurred in 1935. The quantum-mechanical 100 

details and thermodynamic properties of transition states inferred in the work of Van’t Hoff, 101 

LeChatelier, Arrhenius, and Gibbs were explored simultaneously in more detail by the USA 102 

team of Eyring and his student W.F.K. Wynne-Jones and the UK team of Meredith Gwynne 103 

Evans and Michael Polanyi (Eyring 1935, Evans and Wynne-Jones 1935, Evans and Polanyi 104 

1935). Their equivalent theories describe the reaction constant k being driven by the heat 105 

required for large numbers of rotating, vibrating molecules to collide and the change in entropy 106 

resulting from collapse of the transition state to product 107 

𝑘 =
𝜅𝑘𝐵

ℎ
𝑇𝑒−∆𝐺‡/𝑘𝐵𝑇        (4), 108 

Where ΔG‡  is the Gibbs energy or the activation energy, 𝑘𝐵is Boltzmann constant, h is Planck’s 109 

constant, and κ is a constant (transmission coefficient, often assumed to be 1). 110 

Given that ∆𝐺‡ = ∆𝐻‡ + 𝑇∆𝑆‡, Eq. (4) can be rewritten as 111 

𝑘 =
𝜅𝑘𝐵

ℎ
𝑇𝑒(−∆𝐻‡+∆𝑆‡𝑇)/𝑘𝐵𝑇 =

𝜅𝑘𝐵

ℎ
𝑇𝑒∆𝑆‡/𝑘𝐵 𝑒−∆𝐻‡/𝑘𝐵𝑇 112 

            (5), 113 

The coefficient A was now defined by the constants κ, a transfer coefficient referring to the 114 

proportion of reactant-enzyme complexes that are at or higher than ΔG‡, h, Planck’s constant, 115 

and kB, the Boltzmann constant. It is worth noting that if we compare the Arrhenius empirical 116 

model with the Eyring first-principles derivation we have that, 𝐸𝑎 = ∆𝐻 + 𝑅𝑇. 117 

 118 

 119 

  120 
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______________________________________________________________________________ 121 

Box 1 Enthalpy and entropy and chemical reaction rates This approach considers work done 122 

by heat added to a collection of reactant molecules. At a given initial temperature, reactants have 123 

a bond energy, called enthalpy, Hr or the amount of energy released if a mole of reactant 124 

molecules is broken into its component atoms. Likewise, reactions proceed by the formation of 125 

one or more intermediate compounds, called transition states. Typically, the transition states for 126 

a particular reaction have a higher enthalpy, or potential energy in their bonds, H‡, than the 127 

reactants. Therefore, an additional energy, called the activation energy, is required to form this 128 

higher potential energy transition state (Fig.1A).  129 

This activation energy has two components – the energy captured in the formation of the bonds 130 

of the transition state, or ΔH‡ (which is the difference between the enthalpies of the transition 131 

state and the reactants, H‡ - Hr), and the energy spent on changing the position of molecules and 132 

forming a new type of molecule, the transition state. Boltzmann had previously shown that these 133 

changes in the number of “microstates” - position, type, and potential energy of molecules can be 134 

quantified as a change in the entropy of activation ΔS‡. Gibbs extended this idea to understand 135 

that this additional component of free energy was equal to ΔS‡ multiplied by temperature. Thus, 136 

the activation energy, Ea, can be written as the quantity known as the “free energy of activation,” 137 

ΔG‡ 138 

   ΔG‡ = H‡ - Hr + ΔS‡T  =  ΔH‡ + ΔS‡T      139 

In this case, ΔG‡ is positive because energy must be added and entropy increased for the reaction 140 

to proceed.  141 

142 
Figure 1. Enthalpy versus reaction progress. The plots show the effect of an enzyme in 143 

decreasing the needed energy for a reaction to occur.   144 
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An attractive feature of equations (2) and (3) are that they can be transformed into a linear 145 

relationship between the logarithm of reaction rate and the inverse of temperature (Fig. 2B) 146 

   ln(k) = ln(A) – (∆G‡/R)(1/T)      (6) 147 

in which the x-axis (the inverse of temperature) reflects a shift from hot (towards the origin) to 148 

cool (to the right) temperatures, and the y-axis is the natural logarithm of the reaction constant. 149 

The slope of the line estimates (since we already know the gas constant R) the activation energy 150 

(Ea/R) of a reaction and the intercept is ln(A). This linearization proposed by both Van’t Hoff 151 

and Arrhenius stimulated a century of exploring temperature sensitivity of biochemical reactions 152 

by (1) plotting the logarithm of rates measured at different temperatures against the inverse of 153 

those temperatures and estimating the slope (Gillooly et al. 2001) and (2) comparing activation 154 

energies and entropies for different reactions and catalysts (Piskulich et al. 2019).  155 

The Ratio Q10   156 

In contrast to developments in physics and chemistry and their applications to biology, progress 157 

in understanding the role of temperature to metabolic rate in biological research lagged during 158 

the 19th Century. Physiologists did not develop instruments that could precisely measure 159 

exchanges of particular gases (oxygen versus carbon dioxide versus dinitrogen) in live organisms 160 

until very early in the 20th Century. Biology as a science in the 19th Century also was heavily 161 

influenced by Carl Linnaeus (Carl von Linne’), Alfred Wallace, and Charles Darwin to focus on 162 

classifying and comparing attributes of the many forms of life. Relatively few scientists, with 163 

most of those the groups working on environmental influences on plant gas exchange, had 164 

interest in connecting physical and chemical “first principles” to biological measurements. 165 

Finally, most practicing 19th Century physiologists were physicians and largely focused on 166 

practical methods of diagnosis and response rather than fundamental physical and chemical 167 

theories.  168 

As the 20th Century arrived, physiologists had the opportunity to link gas exchange 169 

measurements with the late 19th century developments in physical chemistry. One important 170 

outcome of the early work on thermodynamics of chemical reactions was the derivation of a 171 

temperature coefficient Q10 for a reaction at equilibrium derived from Van’t Hoff’s equation, 172 

which compares two rates, k1 and k2 at temperatures 10 degrees apart (Gillooly et al. 2001).  173 

𝑄10 =
𝑘1

𝑘2
= 𝐴𝑒(

−∆𝐺‡
𝑅

)(
1

𝑇+10
−

1
𝑇

) = 𝐴𝑒
(

∆𝐺‡
𝑅

)(
10

𝑇2+10𝑇
)
 174 

            (7), 175 

which implies that the temperature coefficient is not a constant over the range of temperatures T 176 

to T+10, since the change in enthalpy, or difference in potential energy of the chemical bonds in 177 

the transition state molecule(s) compared to the reactant molecule(s), ΔH‡, is assumed to be 178 

constant.  179 

Early physiologists recognized that the temperature coefficient was not a constant with 180 

temperature, and the first measurements of metabolic rate – temperature relationships by a trio of  181 
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 182 

Figure. 2. Timeline of some milestones in the history of the study of temperature dependence modeling. Some relevant findings 183 

in the understanding and modeling of temperature dependence in biology are depicted. A few of them include the proposal of the 184 

Arrhenius equation, their application in developing the Metabolic Theory of Ecology, and some of their subsequent extensions to 185 

account for the whole curvature of temperature response. These extensions include the development of “protein denaturation” models 186 

and “heat capacity models”. After the  2010s several major empirical findings are summarized in point 11, which include an 187 

exhaustive compilation of data on traits and thermal responses at different levels of organization. This empirical data together with 188 

other recent theoretical developments (e.g. Arroyo et al. 2022) indicate that temperature dependence  is a broad  pattern in biology, 189 

from enzymes to ecosystems.  Not just there have been a huge accumulation of data but also models, as almost 100 different models 190 

there exist to explain temperature dependence (Kontopoulus et al. 2023), but not unified theory that could explain all the different 191 

fundamental aspects (denaturation, entropy, etc.) of the temperature dependence of biological quantities across levels of organization. 192 
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German scientists were interpreted in terms of the Arrhenius’ function (Snyder 1908; Putter 193 

1914; Kanitz 1915). In the 2016 book The Respiratory Exchange of Animals and Man by the 194 

1920 Nobel Prize winner for Physiology or Medicine, August Krogh, along with his wife and 195 

collaborator Marie, described the response of metabolic rate to temperature as the ratio of two 196 

rates measured at temperatures ten degrees apart, or Q10. Krogh pointed out that Q10 would not 197 

be constant across different temperature ranges, but rather be lower at higher temperatures and 198 

showed that the Arrhenius expression for metabolic rate provided a superior fit to data than a 199 

constant Q10. 200 

Despite these early cautions and linkages to thermodynamics, estimation of Q10 as a ratio of rates 201 

measured over comparable temperature ranges, perhaps taking a cue from biochemists’ tendency 202 

to compare reaction characteristics at different temperatures relative to a standard 25oC, became 203 

the convention for measuring temperature sensitivity in physiological and growth measurements. 204 

The ratio was used as a diagnostic for acclimation or adaptation to extreme temperatures (lower 205 

Q10 in better adapted or acclimated organisms) and the basis for consensus of an “average” Q10 206 

of 2 – 3 for various physiological rates. These outcomes led to a general understanding of the 207 

magnitude of response of physiological and other rates to temperature and Q10 values were 208 

routinely compared among organism taxa and environments (Schulte 2015).  209 

The inadequacies of the Q10 framework to explore BTD at temperature extremes emerged in the 210 

1990’s as researchers’ interest in the potential effects of climate change pushed analyses into 211 

larger temperature intervals with higher maximum T and lower Q10. In addition, without any 212 

direct physical or chemical explanations for a constant Q10 (Mahecha et al. 2010) it has been 213 

difficult to explain increasingly observed organism responses to temperature that changed with 214 

other environmental factors, such as elevated CO2, nitrogen deposition, and altered thermal 215 

environments.  216 

 217 

The problem of declining rates at higher temperatures. 218 

Whether oriented around the Arrhenius or Q10 interpretations, the substantial bulk of research on 219 

BTD has focused on the range of temperatures where metabolic rate for ectotherms increases 220 

with temperature. This focus largely ignored observed physiological rates that declined at higher 221 

temperatures, which implied an optimal Topt associated with maximum rates and maximum 222 

temperature Tmax for life. Observation of these limits occurred even prior to Arrhenius’ work, 223 

such as Boerhaave’s recognition of fever as a signal of the body being “out of equilibrium.” 224 

Krogh’s 1916 monograph mentioned evidence of temperatures at which gas exchange rates of 225 

ectotherms decline with increasing temperature but cited a lack of data and did not discuss the 226 

issue further.  227 

Copious data collected since 1916 indicate that biochemical, gas exchange and other 228 

physiological rates in organisms exhibit an “optimal” temperature, Topt, in the range of 20-40oC, 229 

above which rates decline. In addition, a massive number of measurements of “temperature 230 

performance curves,” or TPCs indicate an additional limit called critical maximum temperature, 231 

or CTmax, at which organism rates reduce dramatically or death occurs. These limits to either rate 232 
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(at Topt) or the temperature range of life have been extensively studied since the 1970’s. 233 

However, the theoretical basis for them, and thus the ability to predict how they might change for 234 

different rate processes, organisms or environments remains unresolved. 235 

Declining rates at T > Topt have largely been interpreted through the critical role of enzymes as 236 

catalysts of biochemical reactions and the enzyme degradation hypothesis (Fig. 2) the idea that 237 

reactions decline at higher temperatures because enzymes unfold or denature and thus lose their 238 

catalytic capacity. Ironically, enzymes were discovered and their role as catalysts hypothesized 239 

in the 1830’s by Jon Jakob Berzelius, well before the key developments in thermodynamics and 240 

physical chemistry. However, their catalytic function was not experimentally proven for another 241 

60 years and the enzymes themselves not purified until the 1920’s. Thus, the enzyme degradation 242 

hypothesis arose at about the time that metabolic rate measurements became routine. 243 

Without a clear mechanism from statistical mechanics or thermodynamics to explain Topt and/or 244 

Tmax, biochemists and physiologists turned to empirical observations to infer mechanisms that 245 

might explain these phenomena in BTD. Hsien Wu, an obscure contemporary of Eyring, Wynne-246 

Jones, Evans, and Polanyi, was a Chinese biochemist who used the methods of isolating enzymes 247 

newly available in the 1920’s to explore the causes of protein denaturation. In a series of 13 248 

papers published over the period 1924-1931, such as (Wu & Yen 1924), Wu proposed a theory 249 

that environmental factors, including temperature, break the polar (driven by electrical charge) 250 

bonds that hold enzymes together.  251 

Following subsequent replication of Wu’s experiments, the enzyme degradation hypothesis has 252 

become the largely unchallenged paradigm for interpreting Topt and declining rates for the past 253 

90 years. Organisms adapted to cooler temperatures and showing lower Topt in the same 254 

physiological rates were assumed to have evolved different isozymes (enzymes that catalyze the 255 

same reaction but have different amino acid sequences). Improvements in protein isolation and 256 

molecular analysis developed during the 1980’s and 1990’s fostered analysis of the kinetic 257 

properties of a vast array of enzymes from many different organisms (Ritchie 2018).  258 

Simultaneously with the measurements of reaction kinetics and thermodynamics, many thermal 259 

performance curves, or TPCs, have been measured for a variety of physiological rates in a large 260 

range of ectothermic organisms from microbes to invertebrates (Deutsch et al. 2008; Knapp & 261 

Huang 2022). These TPCs estimate Topt and CTmax along with other parameters that define the 262 

range of temperatures at which performance occurs and increases exponentially. Since the 263 

1970’s, understanding “thermal performance curves” or TPCs has become important for 264 

assessing the likely impacts of climate change (Deutsch et al. 2008; Kontopoulos et al. 2020; 265 

Bennett et al. 2021; Montagnes et al. 2022). Generally, the data from these experiments has been 266 

fitted to the Sharpe-Schoolfield model (Schoolfield et al. 1981) or similar models (Box 2). These 267 

models accounts for temperature declines by assuming that enzymes become “deactivated,” 268 

presumably through degradation of enzyme structure under the enzyme degradation hypothesis, 269 

as temperature increases above Topt. 270 

Near the boundaries of an organism’s thermal niche where temperatures are high or low enough 271 

to reversibly inactivate key metabolic enzymes, metabolic performance steeply drops toward 272 
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zero, resulting in a unimodal thermal performance. These dynamics are captured by models such 273 

as a unimodal extension of the Arrhenius model commonly called the Sharpe-Schoolfield model 274 

(Sharpe & DeMichele 1977; Schoolfield et al. 1981). A simplified version of the model that 275 

ignores deactivation of enzymes at low temperatures is 276 

𝑘(𝑇) =
𝑘0𝑒

−∆𝐺
𝑅

(
1
𝑇

 − 
1
𝑇0

)

1 + +𝑒
𝐸𝐻
𝑅

(
1

𝑇𝐻
 − 

1
𝑇

)
 277 

            (8), 278 

where k0 is a reference rate at temperature T0, T is the temperature of interest, ∆G is the 279 

activation energy estimated for the exponentially increasing portion of the curve (Fig. 3), EH is 280 

the “de-activation energy that is fit to a slope of exponential decline above a peak temperature, 281 

and TH is the temperature at which the rate reaches half of the maximum rate in the declining rate 282 

phase. This equation produces a shape that, when ∆G, EH, and TH are free parameters, often fits 283 

temperature performance data. 284 

 285 

 286 

Figure 3. Illustration of the enzyme degradation hypothesis. A. Enzyme activity (red curve) 287 

remains approximately constant up to a certain temperature, above which the enzyme begins to 288 

change conformation (degrade), thus causing a rapid decline in substrate affinity for the enzyme 289 

and thus the enzyme’s catalytic capacity. Meanwhile the concentration of transition states 290 

(enzyme-substrate and enzyme-product complexes increases exponentially with the expected rate 291 

of molecular collisions (kinetics). B. Net reaction rate curve that increases exponentially across 292 

the lower range of T up to a temperature where enzyme degradation begins to occur, causing a 293 

decline in reaction rate above an optimal temperature Topt. The resulting unimodal reaction rate 294 

showing Topt, as well as the parameters of the Sharpe-Schoolfield Model: peak temperature Tpk 295 

(equivalent to Topt), temperature at ½ decline from peak temperature TH and maximum critical 296 

temperature CTmax. The shaded area demonstrates the temperature region where exponential or 297 

a linear Arrhenius relationship occurs, a region of “temperature scaling.” 298 
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However, there is no accompanying fundamental thermodynamic mechanism, such as a change 299 

in energy state, to explain the value of the deactivation energy EH or TH. Rather, the value is 300 

inferred from experimental data under the assumption that a decline could only be caused by 301 

conformational changes to enzymes, defined here as “degradation.” Ultimately, the various 302 

formulae used provide mathematical descriptions that are fit to data under the assumption of 303 

enzyme degradation at temperatures above Topt. 304 

In addition to the Sharpe-Schoolfield model, there are diverse models that account for the curved 305 

temperature response. These models often include extensions of the Arrhenius equation or 306 

extensions of the Eyring equation, then there are empirical-theoretical and theoretical approaches 307 

to explain the declining portion of the TPC (DeLong et al. 2017; Grimaud et al. 2017; Low-308 

Décarie et al. 2017). All of these models are complex, i.e. they have many parameters that are fit 309 

to data and have no physical or chemical underlying explanation. Confidence in these models is 310 

often lacking as a result, and this has motivated recent attempts to formulate a simple theory 311 

grounded in fundamental thermodynamics of catalytic reactions. 312 

 313 

“Re-discovery” of physical mechanisms for biological temperature dependence. 314 

As the 21st Century arrived, BTD of physiological rates was largely understood through the lens 315 

of Q10 and the enzyme degradation hypothesis. Variation among organisms and environments in 316 

the response to temperature was viewed as idiosyncratic and reflective of differences in 317 

evolutionary history. Variation in Topt was attributed to evolved variation in enzyme isozymes 318 

with different thermal tolerances and plastic adaptation to exposure to particular thermal 319 

regimes, or acclimation. The success of physical first principles in deriving the network model 320 

for explaining body size scaling of metabolism (West et al. 1997) as well as thermal heat 321 

exchange (Gates 1980) set the stage unifying physical and chemical first principles to other 322 

important relationships in metabolism. 323 

A first step in such a reconciliation, mostly absent since the early 19th Century, was the work of 324 

Jamie Gillooly, James H. Brown, Geoffrey West and others (Gillooly et al. 2001) who re-325 

analyzed a large dataset of mass-specific metabolic rates for various vertebrate taxa and plants as 326 

a function of temperature below Topt. In a result that would not have surprised the physiologists 327 

of the very early 20th Century, Gillooly and colleagues found that the Arrhenius function fit the 328 

data very well for all the taxa, with some variation in the estimated activation energy among taxa 329 

(Fig. 1). This result yielded two important outcomes: 1) gas exchange measurements were once 330 

again connected to the thermodynamics of biochemical reactions, and 2) the concept of 331 

activation energy, nominally one applied to a single reaction and its transition state(s), was 332 

introduced as an alternative metric of thermal sensitivity. 333 

Alternative models for the curved temperature response 334 

The Gillooly et al. (2001) meta-analysis rejuvenated interest since 2001 in understanding the 335 

theoretical basis for rate declines above Topt. Simultaneously, a wealth of enzyme kinetic and 336 

thermodynamic data generated by 2010 suggested that the enzyme degradation hypothesis, 337 



12 
 

despite its paradigm status, is unlikely to explain the limits of metabolic rate under increasing 338 

temperature (Ritchie 2018). Denaturation temperatures of virtually all important enzymes 339 

involved in metabolism maintain activity above 50 oC and denature above 55 oC, a temperature 340 

well above most estimates of CTmax and Topt , which largely lie below this range at 20-46 oC, 341 

(Kontopoulos et al. 2020; Montagnes et al. 2022). One review offered this quote:  342 

The textbook explanation for reduced enzyme activity at high temperatures is protein 343 

denaturation or unfolding; however, for many enzymes, this explanation cannot account for 344 

experimental observations (Arcus & Mulholland 2020). 345 

These results suggest that alternative explanations for declining metabolic rates at temperatures 346 

above Topt need to be explained from physical and chemical principles that are important at 347 

relevant temperature ranges. For example, one theoretical approach considers an additional 348 

transition in the reaction description between active and inactive enzymes and noting that the 349 

equilibrium ratio of these two “states,” respectively, declines with increasing temperature 350 

(Daniel & Danson 2010). 351 

Re-examination of the thermodynamics of reaction rates has led to other alternative models for 352 

rate declines above Topt. These models explore the consequences of the change in entropy that 353 

occurs during the chemical transitions during enzyme-catalyzed reactions. This entropy change 354 

was first recognized by Van’t Hof and Gibbs but was re-derived from quantum mechanics in the 355 

Eyring – Polanyi equation from 1935 (equation (3)). These models track changes in entropy as a 356 

change in heat capacity, CP (J/oK) among transition states, ΔCP
‡, and that ΔCP

‡ < 0 (Hobbs et al. 357 

2013; Arcus et al. 2016; Arroyo et al. 2022). This means that, as temperature increases, less of 358 

the energy added to the system is incorporated into bond energy, and thus activation, of 359 

transition states. This results in a lower rate of enzyme-substrate binding and thus a slower 360 

reaction.   361 

One approach is that of Arroyo et al. (2022). They hypothesized that a critical point and 362 

subsequent decrease of rates given by temperature was related to the change in the entropy of 363 

activation ∆S‡ and temperature, similar. They described the relationship between entropy change 364 

and the difference in heat capacity with increasing temperature from a reference temperature T0 365 

to a new temperature T, as  366 

∆𝑆‡ =  ∫
𝐶𝑃

‡

𝑇

𝑇

𝑇0

𝑑𝑇 = ∆𝑆0
‡ + ∆𝐶𝑃

‡𝑙𝑛 (
𝑇

𝑇0
) 367 

            (6), 368 

where T0 is a reference temperature (usually 25 oC or 298 oK) and ΔS0
‡ is the molar entropy 369 

change at the reference temperature, a quantity measured at 25oC for many common reactions.  370 

The Eyring equation with the change in entropy defined as in equation (6) becomes 371 

𝑘 =  𝐵0 (
1

𝑇
)

−
∆𝐶𝑃

‡

𝑅
−𝛼

𝑒−∆𝐻‡/𝑅𝑇 372 
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            (7) 373 

where B0 is a parameter defined as  374 

𝐵0 =
𝑘𝐵𝑒∆𝑆0/𝑅𝑇0

−∆𝐶𝑃
‡

𝑅

ℎ
 381 

with variables defined as in equation (3). This model was conceived to be applied to both the 375 

molecular and macroscopic level, where for the macroscopic level h is removed from the 376 

equation, and 𝛼 = 1 at the molecular level or 𝛼 = 1 otherwise. Because the change in heat 377 

capacity between transition states is negative, the exponent of the (1/T) term in equation (7) is 378 

actually positive and generates a negative influence of temperature on the reaction constant k, 379 

thus producing a Topt and a Tmax.  380 

Another model, named “Macromolecular Rate Theory,” also begins with the Eyring-Polanyi 382 

equation but invokes Kirchoff’s Law to argue that changes in heat capacity of transition states 383 

also affect the heat portion of the free energy of activation, not just the entropy component (e.g., 384 

Hobbs et al 2013, Arcus et al 2016).  385 

Although both the MMRT and Arroyo et al. model include change in heat capacity in their 386 

formulation, the underlying philosophy and mechanisms of these models are different. In Arroyo 387 

et al.‘s model, the minimal mechanism that could generate a critical transition from increasing to 388 

decreasing rate is used, and yields a model that is relatively easy to fit to data. In contrast MMRT 389 

applies the known influences of a change in heat capacity on the thermodynamics of rates, with a 390 

correspondingly more complicated model that is harder to fit to data and difficult to assess 391 

whether the entropy versus enthalpy changes associated with ΔCP
‡ are more important.  392 

These models, which can be grouped as new versions of traditional “transition state theory,” 393 

generate unimodal relationships of reaction rate versus temperature and provide a first principles 394 

explanation other than enzyme degradation for declining rates with temperatures above Topt. 395 

They focus attention on changes in entropy, rather than just kinetic energy, associated with 396 

increased temperature, and thus suggest new questions and mechanisms to explore. However, as 397 

with the enzyme degradation models, e.g., these state-transition models are typically fitted to 398 

reaction or metabolic rate data to estimate parameters and the risk is therefore high that model 399 

predictions cannot be discriminated easily between models. Few studies have compared different 400 

models and their accompanying assumptions and/or estimated parameters independently, though 401 

some have compared a mechanistic model with a phenomenological or statistical model (Liang 402 

et al. 2017). A relatively recent study compared different temperature dependence models and 403 

concluded that model performance is “contingent on model choice and data quality” (Low-404 

Décarie et al. 2017). This is conclusion makes sense as models with more parameters can fit the 405 

data better, and data with less noise can fit better to the model. 406 

Transport and diffusion 407 

Traditionally, the effect of temperature on biochemical reactions, and by extension metabolic 408 

rate, has focused on the conversion of substrates to products. This focus ignores supply of 409 

substrates to and dissipation of products from enzyme-dense reaction sites or simply assumes 410 
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that such processes do not limit reaction rate. In addition, living things exist as “open systems” 411 

that must be maintained at or near steady-state by the influx and outflux of materials and thus 412 

their metabolic rate might be better described as a reaction-displacement system.  413 

Responses to temperature in a reaction-displacement system may differ from those captured by 414 

an analysis of reaction progress. A recent meta-analysis revealed that diffusion and transport 415 

rates are much less temperature-sensitive than substrate to product conversion, exhibiting slopes 416 

in Arrhenius plots equivalent to 25-35 kJ/mol as compared to average Arrhenius slopes (true 417 

activation energies) for common hydrolysis reactions and metabolic rate of 60-70 kJ/mol 418 

(Ritchie 2018). This difference arises because the additional energy required to move a molecule 419 

between other molecules is typically much less than that required to attain the bond energy to 420 

form enzyme-substrate complex molecules (Benesi 1986; Herrero & Rodrigo 2005). This 421 

seemingly innocuous outcome introduces several new complications into the theory of BTD. 422 

First, asymmetry in temperature-sensitivity means that temperature affects the ratio of product to 423 

substrate when the reaction is maintained at steady-state (Niven 2009; England 2013). More 424 

specifically, dissipation of products away from reaction sites may not keep up with product 425 

formation at higher temperatures, thereby resulting in what chemists refer to as product 426 

inhibition due a greater reverse reaction rate and lower net overall reaction rate. Thus, it is 427 

conceivable that asymmetric temperature effects on diffusion and transport, which may be 428 

strongly limited in crowded cells (Roosen-Runge et al. 2011; Kekenes-Huskey et al. 2016) might 429 

drive the decline in reaction rates. 430 

A second consequence of asymmetry in temperature sensitivity of diffusion/transport versus 431 

transition state formation is that Topt may be sensitive to the thermodynamic favorability of the 432 

reaction. Many synthesis reactions are endergonic, requiring additional energy to form products 433 

in addition to the activation energy (Box 1). Thus, such reactions require much higher 434 

concentrations of substrate than product, or Keq, in order to generate a net forward reaction, and 435 

any limits to product dissipation may favor the reverse reaction. If so, Topt for unfavorable or 436 

synthesis reactions in organisms, such as those critical for cell replication, growth and 437 

development, may be cooler than for typical metabolic reactions that often feature highly 438 

favorable hydrolysis or oxidation reactions (Ritchie 2018). Such dependence of Topt on Keq is not 439 

predicted by the enzyme degradation hypothesis (Sharpe & DeMichele 1977; Schoolfield et al. 440 

1981).  441 

A third consequence is that a reaction-displacement framework allows consideration of entropy 442 

production, or the rate at which entropy is increased outside reaction sites by dissipation of heat 443 

and products (Niven 2009; Ritchie 2018). This contrasts with the internal entropy changes 444 

quantified in state transition theory and its various models. If indeed diffusion transport limits in 445 

crowded cytoplasm limits product dissipation and reduces reaction rate at T far below enzyme 446 

denaturation temperatures, then the reaction-displacement framework may lead to a more general 447 

theory for BTD based on entropy changes both inside and outside reaction sites, cells, or entire 448 

organisms. 449 

Conclusion 450 
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After two centuries of largely separated research efforts, one based on physical chemistry and the 451 

study of biochemical reactions and the other based on whole-organism measurements of gas 452 

exchange and additional physiological rates, a reconciliation and synthesis of approaches to 453 

understand the effect of temperature on metabolic rate now seems possible. Advances in just the 454 

last two decades have emphasized the possibility of linking whole organism thermal responses to 455 

chemical and physical first principles. In particular, the field is beginning to connect to advances 456 

over this same recent time period in the thermodynamics of far from equilibrium systems and the 457 

role of entropy in limiting biological activity and metabolic rate in particular. Rather than 458 

entrenchment in the paradigms of Q10 and the enzyme degradation hypothesis, new models have 459 

emerged to explore the entire thermal performance relationship for metabolic rates to include Topt  460 

and maximum T. These new models, as will be discussed in much more detail in ensuing 461 

chapters, provide the potential for experimental testing of new predictions among different 462 

models and that link thermal performance to environmental and thermodynamic influences and 463 

constraints well beyond issues of enzyme thermal stability. These models also are expected to 464 

have further extensions that could explain many other observed relationships in thermal biology, 465 

such as the relationships between the thermal traits of the thermal performance curve. Such 466 

potential growth in the field should render physiologists much better able to assess potential 467 

impacts of climate change. 468 

 469 
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