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Abstract

Addressing climate change and biodiversity loss requires innovative approaches

to ecosystem restoration. This study aims to (1) develop a statistical tool to

predict species distribution shifts under future climate scenarios and (2) ap-

ply it to 30 key tree species in the Brazilian Amazon, a biodiversity hotspot

increasingly threatened by deforestation and climate change.

Using MaxEnt, we modeled species distributions under three climate sce-

narios (optimistic, medium, and pessimistic) for 2040, 2070, and 2100, inte-

grating bioclimatic and soil variables. The tool generates interpretable maps

highlighting areas of stability, expansion, and contraction for each species.

Results reveal a dual effect of climate change: while some species may

initially expand their ranges, long-term survival is uncertain, particularly

for those with low ecological plasticity. Functional trait analysis identified

three species clusters, emphasizing the role of wood density, phenology, and
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plasticity in species selection for restoration.

Our findings highlight the need to integrate predictive modeling with eco-

logical knowledge to guide species selection and enhance restoration success.

By prioritizing climate-resilient species, this approach supports ecosystem

stability and long-term conservation goals. Strengthening collaboration be-

tween scientists and practitioners is essential to refining and scaling these

decision-support tools for effective restoration efforts.

Keywords: Ecological restoration, Prediction tool, Species distribution

model, Climatic Scenarios, Tropical rainforest.

1. Introduction1

The crucial link between climate change and biodiversity loss has been2

increasingly recognized. Addressing both challenges in restoration projects3

is essential to ensure ecosystems’ resilience for future centuries.4

Ensuring the long-term persistence of restored ecosystems requires restora-5

tion programs to be informed by a deep understanding of the ecology and6

evolutionary history of the species involved. This knowledge increases the7

likelihood of creating habitats suitable for local species while enhancing the8

ecosystems resilience to climate change.9

In response to the growing ecological concerns of citizens, the number10

of ecosystem restoration projects has increased. For example, activities11

with significant environmental footprints are strongly encouraged to mitigate12

their impact by actively contributing to initiatives that promote biodiver-13

sity restoration or improve the carbon balance through sustainable practices14

(IPBES, 2019). Some actual restoration programs prioritize rapid actions15
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and immediate results, even if it involves agricultural or alien species (Mon-16

temagni Almeida et al., ults; Suzuki et al., 2021). They provide an instant17

public image improvement by quickly vegetating degraded areas. However,18

such actions can harm local ecosystems through invasive competition and19

resource degradation and fail to restore the degraded ecosystemall the more20

so that, even in optimistic scenarios, ecosystems will face climatic changes.21

The most effective restoration strategy implies careful species selection and22

maximizes intra and inter-specific diversity (Butterfield et al., 2017).23

Biodiversity loss has reached a critical point, necessitating actions focused24

on areas with the greatest potential for success, protection of rare species, and25

historically rich ecosystems, where diverse survival opportunities for planted26

species and specimens can be maximized(van Tiel et al., 2024). The Ama-27

zon is the largest existing rainforest, supporting the greatest biodiversity on28

Earth and a major resource for the local population, but it is increasingly im-29

pacted and threatened by unsustainable activities (Guayasamin et al., 2024).30

For instance, in 2022, 15.5% of its surface was dedicated to monocultures and31

pastures (Project, 2023), with projections suggesting that 40% of Amazon32

forests could be eliminated by 2050 due to non-sustainable commercial agri-33

cultural expansion (Soares-Filho et al., 2006). Its importance encompasses34

numerous valuable ecosystem services, with regional climate regulation and35

carbon stock being particularly noteworthy (Guayasamin et al., 2024). De-36

forestation leads to significant regional climate changes, primarily reducing37

rainfall, which, in turn, affects rural activities and the maintenance of mil-38

lions of inhabitants who depend on the natural resources of forests, either for39

income generation or for the production of their own medicines (Zemp et al.,40
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2017).41

Yet, global warming presents a critical challenge to restoration projects42

by amplifying extreme climatic events (Aleixo et al., 2019). To address these43

challenges, large-scale forest restoration should prioritize the selection of key44

native species that deliver multiple ecosystem services and can adapt to cli-45

mate change within specific regions (Flores et al., 2024).46

Species Distribution Modeling (SDM) is a well-established method in47

biogeography and biodiversity research, particularly in data-scarce areas like48

tropical forests (Elith and Leathwick, 2009; Rushton et al., 2004), where49

many species remain understudied (Wilson et al., 2016). Despite its poten-50

tial, SDM often stays within academia, with limited practical application.51

To bridge this gap, we developed a tool linking scientific insights to real-52

world restoration projects. Using SDM, we combined species presence or53

abundance data with environmental variables to generate ecological insights,54

predict distributions across landscapes, and provide outputs directly useful55

for practitioners.56

In this study, we aim to assess how native tree species in the Brazilian57

Amazon forest could face climate changes in the next century and how to58

improve the species selection for large-scale restoration projects in tropical59

forests.60

2. Material and methods61

All the processing was made in R-4.3.3 (R Core Team, 2024), with pack-62

age dismo (Hijmans et al., 2017) being used for SDM.63
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2.1. Study area64

The Brazilian Amazon represents 60% of the total Amazon forest sur-65

face area (Fig. 1)(Flores et al., 2024). According to Köppen classification,66

the area has Tropical climate, mainly monsoon (49.8%) and without a dry67

season (43.7%), with a small portion with dry-winter, part of the south-68

ern border with the Cerrado (5.9%). The predominant soils are Argisols69

(42.1%) and Latosols (32.9%). The relief is characterized mainly by vast70

depressions (57.4%), with plateaus (16.5%) (Gerhard et al., 2020). There are71

various vegetation types, mainly Dense Ombrophilous Forest (46.2%), Open72

Ombrophilous Forest (22.3%), and contact zones/ecotones (12.5%)(IBGE,73

2019).74

2.2. Tree species selection and data75

In total, 30 species were selected based on the following criteria: 1) use in76

restoration programs; 2) seeds with orthodox storage behavior; 3) indigenous77

to Brazil; 4) broad potential distribution; and 5) representation of different78

ecological succession groups (Fig. 2, Tab. A1). Psidium guajava was in-79

cluded because it is considered naturalized in Brazil, though of unknown80

origin (Arévalo-Marín et al., 2021). Eschweilera coriacea, from a genus with81

recalcitrant seeds (Calvi and Ferraz, 2014), was also included due to its im-82

portance for the biome (Ter Steege et al., 2013). The number of presence83

points ranged from 47 for Samanea tubulosa to 307 for Trema micranthum,84

with a mean of 130 observations across the 30 species (Tab. A2).85
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Figure 1: Study area location. Red = Brazilian Amazon biome (IBGE, 2019), blue =

Amazonia boundary (Eva and Huber, 2005).

2.3. Environmental data86

Aiming at and improved prediction of plant distribution and migration,87

two types of environmental variables were considered: pedological and bio-88

climatic (Fig. 2)(Zuquim et al., 2020).89

Pedological variable was analyzed at six soil depth levels: 05, 515, 1530,90

3060, 60100, and 100200 cm. Bulk density at 05 cm was further divided91

into "upper" and "lower" layers. Soil variables were assumed to remain con-92
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Figure 2: Overview of the framework used for model development. AUC : area under the

ROC curve, TPR : True Positive Rate, TSS: True Skill Statistics, OR: Omission Rates,

TNR: True Negative Rate (TNR).
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stant over 100 years to serve as limiting factors in future species distribution93

estimations.94

Bioclimatic data were high-resolution climatologies for Earth’s terrestrial95

surfaces, with a 30 arc seconds resolution. Nineteen raster layers were ac-96

quired for the periods 1981-2010 (influencing current species distribution),97

2011-2040, 2041-2070, and 2071-2100. These future periods were analyzed98

under three different Shared Socioeconomic Pathways (Riahi et al., 2017)99

(SSP1-2.6, SSP3-7.0, SSP5-8.5 Fig. A1 here considered as "optimistic",100

"medium" and "pessimistic" scenarios, respectively). Future estimates are101

based on the GFDL-ESM 4 model Geophysical Fluid Dynamics Laboratory102

Earth System Model version 4, NOAA National Oceanic and Atmospheric103

Administration (Dunne et al., 2020).104

To minimize spatial distortions, all layers were clipped to the respective105

biome extent, rescaled to 30 arc seconds when necessary, and reprojected to106

the CRM (Common Reference Meridian) Sirgas 2000 coordinate system.107

2.3.1. Variables selection108

The selection of variables for the model followed two steps in order to109

select those surpassing a 5% contribution threshold (PCA) and to minimize110

collinearity biases (PI, for more details see Fig. 2) (Smith and Santos, 2020).111

The 9 bioclimatic and 5 soil Principal Components (PCs) were selected and112

included in the first model run based on PCA and PI analysis (Fig. A2, A3113

and Tab. A3). For the final models, eight variables were chosen based on114

their PI values (Tab. A4) (Altmann et al., 2010).115
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2.4. MaxEnt model116

MaxEnt (Maximum Entropy) is a machine learning method that predicts117

species’ potential distributions using presence data, background data, and118

environmental variables and is adaptable to small sample size. It creates119

species probability distribution as uniform as possible within environmental120

constraints by overlapping observed presence data with environmental pre-121

dictors Phillips et al. (2006); Pearson et al. (2007); Elith et al. (2011). Ten122

thousands random background data points, pseudo-absence points, were gen-123

erated randomly for areas lacking presence data (Renner et al., 2015; Elith124

and Leathwick, 2009).125

We used 3-fold cross-validation, suitable for small samples, because it126

performs better than the usually used 5-fold (James et al., 2013; van Tiel127

et al., 2024; Guisan et al., 2017) (Fig. A4).128

The models were evaluated using multiple metrics (Fig. 2).Models evalu-129

ation is detailed in Appendix B. Models with an AUC >0.7 were accepted for130

the binary predictions of species’ potential distributions, using the threshold131

that maximizes the sum of TPR and TNR. Models with TPR <0.6, TSS132

<0.4, or OR >0.6, but maintaining AUC >0.7, were considered to have fair133

performance and were used in the analysis.134

2.5. Decision-making tools135

To serve as practical tools, our models generated binary predicted dis-136

tribution maps using estimated climatic conditions for present and future137

periods, highlighting areas of increase, decrease, and stability relative to the138

current distribution.139
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2.5.1. Overlap maps principal component analysis140

As knowledge on tropical species grows (Reategui-Betancourt et al., 2025),141

multivariate analyses are increasingly valuable for identifying patterns and142

synthesizing information (Perelman and Puhl, 2023). Overlap map results143

were used to calculate relative and absolute area changes per species for144

each period and scenario. Values were categorized as "Loss" (L), "Gain" (G),145

"Stability" (S), and "Net Change" (NC increase minus decrease), both as per-146

centages (e.g., Gp = Gain percentage area) and absolutes (e.g., NCa = Net147

change absolute area). PCA was performed on each subset, with biplots of148

the first two PCs visualizing species impacts under climate change, showing149

tendencies and relationships. This method offers restoration practitioners150

an unified, multi-scenario approach for quickly comparing species tendencies151

before consulting detailed maps.152

2.5.2. Overlap maps cluster analysis153

To simplify species selection, groups based on climate change effects on154

species distribution were identified through Cluster Analysis using PCs from155

the previous PCA (Fig. 2). Among the tested methods, the UPGMA (Un-156

weighted Pair-Group Method Using Arithmetic Averages) algorithm was se-157

lected, as it achieved the highest co-phenetic correlation (0.72). The cluster158

analysis offers a quick overview of species tendencies by integrating uncer-159

tainties for an initial global overview.160
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3. Results161

3.1. Models evaluation162

The 30 developed models achieve high performance, as all evaluation163

metrics are far better than the thresholds (section 2.4, Appendix B). The164

mean AUC, TPR, TSS, and OR were 0.83 (ś 0.05), 0.78 (ś 0.12), 0.55 (ś165

0.10), and 0.22 ( ś 0.12), respectively. The species exhibiting the highest166

model performance was Chloroleucon acacioides (AUC = 0.94, TSS = 0.75,167

OR = 0), while the lowest performance model was for Trema micranthum168

(AUC = 0.75, TSS = 0.68, OR = 0.32).169

3.2. Environmental variables170

The selected variables (Fig. 3) represent clear limiting factors in species171

distribution. The variable with the greater average permutation importance172

(PI) was Bio8 Mean air temperatures of the wettest quarter (31.8%) with173

the period from 1981 to 2010 presenting a mean max. of 27.5 řC in the174

Brazilian Amazon.175
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Figure 3: Environmental variables used in the models. (a) Bio8: mean daily air tempera-

tures of the wettest quarter over one year, ranging from 11řC (yellow) to 30řC (dark red);

(b) Bio9: mean daily air temperatures of the driest quarter over one year, from 11řC (yel-

low) to 30řC (dark red); (c) Bio17: mean precipitation of the driest quarter over one year,

from 8 (light) to >800 m3/month (dark); (d) Bio18: mean precipitation of the warmest

quarter over one year, from 8 (light) to >800 m3/month (dark); (e) Bio4: standard de-

viation of the monthly mean temperatures -seasonality-, from 0.2řC (light pink) to 1.7řC

(dark purple). Panels (f), (g), and (h) represent PCA-derived variables summarizing soil

property variations: (f) PC1: higher sand content and bulk density (brown) vs. higher

water capacity and silt content (blue); (g) PC3: higher clay content (brown) vs. higher

organic carbon (blue); (h) PC4: pH lower and less organic carbon (brown) vs higher pH

and organic carbon (blue).

3.3. Principal component and cluster analysis176

Analyzing the biplots (Fig. 4) provides an overview of species’ response177

tendencies to climatic and soil conditions and highlights the scenarios where178

these responses are most pronounced. Although these results do not account179

for geographical coordinates, ecological interactions, or genetics of popula-180

tion, they offer a general perspective on the impacts of climate change on181

species.182

PC1 and PC2 in each PCA accounted for over 95% of the variance among183

species for each tendency type. Strong correlations were observed between184
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later periods (2070, 2100) under medium and pessimistic scenarios (SSP370,185

SSP585), as well as between optimistic scenario (SSP126) and 2040 (Fig. A5186

for PCA correlation graphs). Thereby, the impact of climate change seems to187

increase over time, highlighting the need to include scenarios where actions188

to reduce climate change are unsuccessful.189

Figure 4: (a)(d): absolute area change biplots, (e)(h) relative change biplots. PC1 is

positively correlated with tendency type, except for Stability (S) (c, g). For Gain (G) (a,

e), Net Change (NC) (d, h), and S, PC2 is negatively correlated with later periods and

high-emission scenarios, but positively correlated for Loss (L) (b, f). In NC (d, h), positive

PC1 indicates net gain, while negative PC1 indicates net loss.

First, we’ll present species clustering based on the model results. Using190

PCs 1 and 2 of Gp, Ga, Lp, La, NCp, and NCa as variables, this method191

integrates a multi-scenario perspective, facilitated by PCAs dimensionality192

reduction. While requiring careful interpretation, it reduces the risk of relying193

on a misleading single scenariocrucial given the complexity of climate change194

and its multifaceted influence on species distribution.195

In our case study, six species clusters were identified, with three par-196
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ticularly relevant for restoration in the Brazilian Amazon due to their high197

success probability across all scenarios (Tab. 1). Cluster 1 and 3 showed198

the greatest potential for range expansion, comprising seven pioneer species199

likely to thrive across the Amazon, despite the limited current distribution of200

two species in cluster 3. Cluster 4 grouped three species with minimal gains201

or losses, maintaining stable areas and resulting in near-zero net change.202

Clusters 2 and 5, which included 14 species, exhibited a general decline in203

distribution. Higher emission scenarios exacerbated range loss, with cluster204

5 showing a risk of extinction for some species by 2100 under the pessimistic205

scenario. Although Mabea fistulifera was classified in cluster 2, 63% of its206

current distribution is projected to remain stable by 2100. Finally, cluster 6,207

composed of only Parkia multijuga, had a smaller current distribution and208

tends to lose area or even face extinction.209

3.4. Overlap maps210

For a more refined species selection tailored to specific regions, overlap211

maps offered a clear visualization of species distribution dynamics for each212

scenario and period (Fig. A6). Figure 5 shows the evolution of spacial213

distribution over time in the two opposite scenarios for two species with214

opposite conduct: Samanea tubulosa, which tended to highly increase its215

distribution, and Solanum crinitum, a species that may be extinct from the216

Amazon in a pessimistic scenario (SSP585).217

The results for 2040 suggest that short-term restoration efforts could ben-218

efit from an increase in suitable areas for most species, a trend observed con-219

sistently across all periods under a positive climate change scenario. This220

observation is further supported by the variable correlations identified in the221

14



Table 1: Species clusters description

Clusters Cluster description Species

1

Large stable area and great increase

in distribution
Apeiba tibourbou

Chloroleucon aracioides

Parkia discolor

Senegalia polyphylla

Samanea tubulosa

2 Great decrease in area

Apuleia leiocarpa

Curatella americana

Guazuma ulmifolia

Mabea fistulifera

Enterolobium schomburgkii

Lecythis pisonis

Cenostigma tocantinum

Solanum crinitum

Ormosia paraensis

Tachigali vulgaris

Trema micranthum

Handroanthus serratifolius

Hymenaea intermedia

3
Extreme increase and small

current distribution
Bixa orellana

Schizolobium parahyba var. am.
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Clusters Cluster description Species

4

Gains and losses, with considerable

stable area
Cedrela fissilis

Hymeneae courbaril

Parkia pendula

5

Possible extinction in Amazon in 2100

under pessimistic scenario (SSP5-85)
Eschweilera coriacea

Dinizia excelsa

Dipteryx odorata

Goupia glabra

Psidium guajava

Spondias mombin

6
Small current distribution,

possible extinction in Amazon under

mitigate and pessmistic scenario

Parkia multijuga

Figure 5: Overlap maps of S. tubulosa and S. crinitum in 2 climate change scenarios

tested (with optimistic prediction above and with pessimist prediction at the bottom) for

each prediction time. Light blue: stable distribution area, blue: expansion of distribution

area, red: decrease in distribution area. Estimated current distribution is visualized by

combining light blue and red areas.
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PCA.222

For the 2070 medium scenario (SSP370), the early-successional (ES)223

species predicted to experience the greatest percentage loss of its current224

distribution is P. multijuga (94%). In terms of absolute area, S. crinitum225

faces the largest loss (890,480 kmš). Conversely, S. parahyba var. ama-226

zonicum may experience the greatest relative expansion, increasing its area227

by 394.2%, while S. polyphylla shows the largest absolute increase, totaling228

2,361,756 kmš. Under the negative scenario for 2070, P. multijuga continues229

to show the highest loss percentage (95%), and S. parahyba var. amazon-230

icum maintains the greatest gain percentage (305%). In absolute terms, H.231

serratifolius faces the greatest losses (1,085,974 kmš), whereas S. tubulosa232

exhibits the highest gains (1,368,556 kmš).233

For 2100, the late-successional (LS) species predicted to have the highest234

percentage losses under the medium scenario is E. coriacea (98.5%), and un-235

der the pessimistic scenario is D. odorata (99.5%). In terms of absolute area,236

H. intermedia may face the greatest losses under both medium (204,753 kmš)237

and pessimistic scenario (1,104,860 kmš). On the other hand, P. pendula may238

have the greatest relative gain (125%), and H. courbaril the largest absolute239

area increase (723,417 kmš) in the medium scenario. Under pessimistic, H.240

courbaril presents the greatest relative (69%) and absolute gains (786,303241

kmš).242

Although individual maps are used for species selection, analyzing the243

combined distribution maps of all species reveals significant trends, contribut-244

ing to macroecological studies. The current and future predictions under a245

negative scenario highlight areas where the probability of persistence of the246
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selected species is high and where only few or none of them may survive247

(Fig. 6). In our application, persistence probability is highest in the eastern248

Brazilian Amazon, around the Amazon River delta, and lowest in warmer,249

highly seasonal regions.250

Figure 6: Compilation of 30 selected species distribution in the pessimist scenario (SSP5-

8.5) of climate change varying in time. Darker color means more different species are

predicted to be present, and white means no species are expected to be present. (a) The

present distribution of species, (b) prediction for 2040, (c) prediction for 2070, and (d)

prediction for 2100.

Analyzing combined distribution maps highlights critical regions for con-251

servation, like warmer and highly seasonal regions of the Amazon, where252

targeted efforts could maximize species persistence under varying climate253

scenarios, especially in areas predicted to face severe biodiversity loss.254
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4. Discussion255

Climate change impacts species unevenly, with some unable to adapt256

and facing potential extinction. Restoration strategies that disregard future257

climate scenarios risk failure by contributing to biodiversity loss, facilitat-258

ing the spread of invasive species, and intensifying climate change impacts,259

ultimately perpetuating a harmful feedback loop.260

4.1. Distribution dynamic261

Model projections across three climate scenarios reveal varying species262

distribution patterns. Initially, even under pessimistic scenarios, all species263

exhibit greater area expansions than losses; however, most experience signif-264

icant declines in later years. This suggests an initial resilience that gives way265

to vulnerability as climate change intensifies. Zuidema et al. (2020) note that266

tropical species may initially increase their drought resistance with elevated267

atmospheric CO2 until a temperature threshold. Then, CO2 may increase268

drought sensitivity (Chen et al., 2024). By 2070, species distributions show269

a clear shift away from drought-prone regions of the Amazon.270

In montane forests, such as the Andes and Central America, most species271

are shifting upslope toward cooler environments (Fadrique et al., 2018; Fee-272

ley et al., 2013). While lowland communities tend to remain relatively stable273

under warming conditions (Freeman et al., 2018), some lowland-submontane274

species are migrating upslope (Feeley, 2012). In the subtropical Atlantic275

Forest, unique patterns emerge, including downward migrations driven by276

biotic interactions (Bergamin et al., 2024). In the Amazon lowlands, drought-277

tolerant genera are increasing as wet-affiliated taxa decline, although vege-278
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tation responses are lagging behind the pace of climate change (Esquivel-279

Muelbert et al., 2019).280

Past climate changes caused species to shift altitudes in tropical forests,281

allowing time for migration (Bush et al., 2004). However, the long genera-282

tion times of tropical trees delay their responses to current rapid warming, in-283

creasing the risk of mass extinctions (Fadrique et al., 2018; Esquivel-Muelbert284

et al., 2019). This observation underscores the need for assisted migration ex-285

periments in restoration and enrichment projects to support further research286

(Garcias-Morales et al., 2023).287

Maps indicate that many studied species, currently found in Dense Om-288

brophilous Forest, may shift to Evergreen Seasonal Forest regions by 20412070289

under warmer scenarios. Despite a seasonal climate, these regions retain high290

soil moisture, enabling deep-rooted trees to access water during dry periods,291

avoid water stress, and retain leaves year-round (Ivanauskas et al., 2008).292

By 2100, many species may shift to the eastern Amazon, offering higher293

hydraulic safety margins (Tavares et al., 2023), or to coastal zones under294

high-emission scenarios, where the GFDL-ESM 4 model projects lower tem-295

perature seasonality. Historical migrations during the Last Glacial Maximum296

similarly favored coastal areas with reduced continentality, suggesting these297

regions may remain suitable for rainforest species under extreme climate298

shifts (Pinaya et al., 2024).299

Finally, the contraction and expansion of rainforests, dry seasonal forests,300

and savannas, along with their floristic changes, are key aspects of Neotrop-301

ical natural history (Pennington et al., 2006). Paleoecology studies reveal302

potential ecosystem shifts, such as the dominance of drier-affiliated taxa303
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during Holocene dry conditions over current interfluvial wetlands (Spater304

et al., 2024). These floristic changes may drive interspecific competition in305

more suitable environments, creating biotic barriers to projected distribu-306

tions (Webb et al., 2008).307

The complexity of species suitability extends beyond current biome bound-308

aries and the abiotic factors considered in this study. Transition zones,309

such as those between the Amazon and Cerrado biomes, are highly dynamic310

ecosystems shaped by factors like fire and phosphorus limitation (Dionizio311

et al., 2018). Climate change and large-scale deforestation are projected to312

amplify fire disturbances and drought events in the Amazon (Drüke et al.,313

2023; Bottino et al., 2024). For instance, extreme droughts, once rare, could314

occur every 1015 years with a 2řC increase in global temperatures (Clarke315

et al., 2024). Therefore, drought and fires are critical factors to consider316

in restoration projects. Otherwise, these projects may exacerbate regional317

water cycle disruptions.318

To build climate-resilient restoration strategies, it is essential to con-319

sider the intricate impacts of climate change on species distributions, in-320

crease species diversity in restoration planning, and prioritize species-specific321

suitability assessments under changing conditions, supported by field exper-322

iments to refine projections.323

4.2. Species functional ecology324

Reviewing species’ biological characteristics in relation to our results is325

essential for choosing the appropriate species mix for successful restoration326

efforts.327

Comparing models results with ecological traits (Tabs. A1, A5) allowed328
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hypotheses on cluster traits explaining species distribution changes. How-329

ever, some species (C. americana, E. schomburgkii, H. courbaril, T. micran-330

thum) showed variability in reported leaf deciduousness classes, underscoring331

the need for further studies to characterize ecological traits across popula-332

tions under diverse environmental conditions. Moreover, we identified eco-333

logical evidence within each species cluster that explains distribution shifts334

and informs the selection of optimal species for long-term restoration in the335

Amazon.336

Species in cluster 1 demonstrated significant expansion of suitable cli-337

matic areas while maintaining large stable regions. All are known as pio-338

neers, following a deciduous leaf phenology strategy except P. discolor (Tab.339

A5). Deciduousness is linked to dry tolerance (de Oliveira et al., 2024), hy-340

draulic safety (Oliveira et al., 2021), and CO2 storage capacity (Rodrigues341

et al., 2023), while pioneer species exhibit high plasticity in functional traits342

under environmental changes (Wittemann et al., 2024; Manrique-Ascencio343

et al., 2022) and strong dispersal and establishment rates that support mi-344

gration (Laurance et al., 1998). P. discolor and S. tubulosa stand out in345

literature for their high wood density (Tab. A5), which correlates negatively346

with xylem cavitation, enhancing drought resistance (Serra-Maluquer et al.,347

2022; Marchand, 2022). Their predicted success likely stems from two key348

factors: pioneer traits enabling the colonization of suitable environments and349

high wood density and/or a deciduous leaf strategy that improves drought350

tolerance an important advantage under increasing Amazon drought condi-351

tions.352

Cluster 3 includes two pioneer species with low wood density, B. orellana353
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and S. parahyba var. amazonicum, the latter showing significant vertical354

wood density variations (Romero et al., 2024). Both species, known for their355

rapid growth (Rosa, 2006; Lorenzi, 2009), currently have limited distributions356

but are projected to experience substantial expansion in the future. The357

Amazon-endemic S. parahyba var. amazonicum may increase below-ground358

biomass under water deficit conditions, supporting its future distribution359

(Tourne et al., 2016). B. orellana, with a broad Neotropical range, shows a360

net gain in suitable restoration areas but may face limitations due to high361

Amazonian temperatures (Lorençone et al., 2024).362

Cluster 4 comprises secondary successional species that, despite regional363

losses across all scenarios, retained substantial stable areas and expanded364

into colder regions. These species tolerate various soil conditions, includ-365

ing poor soils, and employ drought survival strategies (Rodríguez-Ramírez366

et al., 2022; Grogan and Schulze, 2012). For instance, C. fissilis mitigates367

drought by shedding leaves early in the dry season, though drought reduces368

its growth and wood density (Rodriguez et al., 2023; Mendivelso et al., 2016).369

Understanding its interpopulation variability is vital, as old-growth C. fis-370

silis forests thrive in drought-prone areas (Pereira et al., 2018). Similarly, H.371

courbaril develops superficial roots and tolerates drought through reduced372

photosynthesis, leaf loss, and high wood density (Da Silva-Pinheiro et al.,373

2016; Luz et al., 2023).374

In conclusion, functional ecology plays a crucial role in identifying species375

with diverse potential for tropical forest restoration. Among the selected376

species, we identified three climate-relevant patterns: (1) species with traits377

that enhance water security, (2) fast-growing species with substantial fu-378
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ture area expansion, vital for rapid land cover recovery, and (3) secondary379

species adapted to poor soils, maintaining stable areas while ecologically380

complementing the other groups. These findings highlight the importance381

of selecting species with traits that foster plasticity, resilience, resistance,382

and adaptation to extreme climate events, ensuring the long-term success of383

restoration efforts.384

4.3. Model and prediction improvements385

This study demonstrates the value of statistical modeling as a decision-386

support tool for climate-resilient restoration, providing the first distribution387

estimates for 30 species in the Brazilian Amazon under various climate sce-388

narios. While our approach advances evidence-based species selection, oppor-389

tunities remain to refine accuracy and applicability by addressing challenges390

such as sampling biases, predictor selection, model validation, and general-391

izability (Vaughan and Ormerod, 2005; Gelfand, 2020).392

Focusing on the Amazon biome, our models minimize biases by limiting393

analyses to regional populations, although broader ranges for non-endemic394

species and migration dynamics could enhance future applications. Address-395

ing geographical biases in sampling, such as overrepresentation of accessible396

areas, remains critical. Although target-group background data is a promis-397

ing solution (Phillips et al., 2017), we used a random background approach398

to ensure scalability across species.399

Improving generalizability requires more robust validation. While k-fold400

cross-validation reduces overfitting, limited presence data (47 to 307 records401

per species) constrained the use of independent test sets, which are essential402

for validating performance under varied conditions. Tailoring predictors to403
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individual species and incorporating non-linear features like quadratic terms404

and hinge functions could further enhance accuracy (Phillips et al., 2017).405

Climatic models also influence predictions. Future studies could improve406

robustness by comparing multiple models for each variable rather than relying407

on a single dataset (Rahman and Pekkat, 2024). Additionally, incorporating408

biotic interactions through Joint Species Distribution Models (JSDM) would409

enable better species combinations for restoration (Pollock et al., 2014).410

Despite these challenges, the models achieved strong evaluation metrics,411

highlighting key trends in species behavior under climate change. These412

insights emphasize the need for continued collaboration between researchers413

and practitioners to refine tools and techniques, advancing tropical forest414

restoration in increasingly dynamic and degraded landscapes.415

5. Conclusion416

This study underscores the complexity of climate change impacts on417

species distributions and highlights the critical need for adaptive and evidence-418

based ecological restoration strategies. By combining modeling efforts with419

functional ecological analyses, we identified three distinct species clusters420

with unique restoration advantages: drought-resilient pioneers, fast-growing421

species for rapid land cover recovery, and secondary species adapted to poor422

soils and adverse conditions. These findings demonstrate the importance of423

incorporating ecological traits into species selection to enhance restoration424

outcomes and build climate-resilient forests. By fostering diversity across425

ecological groups, practitioners can bolster forest resilience to future climate426

extremes, offering a strategic framework for sustainable restoration. We em-427
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phasize the importance of collaboration between scientists and practitioners428

to refine decision-support tools that address the complex interplay of eco-429

logical and climatic factors, ultimately working to preserve and restore these430

increasingly vulnerable tropical ecosystems.431
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