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Abstract 40 
 41 

Emergence of life on Earth, presumably beginning from “cosmic chemistry” and culminating in 42 

the last universal common ancestor, likely involved a complicated evolution of the primeval residues via 43 

basic intermediate forms capable of self-replication. These primordial replicators could have further 44 

evolved into archaic virus-like structures, which in turn became the precursors of the cellular life forms. 45 

The hypothesis presented in this article suggests that viruses were not only predecessors of the first 46 

cellular life forms, but that their hosts themselves emerged and evolved as factories and reservoirs for 47 

virus production and dissemination. In other words, it expands the role of viruses as not only originators 48 

of cellular life forms and the selfish driving force behind their evolution, but as the primary reason for 49 

their existence and biological heterogeneity. 50 
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 52 
1. Introduction 53 

 54 
There are several self-explanatory hypotheses on the origin of viruses, obligate parasites that 55 

cannot exist without their hosts: virus-first, cellular escape, and reduction scenarios (Forterre, 2006). 56 

There also are several hypotheses on the origins of life, including the RNA world, primordial virus, 57 

abiogenesis, and extraterrestrial sources (panspermia), (Bada and Lazcano, 2003; Forterre and Gribaldo, 58 

2007; Koonin, 2009a; Wesson, 2010; Pross and Paskal, 2013; Higgs and Lehman, 2015). At least two of 59 

them, the RNA world (Higgs and Lehman, 2015) and primordial virus (Koonin, 2009a) assume a possible 60 

role of virus-like structures in the origin and evolution of early life.  61 

Present-day research reinforces the idea that building blocks leading to the emergence of life on 62 

Earth may have originated from outer space (Callahan et al. 2011; Pizzarello et al., 2011; Glavin et al. 63 

2025). In view of this data, the last universal common ancestor (LUCA) and successive genesis of life 64 

could trace their origin from organic molecules initially delivered from the cosmos. If that was the case, 65 
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the life-building process beginning from “cosmic chemistry” and culminating in LUCA, was not brief 66 

(de Duve, 2003) and likely involved a complicated evolution of the primeval residues via basic 67 

intermediate forms (Forterre, 2006).  68 

Among these transitional forms could have been primitive RNA molecules possessing catalytic 69 

activities and capable of self-replication (Forterre, 2006; Krupovic et al. 2019; Tjhung et al. 2020). In 70 

turn, these RNA replicators (Higgs and Lehman, 2015) could have evolved into primordial virus-like 71 

structures, which transitioned to a DNA-RNA-protein world, compartmentalized, and became potential 72 

precursors of cellular life forms. This initial compartmentalization could have been as uncomplicated as 73 

the enclosure and packaging of virus-like elements within a single capsid protein (Koonin, 2009a). 74 

Specifics of each of these consecutive steps are outside the scope of this short note and were described 75 

elsewhere in great detail (Claverie, 2006; Glavin et al. 2015; Krupovic et al. 2019; Koonin, 2009, 2014, 76 

2022; deDuve, 2003; Forterre, 2006; Forterre and Gribaldo, 2007; Forterre, 2010; Higgs and Lehman, 77 

2015; Tjhung et al. 2020; Wesson et al. 2010). 78 

The hypothesis presented in this article builds upon suggestions that these virus-like precellular 79 

organisms actively captured and repurposed all elements needed for their multiplication and subsequent 80 

distribution from the primordial ‘RNA world’ that included genetic elements, selfish replicators, 81 

primitive ‘RNA cells’, ancestral proteins, and possibly early cellular ancestors (Forterre, 2006; Koonin, 82 

2009; Krupovic et al. 2019; Koonin et al. 2022).  83 

2. Main text 84 

However, the proposed hypothesis goes a step further to argue that viruses were not only 85 

predecessors of the first cellular life forms, but their hosts themselves emerged and evolved as factories 86 

for virus assembly, production and further dissemination. In other words, all living organisms may have 87 

originated as highly specialized reservoirs for viral evolutionary expansion, i.e. viruses are not only the 88 

evolutionary drivers, but the primary reason for the existence of modern life forms. 89 
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Indeed, viruses are found everywhere, from deep-sea creatures and marine microorganisms 90 

(Suttle, 2005, 2007) to permafrost and extreme thermal environments (Legendre et al., 2014; Rice et al. 91 

2001). As ubiquitous and prolific biological entities which constitute a significant - if not the most 92 

abundant - part of the biosphere (Forterre, 2010; Koonin, 2015; Suttle, 2007), viruses have the power to 93 

affect all life forms and essential processes on Earth, perhaps even major evolutionary developments 94 

(Greene and Reid, 2013; Koonin and Dolja, 2013; Koonin, 2016) and the partition of living organisms 95 

into three forms of life (Claverie, 2006).  96 

Thus, it is hardly surprising that some of the many scenarios of the advent of the nucleus in LECA 97 

(last eukaryotic common ancestor), (Wilson and Dawson, 2011), describe its origin by way of ‘viral 98 

eukaryogenesis’, the viral factories of a large DNA virus (Bell, 2001, 2020; Claverie, 2006), or symbiotic 99 

contact of the ancestral poxvirus with an archaebacterium (Takemura, 2001). Furthermore, it is beyond 100 

doubt that both constituents of the first endosymbionts, Asgard archaean and alphaproteobacteria 101 

(Zaremba-Niedzwiedzka et al. 2017; Bennet et al. 2024; Koonin, 2015), were hosts to viral infections 102 

(Rambo et al. 2022; Hyde et al. 2023). The former was recently found to have a broad array of unique 103 

antiviral defense systems affirming its ancestral coevolution with viruses (Leao et al., 2024). 104 

Reconstructed viromes of LECA and LUCA suggest complex representation of different groups of 105 

viruses: of bacterial origin in LECA and of bacterial and archaeal origin in LUCA (Krupovic et. al. 2020; 106 

Krupovic et al.2023).  107 

In green algae, the ancestor of modern land plants (Graham et al. 2000), viruses played a multitude 108 

of roles, taking part in pathways encompassing host fermentation, metabolic, behavioral, gene transfer, 109 

genome endogenization, adaptation, population regulation, and distribution processes, thus 110 

comprehensively shaping host evolution (Rozenberg et al. 2020; Cai et al. 2023; Schvarcz et. al., 2018; 111 

Moniruzzaman et al. 2020). Likewise, recent findings indicate that giant viruses of the Mimiviridae 112 

lineage infect choanoflagellates reorganizing host physiology and energy transfer in these marine protists 113 



5 
 
(Needham et al. 2019). Choanoflagellates, widespread predators related to metazoans, are thought to be 114 

the closest unicellular ancestors of Animalia (Ros-Rocher et al., 2021). These and numerous other studies 115 

support the idea of viruses as originators and principal evolutionary drivers of their hosts. 116 

At first, the hypothesis may seem irrational or even absurd: how could the manifold diversity of 117 

life on Earth not only stem from infectious microorganisms, but owe its very existence to their selfish 118 

expansion? Especially given that viruses are obligate intracellular parasites and would not be able to 119 

reproduce without a host at the precellular stage? On closer look, however, things become clearer and 120 

more logical. First, the dependence on host may be a secondary outcome en route to virus-guided 121 

evolution of unicellular and multicellular life. This means that very early in the evolution of life, 122 

primordial replicons could have actively recruited from surrounding prebiotic environment all necessary 123 

“machinery” needed to ultimately gather assembly lines for their production (Krupovic et al. 2019). Only 124 

after resultant pre-cellular structures could sustain basic viral functions, not before that, they would 125 

become essential requisites, or hosts, for virus survival. 126 

Second, once these initial, rudimentary virus factories were conceived, they continued to evolve 127 

and develop into more sophisticated hosts required for virus evolution and spread – LUCA, Bacteria, 128 

Archaea, FECA (first eukaryotic common ancestor), LECA, followed by the integrated unicellular and 129 

multicellular hosts, Eukaryota (Figure 1). Therefore, maintaining that viruses were the originators of 130 

cellular life (Forterre, 2006; Koonin et al. 2009b) and eventual partitioning of living organisms into three 131 

existing forms of life (Claverie, 2006), it may be logical to suggest that they were also architects of all 132 

life’s successive manifestations. 133 

The divergence and progression of life into numerous biological forms would subsequently allow 134 

virus adaptation to different environments, unique specializations and, importantly, ensure their infinite 135 

survival and preservation of the gene pool.  136 
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At some point in evolutionary development, likely after the beginning of eukaryogenesis 137 

approximately two billion years ago, each of the life’s extant lineages began to evolve “co-independently” 138 

of viral infections, while carrying on their essential function of being hosts for different types of viruses. 139 

Simply put, increasingly diversifying hosts acquired “evolutionary freedom”, although still to the benefit 140 

of the virus, their evolutionary driver. The evolution of hominids, as descendants of LUCA, would 141 

presumably follow the same path of co-independence. The human virome consists of approximately 1013 142 

particles per human individual (Liang and Bushman, 2021). That is, at least 10,000,000,000,000 virions 143 

(ten trillion). Every individual human cell would be infected with viruses (Liang and Bushman, 2021). It 144 

is hard to imagine that this commanding number assumes anything but a comprehensive exploration of 145 

all available anthropoid resources for viral demands. Not surprisingly, even the unique patterns of human 146 

evolution, such as emergence of consciousness, may be attributable to viral infections: according to the 147 

recent studies, the Arc gene, master regulator of synaptic plasticity responsible for information storage, 148 

derived from retrotransposons, ancestors of retroviruses (Pastuzyn et al. 2018; Ashley et al. 2018).  149 

Assuming that virus is indeed a driving force of evolution, how does the natural selection slot in 150 

the frame of this hypothesis? It would inevitably appear to do so: survival of the fittest host is 151 

advantageous for virus reproduction and expansion.  152 

Interestingly, if correct, this hypothesis supersedes a traditional concept of an “arms race” 153 

between viruses and their hosts, replacing it with the idea of dynamic coevolution beneficial to both 154 

entities: host’s antiviral mechanisms increase adaptability of viruses leading to new or more virulent 155 

strains which, in turn, promote host to evolve new defense strategies critical for its survival. In this 156 

context, killing their hosts does not give viruses any evolutionary advantage: many viruses infect without 157 

inflicting any damage or otherwise impair their hosts slowly, without causing instant death, enabling time 158 

to spread, adapt, and persist in a new environment (Rouse and Mueller, 2018). Rapid host kills may also 159 

be advantageous to the pathogens in large susceptible populations (Legget et al. 2017).  160 
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The hypothesis presented here also offers an easy explanation why, after ~ 3.5 - 4 billion years 161 

since the origin of life, viruses remain the dominant entities in the biosphere (Koonin et al. 2015): it is 162 

because they are at the core of the complexity of life that continues to carry and safeguard their gene 163 

pool.  164 

3. Conclusions 165 

The hypothesis detailed in this article argues that all living organisms may have originated as 166 

specialized reservoirs for viral evolutionary expansion.  Although at first glance appearing similar if not 167 

the same as the virus-first and other scenarios on the role of viruses in the evolution of life, it is different 168 

in its interpretation and goes further to expand the importance of viruses as not only originators of cellular 169 

life forms and the selfish driving force behind their evolution, but as the primary reason for their existence 170 

and biological heterogeneity. 171 

 172 
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 187 

Figure 1 188 

Simplistic representation of the hypothetical origin and evolution of life forms as hosts for virus 189 

multiplication and spread. A, Early onset of organic material via extraterrestrial exposure followed by 190 

virus-first scenario of the evolution of life. B, Subsequent evolution of LUCA (Last Universal Common 191 

Ancestor) and all living organisms as viral hosts. 192 
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