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Abstract 15 

Social learning facilitates the diffusion of novel behaviours (i.e., inventions) through groups 16 

and is a key component in the development of culture. The speed with which an invention 17 

spreads through a group is largely determined by the strength of social connections and 18 

network structure; however, research concerning the establishment of inventions (i.e., 19 

culture) has typically overlooked that individuals differ in their propensities for social learning. 20 

The aim of this study was to assess how the presence and extent of heterogeneity in 21 

propensity for social learning can interact with transmission probability (i.e., the complexity 22 

and regularity of the task being performed), network size and structure, and attribute 23 

distributions (i.e., homophilic or random) to regulate the likelihood of establishing inventions. 24 

We found that the extent of information diffusion was lower in heterogeneous than 25 

homogeneous populations, but only when transmission probability was at intermediate levels 26 

– full adoption of an invention in a group was consistently observed when transmission 27 

probability was high (e.g., simple, regularly occurring tasks) but was rare when transmission 28 

probability was low (e.g., complex and rarely occurring tasks). When heterogeneity was held 29 

high, homophilic distributions had an additional negative effect on the extent of information 30 

diffusion, but again, only when transmission probability was at intermediate levels. Given the 31 

variety of intraspecies phenotypic diversity identified in wild animals, our results highlight the 32 

importance of including heterogeneity and homophily when investigating culture. 33 

Researchers can use our model to make predictions about the conditions that may facilitate 34 

animal culture in a wide range of taxa.  35 

  36 
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Introduction 37 

Individuals can acquire information either personally via interacting directly with their 38 

environment, or socially, via observing the behaviour of or products made by other individuals 39 

(Dall et al. 2005). Acquiring personal information can require time, which can be costly to 40 

individuals who also need to engage in other fitness enhancing tasks, and can involve costly 41 

mistakes (Templeton and Giraldeau 1996; Laland 2004). Social animals can alleviate these 42 

costs by acquiring information and learning from their social partners. However, social 43 

information can become rapidly outdated (Carter et al. 2016). 44 

Despite its potential costs, social learning is the foundation of animals’ second 45 

inheritance system: inheritance of behaviours via observational learning (Whiten 2017). 46 

Because social learning is essential for the diffusion of novel information between individuals 47 

and through groups (Duboscq et al. 2016), its role in the development of cultures and 48 

traditions within species has garnered considerable research attention (Castro and Toro 2004; 49 

Schuppli and van Schaik 2019). While culture has been defined in many ways (Perry 2006), 50 

there is universal agreement that it is reliant upon the transmission of inventions (i.e., novel 51 

behaviours) amongst individuals, regardless of the precise social learning mechanism used 52 

(Schuppli and van Schaik 2019).  53 

For a behaviour to become adopted as a cultural trait (i.e., innovation) there is a three-54 

step process: (1) invention – the creation of a novel behaviour; (2) transmission – the 55 

behaviour must spread through individuals or groups via a social learning; and (3) 56 

establishment – the behaviour or trait must spread widely through the group and be 57 

maintained across generations via social learning (Perry et al. 2021). Experimental and 58 



4 
 
 

observational research have shown that age, sex, social network position, and personality can 59 

have key roles in determining the first step - an individual’s propensity to invent (Perry et al. 60 

2021).  Theoretical and empirical research have shown that social network structure and the 61 

strength of social connections are key regulators of the second step – transmission 62 

(Christensen, Albert, Grenfell, & Albert, 2010; Griffin & Nunn, 2012; Guimarães et al., 2007; 63 

Pastor-Satorras & Vespignani, 2001; Salathé & Jones, 2012). Additionally, both the individuals 64 

demonstrating and learning social information can demonstrate among-individual differences 65 

that affect transmission processes (Laland 2004; Perry et al. 2021). For example, the adoption 66 

of a novel behaviour by a naïve individual into their behavioural repertoire can depend on the 67 

demonstrator’s rank (Kendal et al. 2015; Canteloup et al. 2021), sex (van de Waal et al. 2010), 68 

and age (Duffy et al. 2009). Likewise, a learner’s age (Thornton and Malapert 2009), sex (Aplin 69 

et al. 2013), rank (Kendal et al. 2015), and personality (Carter et al. 2014) can determine 70 

whether they learn and thus adopt a novel behaviour. 71 

The patterning of social relationships in a network also has a strong influence on 72 

determining whether cultural traits establish (i.e., the third step – inventions  becoming fully 73 

adopted and maintained as a stable characteristic of a group via social learning) (Perry et al. 74 

2021). For example, in denser networks, individuals can interact more frequently, promoting 75 

social learning (Lerman and Ghosh 2010). Modular networks can ‘trap’ novel information 76 

among clusters of individuals (Weng et al. 2013), thus reducing the likelihood of cultures 77 

emerging (Perry et al. 2021). However, other than social position, research has typically 78 

overlooked the role that other forms of individual heterogeneity (i.e., phenotypic differences) 79 

may play in the establishment step of animal cultures (Reader and Laland 2000; Mann and 80 

Singh 2015; Evans et al. 2021; Perry et al. 2021), despite these among-individual differences 81 



5 
 
 

proving to be important in the invention and transmission steps (Laland 2004; Perry et al. 82 

2021).  83 

The role of individual heterogeneity in the emergence of animal cultures is 84 

complicated by a host of additional factors that determine how likely it is for social learning 85 

to take place successfully, i.e., the ‘transmission probability’. These factors include 86 

behavioural complexity (e.g., one-step vs multi-step tasks), spatially/temporally contingent 87 

tasks (e.g., termite fishing), and network characteristics (e.g., size, efficiency, modularity, etc). 88 

In the first case, behaviour or task complexity in foraging contexts could derive from the 89 

number of processing steps an individual is required to make to access a food item. Individuals 90 

may succeed at learning one-step foraging tasks socially but fail to solve two-step tasks 91 

despite having access to social information (van de Waal and Bshary 2011; van de Waal et al. 92 

2013). In non-foraging scenarios, complexity may be derived by individuals needing to learn 93 

to perform behaviours correctly in the correct context. For example, juvenile chimpanzees 94 

(Pan troglodytes) learn rank-related gestures for submission and appeasement scenarios 95 

(Scott 2013; Bard et al. 2014), whilst referential (i.e., predator specific) call associations can 96 

depend on age and experience with predators, even if individuals display one-trial social 97 

learning of call functions (Deshpande et al. 2022).  98 

In the second case, transmission probability may also depend on whether the 99 

behaviour is spatially/temporally contingent. For example, termite fishing by chimpanzees 100 

(Lonsdorf 2005) and predation on young antelopes by baboons (Strum 1975; Allan et al. 2022) 101 

both concern spatially rare resources whose abundance varies seasonally. Despite the clear 102 

role that behavioural complexity and spatial/temporal dependency play in social learning 103 

processes, little research has explored how these factors interact with individual 104 
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heterogeneity to determine whether novel behaviours become established within animal 105 

groups. It seems likely that with very simple/frequently performed or very complex/less 106 

frequently performed behaviours, the role of individual heterogeneity may be minimal as 107 

groups either learn rapidly (i.e., easy and frequently observed behaviours) or cease social 108 

learning entirely (i.e., very complex and infrequently observed behaviours). Thus, the effect 109 

of individual heterogeneity is likely to be maximised when behavioural complexity and 110 

spatial/temporal dependency are at intermediate levels. However, it remains unclear 111 

whether we would predict a positive or negative effect of individual heterogeneity on the 112 

likelihood of novel behaviours establishing at these intermediate transmission probabilities.  113 

In the third case, the effects of network size and structure may also interact with 114 

individual heterogeneity to determine the likelihood of novel behaviours establishing. 115 

Typically, research investigating the role of network structure on diffusion performance has 116 

focused on degree distribution (i.e., the fraction of nodes in a network with k connections to 117 

others nodes) (Newman 2002; Jackson and López-Pintado 2013), with greater diversity in the 118 

number/strength of social bonds and distance between nodes leading to a reduction in the 119 

speed, fidelity, and robustness of information diffusion (Voelkl and Noë 2010). Networks 120 

exhibiting higher clustering coefficients (i.e., tendency for nodes in a network to cluster 121 

together) and lower robustness (i.e., the capacity of the network to maintain functionality 122 

when nodes are sequentially removed) can limit the extent of diffusion compared to networks 123 

exhibiting greater robustness and lower clustering coefficients, implying that highly clustered 124 

networks may trap or bottleneck information amongst highly connected nodes (Naug 2008). 125 

However, research into animal cultures has yet to explore whether the presence and extent 126 
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of heterogeneity has differential effects on the likelihood of novel behaviours successfully 127 

establishing in networks with varying characteristics (e.g., size, density, modularity).  128 

In addition to individual heterogeneity, how those individuals are distributed in animal 129 

networks may affect the likelihood of cultures emerging. In particular, whether social learners 130 

are connected to other social learners (positive assortment, or homophily) or others less likely 131 

to collect and use social information (negative assortment, or heterophily) may affect 132 

information diffusion through groups (Pinter-Wollman et al. 2011; Carter et al. 2015; 133 

Hasenjager and Dugatkin 2017). While homophily may promote initial diffusion of 134 

information through local clusters of individuals with a high propensity for social learning 135 

(Guilbeault et al. 2018), it may hinder the spread of an invention across an entire group, and 136 

thus, decrease the likelihood of novel behaviours establishing (i.e., emergence of culture). 137 

The aim of this study was to assess the extent to which heterogeneity in social learners 138 

affects the likelihood of inventions becoming established. We explored this question across a 139 

range of transmission probabilities and through observed animal networks exhibiting 140 

different structures. To facilitate this research, we used agent-based modelling (ABM) as it is 141 

a powerful tool for modelling diffusion processes and allows for learners’ traits to be 142 

considered in social learning interactions. We specifically investigated the following four 143 

questions: (i) Does the presence and extent of heterogeneity amongst individuals’ 144 

propensities for social learning interact with transmission probability (e.g., task complexity) 145 

to influence the likelihood of inventions establishing? (ii) Are some networks more robust to 146 

heterogeneity than others? (iii) Does the extent of heterogeneity interact with network size 147 

and structure to affect the likelihood of inventions establishing? And (iv) Does homophily 148 

according to propensity for social learning affect the likelihood of inventions establishing?  149 
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Model description 150 

Model purpose 151 

The model was implemented in NetLogo (version 6.1.1) and aimed to assess the effect of 152 

heterogeneity of learners on the likelihood of an invention becoming established (i.e., fully 153 

adopted) in static animal networks obtained from open-source data repositories. We 154 

systematically varied the transmission probability and attribute distribution (i.e., random or 155 

homophilic distributions) of agent’s propensities for social learning to determine their 156 

influence on the likelihood of novel behaviours becoming established. Agents could only learn 157 

socially; thus our model did not allow for personal (i.e., asocial) learning. This decision was 158 

made as we wished to focus exclusively on the social learning mechanisms governing the 159 

development of animal cultures. Below we describe the model following the ODD paradigm 160 

(Grimm et al. 2006). 161 

State variables and scales 162 

The model comprised two levels: individual and population. The population (i.e., 163 

animal network) was loaded from matrices stored on the host computer in a distinct 164 

command to the ‘go’ procedure (that initiated social learning). Animal networks were derived 165 

from published research on five different species that we were able to source through online 166 

repositories (e.g., Dryad, blog.datadryad.org) or datasets included as supplementary material 167 

in published papers (Fig 1). These included: (1) a remotely-collected raccoon (Procyon lotor) 168 

contact network of 22 individuals (Reynolds et al. 2015), (2) a remotely-collected domestic 169 

dog (Canis familiaris) contact network of 48 individuals (Wilson-Aggarwal et al. 2019), (3) a 170 

directly-observed baboon (Papio ursinus) grooming network of 58 individuals (Carter and 171 
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Cowlishaw 2021), (4) a remotely-collected sleepy lizard (Tiliqua rugosa) contact network of 172 

60 individuals (Bull et al. 2012), and (5) a remotely-collected network of co-occurrence at 173 

feeders of 82 individuals of mixed bird species (blue tits Cyanistes caeruleus, great tits Parus 174 

major and marsh tits Poecile palustris) (Farine et al. 2015). Due to differences in data 175 

collection methods across studies we binarized all networks, such that all connections were 176 

coded as 1 regardless of connection strength and 0 if individuals were not associated. As such, 177 

‘strength’ of social connection played no part in our social learning procedure. 178 

Fig 1. The networks diagrams of the five different species we explored. The top-left panel is 179 
the (a) raccoon network (22 individuals), (b) dog network (48), (c) baboon grooming 180 
network (58), (d) sleepy lizard network (60), and (e) mixed bird species network (82). Node 181 
colour indicates the state of the individual (naïve = red, informed = green). At the beginning 182 
of a simulation, only one individual, the seed, was informed. 183 

Individuals were assigned a single characteristic (propensity to learn socially) and 184 

could be in one of two knowledge states (naïve or informed). The propensity to learn socially 185 

value captured variance in and represented individuals’ abilities to acquire knowledge of the 186 

invention and successfully exploit this knowledge to gain a benefit, thus allowing them to 187 
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transmit that information to others (Carter et al. 2016). The model did not distinguish 188 

between individuals who were naïve sensu stricto (i.e., they had not learned the solution to a 189 

task) and those that were ‘naïve’ in practice (i.e., learned the invention but fail to apply the 190 

information correctly and are thus unable to act as demonstrators), as neither can pass 191 

information on to others (Carter et al. 2016).  192 

Two further population variables in our model governed the scale of the values 193 

assigned to individuals for their propensity for social learning: propensity to learn socially 194 

mean, Lmean, and propensity to learn socially range, Lrange. Lmean determined the average ability 195 

of the population to learn socially, whilst Lrange determined the population’s heterogeneity in 196 

propensity to learn socially values around Lmean. An individual’s propensity to learn socially, 197 

Lind, was calculated as Lmean plus a number drawn randomly from a normal distribution with a 198 

mean of 0 and standard deviation set by the value of Lrange. As such, higher Lrange resulted in 199 

greater heterogeneity in a population’s propensity to learn socially. We also included an 200 

individual-level variable, Pind, to represent the prestige of the demonstrator (i.e., social 201 

learning should be more likely when demonstrators have higher prestige/share stronger 202 

bonds with the learner), however we did not systematically alter the value of this variable in 203 

the simulations for this study.  204 

We also included an individual-level variable to capture stochastic processes: random 205 

stochasticity. This was included as social learning may not always occur, even if the context 206 

and scenarios predict that it should (e.g., a naïve individual with a high propensity to learn 207 

may fail to learn from a high prestige demonstrator). Individuals may fail to learn despite 208 

being given the opportunity to acquire social information (Carter et al. 2016; Perry et al. 209 

2021), whilst demonstrators may not always share their knowledge, i.e., voluntary inhibition 210 



11 
 
 

(Drea and Wallen 1999; Carter et al. 2014). Given that individuals with a higher tendency to 211 

monitor others may also learn and adopt new behaviours sooner (Lonsdorf 2005), the 212 

likelihood of social learning taking place should also depend on whether learners are attentive 213 

and facing the right direction at the right moment in time; however, this source of 214 

stochasticity has yet to be quantified in any study system.  215 

At the network level, we also included the variable transmission probability (TP), which 216 

captured how likely a task was to be transmitted between an informed and naïve individual, 217 

independent of the characteristics of the individual learners. Given that Pind was held constant 218 

to reduce the number of factors tested in this study, TP therefore encapsulated variability 219 

relating to the characteristics of the demonstrator (e.g., prestige), the strength of social bonds 220 

between learners and demonstrators, plus the complexity and spatial/temporal dependency 221 

of the behaviour being transmitted. Low values of transmission probability could therefore 222 

reflect difficult-to-learn behaviours that require more attention to learn such as a multi-step 223 

process, an infrequently performed behaviour such as a foraging technique only applied to 224 

spatially rare food items (e.g., termite fishing), or instances where informed demonstrators 225 

have low prestige (e.g., juveniles) such that learners may be less likely to collect social 226 

information from them.  227 

Initialization  228 

The distribution of values assigned to individuals for their propensity to learn socially, 229 

Lind, was distributed randomly or assorted such that individuals with similar propensities for 230 

social learning shared direct connections (i.e., homophily). Values for Propensity to learn 231 

socially were assigned to individuals by a distinct command embedded within the procedure 232 
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for loading animal networks from the host computer, and thus, were completed before the 233 

‘go’ procedure was initiated that initiated social learning in the group (see Process overview 234 

and scheduling).  235 

  We employed three distinct processes for generating attribute distributions, (1) 236 

random (no types), (2) random (with types), and (3) homophilic (with types). When ‘random 237 

(no types)’ was used, each individual’s propensity for social learning values, Lind, were 238 

calculated as Lmean plus a number drawn randomly from the normal distribution (mean = 0 239 

and standard deviation = Lrange). This calculation resulted in a random distribution of Lind across 240 

each network (i.e., assortativity was close to zero, see table S1).  241 

To produce homophilic allocations of Lind we adapted the code for producing 242 

homophilic distributions from (Kapeller et al. 2019) by creating three types of agents: low 243 

(LPL), medium (MPL), and high propensity to learn (HPL). Initially, the whole population were 244 

categorised as MPL and two individuals were randomly selected, one to be LPL, and the other 245 

one to be HPL. The link neighbours of the LPL and HPL individuals were then identified as 246 

‘pools’ of potential LPL or HPL individuals. We used a sequence of loop commands and in each 247 

step an MPL individual from each pool of potential LPL and HPL individuals was selected and 248 

transformed into LPL and HPL ‘types’ respectively. This process was repeated until a 40:30:30 249 

ratio for MPL:LPL:HPL proportions was reached, as this generally followed a normal 250 

distribution (see fig 1, panels b, d, f, h, and j). In cases where one type hindered the spread of 251 

another type such that the 40:30:30 ratio could not be achieved, the procedure was cancelled 252 

and the population reverted to MPL type, and the initial LPL and HPL individuals re-selected. 253 
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As we wished to compare diffusion performance between random and homophilic 254 

allocations for part of our analyses, we also generated random allocations using these 255 

behavioural ‘types’. When using ‘random (with types)’ the individuals were randomly selected 256 

to be one of the three types according to the 40:30:30 ratio (see fig 2, panels a, c, and e). 257 

When using homophilic (with types) or random (with types) attribute distributions the LPLs 258 

were assigned an Lmean of 35, MPLs assigned an Lmean of 50, and HPLs assigned an Lmean of 65. 259 

Lrange was set to 10 in all cases as homophily is only possible with variation in the attribute of 260 

interest. In both cases the Lmean and Lrange for the population was the same, but the assortative 261 

coefficient (Farine 2014) was noticeably higher than zero for homophilic allocations (see table 262 

S1), indicative of homophily according to propensity to learn socially, and close to 0 for all 263 

networks when random (with types) was chosen.  264 

 265 

Fig 2. Example network diagrams exhibiting different attribute distributions. Shown are the 266 
(a, b) raccoon, (c, d) dog, and (e, f) sleepy lizard networks with (a, c, e) a random attribute 267 
distribution and (b, d, f) the same networks with a homophilic distribution. Node 268 
colour/shape indicates the state or ‘type’ of the individual, LPL (low propensity to learn) = 269 
yellow/triangle, MPL (mid propensity to learn) = pink/circle, and HPL (high propensity to 270 
learn) = blue/square.  271 

Each time a network and attribute distribution was generated, a single individual was 272 

selected at random to begin in an ‘informed’ state (i.e., the seed), whilst the remaining 273 

individuals were ‘naïve’ to the new behaviour (see fig 1).  274 

Process overview and scheduling 275 
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The individuals in the model were static. The model proceeded in time steps that 276 

represented learning ‘bouts’, in which individuals could only interact with (i.e., pay attention 277 

to and learn from) another individual with whom they shared a direct network connection. 278 

The only scale variable was time steps (ticks), with the tick counter increasing by one once 279 

the following conditions were met: i) all naïve individuals in the network had paid attention 280 

to one of their neighbours (i.e., a direct linked agent in the network), and ii) attempted to 281 

learn from the neighbour they were ‘paying attention’ to.  Learning could only occur if the 282 

neighbour (i.e., demonstrator) had already adopted the new behaviour, refer to the 283 

transmission process section for further details. We set the step-horizon (i.e., maximum 284 

number of steps before the model was forced to end) to 5000 steps. 285 

Transmission process 286 

In all models, at each step, all naïve actors followed the same 5-step transmission 287 

process to determine whether they would become informed:  288 

(i) Select randomly a linked neighbour to pay attention to.  289 

(ii) If the linked neighbour was not ‘informed’ then the actor remained naïve and exited 290 

the process.  291 

(iii) If the linked neighbour was informed, the following calculation was made: 292 

 293 

Naïve individual’s Lind + Informed demonstrator’s Pind + RS > 100 – TP 294 

 295 

To keep the left-hand side of the equation proportional to the right-hand side, we 296 

converted Lind, Pind, and RS to proportions using a common denominator and then 297 
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multiplied their sum by 100. The denominator was the sum of the maximum values of 298 

Lind and Pind exhibited by the agents (always 50 in the case of Pind), and the upper bound 299 

of RS. This ensured each variable was given equal weighting in the learning process. 300 

RS was therefore a key determinant in the learning process and encapsulated real-301 

world scenarios whereby naïve individuals may not be paying close attention to 302 

demonstrators at the right moment in time. 303 

(iv) If calculation (iii) was false, then the actor remained naïve and exited the process. 304 

(v) If calculation (iii) was true, then the actor passed to a final procedure where a random 305 

floating-point number between 0 and 100 was generated (thus scaling the equation 306 

in the 0-100 interval). If this number was less than the TP, then the individual would 307 

learn/adopt the new behaviour and thus update their status to informed. Otherwise, 308 

the individual would remain naïve and cease paying attention to their informed 309 

neighbour.  310 

End-of-run 311 

Once the transmission process was completed within a single step, the step counter (number 312 

of ticks elapsed) would advance by 1. The transmission process was repeated amongst 313 

uninformed individuals until either the whole population became informed, or the maximum 314 

number of steps (5000) was reached.  315 

Simulation submodels 316 

To explore the effect of heterogeneity on the establishment of inventions (i.e., full 317 

adoption of new behaviours), we created separate submodels for each animal network, 318 

transmission probability, and Lrange. Submodels were simulated in BehaviorSpace for each 319 
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combination of values/settings listed in table 1. Specifically, we held Lmean and Pind constant 320 

but varied Lrange (0, 5, or 10), the network type (figs 1), and the transmission probability (5%–321 

50% in 5% increments). We also held the ‘prestige’ of the ‘informed’ demonstrator constant 322 

at 50, but included an option in the model for this to be altered by researchers in future work. 323 

This produced 150 submodels (30 for each animal network) which were run for 50 repetitions 324 

each, resulting in 7,500 total runs. From these simulations we extracted the network metrics 325 

for each animal network at each value of Nind. These included network density, the mean and 326 

average clustering coefficients (Wilensky 2021), global efficiency (Pasquaretta et al. 2014), 327 

and the continuous assortative coefficient (Farine 2014), the values of which are summarised 328 

in table S1.  329 

Table 1. Model parameters, their description, and values for simulations in BehaviorSpace 330 

for all models using random attribute distributions for propensity to learn. 331 

Level Parameter Description Values  

Individual Lind An individual’s propensity to learn socially Determined by Lmean and Lrange  

Individual Pind An informed demonstrator’s prestige 50 (held constant for all 

individuals) 

 

Population Lmean Mean propensity to learn socially for all 

individuals 

50  

Population Lrange Heterogeneity in propensity to learn socially 0, 5, 10   

Individual RS Random stochasticity, each individual 

generated a random floating-point number 

between 0 and the value of RS.  

50  
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 332 

To explore the effect of attribute distributions on the establishment of inventions, we 333 

created further submodels for each network, explicitly varying transmission probability and 334 

allocation (random with ‘types’ or homophilic). We held the same variables constant as 335 

mentioned previously but additionally held Lrange at 10 to maximise individual heterogeneity 336 

across random and homophilic allocations. Submodels were again simulated in BehaviorSpace 337 

for each combination of values/settings. This produced 100 submodels (20 for each animal 338 

network) which were run for 50 repetitions each, resulting in 5,000 total runs. We calculated 339 

the same network metrics as with heterogeneity submodels (see table S1). 340 

 We measured our response variable at the end of each run of each submodel - the 341 

proportion of the network informed by 5000-time steps (i.e., the extent of information 342 

diffusion). We also calculated the number of time steps until every group member was 343 

informed (i.e., complete adoption) and provide figures of these results in supporting 344 

information (see figures S1 and S2). 345 

Statistical analysis 346 

It is considered inappropriate to analyse simulation data from agent-based models 347 

using statistical inference (e.g., rejecting a null hypothesis via P-value estimation) (von 348 

Brömssen and Röös 2020; Ekanayake-Weber and Swedell 2021). The two key issues with such 349 

an approach are (1) the modeller would be testing null hypotheses they know a-priori to be 350 

false, and (2) the statistical power is determined (and can be inflated) by the number of 351 

Population TP Transmission probability 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50 
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simulations the modeller elects to run (White et al. 2014). As a result of these issues, it is 352 

advised instead to quantify the magnitude of effect sizes using descriptive statistics (White et 353 

al. 2014). This approach is typically used to compare effect sizes among the descriptive 354 

statistics of simulated data versus real-world data (Hoban et al. 2012; von Brömssen and Röös 355 

2020; Ekanayake-Weber and Swedell 2021); however, we implement the approach here to 356 

compare the effect sizes among descriptive statistics (of diffusion performance) between 357 

networks varying in population size and structure. As such, our analysis compared the 358 

consistency of diffusion performances (proportion of the network informed by 5000 time-359 

steps) across multiple simulation runs using the median and upper/lower quartile for diffusion 360 

performance across 50 simulations. 361 

For the first part of our analysis, we explored the question: Does the presence and 362 

extent of heterogeneity (in propensity for social learning) interact with transmission 363 

probability to influence the likelihood that an invention becomes established (i.e., a novel 364 

behaviour becomes full adopted) in each animal network? We compared the effect sizes of 365 

diffusion outcomes (i.e., proportion of the group that adopted the invention) produced by 366 

each propensity to learn (socially) variation value (i.e., Lrange = 0, 5, or 10) across the 367 

Transmission Probability range (5 – 50% in 5% increments) in each animal network. Given that 368 

each network exhibited a different number of individuals (i.e., nodes) and varying network 369 

characteristics (e.g., density, mean clustering coefficient), these analyses also addressed 370 

whether these network factors may interact with the extent of individual heterogeneity to 371 

affect the likelihood of inventions establishing. For these analyses, we used the simulation 372 

data with random attribute distributions (no types).  373 
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For the second part of our analysis, we explored the question: Does homophily 374 

according to propensity for social learning affect the likelihood that an invention becomes 375 

established? For this analysis we compared the effect sizes of diffusion performance 376 

produced by different attribute distributions (of propensity to learn socially values) across the 377 

Transmission Probability spectrum and across each animal network. Attribute Distribution 378 

was either random or homophilic, with each derived from their respective simulation data – 379 

random attribute distribution (with types) or homophilic attribute distribution (with types).  380 

Results 381 

When heterogeneity was held at zero (i.e., homogeneity), all animal networks 382 

consistently approached full adoption (i.e., establishment of an invention) once transmission 383 

probability was 15% or higher (fig 3), whilst moderately and highly heterogeneous networks 384 

did not consistently reach full adoption until 20% and 25% respectively. The only exception 385 

was the raccoon network (the smallest network, see fig 3) where homogeneous individuals 386 

consistently reached full adoption at 10% transmission probability, but otherwise produced 387 

identical patterns to the other networks. Given that these networks varied in size (i.e., 388 

number of individuals) and characteristics (i.e., network density, the mean and average 389 

clustering coefficients, and global efficiency - see Table S1), our results demonstrate that the 390 

presence and strength of individual heterogeneity can have overarching effects that hinder 391 

the establishment of an invention.    392 
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Fig 3. Boxplots showing the proportion of individuals informed by 5000 ticks (i.e., the 393 
diffusion performance) at various levels of transmission probability (5% to 50% in 5% 394 
increments) for observed networks. Boxplots show 25% and 75% quartiles (boxes), median 395 
(bold line within boxes), 1.5 x the respective inter-quartile ranges (whiskers), and outlying 396 
points (black dots) for the diffusion performance across the 50 simulations in each context. 397 
Each coloured box represents various values for propensity to learn socially variation (0, 5, 398 
and 10), the pink, yellow, and green boxes therefore refer to homogeneous, moderately 399 
heterogeneous, and highly heterogeneous networks respectively. Each panel is a different 400 
species (baboon grooming, dog, mixed birds, raccoon, sleepy lizard); numbers in 401 
parentheses represent the population size for each network. Propensity to learn socially 402 
mean and the maximum Random stochasticity were held constant at 50% to ensure equal 403 
weighting when summed against Transmission Probability.  404 
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When variation in propensity to learn socially was held constant at 10 (i.e., high 405 

individual heterogeneity), we found that greater proportions of animal groups adopted an 406 

invention with random than homophilic distributions (i.e., the median proportion of 407 

individuals adopting the invention in random distributions was approximately equal to or 408 

higher than the 75% quantile of homophilic allocations), but only when transmission 409 

probability was in the 20-30% range (see fig 4). Outside of this range, when inventions were 410 

either challenging (i.e., transmission probability < 20%) or simple to learn (i.e., transmission 411 

probability > 30%), we detected no effect of attribute distribution on the likelihood of an 412 

invention establishing in any animal group.  413 
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Fig 5. Boxplots showing the proportion of individuals informed by 5000 ticks (i.e., the 414 
diffusion performance) at various levels of transmission probability (5% to 50% in 5% 415 
increments) for observed networks. Boxplots show 25% and 75% quartiles (boxes), median 416 
(bold line within boxes), 1.5 x the respective inter-quartile ranges (whiskers), and outlying 417 
points (black dots) for the diffusion performance across the 50 simulations in each context. 418 
Each coloured box represents the attribute distribution for propensity to learn socially (blue 419 
– homophilic, orange - random) and each panel is a different species (baboon grooming, 420 
dog, mixed birds, raccoon, sleepy lizard), numbers in parentheses represent the population 421 
size for each network. Propensity to learn socially mean and the maximum Random 422 
stochasticity were held constant at 50% to ensure equal weighting when summed against 423 
Transmission Probability.   424 
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Discussion 425 

The emergence of animal culture has three steps: firstly, a novel behaviour must be 426 

created (i.e., invention); secondly, the new behaviour must be adopted by other individuals 427 

via social learning (i.e., transmission); and finally, the invention must spread and be 428 

maintained as a stable characteristic of the group by social learning mechanisms (i.e., 429 

establishment) (Schuppli and van Schaik 2019). Research has shown that there is variation in 430 

the likelihood and rate of learners adopting an invention, either due to varying opportunities 431 

to access social information (Aplin et al. 2012; Carter et al. 2016) or due to the varied 432 

characteristics of the learners and demonstrators involved (Carter and Cowlishaw 2021). 433 

Despite research demonstrating numerous sources of heterogeneity in both the individuals 434 

providing information and those acquiring social information (Laland 2004; Perry et al. 2021), 435 

theoretical models exploring the factors governing the establishment of inventions have 436 

generally assumed that individuals within networks are homogeneous in their traits (Reader 437 

and Laland 2000; Evans et al. 2021), and thus equally likely to acquire or share social 438 

information. In this study we developed an agent-based model to assess the extent to which 439 

heterogeneity in learners and homophily according to propensity for social learning 440 

influenced the likelihood of inventions establishing. We found that both heterogeneity and 441 

homophily had negative effects on the likelihood of populations fully adopting an invention 442 

but only when the transmission probability was within certain ranges.  443 

Increasing learner heterogeneity inhibited the diffusion process, which was assessed 444 

by comparing the proportion of the population informed by 5000 time-steps. Homogeneous 445 

populations often achieved full adoption of the invention even when transmission probability 446 

was relatively low, whilst highly heterogeneous populations did not achieve full adoption until 447 
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transmission probability was relatively high. These results demonstrate that overlooking 448 

individual heterogeneity can produce anticonservative estimates concerning the outcomes of 449 

diffusion processes, potentially misleading our understanding of the factors regulating the 450 

emergence of animal cultures. 451 

By adopting an agent-based modelling approach, our model was able to use a single 452 

variable (i.e., propensity to learn socially) that encapsulated any individual-level factors that 453 

could influence the likelihood of an individual learning a novel behaviour socially. Individuals 454 

are not uniform in their likelihood of using social over personal information (Grüter et al. 455 

2008; Baciadonna et al. 2013), whilst phenotypic factors such as learner age (Thornton and 456 

Malapert 2009), rank (Kendal et al. 2015) and personality (Carter et al. 2014) can inhibit the 457 

acquisition, application, and exploitation of social information by learners (Carter et al. 2016). 458 

In addition, different age-sex classes can have varying tendencies to monitor other individuals 459 

(Lonsdorf 2005) or differ in their gaze attention towards different sexes (van de Waal et al. 460 

2010; Renevey et al. 2013). It therefore seems likely our results are directly applicable to a 461 

range of social systems and that our model can be used to make predictions about the 462 

processes promoting or inhibiting the emergence of animal cultures.  463 

When transmission probability was very low (e.g., complex/infrequent behaviours or 464 

low prestige of demonstrators) we observed similar proportions of networks adopting an 465 

invention across homogenous and heterogeneous populations, highlighting that difficult-to-466 

learn behaviours can reduce diffusion performance generally, independent of the attributes 467 

of the individuals. Generally, transmission probability needed to be relatively high to also 468 

observe little differentiation between homogeneous and heterogeneous networks. This is 469 

likely explained by the presence of heterogeneity yielding a number of individuals with low 470 
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propensities to learn, such that transmission probability must be high (e.g., simple/frequent 471 

behaviours or high prestige of demonstrators) for these low propensity individuals to learn as 472 

readily as higher propensity individuals.  473 

Social learning may be less likely when tasks or behaviours are complex, for example, 474 

vervet monkeys (Chlorocebus pygerythrus) were shown to perform well at a one-step foraging 475 

tasks (van de Waal et al. 2013), yet failed to solve a two-step task despite having access to 476 

social information (van de Waal and Bshary 2011). By including transmission probability in the 477 

probabilistic procedure together with variables for random stochasticity and individual 478 

propensities for social learning, we account for all sources of variation across a range of 479 

scenarios. For example, if a naïve individual has a high propensity to learn whilst transmission 480 

probability is high then our procedure is mimicking scenarios where demonstrator prestige 481 

and social bond strength are high, behaviour complexity is low and/or performed frequently, 482 

and the naïve individual has a high propensity to monitor the actions of other individuals, 483 

acquire and process the novel information, and subsequently perform the behaviour 484 

effectively. Although future research may benefit from disentangling these factors explicitly 485 

(Perry et al. 2021), especially the distinct elements of the social learning process (Carter et al. 486 

2016), it will likely demonstrate similar results to our own – that increasing complexity and 487 

heterogeneity diminish the overall likelihood of inventions establishing within social groups.  488 

In addition to learner heterogeneity, homophily in learners similarly hindered 489 

information transmission and establishment, but only found when transmission probability 490 

was ≥ 20% and ≤ 30%. Figure 4 also shows several examples of the lower quartiles, whiskers, 491 

and outliers of homophilic allocations being close to or equal to zero, even when transmission 492 

probability is above 20%, this highlights that homophily was more likely to result in little to 493 
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no diffusion than random distributions. Diffusion models have shown that homophilic 494 

distributions can enhance the initial diffusion of information or contagion in a population 495 

(Jackson and López-Pintado 2013), i.e., via rapid diffusion between similar phenotypes; 496 

however, our results are the first to demonstrate that attribute distributions can have a 497 

negative effect on the likelihood of an entire population adopting a behaviour or trait, 498 

regardless of population size or network characteristics. Thus, overlooking homophily should 499 

also result in anticonservative estimates of the likelihood of inventions establishing in animal 500 

groups, obscuring our understanding of animal cultures. 501 

Our homophily procedure also highlighted that different networks are more or less 502 

constrained in their ability to exhibit assortative mixtures for a given attribute (see table S1), 503 

with the high-density baboon grooming and mixed birds networks producing low assortativity 504 

values of 0.02 and 0.06 respectively (average of 50 runs). Despite this, however, we still found 505 

significant differences in diffusion performance between random and homophilic allocations 506 

across all of the animal groups we tested. The magnitude of this difference may be higher in 507 

species whose networks demonstrate higher levels of assortativity, such as Guianan squirrel 508 

monkey (Saimiri sciureus) groups (Pasquaretta et al. 2014). Future research would benefit 509 

from adapting our homophily procedure to explicitly control the level of homophily within 510 

each network alongside the extent of heterogeneity in phenotypic traits. This would allow 511 

researchers to evaluate the extent of diffusion as a function of the interaction between 512 

varying levels of heterogeneity, homophily, and transmission probability. 513 

Typically, the study of how network structure affects diffusion has explored the role 514 

of degree distribution (Newman 2002; Jackson and López-Pintado 2013), with the distance 515 

between individuals and the number and strength of social connections having been shown 516 
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to have a negative effect on diffusion speed, fidelity, and robustness (Voelkl and Noë 2010). 517 

In our case, the likelihood of inventions establishing did not vary according to substantial 518 

differences in group size and moderate variability in network density and clustering 519 

coefficients (table S1).  In experimental honeybee colonies, contagions can get trapped within 520 

a few nodes (i.e., bottlenecking) when networks exhibit high levels of clustering and low levels 521 

of robustness (Naug 2008). In the case of our model, if an informed individual had a single 522 

connection, then diffusion was likely to be slower than when demonstrators had multiple 523 

naïve individuals paying attention concurrently, thus information was likely to bottleneck if 524 

an informed demonstrator’s sole connection was to a naïve individual with a low propensity 525 

for social learning. However, all of the animal networks we used had moderate density and 526 

low global efficiency (i.e., most individuals had several connections), reducing the incidence 527 

of bottlenecking. Given the taxonomic breadth of the networks we used, it seems likely that 528 

several vertebrate species have network structures that should promote the establishment 529 

of inventions. As other species/groups may demonstrate slightly higher global efficiencies 530 

than the networks we used here (e.g., (Pasquaretta et al. 2014)), we suggest that future work 531 

expands our scope to a wider range of animal groups to confirm whether heterogeneity and 532 

homophily are invariably more important than network structure for determining the 533 

establishment of animal cultures. 534 

To create a well-functioning and interpretable model it is vital to make some 535 

simplifications to certain processes (Grimm and Railsback 2012; Ekanayake-Weber and 536 

Swedell 2021). In our model, if the social learning conditions were met, then an individual had 537 

an opportunity to learn from an informed demonstrator. Although this condition simplifies 538 

the complexities of social learning, it allowed the transmission process to encapsulate several 539 
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sources of variation, including stochastic processes, task complexity, and demonstrator 540 

prestige which animal culture models have not typically included thus far. Our model 541 

therefore placed a strong onus on the learner’s attributes in determining the diffusion 542 

process, thus if the naïve individuals exhibited predominantly low propensities to learn, then 543 

diffusion processes were likely to halt unless transmission probability was high. The specific 544 

positioning of the seed in different networks exhibiting varying levels of heterogeneity and 545 

assortativity requires more thorough investigation (Perry et al. 2021), our model can be used 546 

to address these questions and has the option to systematically vary the prestige of the seed. 547 

Our results also indicate, however, that the attributes of the seed’s neighbours could be just 548 

as vital to consider and experimentally manipulate, especially if networks exhibit low 549 

clustering and density, but high efficiency.  550 

Given that the spread of inventions relies upon transmission between socially-linked 551 

group members, our model can also be used to devise predictions about how network 552 

structure, individual heterogeneity, and homophily combine to affect the spread of other 553 

types of information or diseases. For instance, the extent of predator detection in groups can 554 

rely on social information transfer, but the age, rank, sex, or personality of the initial detector 555 

(i.e., the seed) and their relationships with local individuals may combine to determine how 556 

rapidly and far-reaching this threat information spreads (LaBarge et al. 2021). Similarly, 557 

theoretical models have shown that network structure influences the speed and likelihood of 558 

diseases infecting entire groups, but are yet to explore the role of individual heterogeneity 559 

and homophily in the latter ‘establishment’ step (Evans et al. 2021). The individual 560 

heterogeneity variables in our model can be easily updated to other phenotypic information 561 
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besides propensity for social learning (e.g., specific personality traits or susceptibility to 562 

infection), allowing researchers to test new theories across a range of fields. 563 

In summary, we identified clear negative effects of learner heterogeneity and 564 

homophily on the likelihood of cultures emerging across a range of animal groups with 565 

networks exhibiting varying topographies and sizes. Generally, both heterogeneity and 566 

homophily reduced the extent of information diffusion in the middle of the transmission 567 

probability range. Given the similarities in results, despite varied taxa, we believe our results 568 

demonstrate that the use of homogeneous actors and random attribute distributions in 569 

networked agent-based models may produce anticonservative estimates regarding the 570 

establishment of inventions. As there is vast evidence demonstrating that individual 571 

heterogeneity can effect the structure, behaviour, and function of animal groups (Jolles et al. 572 

2020), heterogeneity and homophily should also be important considerations in any study 573 

exploring the factors determining whether inventions become established in groups and 574 

populations. Our model allows for network data to be input from a range of systems whilst 575 

including and explicitly manipulating both individual heterogeneity and homophily. As a 576 

result, researchers can explore hypotheses and make predictions about social learning 577 

processes and the circumstances under which culture may or may not emerge in a wide range 578 

of biological systems.   579 
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