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Abstract 17 

Social learning facilitates the diffusion of novel behaviours (i.e., inventions) through groups 18 

and is a key component in the development of culture. The speed with which an invention 19 

spreads through a group is largely determined by the strength of social connections and 20 

network structure; however, research concerning the establishment of inventions (i.e., 21 

culture) has typically overlooked that individuals differ in their propensities for social learning. 22 

The aim of this study was to assess how the presence and extent of heterogeneity in 23 

propensity for social learning can interact with transmission probability (i.e., the complexity 24 

and regularity of the task being performed), network size and structure, and attribute 25 

distributions (i.e., homophilic or random) to regulate the likelihood of establishing inventions. 26 

We found that the extent of information diffusion was lower in heterogeneous than 27 

homogeneous populations, but only when transmission probability was at intermediate levels 28 

– full adoption of an invention in a group was consistently observed when transmission 29 

probability was high (e.g., simple, regularly occurring tasks) but was rare when transmission 30 

probability was low (e.g., complex and rarely occurring tasks). When heterogeneity was held 31 

high, homophilic distributions had an additional negative effect on the extent of information 32 

diffusion, but again, only when transmission probability was at intermediate levels. Given the 33 

variety of intraspecies phenotypic diversity identified in wild animals, our results highlight the 34 

importance of including heterogeneity and homophily when investigating culture. 35 

Researchers can use our model to make predictions about the conditions that may facilitate 36 

animal culture in a wide range of taxa.  37 

  38 
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Introduction 39 

Individuals can acquire information either personally via interacting directly with their 40 

environment, or socially, via observing the behaviour of or products made by other individuals 41 

(Dall et al. 2005). Acquiring personal information can require time, which can be costly to 42 

individuals who also need to engage in other fitness enhancing tasks, and can involve costly 43 

mistakes (Templeton and Giraldeau 1996; Laland 2004). Social animals can alleviate these 44 

costs by acquiring information and learning from their social partners. However, social 45 

information can become rapidly outdated (Carter et al. 2016). 46 

Despite its potential costs, social learning is the foundation of animals’ second 47 

inheritance system: inheritance of behaviours via observational learning (Whiten 2017). 48 

Because social learning is essential for the diffusion of novel information between individuals 49 

and through groups (Duboscq et al. 2016), its role in the development of cultures and 50 

traditions within species has garnered considerable research attention (Castro and Toro 2004; 51 

Schuppli and van Schaik 2019). While culture has been defined in many ways (Perry 2006), 52 

there is universal agreement that it is reliant upon the transmission of inventions (i.e., novel 53 

behaviours) amongst individuals, regardless of the precise social learning mechanism used 54 

(Schuppli and van Schaik 2019).  55 

For a behaviour to become adopted as a cultural trait (i.e., innovation) there is a three-56 

step process: (1) invention – the creation of a novel behaviour; (2) transmission – the 57 

behaviour must spread through individuals or groups via a social learning; and (3) 58 

establishment – the behaviour or trait must spread widely through the group and be 59 

maintained across generations via social learning (Perry et al. 2021). Experimental and 60 
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observational research have shown that age, sex, social network position, and personality can 61 

have key roles in determining the first step - an individual’s propensity to invent (Perry et al. 62 

2021).  Theoretical and empirical research have shown that social network structure and the 63 

strength of social connections are key regulators of the second step – transmission 64 

(Christensen, Albert, Grenfell, & Albert, 2010; Griffin & Nunn, 2012; Guimarães et al., 2007; 65 

Pastor-Satorras & Vespignani, 2001; Salathé & Jones, 2012). Additionally, both the individuals 66 

demonstrating and learning social information can demonstrate among-individual differences 67 

that affect transmission processes (Laland 2004; Perry et al. 2021). For example, the adoption 68 

of a novel behaviour by a naïve individual into their behavioural repertoire can depend on the 69 

demonstrator’s rank (Kendal et al. 2015; Canteloup et al. 2021), sex (van de Waal et al. 2010), 70 

and age (Duffy et al. 2009). Likewise, a learner’s age (Thornton and Malapert 2009), sex (Aplin 71 

et al. 2013), rank (Kendal et al. 2015), and personality (Carter et al. 2014) can determine 72 

whether they learn and thus adopt a novel behaviour. 73 

The patterning of social relationships in a network also has a strong influence on 74 

determining whether cultural traits establish (i.e., the third step – inventions  becoming fully 75 

adopted and maintained as a stable characteristic of a group via social learning) (Perry et al. 76 

2021). For example, in denser networks, individuals can interact more frequently, promoting 77 

social learning (Lerman and Ghosh 2010). Modular networks can ‘trap’ novel information 78 

among clusters of individuals (Weng et al. 2013), thus reducing the likelihood of cultures 79 

emerging (Perry et al. 2021). However, other than social position, research has typically 80 

overlooked the role that other forms of individual heterogeneity (i.e., phenotypic differences) 81 

may play in the establishment step of animal cultures (Reader and Laland 2000; Mann and 82 

Singh 2015; Evans et al. 2021; Perry et al. 2021), despite these among-individual differences 83 
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proving to be important in the invention and transmission steps (Laland 2004; Perry et al. 84 

2021).  85 

The role of individual heterogeneity in the emergence of animal cultures is 86 

complicated by a host of additional factors that determine how likely it is for social learning 87 

to take place successfully, i.e., the ‘transmission probability’. These factors include 88 

behavioural complexity (e.g., one-step vs multi-step tasks), spatially/temporally contingent 89 

tasks (e.g., termite fishing), and network characteristics (e.g., size, efficiency, modularity, etc). 90 

In the first case, behaviour or task complexity in foraging contexts could derive from the 91 

number of processing steps an individual is required to make to access a food item. Individuals 92 

may succeed at learning one-step foraging tasks socially but fail to solve two-step tasks 93 

despite having access to social information (van de Waal and Bshary 2011; van de Waal et al. 94 

2013). In non-foraging scenarios, complexity may be derived by individuals needing to learn 95 

to perform behaviours correctly in the correct context. For example, juvenile chimpanzees 96 

(Pan troglodytes) learn rank-related gestures for submission and appeasement scenarios 97 

(Scott 2013; Bard et al. 2014), whilst referential (i.e., predator specific) call associations can 98 

depend on age and experience with predators, even if individuals display one-trial social 99 

learning of call functions (Deshpande et al. 2022).  100 

In the second case, transmission probability may also depend on whether the 101 

behaviour is spatially/temporally contingent. For example, termite fishing by chimpanzees 102 

(Lonsdorf 2005) and predation on young antelopes by baboons (Strum 1975; Allan et al. 2022) 103 

both concern spatially rare resources whose abundance varies seasonally. Despite the clear 104 

role that behavioural complexity and spatial/temporal dependency play in social learning 105 

processes, little research has explored how these factors interact with individual 106 
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heterogeneity to determine whether novel behaviours become established within animal 107 

groups. It seems likely that with very simple/frequently performed or very complex/less 108 

frequently performed behaviours, the role of individual heterogeneity may be minimal as 109 

groups either learn rapidly (i.e., easy and frequently observed behaviours) or cease social 110 

learning entirely (i.e., very complex and infrequently observed behaviours). Thus, the effect 111 

of individual heterogeneity is likely to be maximised when behavioural complexity and 112 

spatial/temporal dependency are at intermediate levels. However, it remains unclear 113 

whether we would predict a positive or negative effect of individual heterogeneity on the 114 

likelihood of novel behaviours establishing at these intermediate transmission probabilities.  115 

In the third case, the effects of network size and structure may also interact with 116 

individual heterogeneity to determine the likelihood of novel behaviours establishing. 117 

Typically, research investigating the role of network structure on diffusion performance has 118 

focused on degree distribution (i.e., the fraction of nodes in a network with k connections to 119 

others nodes) (Newman 2002; Jackson and López-Pintado 2013), with greater diversity in the 120 

number/strength of social bonds and distance between nodes leading to a reduction in the 121 

speed, fidelity, and robustness of information diffusion (Voelkl and Noë 2010). Networks 122 

exhibiting higher clustering coefficients (i.e., tendency for nodes in a network to cluster 123 

together) and lower robustness (i.e., the capacity of the network to maintain functionality 124 

when nodes are sequentially removed) can limit the extent of diffusion compared to networks 125 

exhibiting greater robustness and lower clustering coefficients, implying that highly clustered 126 

networks may trap or bottleneck information amongst highly connected nodes (Naug 2008). 127 

However, research into animal cultures has yet to explore whether the presence and extent 128 
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of heterogeneity has differential effects on the likelihood of novel behaviours successfully 129 

establishing in networks with varying characteristics (e.g., size, density, modularity).  130 

In addition to individual heterogeneity, how those individuals are distributed in animal 131 

networks may affect the likelihood of cultures emerging. In particular, whether social learners 132 

are connected to other social learners (positive assortment, or homophily) or others less likely 133 

to collect and use social information (negative assortment, or heterophily) may affect 134 

information diffusion through groups (Pinter-Wollman et al. 2011; Carter et al. 2015; 135 

Hasenjager and Dugatkin 2017). While homophily may promote initial diffusion of 136 

information through local clusters of individuals with a high propensity for social learning 137 

(Guilbeault et al. 2018), it may hinder the spread of an invention across an entire group, and 138 

thus, decrease the likelihood of novel behaviours establishing (i.e., emergence of culture). 139 

The aim of this study was to assess the extent to which heterogeneity in social learners 140 

affects the likelihood of inventions becoming established. We explored this question across a 141 

range of transmission probabilities and through observed animal networks exhibiting 142 

different structures. To facilitate this research, we used agent-based modelling (ABM) as it is 143 

a powerful tool for modelling diffusion processes and allows for learners’ traits to be 144 

considered in social learning interactions. We specifically investigated the following four 145 

questions: (i) Does the presence and extent of heterogeneity amongst individuals’ 146 

propensities for social learning interact with transmission probability (e.g., task complexity) 147 

to influence the likelihood of inventions establishing? (ii) Are some networks more robust to 148 

heterogeneity than others? (iii) Does the extent of heterogeneity interact with network size 149 

and structure to affect the likelihood of inventions establishing? And (iv) Does homophily 150 

according to propensity for social learning affect the likelihood of inventions establishing?  151 
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Model description 152 

Model purpose 153 

The model was implemented in NetLogo (version 6.1.1) and aimed to assess the effect of 154 

heterogeneity of learners on the likelihood of an invention becoming established (i.e., fully 155 

adopted) in static animal networks obtained from open-source data repositories. We 156 

systematically varied the transmission probability and attribute distribution (i.e., random or 157 

homophilic distributions) of agent’s propensities for social learning to determine their 158 

influence on the likelihood of novel behaviours becoming established. Agents could only learn 159 

socially; thus our model did not allow for personal (i.e., asocial) learning. This decision was 160 

made as we wished to focus exclusively on the social learning mechanisms governing the 161 

development of animal cultures. Below we describe the model following the ODD paradigm 162 

(Grimm et al. 2006). 163 

State variables and scales 164 

The model comprised two levels: individual and population. The population (i.e., 165 

animal network) was loaded from matrices stored on the host computer in a distinct 166 

command to the ‘go’ procedure (that initiated social learning). Animal networks were derived 167 

from published research on five different species that we were able to source through online 168 

repositories (e.g., Dryad, blog.datadryad.org) or datasets included as supplementary material 169 

in published papers (Fig 1). These included: (1) a remotely-collected raccoon (Procyon lotor) 170 

contact network of 22 individuals (Reynolds et al. 2015), (2) a remotely-collected domestic 171 

dog (Canis familiaris) contact network of 48 individuals (Wilson-Aggarwal et al. 2019), (3) a 172 

directly-observed baboon (Papio ursinus) grooming network of 58 individuals (Carter and 173 
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Cowlishaw 2021), (4) a remotely-collected sleepy lizard (Tiliqua rugosa) contact network of 174 

60 individuals (Bull et al. 2012), and (5) a remotely-collected network of co-occurrence at 175 

feeders of 82 individuals of mixed bird species (blue tits Cyanistes caeruleus, great tits Parus 176 

major and marsh tits Poecile palustris) (Farine et al. 2015). Due to differences in data 177 

collection methods across studies we binarized all networks, such that all connections were 178 

coded as 1 regardless of connection strength and 0 if individuals were not associated. As such, 179 

‘strength’ of social connection played no part in our social learning procedure. 180 

Fig 1. The networks diagrams of the five different species we explored. The top-left panel is 181 
the (a) raccoon network (22 individuals), (b) dog network (48), (c) baboon grooming 182 
network (58), (d) sleepy lizard network (60), and (e) mixed bird species network (82). Node 183 
colour indicates the state of the individual (naïve = red, informed = green). At the beginning 184 
of a simulation, only one individual, the seed, was informed. 185 

Individuals were assigned a single characteristic (propensity to learn socially) and 186 

could be in one of two knowledge states (naïve or informed). The propensity to learn socially 187 

value captured variance in and represented individuals’ abilities to acquire knowledge of the 188 

invention and successfully exploit this knowledge to gain a benefit, thus allowing them to 189 
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transmit that information to others (Carter et al. 2016). The model did not distinguish 190 

between individuals who were naïve sensu stricto (i.e., they had not learned the solution to a 191 

task) and those that were ‘naïve’ in practice (i.e., learned the invention but fail to apply the 192 

information correctly and are thus unable to act as demonstrators), as neither can pass 193 

information on to others (Carter et al. 2016).  194 

Two further population variables in our model governed the scale of the values 195 

assigned to individuals for their propensity for social learning: propensity to learn socially 196 

mean, Lmean, and propensity to learn socially range, Lrange. Lmean determined the average ability 197 

of the population to learn socially, whilst Lrange determined the population’s heterogeneity in 198 

propensity to learn socially values around Lmean. An individual’s propensity to learn socially, 199 

Lind, was calculated as Lmean plus a number drawn randomly from a normal distribution with a 200 

mean of 0 and standard deviation set by the value of Lrange. As such, higher Lrange resulted in 201 

greater heterogeneity in a population’s propensity to learn socially. We also included an 202 

individual-level variable, Pind, to represent the prestige of the demonstrator (i.e., social 203 

learning should be more likely when demonstrators have higher prestige/share stronger 204 

bonds with the learner), however we did not systematically alter the value of this variable in 205 

the simulations for this study.  206 

We also included an individual-level variable to capture stochastic processes: random 207 

stochasticity. This was included as social learning may not always occur, even if the context 208 

and scenarios predict that it should (e.g., a naïve individual with a high propensity to learn 209 

may fail to learn from a high prestige demonstrator). Individuals may fail to learn despite 210 

being given the opportunity to acquire social information (Carter et al. 2016; Perry et al. 211 

2021), whilst demonstrators may not always share their knowledge, i.e., voluntary inhibition 212 
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(Drea and Wallen 1999; Carter et al. 2014). Given that individuals with a higher tendency to 213 

monitor others may also learn and adopt new behaviours sooner (Lonsdorf 2005), the 214 

likelihood of social learning taking place should also depend on whether learners are attentive 215 

and facing the right direction at the right moment in time; however, this source of 216 

stochasticity has yet to be quantified in any study system.  217 

At the network level, we also included the variable transmission probability (TP), which 218 

captured how likely a task was to be transmitted between an informed and naïve individual, 219 

independent of the characteristics of the individual learners. Given that Pind was held constant 220 

to reduce the number of factors tested in this study, TP therefore encapsulated variability 221 

relating to the characteristics of the demonstrator (e.g., prestige), the strength of social bonds 222 

between learners and demonstrators, plus the complexity and spatial/temporal dependency 223 

of the behaviour being transmitted. Low values of transmission probability could therefore 224 

reflect difficult-to-learn behaviours that require more attention to learn such as a multi-step 225 

process, an infrequently performed behaviour such as a foraging technique only applied to 226 

spatially rare food items (e.g., termite fishing), or instances where informed demonstrators 227 

have low prestige (e.g., juveniles) such that learners may be less likely to collect social 228 

information from them.  229 

Initialization  230 

The distribution of values assigned to individuals for their propensity to learn socially, 231 

Lind, was distributed randomly or assorted such that individuals with similar propensities for 232 

social learning shared direct connections (i.e., homophily). Values for Propensity to learn 233 

socially were assigned to individuals by a distinct command embedded within the procedure 234 
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for loading animal networks from the host computer, and thus, were completed before the 235 

‘go’ procedure was initiated that initiated social learning in the group (see Process overview 236 

and scheduling).  237 

  We employed three distinct processes for generating attribute distributions, (1) 238 

random (no types), (2) random (with types), and (3) homophilic (with types). When ‘random 239 

(no types)’ was used, each individual’s propensity for social learning values, Lind, were 240 

calculated as Lmean plus a number drawn randomly from the normal distribution (mean = 0 241 

and standard deviation = Lrange). This calculation resulted in a random distribution of Lind across 242 

each network (i.e., assortativity was close to zero, see table S1).  243 

To produce homophilic allocations of Lind we adapted the code for producing 244 

homophilic distributions from (Kapeller et al. 2019) by creating three types of agents: low 245 

(LPL), medium (MPL), and high propensity to learn (HPL). Initially, the whole population were 246 

categorised as MPL and two individuals were randomly selected, one to be LPL, and the other 247 

one to be HPL. The link neighbours of the LPL and HPL individuals were then identified as 248 

‘pools’ of potential LPL or HPL individuals. We used a sequence of loop commands and in each 249 

step an MPL individual from each pool of potential LPL and HPL individuals was selected and 250 

transformed into LPL and HPL ‘types’ respectively. This process was repeated until a 40:30:30 251 

ratio for MPL:LPL:HPL proportions was reached, as this generally followed a normal 252 

distribution (see fig 1, panels b, d, f, h, and j). In cases where one type hindered the spread of 253 

another type such that the 40:30:30 ratio could not be achieved, the procedure was cancelled 254 

and the population reverted to MPL type, and the initial LPL and HPL individuals re-selected. 255 
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As we wished to compare diffusion performance between random and homophilic 256 

allocations for part of our analyses, we also generated random allocations using these 257 

behavioural ‘types’. When using ‘random (with types)’ the individuals were randomly selected 258 

to be one of the three types according to the 40:30:30 ratio (see fig 2, panels a, c, and e). 259 

When using homophilic (with types) or random (with types) attribute distributions the LPLs 260 

were assigned an Lmean of 35, MPLs assigned an Lmean of 50, and HPLs assigned an Lmean of 65. 261 

Lrange was set to 10 in all cases as homophily is only possible with variation in the attribute of 262 

interest. In both cases the Lmean and Lrange for the population was the same, but the assortative 263 

coefficient (Farine 2014) was noticeably higher than zero for homophilic allocations (see table 264 

S1), indicative of homophily according to propensity to learn socially, and close to 0 for all 265 

networks when random (with types) was chosen.  266 

 267 

Fig 2. Example network diagrams exhibiting different attribute distributions. Shown are the 268 
(a, b) raccoon, (c, d) dog, and (e, f) sleepy lizard networks with (a, c, e) a random attribute 269 
distribution and (b, d, f) the same networks with a homophilic distribution. Node 270 
colour/shape indicates the state or ‘type’ of the individual, LPL (low propensity to learn) = 271 
yellow/triangle, MPL (mid propensity to learn) = pink/circle, and HPL (high propensity to 272 
learn) = blue/square.  273 

Each time a network and attribute distribution was generated, a single individual was 274 

selected at random to begin in an ‘informed’ state (i.e., the seed), whilst the remaining 275 

individuals were ‘naïve’ to the new behaviour (see fig 1).  276 

Process overview and scheduling 277 
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The individuals in the model were static. The model proceeded in time steps that 278 

represented learning ‘bouts’, in which individuals could only interact with (i.e., pay attention 279 

to and learn from) another individual with whom they shared a direct network connection. 280 

The only scale variable was time steps (ticks), with the tick counter increasing by one once 281 

the following conditions were met: i) all naïve individuals in the network had paid attention 282 

to one of their neighbours (i.e., a direct linked agent in the network), and ii) attempted to 283 

learn from the neighbour they were ‘paying attention’ to.  Learning could only occur if the 284 

neighbour (i.e., demonstrator) had already adopted the new behaviour, refer to the 285 

transmission process section for further details. We set the step-horizon (i.e., maximum 286 

number of steps before the model was forced to end) to 5000 steps. 287 

Transmission process 288 

In all models, at each step, all naïve actors followed the same 5-step transmission 289 

process to determine whether they would become informed:  290 

(i) Select randomly a linked neighbour to pay attention to.  291 

(ii) If the linked neighbour was not ‘informed’ then the actor remained naïve and exited 292 

the process.  293 

(iii) If the linked neighbour was informed, the following calculation was made: 294 

 295 

Naïve individual’s Lind + Informed demonstrator’s Pind + RS > 100 – TP 296 

 297 

To keep the left-hand side of the equation proportional to the right-hand side, we 298 

converted Lind, Pind, and RS to proportions using a common denominator and then 299 
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multiplied their sum by 100. The denominator was the sum of the maximum values of 300 

Lind and Pind exhibited by the agents (always 50 in the case of Pind), and the upper bound 301 

of RS. This ensured each variable was given equal weighting in the learning process. 302 

RS was therefore a key determinant in the learning process and encapsulated real-303 

world scenarios whereby naïve individuals may not be paying close attention to 304 

demonstrators at the right moment in time. 305 

(iv) If calculation (iii) was false, then the actor remained naïve and exited the process. 306 

(v) If calculation (iii) was true, then the actor passed to a final procedure where a random 307 

floating-point number between 0 and 100 was generated (thus scaling the equation 308 

in the 0-100 interval). If this number was less than the TP, then the individual would 309 

learn/adopt the new behaviour and thus update their status to informed. Otherwise, 310 

the individual would remain naïve and cease paying attention to their informed 311 

neighbour.  312 

End-of-run 313 

Once the transmission process was completed within a single step, the step counter (number 314 

of ticks elapsed) would advance by 1. The transmission process was repeated amongst 315 

uninformed individuals until either the whole population became informed, or the maximum 316 

number of steps (5000) was reached.  317 

Simulation submodels 318 

To explore the effect of heterogeneity on the establishment of inventions (i.e., full 319 

adoption of new behaviours), we created separate submodels for each animal network, 320 

transmission probability, and Lrange. Submodels were simulated in BehaviorSpace for each 321 
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combination of values/settings listed in table 1. Specifically, we held Lmean and Pind constant 322 

but varied Lrange (0, 5, or 10), the network type (figs 1), and the transmission probability (5%–323 

50% in 5% increments). We also held the ‘prestige’ of the ‘informed’ demonstrator constant 324 

at 50, but included an option in the model for this to be altered by researchers in future work. 325 

This produced 150 submodels (30 for each animal network) which were run for 50 repetitions 326 

each, resulting in 7,500 total runs. From these simulations we extracted the network metrics 327 

for each animal network at each value of Nind. These included network density, the mean and 328 

average clustering coefficients (Wilensky 2021), global efficiency (Pasquaretta et al. 2014), 329 

and the continuous assortative coefficient (Farine 2014), the values of which are summarised 330 

in table S1.  331 

Table 1. Model parameters, their description, and values for simulations in BehaviorSpace 332 

for all models using random attribute distributions for propensity to learn. 333 

Level Parameter Description Values  

Individual Lind An individual’s propensity to learn socially Determined by Lmean and Lrange  

Individual Pind An informed demonstrator’s prestige 50 (held constant for all 

individuals) 

 

Population Lmean Mean propensity to learn socially for all 

individuals 

50  

Population Lrange Heterogeneity in propensity to learn socially 0, 5, 10   

Individual RS Random stochasticity, each individual 

generated a random floating-point number 

between 0 and the value of RS.  

50  
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 334 

To explore the effect of attribute distributions on the establishment of inventions, we 335 

created further submodels for each network, explicitly varying transmission probability and 336 

allocation (random with ‘types’ or homophilic). We held the same variables constant as 337 

mentioned previously but additionally held Lrange at 10 to maximise individual heterogeneity 338 

across random and homophilic allocations. Submodels were again simulated in BehaviorSpace 339 

for each combination of values/settings. This produced 100 submodels (20 for each animal 340 

network) which were run for 50 repetitions each, resulting in 5,000 total runs. We calculated 341 

the same network metrics as with heterogeneity submodels (see table S1). 342 

 We measured our response variable at the end of each run of each submodel - the 343 

proportion of the network informed by 5000-time steps (i.e., the extent of information 344 

diffusion). We also calculated the number of time steps until every group member was 345 

informed (i.e., complete adoption) and provide figures of these results in supporting 346 

information (see figures S1 and S2). 347 

Statistical analysis 348 

It is considered inappropriate to analyse simulation data from agent-based models 349 

using statistical inference (e.g., rejecting a null hypothesis via P-value estimation) (von 350 

Brömssen and Röös 2020; Ekanayake-Weber and Swedell 2021). The two key issues with such 351 

an approach are (1) the modeller would be testing null hypotheses they know a-priori to be 352 

false, and (2) the statistical power is determined (and can be inflated) by the number of 353 

Population TP Transmission probability 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50 
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simulations the modeller elects to run (White et al. 2014). As a result of these issues, it is 354 

advised instead to quantify the magnitude of effect sizes using descriptive statistics (White et 355 

al. 2014). This approach is typically used to compare effect sizes among the descriptive 356 

statistics of simulated data versus real-world data (Hoban et al. 2012; von Brömssen and Röös 357 

2020; Ekanayake-Weber and Swedell 2021); however, we implement the approach here to 358 

compare the effect sizes among descriptive statistics (of diffusion performance) between 359 

networks varying in population size and structure. As such, our analysis compared the 360 

consistency of diffusion performances (proportion of the network informed by 5000 time-361 

steps) across multiple simulation runs using the median and upper/lower quartile for diffusion 362 

performance across 50 simulations. 363 

For the first part of our analysis, we explored the question: Does the presence and 364 

extent of heterogeneity (in propensity for social learning) interact with transmission 365 

probability to influence the likelihood that an invention becomes established (i.e., a novel 366 

behaviour becomes full adopted) in each animal network? We compared the effect sizes of 367 

diffusion outcomes (i.e., proportion of the group that adopted the invention) produced by 368 

each propensity to learn (socially) variation value (i.e., Lrange = 0, 5, or 10) across the 369 

Transmission Probability range (5 – 50% in 5% increments) in each animal network. Given that 370 

each network exhibited a different number of individuals (i.e., nodes) and varying network 371 

characteristics (e.g., density, mean clustering coefficient), these analyses also addressed 372 

whether these network factors may interact with the extent of individual heterogeneity to 373 

affect the likelihood of inventions establishing. For these analyses, we used the simulation 374 

data with random attribute distributions (no types).  375 
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For the second part of our analysis, we explored the question: Does homophily 376 

according to propensity for social learning affect the likelihood that an invention becomes 377 

established? For this analysis we compared the effect sizes of diffusion performance 378 

produced by different attribute distributions (of propensity to learn socially values) across the 379 

Transmission Probability spectrum and across each animal network. Attribute Distribution 380 

was either random or homophilic, with each derived from their respective simulation data – 381 

random attribute distribution (with types) or homophilic attribute distribution (with types).  382 

Results 383 

When heterogeneity was held at zero (i.e., homogeneity), all animal networks 384 

consistently approached full adoption (i.e., establishment of an invention) once transmission 385 

probability was 15% or higher (fig 3), whilst moderately and highly heterogeneous networks 386 

did not consistently reach full adoption until 20% and 25% respectively. The only exception 387 

was the raccoon network (the smallest network, see fig 3) where homogeneous individuals 388 

consistently reached full adoption at 10% transmission probability, but otherwise produced 389 

identical patterns to the other networks. Given that these networks varied in size (i.e., 390 

number of individuals) and characteristics (i.e., network density, the mean and average 391 

clustering coefficients, and global efficiency - see Table S1), our results demonstrate that the 392 

presence and strength of individual heterogeneity can have overarching effects that hinder 393 

the establishment of an invention.    394 
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Fig 3. Boxplots showing the proportion of individuals informed by 5000 ticks (i.e., the 395 
diffusion performance) at various levels of transmission probability (5% to 50% in 5% 396 
increments) for observed networks. Boxplots show 25% and 75% quartiles (boxes), median 397 
(bold line within boxes), 1.5 x the respective inter-quartile ranges (whiskers), and outlying 398 
points (black dots) for the diffusion performance across the 50 simulations in each context. 399 
Each coloured box represents various values for propensity to learn socially variation (0, 5, 400 
and 10), the pink, yellow, and green boxes therefore refer to homogeneous, moderately 401 
heterogeneous, and highly heterogeneous networks respectively. Each panel is a different 402 
species (baboon grooming, dog, mixed birds, raccoon, sleepy lizard); numbers in 403 
parentheses represent the population size for each network. Propensity to learn socially 404 
mean and the maximum Random stochasticity were held constant at 50% to ensure equal 405 
weighting when summed against Transmission Probability.  406 
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When variation in propensity to learn socially was held constant at 10 (i.e., high 407 

individual heterogeneity), we found that greater proportions of animal groups adopted an 408 

invention with random than homophilic distributions (i.e., the median proportion of 409 

individuals adopting the invention in random distributions was approximately equal to or 410 

higher than the 75% quantile of homophilic allocations), but only when transmission 411 

probability was in the 20-30% range (see fig 4). Outside of this range, when inventions were 412 

either challenging (i.e., transmission probability < 20%) or simple to learn (i.e., transmission 413 

probability > 30%), we detected no effect of attribute distribution on the likelihood of an 414 

invention establishing in any animal group.  415 
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Fig 5. Boxplots showing the proportion of individuals informed by 5000 ticks (i.e., the 416 
diffusion performance) at various levels of transmission probability (5% to 50% in 5% 417 
increments) for observed networks. Boxplots show 25% and 75% quartiles (boxes), median 418 
(bold line within boxes), 1.5 x the respective inter-quartile ranges (whiskers), and outlying 419 
points (black dots) for the diffusion performance across the 50 simulations in each context. 420 
Each coloured box represents the attribute distribution for propensity to learn socially (blue 421 
– homophilic, orange - random) and each panel is a different species (baboon grooming, 422 
dog, mixed birds, raccoon, sleepy lizard), numbers in parentheses represent the population 423 
size for each network. Propensity to learn socially mean and the maximum Random 424 
stochasticity were held constant at 50% to ensure equal weighting when summed against 425 
Transmission Probability.   426 
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Discussion 427 

The emergence of animal culture has three steps: firstly, a novel behaviour must be 428 

created (i.e., invention); secondly, the new behaviour must be adopted by other individuals 429 

via social learning (i.e., transmission); and finally, the invention must spread and be 430 

maintained as a stable characteristic of the group by social learning mechanisms (i.e., 431 

establishment) (Schuppli and van Schaik 2019). Research has shown that there is variation in 432 

the likelihood and rate of learners adopting an invention, either due to varying opportunities 433 

to access social information (Aplin et al. 2012; Carter et al. 2016) or due to the varied 434 

characteristics of the learners and demonstrators involved (Carter and Cowlishaw 2021). 435 

Despite research demonstrating numerous sources of heterogeneity in both the individuals 436 

providing information and those acquiring social information (Laland 2004; Perry et al. 2021), 437 

theoretical models exploring the factors governing the establishment of inventions have 438 

generally assumed that individuals within networks are homogeneous in their traits (Reader 439 

and Laland 2000; Evans et al. 2021), and thus equally likely to acquire or share social 440 

information. In this study we developed an agent-based model to assess the extent to which 441 

heterogeneity in learners and homophily according to propensity for social learning 442 

influenced the likelihood of inventions establishing. We found that both heterogeneity and 443 

homophily had negative effects on the likelihood of populations fully adopting an invention 444 

but only when the transmission probability was within certain ranges.  445 

Increasing learner heterogeneity inhibited the diffusion process, which was assessed 446 

by comparing the proportion of the population informed by 5000 time-steps. Homogeneous 447 

populations often achieved full adoption of the invention even when transmission probability 448 

was relatively low, whilst highly heterogeneous populations did not achieve full adoption until 449 
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transmission probability was relatively high. These results demonstrate that overlooking 450 

individual heterogeneity can produce anticonservative estimates concerning the outcomes of 451 

diffusion processes, potentially misleading our understanding of the factors regulating the 452 

emergence of animal cultures. 453 

By adopting an agent-based modelling approach, our model was able to use a single 454 

variable (i.e., propensity to learn socially) that encapsulated any individual-level factors that 455 

could influence the likelihood of an individual learning a novel behaviour socially. Individuals 456 

are not uniform in their likelihood of using social over personal information (Grüter et al. 457 

2008; Baciadonna et al. 2013), whilst phenotypic factors such as learner age (Thornton and 458 

Malapert 2009), rank (Kendal et al. 2015) and personality (Carter et al. 2014) can inhibit the 459 

acquisition, application, and exploitation of social information by learners (Carter et al. 2016). 460 

In addition, different age-sex classes can have varying tendencies to monitor other individuals 461 

(Lonsdorf 2005) or differ in their gaze attention towards different sexes (van de Waal et al. 462 

2010; Renevey et al. 2013). It therefore seems likely our results are directly applicable to a 463 

range of social systems and that our model can be used to make predictions about the 464 

processes promoting or inhibiting the emergence of animal cultures.  465 

When transmission probability was very low (e.g., complex/infrequent behaviours or 466 

low prestige of demonstrators) we observed similar proportions of networks adopting an 467 

invention across homogenous and heterogeneous populations, highlighting that difficult-to-468 

learn behaviours can reduce diffusion performance generally, independent of the attributes 469 

of the individuals. Generally, transmission probability needed to be relatively high to also 470 

observe little differentiation between homogeneous and heterogeneous networks. This is 471 

likely explained by the presence of heterogeneity yielding a number of individuals with low 472 
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propensities to learn, such that transmission probability must be high (e.g., simple/frequent 473 

behaviours or high prestige of demonstrators) for these low propensity individuals to learn as 474 

readily as higher propensity individuals.  475 

Social learning may be less likely when tasks or behaviours are complex, for example, 476 

vervet monkeys (Chlorocebus pygerythrus) were shown to perform well at a one-step foraging 477 

tasks (van de Waal et al. 2013), yet failed to solve a two-step task despite having access to 478 

social information (van de Waal and Bshary 2011). By including transmission probability in the 479 

probabilistic procedure together with variables for random stochasticity and individual 480 

propensities for social learning, we account for all sources of variation across a range of 481 

scenarios. For example, if a naïve individual has a high propensity to learn whilst transmission 482 

probability is high then our procedure is mimicking scenarios where demonstrator prestige 483 

and social bond strength are high, behaviour complexity is low and/or performed frequently, 484 

and the naïve individual has a high propensity to monitor the actions of other individuals, 485 

acquire and process the novel information, and subsequently perform the behaviour 486 

effectively. Although future research may benefit from disentangling these factors explicitly 487 

(Perry et al. 2021), especially the distinct elements of the social learning process (Carter et al. 488 

2016), it will likely demonstrate similar results to our own – that increasing complexity and 489 

heterogeneity diminish the overall likelihood of inventions establishing within social groups.  490 

In addition to learner heterogeneity, homophily in learners similarly hindered 491 

information transmission and establishment, but only found when transmission probability 492 

was ≥ 20% and ≤ 30%. Figure 4 also shows several examples of the lower quartiles, whiskers, 493 

and outliers of homophilic allocations being close to or equal to zero, even when transmission 494 

probability is above 20%, this highlights that homophily was more likely to result in little to 495 
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no diffusion than random distributions. Diffusion models have shown that homophilic 496 

distributions can enhance the initial diffusion of information or contagion in a population 497 

(Jackson and López-Pintado 2013), i.e., via rapid diffusion between similar phenotypes; 498 

however, our results are the first to demonstrate that attribute distributions can have a 499 

negative effect on the likelihood of an entire population adopting a behaviour or trait, 500 

regardless of population size or network characteristics. Thus, overlooking homophily should 501 

also result in anticonservative estimates of the likelihood of inventions establishing in animal 502 

groups, obscuring our understanding of animal cultures. 503 

Our homophily procedure also highlighted that different networks are more or less 504 

constrained in their ability to exhibit assortative mixtures for a given attribute (see table S1), 505 

with the high-density baboon grooming and mixed birds networks producing low assortativity 506 

values of 0.02 and 0.06 respectively (average of 50 runs). Despite this, however, we still found 507 

significant differences in diffusion performance between random and homophilic allocations 508 

across all of the animal groups we tested. The magnitude of this difference may be higher in 509 

species whose networks demonstrate higher levels of assortativity, such as Guianan squirrel 510 

monkey (Saimiri sciureus) groups (Pasquaretta et al. 2014). Future research would benefit 511 

from adapting our homophily procedure to explicitly control the level of homophily within 512 

each network alongside the extent of heterogeneity in phenotypic traits. This would allow 513 

researchers to evaluate the extent of diffusion as a function of the interaction between 514 

varying levels of heterogeneity, homophily, and transmission probability. 515 

Typically, the study of how network structure affects diffusion has explored the role 516 

of degree distribution (Newman 2002; Jackson and López-Pintado 2013), with the distance 517 

between individuals and the number and strength of social connections having been shown 518 
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to have a negative effect on diffusion speed, fidelity, and robustness (Voelkl and Noë 2010). 519 

In our case, the likelihood of inventions establishing did not vary according to substantial 520 

differences in group size and moderate variability in network density and clustering 521 

coefficients (table S1).  In experimental honeybee colonies, contagions can get trapped within 522 

a few nodes (i.e., bottlenecking) when networks exhibit high levels of clustering and low levels 523 

of robustness (Naug 2008). In the case of our model, if an informed individual had a single 524 

connection, then diffusion was likely to be slower than when demonstrators had multiple 525 

naïve individuals paying attention concurrently, thus information was likely to bottleneck if 526 

an informed demonstrator’s sole connection was to a naïve individual with a low propensity 527 

for social learning. However, all of the animal networks we used had moderate density and 528 

low global efficiency (i.e., most individuals had several connections), reducing the incidence 529 

of bottlenecking. Given the taxonomic breadth of the networks we used, it seems likely that 530 

several vertebrate species have network structures that should promote the establishment 531 

of inventions. As other species/groups may demonstrate slightly higher global efficiencies 532 

than the networks we used here (e.g., (Pasquaretta et al. 2014)), we suggest that future work 533 

expands our scope to a wider range of animal groups to confirm whether heterogeneity and 534 

homophily are invariably more important than network structure for determining the 535 

establishment of animal cultures. 536 

To create a well-functioning and interpretable model it is vital to make some 537 

simplifications to certain processes (Grimm and Railsback 2012; Ekanayake-Weber and 538 

Swedell 2021). In our model, if the social learning conditions were met, then an individual had 539 

an opportunity to learn from an informed demonstrator. Although this condition simplifies 540 

the complexities of social learning, it allowed the transmission process to encapsulate several 541 
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sources of variation, including stochastic processes, task complexity, and demonstrator 542 

prestige which animal culture models have not typically included thus far. Our model 543 

therefore placed a strong onus on the learner’s attributes in determining the diffusion 544 

process, thus if the naïve individuals exhibited predominantly low propensities to learn, then 545 

diffusion processes were likely to halt unless transmission probability was high. The specific 546 

positioning of the seed in different networks exhibiting varying levels of heterogeneity and 547 

assortativity requires more thorough investigation (Perry et al. 2021), our model can be used 548 

to address these questions and has the option to systematically vary the prestige of the seed. 549 

Our results also indicate, however, that the attributes of the seed’s neighbours could be just 550 

as vital to consider and experimentally manipulate, especially if networks exhibit low 551 

clustering and density, but high efficiency.  552 

Given that the spread of inventions relies upon transmission between socially-linked 553 

group members, our model can also be used to devise predictions about how network 554 

structure, individual heterogeneity, and homophily combine to affect the spread of other 555 

types of information or diseases. For instance, the extent of predator detection in groups can 556 

rely on social information transfer, but the age, rank, sex, or personality of the initial detector 557 

(i.e., the seed) and their relationships with local individuals may combine to determine how 558 

rapidly and far-reaching this threat information spreads (LaBarge et al. 2021). Similarly, 559 

theoretical models have shown that network structure influences the speed and likelihood of 560 

diseases infecting entire groups, but are yet to explore the role of individual heterogeneity 561 

and homophily in the latter ‘establishment’ step (Evans et al. 2021). The individual 562 

heterogeneity variables in our model can be easily updated to other phenotypic information 563 
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besides propensity for social learning (e.g., specific personality traits or susceptibility to 564 

infection), allowing researchers to test new theories across a range of fields. 565 

In summary, we identified clear negative effects of learner heterogeneity and 566 

homophily on the likelihood of cultures emerging across a range of animal groups with 567 

networks exhibiting varying topographies and sizes. Generally, both heterogeneity and 568 

homophily reduced the extent of information diffusion in the middle of the transmission 569 

probability range. Given the similarities in results, despite varied taxa, we believe our results 570 

demonstrate that the use of homogeneous actors and random attribute distributions in 571 

networked agent-based models may produce anticonservative estimates regarding the 572 

establishment of inventions. As there is vast evidence demonstrating that individual 573 

heterogeneity can effect the structure, behaviour, and function of animal groups (Jolles et al. 574 

2020), heterogeneity and homophily should also be important considerations in any study 575 

exploring the factors determining whether inventions become established in groups and 576 

populations. Our model allows for network data to be input from a range of systems whilst 577 

including and explicitly manipulating both individual heterogeneity and homophily. As a 578 

result, researchers can explore hypotheses and make predictions about social learning 579 

processes and the circumstances under which culture may or may not emerge in a wide range 580 

of biological systems.   581 
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