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Abstract 12 

Thermal cameras mounted on unoccupied aerial vehicles (UAVs) are increasingly utilized across various 13 

environmental research fields, including hydrological modelling, wildfire detection, urban heat island 14 

studies, microclimate and precision agriculture. However, several steps are needed to convert the 15 

measured thermal signal to more relevant land surface temperature (LST). Since a number of users 16 

may have limited expertise in thermal remote sensing or data processing, necessary thermal 17 

corrections are often neglected or not performed correctly in research, even though this can result in 18 

substantial discrepancies of up to 5 °C in extreme cases when absolute LST is required. We facilitate 19 

the processing by introducing a new R package, theRmalUAV, which offers two workflows: an 20 

orthomosaic-based and an image-based workflow. The orthomosaic workflow consists of a single 21 

function to apply on an orthomosaic, while the image-based workflow provides greater flexibility, 22 

accommodating intra-flight variations in atmospheric conditions. Key components of the package 23 

include correcting for atmospheric interactions, background temperature, spatial emissivity using 24 

NDVI and land cover, and the influence of changing weather conditions on LST. Additionally, we 25 

introduce a novel method for accounting for rapid changes in illumination during flights. The package 26 

also includes functions for data cleaning, co-registration, and reporting. The package currently 27 

supports 11 different thermal sensors, covering the vast majority of thermographic cameras used 28 

today. The importance of these corrections and the implementation of the package are demonstrated 29 

through two use cases involving TeAx and DJI thermal cameras, under both ideal and challenging 30 

conditions. 31 
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 32 

1. Introduction 33 

Surface temperature is a critical variable across various domains, ranging from industrial applications 34 

to environmental studies. It serves as a key parameter in describing the energy balance between a 35 

surface and its surroundings, primarily due to its direct relationship with emitted long-wave infrared 36 

radiation (LWIR, 8-14 µm). This energy balance, or derived thermal metrics, can provide deeper 37 

insights into the properties and processes occurring within the corresponding object. Surface 38 

temperature has a broad spectrum of applications. In search and rescue missions, it is utilized to locate 39 

missing persons or track wildlife (Rudol and Doherty, 2008). In industrial contexts, it is employed for 40 

inspecting solar panels (Liao and Lu, 2021; Vlaminck et al., 2022), monitoring power lines (Dai et al., 41 

2025), and identifying thermal leaks in buildings (Rakha et al., 2018).  42 

Moreover, surface temperature is invaluable in environmental research and applications. Its potential 43 

is being explored in diverse fields, including hydrological modelling (Aicardi et al., 2017), coastal water 44 

quality estimation (Cheng et al., 2022), evaporation estimation (Hoffmann et al., 2016), urban heat 45 

island studies (Henn and Peduzzi, 2024; Wu et al., 2022), wildfire detection (Allison et al., 2016), and 46 

land use modelling (Muro et al., 2018). It is also used for wildlife population estimation (Beaver et al., 47 

2020; Mirka et al., 2022), identification of microclimatic refugia (Hoffrén and García, 2023), and 48 

vegetation monitoring. In precision agriculture, surface temperature is directly applied in the crop 49 

water stress index to detect stress and diseases (Messina and Modica, 2020; Santesteban et al., 2017; 50 

Stutsel et al., 2021).  51 

Advancements in remote sensing technologies have led to cost reductions and the miniaturization of 52 

sensors, thereby promoting the increased utilization of unoccupied aerial vehicles (UAVs or drones) in 53 

environmental research (Manfreda et al., 2018). Compared to traditional handheld thermal cameras 54 

or thermal satellite imagery, UAVs provide high spatial resolution and flexibility, enabling the 55 

acquisition of spatially continuous datasets with very high resolution. The integration of thermal 56 

infrared cameras on UAV platforms allows for the measurement of incoming LWIR and the direct 57 
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derivation of land surface temperatures (LST).  58 

In instances where precise absolute temperatures are required, the temperature data obtained from 59 

UAVs (or other remote sensing platforms) may not provide an immediately accurate product. The 60 

reliability of the data is significantly affected by variability in camera accuracy, surface properties, and 61 

atmospheric conditions, leading to a discrepancy between LST and the temperature measured at the 62 

sensor. Consequently, thermal infrared data acquired from UAVs often require essential corrections.  63 

The complexity of the necessary corrections and the potential lack of thorough background in thermal 64 

remote sensing among environmental scientists and other UAV researchers, often result in incomplete 65 

or incorrect application of these corrections. Therefore, we have developed the user-friendly R 66 

package theRmalUAV for cleaning and correcting thermal UAV data. The aim of this package is to 67 

facilitate the implementation of fundamental corrections necessary to obtain optimal results from UAV 68 

thermal imagery. The methods and workflow are partially based on the recommendations of Maes, 69 

Huete and Steppe (2017), and Heinemann et al. (2020), with additional new functionalities. To help 70 

users understand the features offered in this package, we will first provide an overview of some basic 71 

principles of thermal remote sensing and the key concepts employed in the package. Subsequently, 72 

we will discuss the general workflow and capabilities of the package and showcase its application in 73 

two use cases with different sensors (Section 4 and 5).   74 

2. Thermal remote sensing background 75 

Typical thermal infrared (TIR, 8-14 μm) cameras used on UAV platforms are based on microbolometer 76 

sensor arrays. This type of sensor is a thermistor radiation detector, which relates the absorbed 77 

incoming TIR radiation energy to the temperature-dependent electrical resistance of the material. 78 

They do not require expensive cooling, in contrast to alternative high-resolution photonic IR sensors, 79 

making them more cost-effective (Posch et al., 2009; Wood et al., 1992). Uncooled TIR cameras, 80 

however, require extensive and complex calibration processes, which are usually already implemented 81 

by the manufacturer, adding to the cost of the camera (Budzier and Gerlach, 2015). Such calibration 82 

establishes a relationship between the electrical resistance of a pixel of the uncooled microbolometer 83 

sensor, expressed as grey values, and the corresponding blackbody temperature. The temperature 84 

data are then stored as digital numbers (DN), usually as integers in a 16 or 32-bit tiff file format. To 85 

convert these DN values into usable temperatures in Kelvin or degrees Celsius, a linear constant is 86 

applied. The resulting temperature is referred to as the at-sensor temperature. 87 

For most applications, the at-sensor temperature is not yet the desired temperature. The incoming TIR 88 

radiation at the sensor includes multiple components, which can be described with the following 89 

radiative transfer model (Figure 1; Jones and Vaughan, 2010): 90 
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𝐿𝑠𝑒𝑛𝑠 = 𝜏 (𝐿𝑠𝑢𝑟𝑓  + 𝐿𝑟𝑒𝑓𝑙) + 𝐿𝑎𝑡𝑚 (1) 

Lx represents the radiance, i.e. the amount of radiation energy emitted, reflected, transmitted, or 91 

received by a given surface, per unit solid angle, per unit projected area, per unit time (W m-2 sr-1), of 92 

the corresponding TIR radiation of property "x”. In the radiative transfer model, Lsens stands for the 93 

radiance reaching the sensor, Lsurf the radiance from the TIR radiation emitted by the surface, Lrefl 94 

describes the fraction of downwelling TIR radiation reflected by the surface (1 - ϵ) and Latm represents 95 

the upwelling TIR radiation emitted by the atmospheric layer between the surface and the camera. 96 

The radiation passing through the atmospheric layer is attenuated, which is accounted for by the 97 

atmospheric transmittance τ (value between 0 and 1). Furthermore, Lsens depends on both the 98 

wavelength and sensor-specific properties (e.g. the wavelength range to which the sensor is sensitive). 99 

Therefore, the TIR camera manufacturer considers a modified inverse Planck function when converting 100 

Lsens to the at-sensor temperature (Tsens), typically assuming transmittance and emissivity to be one 101 

(Heinemann et al., 2020).  102 

 103 
Figure 1. Visual representation of the TIR radiation components received by thermal sensor. Lsens denotes the radiance 104 
reaching the sensor (W m-2 sr-1)  and consists of (i) Latm, representing the upwelling TIR radiation emitted by the atmospheric 105 
layer between the surface and the sensor, influenced by the free air temperature (Tair), (ii) Lsurf, the radiance from the TIR 106 
radiation emitted by the surface, influenced by the surface temperature (Tsurf), and (iii) Lrefl, given by the fraction of 107 
downwelling/incoming TIR radiation (Lin) reflected by the surface. Lrefl and Lsurf are represented together as Lout and are both 108 
partially absorbed by the atmosphere, taken into account by the atmospheric transmittance τ. Tsens stands for the temperature 109 
perceived by the sensor (i.e., at-sensor temperature). 110 

Natural objects are not perfect blackbodies, an idealized physical object that absorbs and emits all 111 

incident radiation. The degree to which an object absorbs and emits TIR radiation compared to a 112 
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perfect black body at the same temperature is described by its emissivity (ϵ), ranging from 0 to 1. 113 

Consequently, the proportion of TIR radiation that is reflected is its complement:  114 

𝐿𝑟𝑒𝑓𝑙 = (1 − 𝜖) 𝐿𝑖𝑛 (2) 

The relationship between radiant energy emitted by natural surfaces and their absolute temperature 115 

is described by the Stefan-Boltzmann law (Jones and Vaughan, 2010): 116 

𝐿𝑠𝑢𝑟𝑓 = 𝜖 𝜎 𝑇𝑠𝑢𝑟𝑓
4  (3) 

where Lsurf represents the amount of radiation energy emitted by the surface, per unit projected area, 117 

per unit time (W m-2), ϵ is the emissivity, σ is the Stefan-Boltzmann constant (5.67 10-8 W m-2 K-4), and 118 

Tsurf is the absolute temperature of the surface in Kelvin. Based on Eqs (1), (3) and as outlined in Maes, 119 

Huete and Steppe (2017) and Heinemann et al. (2020), the retrieval of LST can be formulated as 120 

follows: 121 

𝐿𝑆𝑇 = 𝑇𝑠𝑢𝑟𝑓 =  √𝑇𝑠𝑒𝑛𝑠
4  − (1−𝜖)   𝜏  𝑇𝑏𝑔

4  − 
𝐿𝑎𝑡𝑚

𝜎
 

𝜖  𝜏

4

  (4) 

where Tsurf is the desired LST of a surface with emissivity ϵ, Tsens the at-sensor temperature measured 122 

by the TIR camera, and Tbg the background temperature (to account for Lrefl, see Section 2.2), all 123 

expressed in Kelvin. The emissivity (ϵ) and transmittance (τ) range between 0 and 1, and Latm represents 124 

the upwelling TIR radiation emitted by the atmospheric layer between the surface and the sensor. Latm 125 

can described using following equation: 126 

𝐿𝑎𝑡𝑚 = (1 − 𝜏) 𝜎 𝑇𝑎𝑖𝑟
4  (5) 

with τ as the transmittance, and σ the Stefan-Boltzmann constant. Tair is the temperature of the 127 

atmospheric layer between the surface and the sensor (in Kelvin). As this is hard to quantify for the 128 

whole layer, the assumption is made that Tair is equal to the temperature at 1.5 - 2 meters height, and 129 

can therefore be measured by a weather station. According to Eq. (5), Eq. (4) becomes:  130 

𝐿𝑆𝑇 = 𝑇𝑠𝑢𝑟𝑓 =  √
𝑇𝑠𝑒𝑛𝑠

4  − (1−𝜖)   𝜏  𝑇𝑏𝑔 
4 − (1−𝜏) 𝑇𝑎𝑖𝑟

4  

𝜖  𝜏

4

  (6) 

Following Eq. (6), the calculation of LST requires, next to the at-sensor temperature and surface specific 131 

emissivity, also some atmospheric properties, like transmittance, background temperature, and free 132 

air temperature. In the next sections we will go over the atmospheric correction, the concept of 133 

background temperature and emissivity correction.  134 

2.1. Atmospheric correction 135 

The atmospheric conditions during a thermal UAV flight exert a substantial influence on the TIR 136 

radiation received by the sensor, e.g. due to water vapor absorption, and thus the measured at-sensor 137 

temperature. Flying during humid, overcast conditions compared to a dry, sky clear day may result in 138 
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different outputs for the same Tsurf. After performing atmospheric correction to account for these 139 

conditions, the resulting temperature data is commonly referred to as brightness temperature: 140 

𝑇𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =  √𝑇𝑠𝑒𝑛𝑠
4  − (1−𝜏) 𝑇𝑎𝑖𝑟

4  

𝜏

4

  (7) 

The transmittance of the atmosphere quantifies the proportion of Lout that can actually reach the 141 

thermal camera (Figure 1). It can be calculated using Eqs. (8),(9), by implementing parameters, like free 142 

air temperature (Tair (K), i.e. the temperature of the atmospheric layer between the surface and the 143 

sensor) and relative humidity (ω%, i.e. the amount of water vapor in the air compared to the maximum 144 

amount the air can hold at a given temperature), which can be retrieved from in situ measurements 145 

or nearby weather stations. First, the water vapor content (ω, in mm) is calculated based on relative 146 

humidity and air temperature: 147 

𝜔 =  𝜔% 𝑒𝑥𝑝(ℎ1 𝑇𝑎𝑖𝑟
3 + ℎ2 𝑇𝑎𝑖𝑟

2 + ℎ3 𝑇𝑎𝑖𝑟 + ℎ4)  (8) 

where ω% is the relative humidity ranging from 0 to 1, and Tair is the free air temperature (°C). In 148 

addition, h1, h2, h3, and h4 are specific parameters defined for the temperature window from -40 to 149 

120 °C, where h1 = 6.8455 × 10-7, h2 = -2.7816 × 10-4, h3 = 6.939 × 10-2, and h4 = 1.5587 (Minkina and 150 

Klecha, 2015; Tran et al., 2017). Subsequently, transmittance (τ) can be computed using the water 151 

vapor content and the distance between the sensor and the measured object (d, in m):  152 

𝜏 =  𝐾𝑎𝑡𝑚 𝑒𝑥𝑝[−√𝑑(𝛼1  + 𝛽1√𝜔)] + (1 − 𝐾𝑎𝑡𝑚) 𝑒𝑥𝑝[−√𝑑(𝛼2  + 𝛽2√𝜔)] (9) 

with Katm a specific scaling factor of atmospheric damping, representing the combined effect of 153 

absorption by gaseous components and the atmospheric turbidity (Katm = 1.9), together with the 154 

atmospheric attenuation without water vapor (α1 = 0.0066, α2 = 0.0126), and the attenuation of water 155 

vapor (β1 = -0.0023, β2 = -0.0067) (Minkina and Klecha, 2015; Tran et al., 2017). The distance between 156 

the sensor and the measured object is a measure of the amount of atmosphere which interferes with 157 

the radiation. 158 

2.2. Background temperature and emissivity correction 159 

To account for the atmospheric conditions above the UAV, and therefore the reflected downwelling 160 

TIR radiation (Lrefl, Figure 1), the concept of background temperature (Tbg) can be used, representing 161 

the “temperature of the sky”. This can be easily determined by retrieving the corresponding brightness 162 

temperature of a panel covered with (crumpled) aluminium foil using the TIR camera (Maes, Huete 163 

and Steppe, 2017; Heinemann et al., 2020). Due to its emissivity of typically less than 0.03, aluminium 164 

foil reflects almost all TIR radiation (Frolec et al., 2019). The sensor thus measures all TIR radiation 165 

emitted by the sky. 166 

When Tbg is not measured, it can be estimated using the air temperature (Maes and Steppe, 2012): 167 



7 
 

𝑇𝑏𝑔 =  √𝜖𝑐𝑙𝑟 𝐹 𝑇𝑎𝑖𝑟
44

  (10) 

with Tbg the background temperature, ϵclr the sky emissivity at clear sky, Tair the air temperature in 168 

Kelvin, and F a measure of the cloudiness of the sky (where F ≥ 1). A commonly used value for ϵclr is 169 

0.7 (Sedlar and Hock, 2009). Under clear sky conditions, F equals 1, thus a Tair value of 20 °C (293.15 170 

K) corresponds to a Tbg of -5 °C (268.15 K). In overcast conditions, F approximates 1.4, bringing Tbg in 171 

line with Tair.  172 

Following from Eq. (3), (4), emissivity is a crucial parameter for relating surface temperature to the 173 

measured LWIR, describing the extent to which the surface deviates from a black body. Emissivity has 174 

the largest impact of all parameters in Eq. (6) on obtaining accurate LST (Maes and Steppe, 2012); an 175 

error of 1% in emissivity corresponds to a temperature difference of 0.75K (Jones et al., 2003) in sunny 176 

conditions. This influence becomes even more significant in sunny conditions and with lower emissivity 177 

values (see the example in Section 4). However, obtaining the correct emissivity value is very 178 

challenging and usually two major assumptions are being made. First, emissivity is assumed to be 179 

constant in the spectral range of 8-14 µm, although it is wavelength-dependent, varying slightly across 180 

this range (Salisbury and D’Aria, 1992). Second, angular effects are ignored to simplify the retrieval 181 

methods, even though emissivity varies with the viewing angle (Cuenca and Sobrino, 2004). Emissivity 182 

is often estimated using indirect methods, such as lookup tables, empirical relationships with other 183 

metrics, or by solving radiometric equations (Li and Becker, 1993; Van de Griend and Owe, 1993). It 184 

should be noted that the emissivity of individual objects, such as leaves, can be measured. However, 185 

the emissivity of vegetation as a whole differs from that of individual vegetation components and is 186 

generally higher due to the shadow cavities within the vegetation, which resemble black boxes. Thus, 187 

emissivity at the vegetation level cannot be directly measured (Maes and Steppe, 2012). 188 

While using one fixed value might be ok for a homogenous surface, this approach is too simplistic in 189 

more complex ecosystems. The implementation of vegetation indices, such as the NDVI (the 190 

normalized difference vegetation index), enable spatially explicit estimation of thermal emissivity by 191 

applying an empirical relationship between the index and thermal emissivity (Kerr et al., 2004). The 192 

NDVI is given by: 193 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
  (11) 

with NIR and R the reflectance of near-infrared and red radiation respectively and lies between -1 to 194 

1. It can be useful to differentiate between vegetation densities, as well as land cover types by setting 195 

simple thresholds. Valor and Caselles (1996) proposed a method where emissivity is given as a function 196 

of vegetation and bare soil emissivity values with vegetation cover fraction as weight: 197 
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𝜖 =  𝜖𝑣𝑒𝑔  𝑃𝑣 + 𝜖𝑠𝑜𝑖𝑙   (1 − 𝑃𝑣  ) + 𝑑𝜖  (12) 

where Pv is the vegetation cover fraction, ϵveg is the vegetation emissivity, ϵsoil the bare soil emissivity, 198 

and dϵ a term due to cavity effect (surface roughness). This term can be written as 𝑑𝜖 =199 

4 〈𝑑𝜖〉 𝑃𝑣  (1 − 𝑃𝑣), where 〈𝑑𝜖〉 is a simplified parameter (〈𝑑𝜖〉 ≈ 0.01). The vegetation cover fraction 200 

can simply be determined by (Carlson and Ripley, 1997; Sobrino et al., 2008):  201 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙

𝑁𝐷𝑉𝐼𝑣𝑒𝑔−𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙
)

2

  (13) 

with NDVIveg and NDVIsoil the NDVI of respectively full vegetation and bare soil. This way of prediction 202 

the emissivity is used in the NDVI threshold method (Sobrino and Raissouni, 2000). By setting two well-203 

chosen NDVI thresholds, the landscape can be divided into three classes: bare soil, vegetation, and 204 

mixed pixels, where the latter relies on Eq. (12) to estimate the emissivity. The NDVI threshold method 205 

is often used because of its simplicity and already successfully applied to various sensors (Li et al., 206 

2013), such as AVHRR (Sobrino and Raissouni, 2000) and MODIS (Sobrino et al., 2003). Moreover, the 207 

need for accurate atmospheric corrections when calculating Pv  is not necessary because of the use of 208 

a normalized vegetation index (Li et al., 2013). A downside is the assumption that the surface only 209 

consists of soil and vegetation (e.g., water is not taken into the equation) (Tang et al., 2015). 210 

Furthermore, a priori knowledge on ϵveg, ϵsoil, NDVIveg, and NDVIsoil is needed. The method is not limited 211 

to soil and vegetation and can for example be used to create an emissivity gradient between healthy, 212 

green and dead or senescent vegetation using emissivity values as described in Salisbury and D’Aria 213 

(1992).  214 

The classification-based emissivity method is another approach to account for the spatial variation in 215 

emissivity. In essence, a land cover classification is performed and the corresponding emissivity values 216 

are assigned to each class (Li et al., 2013). This method heavily relies on the accuracy of the 217 

classification and possible limitations in number of classes. Furthermore, relevant emissivity values are 218 

available in databases like Salisbury and D’Aria (1992). In general, dense vegetation has a high 219 

emissivity value between 0.98 and 0.99 (Rubio et al., 1997). However, it is also related to the state of 220 

the vegetation and can, for example, substantially decrease for dry vegetation (Lillesand et al., 2015). 221 

3. The thermalUAV workflow and functionalities 222 

The R package can be installed from [christophemetsu/theRmalUAV: An R package to clean and correct 223 

thermal UAV data]. The functionalities of the theRmalUAV package are grouped into two workflows 224 

(Figure 2):  225 

1. Image-based workflow: streamlines individually correcting thermal images before combining 226 

them into an orthomosaic using external photogrammetry software. This approach allows for 227 

adjustments to temperature and relative humidity variations over prolonged flight durations.  228 

https://github.com/christophemetsu/theRmalUAV
https://github.com/christophemetsu/theRmalUAV
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2. Orthomosaic-based workflow: performs the corrections directly on an already stitched 229 

brightness temperature orthomosaic. The workflow is intended for scenarios where processing 230 

of the individual raw thermal images is either unnecessary or unfeasible (e.g., due to a lack of 231 

weather station data). In this context, intra-flight atmospheric variability is not considered. 232 

However, this workflow is particularly beneficial for multispectral cameras where the thermal 233 

band has a low resolution and relies on other bands for stitching in photogrammetry software 234 

(e.g. Micasense Altum). 235 

In both workflows, users have the option to include a spatially explicit emissivity correction if 236 

multispectral data or a land cover map is available, though this is optional, it is highly recommended. 237 

In the image-based workflow, the tuav_emis() post-processing function is used to correct a LST 238 

orthomosaic created following the image-based workflow. In the orthomosaic-based workflow, on the 239 

other hand, the spatially explicit emissivity correction is directly embedded in the ortho_correct() 240 

function. 241 

Figure 2 provides an overview of the core functions of both workflows and their most important steps 242 

are discussed below. More advanced functionalities and options are discussed in Section 3.2.5, 3.2.6 243 

and 3.4. Additional information is available in the vignettes of the R package and on the website. 244 

 245 
Figure 2. Overview of the theRmalUAV workflows. The green box presents the image-based workflow where raw thermal 246 
images are converted in corrected LST images. The othomosaic-based workflow is presented in the blue box, converting a 247 
brightness temperature orthomosaic to a corrected LST orthomosaic. The optional spatial emissivity correction starts in the 248 
pink box and can be implemented in both workflows. Initial data and end products are indicated in bold, the required inputs 249 
are outlined in black.   250 
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3.1. Data Collection 251 

The initial step involves collecting the thermal images. To check if your TIR camera is compatible with 252 

the workflow, execute the function tuav_cameras() to view a list of supported cameras. Currently the 253 

package supports the following cameras: TeAx ThermalCapture (2.0), Micasense Altum(-PT), DJI Mavic 254 

3T, DJI Mavic 4T, DJI Matrice 3TD, DJI Zenmuse H20N, DJI Zenmuse H20T, DJI Zenmuse H30T, DJI Matrice 255 

30T (both normal and super-resolution mode). Read carefully the camera’s user manual before use. It 256 

is, furthermore, advisable to conduct flights under homogeneous atmospheric conditions to avoid 257 

rapid transitions between sunny and cloudy conditions. To monitor atmospheric changes during the 258 

flight, it is recommended to use a portable weather station capable of measuring air temperature and 259 

relative humidity at high frequency, e.g. in 5-second intervals (Kelly et al., 2019; Maes, 2025). In the 260 

absence of a portable weather station, data from the nearest weather station could be used. As 261 

previously mentioned in Section 2.1, the background temperature (Tbg) can be accurately measured 262 

by placing a reference panel covered with crumpled aluminium foil on the ground and obtaining the 263 

corresponding brightness temperature using the TIR camera. Make sure that the aluminium foil panel 264 

is large enough, so it is covered by at least 9 pixels, to avoid mixed pixels and obtain an accurate 265 

reading. 266 

3.2. The image-based workflow 267 

3.2.1. Create ThermalUAV object 268 

The image-based workflow is structured around a custom R object of class ThermalUAV. A ThermalUAV 269 

object comprises lists with slots for essential variables that will be filled and used along the way, 270 

facilitating a streamlined and flexible workflow. The variables are categorized into the following 271 

sections: Info, Position, Sharpness, Atmosphere, Smooth and ThermalData, where the latter stores the 272 

temperature data as a list of matrices (LST or brightness temperature, depending on the step and used 273 

parameters). The function tuav_create() creates a ThermalUAV object relying on the pathname to the 274 

thermal image folder, the camera name (check tuav_cameras()), the flight height, and optionally the 275 

path to an additional metadata data frame.  276 

3.2.2. Conversion of at-sensor temperature to LST 277 

The function tuav_correct() performs the necessary corrections at the image level on a ThermalUAV 278 

object, given the required atmospheric data. The atmospheric data can be provided in one of the 279 

following formats: (i) a single measurement of air temperature (Tair) and relative humidity (ω%), (ii) Tair 280 

and/or ω% as vectors with lengths corresponding to the number of images in the ThermalUAV object, 281 

(iii) a data frame containing Tair and ω% along with datetime information covering at least the whole 282 

duration of the flight, or (iv) in the absence of measured air temperature, Tair can also be estimated 283 
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using a trimmed mean from the pixel values in the thermal image. For each image, the water vapor 284 

content and the transmittance is calculated using respectively Eqs. (8), (9), followed by the calculation 285 

of the LST using a single emissivity value, provided by the user (Eq. (4)). In occasions where background 286 

temperature (Tbg) was not measured, Tbg will be estimated following Eq. (10). The user should then 287 

specify if the conditions were sky clear or overcast. The function reads the TIFF files and stores the LST 288 

values as a list of matrices under ThermalData. Eventually an updated ThermalUAV object is returned 289 

including the LST information. Note: if emissivity is set to 1, this function does not correct for 290 

background temperature and emissivity (Eq. (4)). In that case, the returned temperature data will be 291 

the brightness temperature. This is recommended if emissivity is corrected spatially afterwards (see 292 

Section 3.2.4). Furthermore, tuav_correct() does not account for the effect of Tair on LST (Maes, Huete 293 

and Steppe, 2017), but can be corrected using the post-processing function tuav_smooth() (see section 294 

3.2.6). 295 

3.2.3. Exporting and mosaicking 296 

Once all the desired corrections have been applied, the ThermalData can be exported as geotagged 297 

TIFF files using function tuav_export(). To efficiently store the temperature data with a two-decimal 298 

precision, each image is written as centikelvin in a 16 bit TIFF file labelled 299 

“original_filename_corrected.tif”. These files include the necessary metadata for further processing, 300 

including GNSS position and altitude, pitch, roll yaw, and more. After saving all the corrected thermal 301 

images, you can align and mosaic them using commercial photogrammetry software, such as Agisoft 302 

Metashape or Pix4D Mapper, to create a land surface temperature orthomosaic. Since the data is 303 

stored in centikelvin, it should be divided by 100 and then subtracted by 273.15 to convert the resulting 304 

temperatures to degrees Celsius. If desired an HTML-report can be created using tuav_report(). This 305 

report provides an overview of the executed corrections with their corresponding parameters, camera 306 

locations in an interactive map, and general background information about the mission.  307 

3.2.4. Emissivity correction 308 

When your area of interest comprises multiple land cover types and/or a heterogeneous landscape, 309 

spatially explicit emissivity correction is recommended. As described in Section 3.2.2, the 310 

tuav_correct() function uses only one emissivity value, as spatially explicit emissivity correction is not 311 

accurate at the image level due to uncertainties in image positioning and viewing angles. The post-312 

processing function tuav_emis() does allow for emissivity correction on georeferenced LST 313 

orthomosaics. To apply the emissivity correction, the pixel values are first backtransformed to at-314 

sensor temperature, given the original parameters provided in the corresponding ThermalUAV object. 315 

The land surface temperature on pixel level is now calculated with a spatially explicit emissivity value 316 

using one of the following methods: (i) the NDVI threshold method (as described in 2.2), given the 317 
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NDVI map and providing the necessary thresholds directly in the function; (ii) the land cover map with 318 

a two-column matrix containing the values of the land cover classes in the first column and their 319 

corresponding emissivity values in the second; or (iii) directly using an emissivity map. The LST 320 

orthomosaic and the map to be used for the correction can be provided as either a terra::SpatRaster 321 

object or as pathname to the map stored locally on your personal computer.  322 

3.2.5. Accounting for varying weather conditions 323 

Conducting thermal flight missions under stable, sunny conditions is recommended due to the 324 

challenges associated with correcting illumination changes in thermal data (Maes, 2025). Rapid 325 

changes in illumination can lead to heterogeneity and distortion in the final land surface temperature 326 

orthomosaic. While techniques such as radiometric block adjustment are employed to address this 327 

issue in multispectral UAV imagery, they remain under-investigated for thermal UAV data (Wang et al., 328 

2024). Maes, Huete and Steppe (2017) proposed a technique to account for the effect of varying air 329 

temperature on LST using a high temporal resolution air temperature dataset:  330 

𝑇𝑠𝑢𝑟𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡
= 𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑎𝑖𝑟 + 𝑇𝑎𝑖𝑟𝑚𝑒𝑎𝑛

 (14) 

where Tsurf_corrected is the corrected surface temperature (Tsurf), Tair is the air temperature at the moment 331 

of image capture, and Tair_mean is the mean air temperature during the flight. This correction method is 332 

incorporated in the package under the function tuav_smooth(), with the parameter method set to 333 

“T_air”. A limitation of this technique is its inability to capture spatially explicit changes in illumination 334 

and local wind gusts, as typically only one portable weather station is placed at a fixed location. 335 

Additionally, obtaining such a dataset is not always feasible.  336 

To address these limitations, we propose a similar technique based on the temperature of the thermal 337 

images themselves. First, the trimmed mean (with a fraction of 20%) of each image in the ThermalData 338 

is calculated to avoid the influence of extreme temperatures (Eq. (15)). Second, the smoothed 339 

temperature (Tsmooth) is calculated as the mean of a moving window with a length equal to 340 

smoothlength (Eq. (16)). Finally, the image is corrected by subtracting its corresponding Tsmooth and 341 

adding the mean of Tsmooth (Eq. (17)).  342 

𝑇𝑖𝑚𝑎𝑔𝑒,𝑚𝑒𝑎𝑛[𝑖] = 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑎𝑔𝑒[𝑖], 0.2) (15) 

𝑇𝑠𝑚𝑜𝑜𝑡ℎ[𝑖] = 𝑚𝑒𝑎𝑛 (𝑇𝑖𝑚𝑎𝑔𝑒,𝑚𝑒𝑎𝑛 [𝑖 −
𝑠𝑚𝑜𝑜𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ

2
∶ 𝑖 +

𝑠𝑚𝑜𝑜𝑡ℎ𝑙𝑒𝑛𝑔𝑡ℎ

2
]) (16) 

𝑇𝑖𝑚𝑎𝑔𝑒𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
= 𝑇𝑖𝑚𝑎𝑔𝑒 − 𝑇𝑠𝑚𝑜𝑜𝑡ℎ + 𝑇𝑠𝑚𝑜𝑜𝑡ℎ𝑚𝑒𝑎𝑛

 (17) 

The newly proposed method is also embedded in the function tuav_smooth(). To perform the 343 

correction using this method, the parameter method should be set to “image”. This correction should 344 

always be performed after calling tuav_correct() as it relies on the temperature data stored under 345 
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ThermalData in the ThermalUAV object. The performance of this correction will be discussed using a 346 

use case in Section 5.  347 

3.2.6. Other functionalities  348 

The R package offers additional functionalities beyond those previously described. Note, to keep a 349 

clear overview, only the basic functions are represented in Figure 2. We will briefly outline some 350 

functions in Table 1, but more functions and detailed information are available in the package’s 351 

reference and vignettes. All the functions require a ThermalUAV object as input and, except 352 

tuav_view(), return an updated ThermalUAV object. 353 

Table 1: an overview of additional functionalities within the image-based workflow. These functions can only be applied on 354 
ThermalUAV objects at any time during the processing unless stated otherwise. 355 

 Function Description 

Po
si

ti
o

n
 f

u
n

cti
o

n
s 

tuav_loc() Calculates the camera locations/image extents as terra::SpatVector object. Optionally 
the mean frontal overlap can be calculated.  

tuav_view() Plots the camera locations/image extents in an interactive map. This allows for visual 
checks aiding in intermediate cleaning steps. 

tuav_coreg() Optimizes thermal camera locations and viewing angles using co-registered high-
resolution cameras with a high precision GNSS system. Can be done directly or by 
using the optimized camera locations after stitching the high-resolution camera in 
Agisoft Metashape. In the latter case coreg_prep() is needed to set the data in the 
right format. Optimized cameras are stored in an updated ThermalUAV object and 
are used when exporting. 

C
le

an
in

g 
 

tuav_persec() Reduces the data volume by specifying the number of images to retain per second, 
keeping the ones with the highest sharpness. Can be useful for thermal cameras 
recording at a fixed high frequency rate.  

tuav_reduc() Reduces the data volume either based on a minimal frontal overlap or minimal 
sharpness quality. Can be useful for thermal cameras recording at a fixed high 
frequency rate.  

3.3. The orthomosaic-based workflow 356 

The orthomosaic-based workflow corrects brightness temperature orthomosaics. This means that the 357 

raw thermal images are first stitched in a photogrammetry software. Possibly, a conversion to Kelvin 358 

might be required as some cameras provide their data as centikelvin or as DN where a linear constant 359 

should be applied. The ortho_correct() function relies on one value for Tair and ω%, as intra-flight 360 

atmospheric variability is not considered. The emissivity value can be set to a single value for the entire 361 

map, or you have the option to spatially account for it in a similar way as described in Section 3.2.4.  362 

3.4. DJI Thermal IR Processing 363 

Thermal images captured with a DJI (Da-Jiang Innovations) camera are stored in a specific way and 364 

require preprocessing before getting to actual temperature information. Therefore, the DJI  Thermal 365 

IR Processing (DIRP) functionality, as used in the DJI thermal Analysis Tool, is also incorporated into the 366 
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R package through the function tuav_dji(). The function is not part of the image-based workflow as it 367 

does not return a ThermalUAV object, however, it does require a ThermalUAV object as input to work 368 

with the metadata. The function, furthermore, depends on object distance, relative humidity, 369 

emissivity and reflected temperature to convert the data to LST. Please note should be made that the 370 

underlying conversion is not made publicly available by DJI. When using the image-based workflow for 371 

DJI cameras, this function is embedded in tuav_correct(), meaning no additional preprocessing is 372 

required. In this case, the object distance is set to 1 and emissivity to 1 to achieve the at-sensor 373 

temperature, on which the regular processing is performed as outlined in Section 2. There are two 374 

prerequisites for using the R package for DJI cameras: (i) a version of Python must be installed on your 375 

system, subsequently, a virtual environment should be initialized using the function dji_init(), and (ii) 376 

it is only compatible with Windows and Linux systems, as the Dynamic Link Libraries provided by DJI 377 

are available only for these two systems. 378 

4. Case 1: An empirical example of the Image-Based Workflow using ThermalCapture 2.0 379 

4.1. Data collection 380 

In this section, we present an example of the image-based workflow. The study area is a heterogenous 381 

patch within the Kalmthoutse Heide (Figure 3A), a heathland ecosystem in Belgium. The landscape 382 

consists of heather shrubs (Calluna vulgaris) on a sandy soil, interspersed with patches of moss and 383 

bare soil, some trees (Pinus sylvestris), and shallow ponds (Figure 3B). A short flight was conducted on 384 

July 19, 2024, at 14:00 local time under clear sky conditions. We used the DJI Matrice 300 RTK equipped 385 

with (i) the Micasense Altum-PT to collect multispectral information, and (ii) the TeAx ThermalCapture 386 

2.0 with the ThermalCapture Calibrator to obtain thermal information. A single grid flight mission was 387 

performed at 75 m above ground level with a side overlap of 80% and flight speed of 4.5 m/s, resulting 388 

in a ground sampling distance of 3.28 cm for the multispectral data and 9.66 cm for the thermal 389 

images. During the flight, free air temperature and relative humidity were measured at 5-second 390 

intervals with a Kestrel 5500L environmental meter placed on a tripod of 1.5 m height. Mean air 391 

temperature and relative humidity during the flight were 28.3 °C and 42.7 %, respectively.  392 
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 393 
Figure 3. (A) RGB composite from the Micasense Altum-PT. (B) Land cover map showing the diverse landscape consisting of 394 
moss, sand, trees, shrubs and water.  395 

4.2. Pre-processing 396 

The multispectral imagery was processed using Agisoft Metashape Professional 2.0.0, following the 397 

recommended workflow (Agisoft Metashape, 2024). Reflectance calibration was performed using 398 

images of a 60 cm x 60 cm panel with 50 % reflectance taken at the flight altitude. As our thermal 399 

camera is co-registered with the Micasense Altum-PT, we will also demonstrate the optional co-400 

registration workflow. Consequently, the camera references were exported as CSV file, including the 401 

rotation and estimated values with a precision of 7 decimal numbers. The thermal data, stored as TMC 402 

file, were converted to TIFF files using the ThermoViewer 3.0.10 software from TeAx. Metadata were 403 

exported as a single CSV file for all images.   404 

4.3. Processing using the theRmalUAV package 405 

The first step in the image-based workflow is creating the ThermalUAV object. After loading the 406 

theRmalUAV package into the environment, tuav_create() will create the ThermalUAV object (Section 407 

3.2.1), here named as thermaluav. More information can be found in the help pages of the package. 408 

library(theRmalUAV) 409 
thermaluav <- tuav_create(path = "Data/TIFs/", camera = "ThermalCapture", meta_csv = 410 

"Data/TIFs/Example_meta.csv", flight_height = 75)  411 
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The ThermalCapture 2.0 is a thermal camera that records images at a rate of 8.33 Hz, resulting in a 412 

dataset of 1,237 images. The function tuav_reduc() (Table 1) is used to downsize the dataset, retaining 413 

only the sharpest images while setting a minimal frontal overlap. In this case, we chose for a minimal 414 

frontal overlap of 85%, resulting in a dataset of 125 images. The resulting ThermalUAV object is saved 415 

as a new variable (thermaluav_reduc) to avoid overwriting the previous ThermalUAV object.  416 

thermaluav_reduc <-  tuav_reduc(thermaluav, method = "Overlap", min_overlap = 0.85) 417 

Corrections can now be performed using tuav_correct() (Section 3.2.2). As we will later perform the 418 

optional, though recommended, spatially explicit emissivity correction, emissivity is initially set to 1 to 419 

obtain the brightness temperature. The free air temperature and relative humidity were provided in 420 

the format of a data frame obtained from the Kestrel environmental meter, allowing for image-level 421 

corrections.  422 

thermaluav_correct <- tuav_correct(thermaluav_reduc, flight_height = 75, T_air = Kestrel, rel_hum = Kestrel, 423 
T_bg = 274.2, emiss = 1) 424 

To correct for the effect of air temperature on the surface temperature, we can use the function 425 

tuav_smooth() (Table 1).  426 

thermaluav_smooth <- tuav_smooth(thermaluav_correct, method = "T_air") 427 

In our camera setup, the ThermalCapture 2.0 is fixed to our Micasense Altum-PT, allowing us to co-428 

register the thermal data and benefit from the RTK accuracy of the Altum-PT camera. First, the data 429 

must be converted into the correct format using coreg_prep(). This function relies on camera 430 

references of the Altum-PT, which were exported from Agisoft Metashape, as mentioned in Section 0. 431 

Subsequently, the co-registration is performed using tuav_coreg(). Here, the rig offset values are 432 

provided in millimetres and are measured to the green band of the Altum-PT (band 2, the band to 433 

which other bands are offset). More information can be found in the vignettes and the help pages of 434 

the package.     435 

sfm_cameras <- coreg_prep(img_path = "Data/Micasense/000/", SfM_option = "Agisoft Metashape", 436 
opt_camera_path = "Data/Micasense/ReferenceCameras_example.txt", 437 
camera_name = "Altum-PT_MSP", label = "_2", timezone = "UTC") 438 

thermaluav_coreg <- tuav_coreg(thermaluav_smooth, opt_cameras = sfm_cameras, rig_offset = c(-46, -103, -20, 439 
0, 0, 0)) 440 

Finally, we can export the data stored in the final ThermalUAV object. In this case, the ThermalData 441 

contains brightness temperatures as we used an emissivity of 1, and the camera locations were 442 

optimized during the co-registration. The information can be exported as TIFF files using tuav_export(). 443 

tuav_export(thermaluav_coreg) 444 

The TIFF files were processed in Agisoft Metashape using default parameters (Align > Build Point Cloud 445 

> Build DEM > Build Orthomosaic). The obtained orthomosaic was converted to degrees Celsius and 446 

exported as a GeoTIFF. To achieve land surface temperatures, we need to account for emissivity. The 447 
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spatially explicit emissivity correction in this example is performed using the land cover option in the 448 

function tuav_emis(). First, a matrix is made linking the land cover labels to their corresponding 449 

emissivity (Table 2; (Rubio et al., 1997).  450 

Table 2. Land cover classes with their corresponding emissivity values. 451 

Label Land cover Emissivity 

1 Dry mosses 0.962 

2 Sand 0.914 

3 Tree 0.983 

4 Shrubs 0.984 

5 Water 0.991 

The function also requires the original temperature GeoTIFF - here the brightness temperature built in 452 

Agisoft Metashape -, a map to base our corrections on - here the land cover map -, and the last 453 

ThermalUAV object related to this project. 454 

matrix <- matrix(c(1,2,3,4,5,0.962,0.914,0.983,0.984,0.991), ncol = 2) 455 
thermaluav_emis <- tuav_emis(thermal_orig = “Data/Example_Tbright.tif”,  456 

thermal_uav = thermaluav_coreg,  457 
temp = "C",  458 
corrmap = “Data/Example_LC.tif”,  459 
method = "LC",  460 
write_Ts = TRUE,  461 
filename_Ts = "Example_Tsurf.tif",  462 
LC_emiss_matrix = matrix) 463 

4.4. Results  464 

The final LST map illustrates the wide range of temperatures in this heterogeneous landscape on a hot, 465 

sunny day (Figure 4A). The bare sandy areas reach temperatures up to 50 °C, while the dark, dry mosses 466 

exhibit extreme surface temperatures up to 60°C due to the absorption of shortwave solar radiation 467 

and a lack of evapotranspiration. The shallow, still pond had a surface temperature of approximately 468 

31°C.  469 

The at-sensor temperature substantially underestimates the LST, with temperature differences 470 

reaching up to 5°C in certain instances (Figure 4B). The largest discrepancies are observed in areas with 471 

extreme temperatures and land covers with low emissivity values (e.g., bare sand, Figure 3B). The 472 

waterbody and trees, which generally have lower temperatures and emissivity values nearing 1, show 473 

smaller discrepancies (around 0.5°C).   474 
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 475 
Figure 4. (A) Final LST map of the area representing the temperatures in degree Celsius. (B) Temperature difference (ΔT) 476 
between the LST and the at-sensor temperature. 477 

To provide more insight into the effect of the corrections for this example, the differences between a 478 

range of at-sensor temperatures and the final LST per land cover class (and thus, emissivity), as well as 479 

the brightness temperature, are plotted in Figure 5. These differences were calculated using Eq. (6) 480 

with the mean atmospheric conditions during the flight: a transmittance of 0.9368, air temperature of 481 

28.26 °C and a background temperature of 274.2 K. The emissivity values for each class are shown in 482 

Table 2, and to obtain the brightness temperature, the emissivity was set to 1. Note that the influence 483 

of the atmospheric correction is minimal when the at-sensor temperature approximates the free air 484 

temperature but becomes significant at very high temperatures (up to 2 °C in this example). When 485 

accounting for emissivity and background temperature, the discrepancies become more prominent, 486 

especially at extreme temperatures and where the surface substantially deviates from the black body 487 

behaviour. This trend aligns with Figure 4B, where the largest discrepancies occur on the bare soil (low 488 

emissivity) and at the patches of dry moss (extreme temperatures).  489 
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Figure 5: Temperature differences to the at-sensor temperature in sunny conditions for Case 1. With the brightness 490 
temperature (ϵ = 1) in red becoming higher compared to at-sensor temperature when the at-sensor temperature exceeds the 491 
free air temperature. The differences to the final LST are given per land cover class as they each have a different emissivity 492 
(ϵsand = 0.914, ϵmoss = 0.962, ϵtree = 0.983, ϵshrub = 0.984, ϵwater = 0.991). The differences are calculated using Eq. (6) with the 493 
mean atmospheric values during the flight: a transmittance of 0.9368, air temperature of 28.26 °C and a background 494 
temperature of 274.2 K. 495 

5. Case 2: Accounting for variable weather conditions using the DJI Mavic 3T 496 

5.1. Data Collection 497 

In this second use case, we demonstrate the effect of the smoothing function tuav_smooth() on a flight 498 

conducted under variable weather conditions. The flight took place on September 13, 2024, at 12:25 499 

local time over a potato field in Bottelare, Belgium. Initially, the flight conditions were sunny, but a 500 

cloud quickly covered the area, drastically altering the illumination (Figure 6A). The average air 501 

temperature was 16.1 °C, and the relative humidity was measured at 98 %. Thermal images were 502 

acquired using a DJI Mavic 3T at a flight altitude of 30 m. To generate the corresponding NDVI map 503 

(Figure 6D), we used the Micasense RedEdge Dual mounted on a DJI Matrice 350 RTK, earlier the same 504 

day under stable weather conditions. Eight ground control points (GCPs) were spread out across the 505 

field to align the thermal data with the NDVI map.     506 
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 507 

Figure 6. Potato field in Bottelare, Belgium. (A) RGB orthomosaic derived from the RGB camera on the DJI Mavic 3T, 508 
simultaneously captured with the thermal data, showing the fast change in illumination going from left to right. The red dots 509 
represent the locations of the ground control points. (B) Brightness temperature in °C before using the smoothing function, 510 
clearly showing the same pattern as the RGB data, influenced by the change in weather conditions. (C) Brightness temperature 511 
in °C after using the smoothing function, accounting for this change, resulting in a more homogenous output. (D) the 512 
corresponding NDVI map created from the Micasense RedEdge Dual, flown earlier that day under stable, sunny conditions. 513 
(E) Emissivity map of the field, the NDVI threshold method gives more nuances and a continuum of emissivity values between 514 
the thresholds. (F) Final LST in °C, where the warm bare soil, clearly defines the colder vegetation plots and the artefact of the 515 
varying weather conditions is accounted for. 516 

5.2. The effect of tuav_smooth() 517 

In this example, we used a DJI thermal camera. To work with the DJI cameras, the function dji_init() 518 

must first be called to set up the necessary configurations and access the Thermal SDK functionality 519 

embedded in the package (see Section 3.4). Similar to the empirical example in Section 4, we began 520 

by creating a ThermalUAV object using tuav_create(), specifying the path to the image folder and the 521 

camera name. Subsequently, the correction function was applied. In this case, we used a single value 522 

for air temperature (T_air) and relative humidity (rel_hum). Background temperature was not 523 

measured and thus was estimated using Eq. (10). As the majority of the flight was under overcast 524 

conditions, SKC was set to FALSE. Emissivity was set to 1, as spatial emissivity correction would be 525 

performed later, providing us with the brightness temperature. The data was then exported. 526 

library(theRmalUAV) 527 

dji_init() 528 
path <- "H:/Thermal_Project/Data/M3T/” 529 
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thermaluav <- tuav_create(path = path, camera = "DJI_M3T") 530 
thermaluav_correct <- tuav_correct(thermaluav, T_air = 16.1, rel_hum = 98, T_bg = NA, emiss = 1, SKC = FALSE) 531 
tuav_export(thermaluav_correct) 532 

To account for the effect of illumination changes during the flight, we applied the function 533 

tuav_smooth() using the method “image” (Section 3.2.5). The “smooth_length” parameter was set to 534 

the number of images in one flight line, excluding the turns. The smoothed images were also exported. 535 

thermaluav_smooth <- tuav_smooth(thermaluav_correct, method = "image", smooth_length = 16) 536 
tuav_export(thermaluav_smooth) 537 

The exported images, containing the smoothed and non-smoothed brightness temperatures, were 538 

aligned and mosaicked in Agisoft Metashape Professional 2.0.0. The orthomosaic of the non-smoothed 539 

brightness, clearly shows the large change in illumination, leading to a substantial impact on the 540 

temperature data (Figure 6B). Conversely, the smoothed dataset produced a much more homogenous 541 

orthomosaic, effectively accounting for the change in illumination (Figure 6C).  542 

5.3. Spatial emissivity correction using NDVI 543 

With the smoothed brightness temperature orthomosaic and the corresponding NDVI map, we 544 

performed spatial emissivity correction to obtain the LST. Similar to Section 4.3, we used the 545 

tuav_emis() function, but now with the method NDVI (Section 3.2.4). This method relies on four 546 

thresholds (Section 2.2). The NDVI values for soil (NDVIsoil) and vegetation (NDVIveg) were estimated 547 

using our NDVI map, set at 0.3 and 0.88, respectively. Emissivity values for soil (emisssoil) and vegetation 548 

(emissveg) were set at 0.935 and 0.988, respectively (Heinemann et al., 2020).  549 

NDVI <- terra::rast("H:/Thermal_Project/Data/M3T/250913_NDVI.tif") 550 

T_bright_smooth <- terra::rast("H:/Thermal_Project/Data/M3T/TBright_smooth_orthomosaic.tif") 551 

Thermaluav_emis <- tuav_emis(thermal_orig = T_bright_smooth, 552 
thermal_uav = thermaluav_smooth,  553 
temp = "C", 554 
corrmap = NDVI, 555 
method = "NDVI",  556 
write_Ts = TRUE, 557 
filename_Ts = "Potato_LST_smooth.tif", 558 
write_emiss = TRUE,  559 
NDVI_veg = 0.88, 560 
NDVI_soil = 0.3, 561 
emiss_veg = 0.988, 562 
emiss_soil = 0.935, 563 
filename_emiss = "Potato_emis.tif") 564 

Using the NDVI threshold method provides more nuances in emissivity values (Figure 6E). As both 565 

brightness temperature (Tbright) and background temperature (Tbg) are close to the free air 566 

temperature, the effect of emissivity is smaller compared to Case 1 (Section 4). The final LST reaches 567 

slightly higher values compared to Tbright where the at-sensor temperature (Tat-sensor) is higher compared 568 

to Tbg (287.80 K; 14.65 °C). This is especially the case where emissivity is lower (e.g., the bare soil paths 569 
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between the vegetation; Figure 6F). On locations where Tat-sensor is lower than Tbg, the final LST is lower 570 

compared to Tbright. To provide more insight, the above-mentioned relations are plotted in Figure 7.  571 

 572 
Figure 7. Temperature differences to the at-sensor temperature (Tat-sensor) in overcast conditions for Case 2. With the brightness 573 
temperature (ϵ = 1) in blue becoming higher compared to Tat-sensor when Tat-sensor exceeds the free air temperature. The 574 
differences to the final LST are given for soil (ϵsoil = 0.935) and vegetation (ϵveg = 0.988). The differences are calculated using 575 
Eq. (6) with the mean atmospheric values during the flight: a transmittance of 0.9581, air temperature of 16.1 °C and a 576 
background temperature (Tbg) of 287.80 K. When Tat-sensor exceeds Tbg the LST becomes higher compared to the brightness 577 
temperature due to emissivity values lower than 1. The difference becomes higher with a lower emissivity value. 578 

6. Conclusion 579 

The theRmalUAV R-package integrates the latest correction methods discussed in the literature into a 580 

flexible and user-friendly open-source tool. This package aims to facilitate the necessary corrections 581 

required to obtain LST from thermal UAV cameras. The thermal remote sensing background section 582 

clarifies the physics underlying the package, highlighting the importance of these corrections and 583 

addressing the knowledge gap in the use and processing of thermal UAV imagery.  584 

The package offers two distinct workflows: an image-based workflow and an orthomosaic-based 585 

workflow. The orthomosaic workflow applies the necessary corrections at the orthomosaic level using 586 

a single function, while the image-based workflow provides additional functionalities. These include 587 

accounting for intra-flight variations in atmospheric conditions and thus atmospheric corrections (e.g., 588 

transmittance), as well as the effect of air temperature on surface temperature. Additionally, a novel 589 

method for addressing rapid changes in illumination, using temperature data from the images 590 

themselves, results in more homogeneous orthomosaics with fewer artifacts. 591 

Other functionalities of the package encompass data cleaning, co-registration, and reporting. 592 

Furthermore, the importance of the spatial emissivity correction is emphasized, with both the NDVI 593 

method and a land cover method incorporated into both workflows. The functionalities are 594 
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demonstrated through two use cases, with further details available in the package’s help function and 595 

vignettes. The theRmalUAV R-package performs complete image processing while retaining the 596 

necessary metadata for alignment and mosaicking in photogrammetry software. 597 
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