
Rapid declines in southern Sierra Nevada fisher habitat driven by drought and wildfire 1 

Ronan Hart1,2, Craig M. Thompson3, Jody M. Tucker4, Sarah C. Sawyer5, Stephanie A. Eyes3, 2 

Saba J. Saberi6, Zhiqiang Yang7, Gavin M. Jones1,2* 3 

1 USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 4 
2 Biology Department, University of New Mexico, Albuquerque, NM 5 
3 USDA Forest Service, Pacific Southwest Region, Sacramento, CA 6 
4 USDA Forest Service, Rocky Mountain Research Station, Missoula, MT 7 
5 USDA Forest Service, Washington Office, Washington, DC 8 
6 Department of Environmental Science and Policy, University of California-Davis, Davis, CA 9 
7 USDA Forest Service, Rocky Mountain Research Station, Riverdale, UT 10 

*Corresponding author: gavin.jones@usda.gov  11 

Abstract 12 

Forest disturbances are a natural ecological process, but climate and land-use change are altering 13 

disturbance regimes at an unprecedented rate, posing significant threats to biological 14 

communities and species of concern. Our aim was to develop an automated habitat monitoring 15 

system for the Southern Sierra Nevada Distinct Population Segment of fisher (Pekania pennanti) 16 

in California, USA to investigate long-term habitat trends and the effects of a recent 17 

megadrought and numerous megafires on fisher habitat. We used detections of female fishers 18 

(n=330) from a standardized monitoring program to develop a dynamic species distribution 19 

model using the random forest algorithm in the Google Earth Engine environment. We found that 20 

female fisher habitat remained relatively stable from 1985–2011 but declined by nearly half 21 

(48%) between 2012 and 2022, corresponding with a period of widespread forest mortality from 22 

drought and wildfire. The majority of fisher habitat loss occurred within wildfire perimeters 23 

(65%), where declines in habitat quality were associated with moderate- and high-severity fire. 24 

Female fisher habitat was more likely to burn at moderate- and high-severity than was expected 25 

by chance. Our findings emphasize the urgent conservation needs of this distinct population 26 

segment of fishers, highlighting the threat posed by novel disturbance regimes. Our results 27 

demonstrate the importance of monitoring for understanding species status, as the status of fisher 28 

habitat across the entire southern Sierra Nevada range following recent disturbances was not 29 

known. More broadly, our implementation of a cloud-based automated habitat monitoring system 30 

shows the necessity of up-to-date habitat information to apply conservation measures in rapidly 31 

changing environments and the potential for using habitat monitoring systems to investigate 32 

ecological questions of basic and applied relevance (e.g., wildfire-habitat relationships). 33 
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1. Introduction  36 

Ecosystems are dynamic, and disturbances drive ecosystem dynamics around the globe (Sousa, 37 

1984; Turner, 2010). The frequency, severity, timing and size of disturbances, known as 38 

disturbance regimes, play a crucial role in shaping landscape patterns and processes (Pickett & 39 

White, 1985; Turner, 1989). Disturbances create spatial and temporal variation in ecosystems and 40 

their constituent parts, which in turn influences the structure of biological communities and 41 

wildlife habitat. For example, disturbance-driven variation influences species genetic diversity 42 

(Banks et al., 2013), vegetation and habitat connectivity (Wimberly, 2006), carbon cycling and 43 

storage (Curtis & Gough, 2018), and evolutionary processes in both flora and fauna (Jones, 44 

Goldberg, et al., 2023; Keeley & Pausas, 2022). While individual disturbances can be 45 

unpredictable, disturbance regimes have remained mostly consistent and predictable in local 46 

ecosystems over long periods of time (e.g., centuries to millennia). This long-term predictability 47 

and stability of disturbance regimes in local areas has shaped modern vegetation conditions, 48 

local- and landscape-scale patterns of biodiversity and species-habitat relationships, as well as 49 

contemporary conservation policy.  50 

More recently, however, changes in land use and climate across the world have led to 51 

rapid changes to disturbance regimes (Bowman et al., 2020; Johnstone et al., 2016). In western 52 

North American forests, a history of fire suppression since the early 1900s and banning of 53 

Indigenous fire management since Euro-American colonization have contributed to higher 54 

frequency and severity of megafires (Liebmann et al., 2016; Taylor et al., 2016), which are 55 

further exacerbated by climate change and drought (Diffenbaugh et al., 2015; S. A. Parks & 56 

Abatzoglou, 2020; Westerling, 2016). These dramatic changes in vegetation structure can 57 

amplify future disturbances, such as flooding and species invasions, leaving these systems in 58 

low-resilience states at risk of type conversion (Coop et al., 2020; Seidl et al., 2017; Stephens et 59 

al., 2018). These altered disturbance regimes can cause rapid and unpredictable impacts to 60 

ecosystems, increasing uncertainty in how systems—and the wildlife species that depend on 61 

them—will respond. Successful conservation of species and ecosystems in this era of rapid 62 

change begins with developing approaches to monitor responses to changes in a way that keeps 63 

up with the rapid rates of change (Shirk et al., 2023). 64 

The species and ecosystems in the Sierra Nevada, California, USA have seen 65 

extraordinary landscape changes over the past decade resulting from fire and drought. From 66 

2012–2016, the Sierra Nevada experienced a 1-in-1000-year drought (Asner et al., 2015) that 67 

resulted in the mortality of nearly 150 million trees (Goulden & Bales, 2019). This massive 68 

mortality event amplified subsequent bark beetle infestations and large-scale fires (Stephens et 69 

al., 2018) resulting in widespread tree mortality at unprecedented scales (Safford et al., 2022). 70 

These rapid and widespread ecosystem changes have the potential to influence many wildlife 71 

species, including notable species of concern such as the California spotted owl (Strix 72 

occidentalis occidentalis) and the fisher (Pekania pennanti). A recent study estimated that, from 73 

2012–2022, mature forest conditions that are typically associated with habitat for these two 74 

species may have declined by at least 50% (Steel et al., 2023). A critical need to facilitate 75 



conservation action for threatened and endangered species like the spotted owl and fisher is an 76 

understanding of their current habitat distribution, and an ability to rapidly update habitat maps 77 

when new disturbances inevitably occur. Such an up-to-date understanding is necessary to 78 

determine where, when, and how conservation actions should be implemented to recover the 79 

species. 80 

We developed an annually-updating, cloud-based automated habitat monitoring system 81 

for the federally-endangered southern Sierra Nevada Distinct Population Segment of fishers 82 

(hereafter, SSN fisher) in the Google Earth Engine (GEE) environment (Gorelick et al., 2017). 83 

Our habitat monitoring system allowed us to evaluate annual changes to SSN fisher habitat as a 84 

function of changes in vegetation and climate. We produced a 38-year time series (1985–2022) 85 

of SSN fisher species distribution models (SDMs; Elith & Leathwick, 2009) using fisher 86 

detections from systematic non-invasive collection methods (i.e., camera traps, hair snares, and 87 

track plates), a combination of topographic and historical climate variables, and multispectral 88 

satellite reflectance indices. Using our time series of fisher habitat, we sought to (1) quantify 89 

long-term changes in female SSN fisher habitat, (2) evaluate the contribution of wildfires to 90 

habitat change over the past three decades, and (3) examine associations between SSN fisher 91 

habitat quality and fire risk, specifically how pre-fire habitat quality influenced burn severity, 92 

and how burn severity influenced habitat change.  93 

2. Methods 94 

2.1 Study area and fisher detection data  95 

Our study area encompassed the Sierra Nevada ecoregion in California, USA, south of the 96 

Tuolumne River and California State Route 120. We divided this area into three subregions 97 

(North, Southwest, and Kern Plateau) in which we developed region-specific sub-models, based 98 

on local knowledge that these three regions have distinctive environmental, climatic, and 99 

topographic differences that influence local fisher habitat-use as well as previous work showing 100 

region-specific genetic structure (Tucker et al., 2014) and occupancy rates (W. J. Zielinski et al., 101 

2013). The North subregion included lands north of the middle fork of the Kings River, which 102 

encompassed the Sierra National Forest, the majority of Yosemite National Park and Stanislaus 103 

National Forest, and the northern part of Inyo National Forest. The Kern Plateau subregion 104 

included lands east of the Kern River, which encompassed the eastern part of the Sequoia 105 

National Forest and the southern part of the Inyo National Forest. The Southwest subregion 106 

included lands between the North and Kern Plateau subregions, which encompassed the majority 107 

of Sequoia-Kings Canyon National Parks, the Giant Sequoia National Monument, the western 108 

part of Sequoia National Forest, and the central part of Inyo National Forest (Fig. 1). We used 109 

spatially and temporally balanced fisher detection data (Fig. 1) obtained through the USFS 110 

Region 5 Carnivore Monitoring Program between 2006 and 2022. Detection data were collected 111 

using a suite of non-invasive methods, including camera traps, hair snares (to obtain genetic 112 

samples), and track plates that were placed at fixed-location 0.8km2 sampling units. Extensive 113 

details are published elsewhere on the sampling methods (B. Zielinski & Mori, 2001; W. J. 114 



Zielinski et al., 2013, 2017). Briefly, fisher sampling units were co-located with USDA Forest 115 

Service Forest Inventory and Analysis (FIA) plots that intersected forest-capable lands (i.e., 116 

grassland and shrubland-dominated lands were not sampled) and that occurred between 117 

approximately 800 and 3400m in elevation. Each sampling unit contained an array of three to six 118 

stations located ~500m apart, with each station containing a baited camera trap/hair snare/track 119 

plate setup that was deployed between 10 and 21 days. Previous work that focused on occupancy 120 

modeling (W. J. Zielinski et al., 2013) aggregated fisher detections to the sampling unit level. For 121 

the purposes of our study, we used precise georeferenced detections from individual stations for 122 

our presence-only random forest model.  123 

Fishers are described as habitat-specialists and are typically associated with mature, 124 

dense forests with multi-layered canopies and large trees (Buskirk & Powell, 1999; Lofroth et al., 125 

2010; Purcell et al., 2009; Weir & Corbould, 2010; W. J. Zielinski et al., 2004a, 2004b). 126 

Modeling and conserving these types of fisher habitats are of most concern to wildlife and 127 

conservation managers (Spencer et al., 2016) as they are the habitats that are most able to support 128 

long-term persistence for SSN fisher occupancy and home range establishment. At least 75% of 129 

fisher home ranges are composed of moderate to dense canopy cover (Kordosky et al., 2021; 130 

Raley et al., 2017), and even a 5% increase in open areas within fisher home ranges can reduce 131 

fisher occupancy probability by 50% (Weir & Corbould, 2010). While these habitats are used by 132 

both male and female fishers, male fishers can tolerate a variety of landscape types, while 133 

females tend to establish home ranges, and particularly core areas, in areas with dense forests 134 

and tall trees (Kordosky et al., 2021; Spencer et al., 2016; Tucker, 2013; W. J. Zielinski et al., 135 

2004a). Furthermore, juvenile females dispersing from their natal dens disperse at much shorter 136 

distances than juvenile males, females exhibit high site fidelity once these home ranges are 137 

established, rarely disperse once they have reached adulthood, and spend nearly 60-70% of their 138 

time in the core areas (7-8km2) of their home ranges (Spencer et al., 2016; Tucker, 2013). As 139 

such, examining fisher habitat using female-only locations is more likely to capture the types of 140 

habitats that are of highest conservation-concern, thus we are confident that female detections in 141 

our study occur within or in close proximity to high quality core areas. For these reasons, we 142 

used only confirmed female detections in our model. Female detections (Total: n = 330; North 143 

region: n = 127; Southwest region: n = 179; Kern Plateau region: n = 24; Fig. 1) were 144 

determined by conducting genetic analysis on the hair samples (Tucker et al., 2014, 2024), using 145 

footprint indicators (Tucker et al., 2024), or when a camera trap detected an adult fisher traveling 146 

with kits (a behavior limited to females; Thompson, Romsos, et al., 2021).  147 

2.2 Habitat covariates 148 

We selected a suite of 153 environmental covariates to predict fisher locations in our SDMs that 149 

fell into three broad categories: topography, climate, and reflectance (Table S1). As with many 150 

SDM applications, our primary objective was to develop a model with high local spatial 151 

accuracy (i.e., an accurate map). Thus, we were not concerned with model-based inference or 152 

exploration, but high spatial predictive capacity instead (Evans et al., 2011; Tredennick et al., 153 

2021). As a result, our local sub-models were overfitted to the data, and we were unconcerned 154 



with potential multicollinearity, which affects inference about variable sign or importance but not 155 

predictive performance. We included all remotely-sensed variables that we thought could 156 

potentially be predictive of female fisher habitat.  157 

We derived topographic variables using a 30m resolution digital elevation model (DEM) 158 

from NASA’s Shuttle Radar Topography Mission (SRTM; Farr et al. 2007). Variables included 159 

slope, heat load index (HLI; characterizes incident radiation), topographic wetness index (TWI; 160 

characterizes potential soil moisture), topographic ruggedness index (TRI; characterizes 161 

topographic relief), and topographic position index (TPI; characterizes ridge versus valley 162 

locations). For slope, HLI, TWI, and TRI, we extracted covariate values at their native scale. For 163 

TPI, we extracted covariate values across five scales, representing the radii of circles centered on 164 

the focal point: 90, 180, 360, 720, and 1440m. Slope, HLI, TPI, and TRI were derived within the 165 

GEE environment, and TWI was derived using ESRI’s ArcPro version 2.9.5 (Environmental 166 

Systems Research Institute, Redlands, CA). 167 

We derived climate variables using ClimateNA version 7.42 (Wang et al. 2016). We 168 

provided the same 30m resolution SRTM DEM that we used to compute topographic variables to 169 

the ClimateNA algorithm, which then produced 30m resolution spatial layers of seasonal (winter: 170 

December–February; spring: March–April; summer: June–August; autumn: September–171 

November) precipitation, snow-water equivalent, growing degree-days above 5°C, and mean, 172 

minimum, and maximum temperature for the 30-year normal historical periods in 10-year 173 

increments: 1951–1980, 1961–1990, 1971–2000, 1981–2010, and 1991–2020 and the projected 174 

climate for 2011–2040. For each year of fisher locations, we interpolated annual climate values 175 

to attribute to the associated year of detection (Shirk et al., 2023). For example, if a location was 176 

detected in 2005, we interpolated climate using the 30-year periods of 1971–2000 and 1981–177 

2010.  178 

We derived reflectance variables by applying the Continuous Change Detection and 179 

Classification algorithm (CCDC; Zhu & Woodcock 2014) to a 38-year (1985–2022), 30m 180 

resolution Landsat 5/7/8 Tier 1 surface reflectance time series within the GEE data repository 181 

and workspace. Briefly, CCDC is a change detection algorithm that uses a combination of linear 182 

and harmonic models to create robust temporal trend estimation and reliable change detection in 183 

remotely sensed data. The CCDC coefficients are then used to generate smoothed annual 184 

synthetic Landsat images. We derived a total of 120 covariates for each year from 1985 to 2022 185 

from six synthetic Landsat bands (Blue, Green, Red, NIR, SWIR-1, SWIR-2) and five derived 186 

indices (NDVI, NDWI, NDSI, NBR, NBR-2) at two dates (May 1 and August 1 to account for 187 

the start of the green-up and the peak of vegetation, respectively). Finally, we used the CCDC 188 

model coefficients themselves as predictors, namely the slope coefficient and the 1st/2nd/3rd-189 

degree cosine and sine coefficients for each of the bands and indices. Including the CCDC model 190 

coefficients as predictors in the random forest model is effective in reducing a false signal of 191 

habitat recruitment following fire events that is produced by rapid vegetation green-up (Witt et 192 

al., 2022). We attributed each location with the CCDC variables from that year. 193 



2.3 Species distribution modeling 194 

We modeled the probability of female fisher habitat using random forest models (Breiman, 2001; 195 

Cutler et al., 2007; Evans et al., 2011), following similar methods to Shirk et al., (2023). We 196 

applied a used-available modeling framework (Elith & Leathwick, 2009), where we randomly 197 

generated 10 available locations for every used location in each subregion-year combination. We 198 

limited available points to a forest mask, where we labeled a pixel as ‘forest’ if it was ever 199 

classified as deciduous, coniferous, or mixed forest by the National Land Cover Database 200 

(NLCD) classification in any period or if the Hansen Global Change Model (Hansen et al., 2013) 201 

predicted forest canopy cover >=20%. We used this conservative forest mask to (1) avoid 202 

projecting habitat models into areas that were unsuitable for female fishers, such as high 203 

montane open areas or shrublands, and (2) to include forest that experienced type conversion to 204 

non-forest during our study period from factors including wildfire, drought, timber harvest, bark 205 

beetle infestation, etc. For each used and available location, we extracted all habitat covariate 206 

values (see above section) at the pixel level (30m cell resolution) by matching the year of habitat 207 

data to the year of detection. 208 

We developed three species distribution models within the GEE environment, trained on 209 

used-available data from each subregion (Fig. 1) to allow for non-stationarity in habitat selection 210 

(Jones, Shirk, et al., 2023). Employing k-fold cross-validation with k = 10, we trained 10 distinct 211 

random forest classifiers for each subregion. These classifiers were structured with 50 trees, 212 

using 12 variables per split, with a bag fraction of 0.5. Data partitioning allocated 90% for model 213 

training, reserving the remaining 10% for model validation. Then, we projected subregion-fold 214 

models onto annual environmental data ranging from 1985 to 2022, capturing the evolving 215 

characteristics of each subregion. For our final female fisher habitat maps, we projected models 216 

onto the region where they were trained, but we also explored the degree to which models were 217 

transferable across regions. Utilizing these models, we computed mean and standard deviation 218 

probability across 10 model iterations. To evaluate the reliability of our SDMs, we analyzed the 219 

mean and standard deviation of the out-of-bag (OOB) error and the area under the receiver 220 

operator curve (AUC) across 10 model runs for each subregion. 221 

Before merging our map of female fisher habitat across the entire study area, we 222 

performed post-processing, specifically re-scaling, on each sub-regional SDM. Because each 223 

SDM was region-specific, this post-processing enabled us to compare across regions and to 224 

enhance the consistency of relative probability predictions. Initially, we calculated the true skill 225 

statistic (Allouche et al., 2006), which aims to minimize both Type I and Type II errors. This 226 

statistic served as the new 0.5 probability value for each sub-model, which we used as a 227 

threshold in a subsequent analysis (see annual habitat summaries below). Then, we determined 228 

the 5th percentile for points classified as available by the models and the 95th percentile for 229 

points classified as used. These percentiles were set as the new 0.0 and 1.0 probabilities, 230 

respectively. 231 



2.4 Annual habitat summaries 232 

To calculate the area of available female fisher habitat for each year, we classified each year’s 233 

SDM into a binary classification of habitat and non-habitat using the afore-mentioned 0.5 234 

threshold. We chose this threshold because it represented the pre-processed true skill statistic and 235 

heuristically described areas that were more likely than not to contain elements known to be 236 

associated with female fisher habitat. Hereafter, we refer to habitat probability values greater 237 

than 0.5 to represent fisher habitat, with relative quality increasing from 0.5 to 1. We summed the 238 

total number of cells classified as habitat (i.e., greater than 0.5), multiplied the sum by the area of 239 

each cell (900m2) to calculate the area of available habitat for each year and within each 240 

subregion. To determine how female fisher habitat trends differed before and after the drought 241 

starting in 2012 (Asner et al., 2015), we fitted a linear model for each subregion and the total 242 

SSN region, evaluating area as a function of time interacting with an indicator variable of 243 

whether the time period was after 2012 or not.  244 

2.5 Fire effects analysis 245 

Within the perimeter of every fire that burned in our study area from 1985–2022, we computed 246 

the relativized burn ratio (RBR) with an offset correction to control for tree mortality that was 247 

not due to the fire (S. Parks et al., 2014). We then converted RBR values to percent canopy cover 248 

loss (Saberi & Harvey, 2023), which we could then classify into burn severity metrics (0-10%: 249 

unburned/unchanged; >10-25%: low; >25-75%: moderate; >75%: high).  250 

We computed the annual changes in habitat area that occurred within fire perimeters and 251 

compared these fire-associated changes with total annual habitat change across the study area. To 252 

estimate fire-associated habitat change for a given year t, we subtracted the total area of habitat 253 

within all fire perimeters in year t−1 from the total area of habitat within all fire perimeters in 254 

year t+1. This two-year moving window allowed us to circumvent the problem of fires burning at 255 

different times throughout the year during year t. To understand how area burned in each burn 256 

severity class changed across the study period, we fitted a linear model measuring the area 257 

burned as a function of the year interacting with the burn severity classification for each 258 

subregion and the total SSN region. 259 

To measure how habitat quality was impacted by fire, we identified the fire boundary and 260 

year the fire burned for each fire and then clipped the associated pre-fire year and post-fire year 261 

SDMs to the fire boundary. We then removed any cells that were below the 0.5 probability 262 

threshold for both the pre-fire and post-fire periods, i.e., any cells that were never considered 263 

‘habitat’. This would ensure that we were including any cells that were above the threshold 264 

before the fire but dropped below the threshold after, or vice versa. To examine the relationship 265 

between pre-fire fisher habitat and burn severity, we used a binomial test to compare the number 266 

of cells of pre-fire fisher habitat that burned in each severity class to a null expectation, which 267 

was the observed proportion of cells in each severity class across the whole Sierra Nevada (i.e., 268 

regardless of whether it was considered fisher habitat). To examine how burn severity influenced 269 

post-fire habitat quality, we calculated the absolute difference in post-fire and pre-fire habitat 270 



quality, plotted the distribution of habitat quality difference and corresponding fire severity, and 271 

calculated the percentage of cells in each burn severity classification that increased in habitat 272 

quality (resulted in >0.05 increase in habitat quality), decreased in habitat quality (resulted in 273 

>0.05 decrease in habitat quality), or remained the same post-fire (changes in habitat between 274 

−0.05 and +0.05).  275 

3. Results 276 

We predicted the amount and distribution of female SSN fisher habitat over a 38-year period 277 

from 1985 through 2022 (Fig. 2). Model fit statistics indicated that our SDMs were highly 278 

accurate, with AUC ranging from 0.994 to 0.996 and out-of-bag (OOB) error ranging from 279 

0.0487 and 0.0703 depending on subregion (Table 1). Models performed best when projected to 280 

the region in which they were trained, and there was some evidence of non-transferability among 281 

regions, particularly the Kern Plateau (Fig. S1). This non-transferability of the Kern Plateau 282 

model was more evident when comparing variable importance among subregions (Fig. S2). 283 

3.1 Long-term changes and trends in fisher habitat 284 

In 1985, our model predicted that there were 164,852 ha of female fisher habitat in the southern 285 

Sierra Nevada. In 2022, we estimated a total of 86,161 ha, which represents a 48% loss; all of the 286 

region-wide net estimated losses occurred between 2012 and 2022 (Fig. 3). Pre-2012, we saw 287 

patterns of fluctuating gains and losses in the SSN region as a whole and in the North region 288 

(Fig. 3) but with no significant overall losses and gains (Fig. S3), while in the Southwest region 289 

we saw an overall slight gain in habitat (Fig. 3, S3). In the North and Southwest subregions, 290 

available habitat declined from 97,080 ha and 32,447 ha in 1985 to 48,955 ha (50% loss) and 291 

13,133 ha (60% loss) in 2022, respectively. As with the aggregate region-wide estimates, all of 292 

these losses occurred between 2012 and 2022. However, habitat in the Kern Plateau responded 293 

differently (Fig. 3). Habitat in this subregion still declined over the study period, dropping from 294 

35,325 ha in 1985 to 24,073 ha in 2022 (32% loss), but only 3% of the total habitat losses in the 295 

Kern Plateau occurred in the last decade. Instead, most of the habitat loss in this subregion 296 

occurred in the late 1990s and early 2000s, when there were several large wildfires in the area 297 

(e.g., the 2002 McNally fire). These patterns were further evident when examining the 298 

coefficients of habitat loss pre- and post-2012 (Table S2, Fig. S3), where we observed significant 299 

habitat losses from 2012–2022 in the North and Southwest subregions and the southern Sierra 300 

Nevada region as a whole, but in contrast the Kern Plateau lost significant habitat in the periods 301 

before 2012 and did not show significant change in habitat after 2012.  302 

3.2 Attribution of fire as a driver of habitat change 303 

A large majority of female fisher habitat losses that occurred over the study period appeared to 304 

be attributable to wildfire (Fig. 2b, 4). When looking at the entire study area in aggregate, 305 

approximately 65% of the total estimated habitat loss occurred within fire perimeters. This 306 

number varied depending on subregion, with the North region showing 62.5% of habitat loss 307 

occurring within fire perimeters, 89% in the Southwest, and 42% in the Kern Plateau. Across the 308 



SSN region, the amount of area in fisher habitat that burned at low, moderate, and high severity 309 

significantly increased across the 38-year study period (βlow = 0.543, 95% CI [0.081, 1.006], 310 

βmoderate = 1.479 [0.450, 2.510], and βhigh = 0.516 [0.191, 0.840]) while unburned/unchanged 311 

areas in fire perimeters did not change significantly. However, in the North region, only the area 312 

that burned at high severity increased significantly (βhigh = 0.383 [0.088, 0.677]); there were no 313 

significant changes in area burned in any fire severity class in the Kern Plateau; and in the 314 

Southwest, all fire severity classes significantly increased from 1985–2022 (βunburned/unchanged = 315 

0.133 [0.0493, 0.217], βlow = 0.347 [0.127, 0.567], βmoderate = 0.886 [0.307, 1.466], and βhigh = 316 

0.323 [0.058, 0.587]; Fig. 5). 317 

3.3 Associations between habitat quality/habitat change and burn severity 318 

When examining pre-fire habitat quality and the classification of fire severity that these cells 319 

burned the following year, 207,487 cells were considered unburned/unchanged, 415,205 burned 320 

at low severity, 841,489 burned at moderate severity, and 213,689 burned at high severity (Fig. 321 

6a). The number of cells that burned at moderate and high severity within female fisher habitat 322 

were greater than expected. For moderate severity, the null (expected) proportion was 0.423 and 323 

the actual proportion was 0.502 (95% CI [0.50001, 0.5023]); for high severity, the null 324 

proportion was 0.043 and the actual proportion was 0.1273 [0.1269, 0.1279]. In contrast, we 325 

found the number of cells within fire perimeters that did not burn/remained unchanged or burned 326 

at low severity to be lower than expected, with null proportions of 0.23 and 0.30 respectively but 327 

actual proportions of 0.124 [0.1232, 0.1242] and 0.247 [0.2468, 0.2481], respectively.  328 

Female fisher habitat that experienced unburned/unchanged and low burn severity did not 329 

experience meaningful changes in habitat quality post-fire, with these two distributions peaked 330 

and centered at zero (Fig. 6b). More than 91% of unburned/unchanged areas and nearly 66% of 331 

low severity burned areas resulted in fisher habitat changes between −0.05 and +0.05 (i.e., near-332 

zero). On the other hand, female fisher habitat that burned at moderate and high severity 333 

experienced substantial declines in post-fire habitat quality (Fig. 6b). Specifically, 90.19% and 334 

98.92% of fisher habitat that burned at moderate and high severity, respectively, decreased in 335 

quality (declines of −0.05 or below). The distributions for habitat change in areas affected by 336 

moderate and high burn severity both were centered around −0.4, indicating that, on average, 337 

habitat quality was reduced by 40% in these two burn severity classes. 338 

4. Discussion 339 

In this paper, we developed a 38-year habitat monitoring system for the southern Sierra Nevada 340 

fisher and used this monitoring system to measure how female SSN fisher habitat changed over 341 

time and space and quantify fire-habitat interactions. Our study produced four major findings: (i) 342 

female SSN fisher habitat declined across the study region by 48%, and a vast majority of that 343 

decline at the range-wide scale occurred over just the past decade between 2012 and 2022; (ii) a 344 

substantial portion (~65%) of habitat losses occurred inside wildfire perimeters, suggesting 345 

wildfires as a major causal agent of habitat change, (iii) moderate and high-severity fire were 346 



associated with decreases in post-fire habitat quality, and (iv) female SSN fisher habitat was 347 

more likely to burn at high severity and less likely to burn at lower severity than expected by 348 

chance alone. Our analysis highlights how rapid, disturbance-driven landscape changes can 349 

transform sensitive species habitat and the need for tools that allow us to monitor changes in 350 

real-time to support conservation and land management. The dynamic SDM workflow we have 351 

developed in GEE allows us to use current data to back-cast as well as rapidly update habitat 352 

data in the future to help address such needs.  353 

Losses to female fisher habitat in the southern Sierra Nevada appear to have been recent 354 

and swift. For over a quarter century from 1985 to 2011, female SSN fisher habitat remained 355 

relatively stable, and even showed evidence of steady and moderate increases in some subregions 356 

of the Sierra Nevada (e.g., North and Southwest subregions, Fig. 3). This observation mirrors the 357 

results of other studies that concluded relative stability in fisher occupancy (W. J. Zielinski et al., 358 

2013)  and fisher resting habitat suitability (W. J. Zielinski & Gray, 2018) prior to 2010. 359 

However, in the decade following 2012, fisher habitat declined by nearly half (48% decrease). 360 

This period of abrupt decline matched our expectations, occurring concomitantly with an 361 

extreme drought from 2012–2016 that resulted in large-scale tree mortality (Asner et al., 2015; 362 

Goulden & Bales, 2019) and a series of unprecedented megafires culminating in the 2020–2021 363 

fire season—the most severe in California’s modern record (Keeley & Syphard, 2021; Safford et 364 

al., 2022)—that together caused widespread changes in forest conditions and loss of habitat for 365 

many California wildlife species (Ayars et al., 2023; Fettig et al., 2019). Another study examined 366 

recent changes to southern Sierra Nevada forests, showing that between 2011–2020, mature 367 

forest extent declined by at least 50% from a combination of drought and wildfire, with many 368 

forested areas transitioning to non-tree vegetation (Steel et al., 2023). Our work, which 369 

specifically models female fisher habitat that will contain elements of mature forest vegetation, 370 

corroborates this evidence by showing a 48% decline in fisher habitat over a similar period, 371 

while also adding longer-term context of apparent fisher habitat stability during the pre-drought 372 

period from 1985–2011. By monitoring not only habitat trends, but also the pace of those trends 373 

and associated drivers, this work can inform management decision-making in times of both 374 

relative stability and rapid change.   375 

Severe wildfires have been identified as a major contributor to declines in fisher habitats 376 

and mature forest vegetation within the region under study (Jones et al., 2016; Steel et al., 2023). 377 

The majority of habitat loss experienced by fishers over the last decade, specifically 65%, could 378 

be directly attributed to these fires. However, fire severity played a significant role in 379 

determining the extent of habitat losses. In areas where wildfires mainly affected understory 380 

vegetation or resulted in low burn severity with only 10-25% overstory canopy mortality, fisher 381 

habitat within the fire perimeters remained largely unaffected. Conversely, moderate to high-382 

severity wildfires consistently led to decreases in fisher habitat quality by an average of 40% 383 

(Fig. 6b), aligning with previous research that indicated decreased fisher movement, abundance, 384 

and colonization rates in areas affected by such fires (Green et al., 2022; Thompson, Smith, et 385 

al., 2021). Thus, the combined evidence suggests that expanding wildfire footprints with higher 386 



severity could result in detrimental consequences for fisher habitats, demographics, and 387 

movement, emphasizing the need for careful consideration of these findings in forest 388 

management strategies within the region. 389 

Not only did high-severity fire reduce female fisher habitat quality, but fisher habitat 390 

appeared more likely to burn at moderate and high severities than was expected by chance. 391 

Observed fire severity class frequencies across the whole southern Sierra Nevada over the study 392 

period indicated that 42% and 4% of all burned areas experienced moderate and high burn 393 

severities, respectively. However, our analysis showed that 50% and 13% of female fisher habitat 394 

burned at moderate and high severity, respectively. Thus, while moderate severity fire occurred 395 

in fisher habitat at a rate 1.2× higher than the broader landscape, high severity fire occurred at a 396 

rate over 4× higher than the broader landscape. This suggests that fisher habitat may be more at 397 

risk of burning than the average vegetation conditions present in the southern Sierra Nevada. 398 

This result, while concerning, is not particularly surprising given the widespread perception that 399 

fishers tend to occupy dense, fire-prone stands, setting up the possible conflict between forest 400 

restoration, fuel reduction, and fisher habitat retention (Jones et al., 2016; Scheller et al., 2011). 401 

A similar apparent conflict is well known for another co-occurring old-forest species, the spotted 402 

owl (Ganey et al., 2017). Recent work has shown that the perceived forest restoration vs. spotted 403 

owl habitat conservation conflict may be a false dichotomy, wherein forest restoration actually 404 

increases vegetation heterogeneity in fire-suppressed forests in ways that provide both direct and 405 

indirect benefits to spotted owls by generating prey habitat and reducing fire-driven habitat loss 406 

(Jones et al., 2022; Kuntze et al., 2023; Wright et al., 2023; Zulla et al., 2022). More work is 407 

urgently needed to examine whether similar win-win opportunities exist for the fisher, and where 408 

and how potential tradeoffs can best be managed to promote both short-term species 409 

conservation and long-term species recovery. For example, our results make it clear that not all 410 

fires impact fisher habitat equally, as low severity fires did not significantly impact fisher habitat 411 

quality. This suggests that managed, prescribed, or cultural burns that burn at low severity or 412 

lower could benefit forest restoration and not conflict with or even aid in fisher conservation. 413 

Given the recent extensive habitat loss attributable to fire and the elevated risk of moderate and 414 

high severity fire faced by female fisher habitat, combined with the projected increase in severe 415 

fire in this area, it is clear that actions to reduce the risk of severe fire to remaining habitat will 416 

be essential to species recovery. 417 

Abrupt and large-scale vegetation changes in response to disturbance is indicative of a 418 

system that may be experiencing eroded resilience. Seasonally dry forests of western North 419 

America (including most of the Sierra Nevada) were historically characterized by tall, old, fire-420 

resistant trees with shifting mosaics of varying densities (Hagmann et al., 2021; Hessburg et al., 421 

2019; Safford & Stevens, 2017). Over many millennia, these forests were highly resilient, 422 

sustained by frequent, low-severity fires that were lightning-ignited or managed by Indigenous 423 

peoples (Safford & Stevens, 2017). However, Euro-American colonization and associated 424 

Indigenous exclusion, selective logging of large trees, and fire suppression policies have 425 

transformed these dynamic and diverse landscapes to be characterized more often by dense 426 



stands of smaller, shade-tolerant and fire-sensitive trees and shrubs and widespread structural 427 

forest landscape homogeneity (Collins et al., 2017; Hagmann et al., 2021; Taylor et al., 2016). 428 

These vegetation changes combined with hotter and drier climate conditions have led to larger 429 

and more severe fires across the western US, including the southern Sierra Nevada region 430 

(Keyser & Westerling, 2019; Steel et al., 2018); Fig. 5b).  431 

As continued increases in severely burned area are expected in the southern Sierra 432 

Nevada and throughout the western U.S. (Abatzoglou et al., 2021), management strategies that 433 

recognize and account for the rapidly changing landscape are necessary to conserve mature 434 

forests that support several species of concern, including the SSN fisher. Rapid habitat losses 435 

observed in our study suggest that business-as-usual conservation approaches may not be 436 

working or are no longer effective to conserve fisher habitat in the southern Sierra Nevada. 437 

Dominant conservation paradigms in much of North America (e.g., conservation reserves, 438 

protected areas) were established during an era of apparent environmental stability, and therefore 439 

embrace a more ‘static’ view of nature (Gaines et al., 2022). Continued reliance on static 440 

conservation paradigms in an era of rapid change could backfire, resulting in increased forest-441 

type conversion and habitat loss. For example, Steel et al. (2023) found that spotted owl 442 

protected areas, where many forest management activities intended to increase resilience are 443 

restricted, experienced significantly more canopy cover loss than non-protected areas following 444 

drought and wildfire. Conservation paradigms that aim to restore a generating process, such as 445 

natural disturbance dynamics, as opposed to those that aim to retain an existing pattern, such as 446 

maintaining a certain acreage of species habitat in specific locations, may be more likely to 447 

succeed in this era of rapid change. The results of this study suggest that conservation 448 

approaches for fishers might achieve better outcomes by implementing a transition towards 449 

adaptive management and process-based restoration within and adjacent to the best remaining 450 

fisher habitat in an effort to reduce fuels and re-introduce natural and Indigenous-managed fire 451 

(Jones et al., 2022; Kimmerer & Lake, 2001; Lake et al., 2017; North et al., 2021), in order to 452 

reduce risk of abrupt fire- and drought-driven losses to remaining habitat. 453 

Nevertheless, our flexible non-stationary modeling approach also identified some areas 454 

that may be acting as larger-scale climate refugia—resisting change or experiencing dampened 455 

changes because of their unique geophysical features or other environmental characteristics. In 456 

the midst of rapid fire-driven habitat losses for southern Sierra Nevada fishers over the past 457 

decade, habitat in our southern-most subregion, the Kern Plateau, remained relatively stable. The 458 

Kern Plateau is a high-elevation forested plateau that is geophysically distinct from the much 459 

more topographically diverse, rugged Sierra Nevada to the north (Webb, 1946). This remote area 460 

is part of a region that is hypothesized to have served as a refugia during a period of intensive 461 

logging and fur trapping in the early 1900s (Tucker et al., 2012), and may serve a similar role in 462 

the future. The area’s unique features may be producing a climate refugia for the southern Sierra 463 

Nevada fisher, buffering remaining habitat in this region from climate- and fire-driven changes 464 

(Keppel et al., 2015; Meddens et al., 2018). Other research investigating progressive canopy 465 

water loss and drought- and fire-driven forest change in the past decade have suggested 466 



congruent dampened effects to this region (Asner et al., 2015; Steel et al., 2023), reinforcing the 467 

possibility that the Kern Plateau is acting as a refugia. Until now, very little was understood 468 

about the distribution and quality of fisher habitat in this region, and further study is needed to 469 

understand the ecology and conservation of fishers in this unique ecoregion. Potential refugia 470 

like the Kern Plateau can act as cornerstones for conservation planning by delaying and/or 471 

buffering catastrophic losses while also acting as population sources in future recovery efforts. 472 

While our study provides several novel and actionable discoveries about fisher habitat in 473 

the southern Sierra Nevada, readers should consider two caveats to better interpret our results. 474 

First, we make inferences about changes to high quality fisher habitat of conservation concern 475 

from the presence of female fishers detected by genetic methods and camera traps. Applying our 476 

modeling approach to other types of data, such as GPS tracking data, den site locations, or 477 

incidental detections would likely yield different conclusions about how habitat has changed, but 478 

it also would change (e.g., broaden or narrow) the type of habitat that is being modeled. As a test 479 

of this possibility, we conducted a parallel analysis in which we used a larger (n = 667) but more 480 

spatially biased dataset of fisher den sites; our results differed numerically but not qualitatively 481 

(see Appendix B). Thus, we feel our general conclusions about habitat change over time are 482 

robust to the type of data used. Second, in attributing the role of wildfire in habitat change (Fig. 483 

4), the effects of drought and fire are confounded to a certain extent (Steel et al., 2023). That is, 484 

in the years after the California megadrought began (post-2012), all wildfires occurred within the 485 

context of the ongoing drought or post-drought tree mortality. Thus, some unknown fraction of 486 

the losses that we attributed to wildfire (65%) may also be partly due to drought. Similarly, 487 

without including an analysis of a complete, validated spatial layer of drought-driven tree 488 

mortality, we cannot be sure what proportion of the unexplained habitat losses were directly 489 

attributable to drought and not other factors such as mechanical activities (e.g., thinning or 490 

timber harvest). However, because Steel et al. (2023) showed that over a similar period, a 491 

maximum of 4% of total forest losses could be attributed to mechanical activities, we are 492 

reasonably confident that a large portion of the remaining 35% of habitat loss that occurred 493 

outside fire perimeters in our study area is directly attributable to effects of the extreme drought 494 

from 2012–2016 and its subsequent effects on the region’s forests rather than thinning or harvest. 495 

5. Concluding remarks 496 

In an era of rapid change, conservation scientists and land managers need tools that can keep up 497 

with accelerating rates of change. The automated habitat monitoring system that we developed 498 

for southern Sierra Nevada fishers represents such a tool for forest and conservation managers, 499 

and such a system could be developed for any species or system, with outputs being used to ask 500 

system-specific questions such as those we asked about fire-habitat interactions (see Jones et al. 501 

2023a). It is important to note that these maps are not a replacement for more traditional, 502 

classified habitat maps which are slower to produce but more directly interpretable on the ground 503 

(e.g., those that relate habitat to specific vegetation metrics, such as canopy cover). Effective 504 



conservation and timely habitat restoration planning in this new era of rapid ecological change 505 

will require careful integration of both information sources whenever possible. 506 

We hope that recent open-source, fully reproducible Google Earth Engine workflows for 507 

dynamic species distribution modeling (Crego et al., 2022; Dobson et al., 2023) will facilitate the 508 

more widespread development and uptake of dynamic and automated habitat models in the 509 

conservation community. Through innovations first introduced by Shirk et al. (2023) and Jones et 510 

al. (2023a), unclassified habitat maps can not only be completed on a timeline much faster than 511 

traditional, classified mapping and modeling efforts, but can also be automated, allowing the 512 

entire process to run on a schedule with little human intervention. This gives managers the tools 513 

they need, updated on a timely basis, and in an accessible form (e.g., see our Google Earth 514 

Engine web application to explore results: https://rmrs-dynamic-515 

sdm.projects.earthengine.app/view/ssn-fisher-habitat-area-time-series) 516 

Acknowledgements 517 

Funding for this work was provided by the US Fish and Wildlife Service, with additional support 518 

from the US Forest Service Washington Office, US Forest Rocky Mountain Research Station, 519 

and the University of New Mexico. Thank you to the technicians of the USFS Region 5 520 

Carnivore Monitoring Program for their fieldwork contributions to provide us the fisher location 521 

data for this study. Thank you to Jessica Brewen, Sharon Parkes, Lisa Bryant, and Jennifer Helm 522 

for their help in reviewing and publishing the Google Earth Engine applications. Thank you to 523 

members of the Jones Lab for their help in reviewing this paper.  524 

References 525 

Abatzoglou, J. T., Battisti, D. S., Williams, A. P., Hansen, W. D., Harvey, B. J., & Kolden, C. A. 526 

(2021). Projected increases in western US forest fire despite growing fuel constraints. 527 

Communications Earth & Environment, 2(1), 1–8. https://doi.org/10.1038/s43247-021-528 

00299-0 529 

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution 530 

models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 531 

43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x 532 

Asner, G. P., Brodrick, P. G., Anderson, C. B., Vaughn, N., Knapp, D. E., & Martin, R. E. (2015). 533 

Progressive forest canopy water loss during the 2012–2015 California drought. 534 

Proceedings of the National Academy of Sciences, 113(August), E249–E255. 535 

https://doi.org/10.1073/pnas.1523397113 536 

Ayars, J., Kramer, H. A., & Jones, G. M. (2023). The 2020 to 2021 California megafires and their 537 

impacts on wildlife habitat. Proceedings of the National Academy of Sciences, 120(48), 538 

e2312909120. https://doi.org/10.1073/pnas.2312909120 539 

Banks, S. C., Cary, G. J., Smith, A. L., Davies, I. D., Driscoll, D. A., Gill, A. M., Lindenmayer, 540 

D. B., & Peakall, R. (2013). How does ecological disturbance influence genetic diversity? 541 

https://rmrs-dynamic-sdm.projects.earthengine.app/view/ssn-fisher-habitat-area-time-series
https://rmrs-dynamic-sdm.projects.earthengine.app/view/ssn-fisher-habitat-area-time-series


Trends in Ecology and Evolution, 28(11), 670–679. 542 

https://doi.org/10.1016/j.tree.2013.08.005 543 

Bowman, D. M. J. S., Kolden, C. A., Abatzoglou, J. T., Johnston, F. H., van der Werf, G. R., & 544 

Flannigan, M. (2020). Vegetation fires in the Anthropocene. Nature Reviews Earth and 545 

Environment, 1(10), 500–515. https://doi.org/10.1038/s43017-020-0085-3 546 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 547 

https://doi.org/10.1023/A:1010933404324 548 

Buskirk, S. W., & Powell, R. (1999). Habitat ecology of fishers and American martens. Martens, 549 

Sables, and Fishers: Biology and Conservation, 283–296. 550 

Collins, B. M., Fry, D. L., Lydersen, J. M., Everett, R., & Stephens, S. L. (2017). Impacts of 551 

different land management histories on forest change. Ecological Applications, 27(8), 552 

2475–2486. https://doi.org/10.1002/eap.1622 553 

Coop, J. D., Parks, S. A., Stevens-Rumann, C. S., Crausbay, S. D., Higuera, P. E., Hurteau, M. 554 

D., Tepley, A., Whitman, E., Assal, T., Collins, B. M., Davis, K. T., Dobrowski, S., Falk, 555 

D. A., Fornwalt, P. J., Fulé, P. Z., Harvey, B. J., Kane, V. R., Littlefield, C. E., Margolis, 556 

E. Q., … Rodman, K. C. (2020). Wildfire-Driven Forest Conversion in Western North 557 

American Landscapes. BioScience, 70(8), 659–673. 558 

https://doi.org/10.1093/biosci/biaa061 559 

Crego, R. D., Stabach, J. A., & Connette, G. (2022). Implementation of species distribution 560 

models in Google Earth Engine. Diversity and Distributions, 28(5), 904–916. 561 

https://doi.org/10.1111/ddi.13491 562 

Curtis, P. S., & Gough, C. M. (2018). Forest aging, disturbance and the carbon cycle. New 563 

Phytologist, 219(4), 1188–1193. https://doi.org/10.1111/nph.15227 564 

Cutler, D. R., Edwards Jr., T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. 565 

(2007). RANDOM FORESTS FOR CLASSIFICATION IN ECOLOGY. Ecology, 88(11), 566 

2783–2792. https://doi.org/10.1890/07-0539.1 567 

Diffenbaugh, N. S., Swain, D. L., & Touma, D. (2015). Anthropogenic warming has increased 568 

drought risk in California. Proceedings of the National Academy of Sciences, 112(13), 569 

3931–3936. https://doi.org/10.1073/pnas.1422385112 570 

Dobson, R., Challinor, A. J., Cheke, R. A., Jennings, S., Willis, S. G., & Dallimer, M. (2023). 571 

dynamicSDM: An R package for species geographical distribution and abundance 572 

modelling at high spatiotemporal resolution. Methods in Ecology and Evolution, 14(5), 573 

1190–1199. https://doi.org/10.1111/2041-210X.14101 574 

Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and 575 

Prediction Across Space and Time. Annual Review of Ecology, Evolution, and 576 

Systematics, 40(1), Article 1. https://doi.org/10.1146/annurev.ecolsys.110308.120159 577 

Evans, J. S., Murphy, M. A., Holden, Z. A., & Cushman, S. A. (2011). Modeling Species 578 

Distribution and Change Using Random Forest. In C. A. Drew, Y. F. Wiersma, & F. 579 

Huettmann (Eds.), Predictive Species and Habitat Modeling in Landscape Ecology: 580 



Concepts and Applications (pp. 139–159). Springer New York. 581 

https://doi.org/10.1007/978-1-4419-7390-0_8 582 

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., 583 

Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, 584 

M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews 585 

of Geophysics, 45(2), 2005RG000183. https://doi.org/10.1029/2005RG000183 586 

Fettig, C. J., Mortenson, L. A., Bulaon, B. M., & Foulk, P. B. (2019). Tree mortality following 587 

drought in the central and southern Sierra Nevada, California, U.S. Forest Ecology and 588 

Management, 432(September 2018), 164–178. 589 

https://doi.org/10.1016/j.foreco.2018.09.006 590 

Gaines, W. L., Hessburg, P. F., Aplet, G. H., Henson, P., Prichard, S. J., Churchill, D. J., Jones, G. 591 

M., Isaak, D. J., & Vynne, C. (2022). Climate change and forest management on federal 592 

lands in the Pacific Northwest, USA: Managing for dynamic landscapes. Forest Ecology 593 

and Management, 504, 119794. https://doi.org/10.1016/j.foreco.2021.119794 594 

Ganey, J. L., Wan, H. Y., Cushman, S. A., & Vojta, C. D. (2017). Conflicting perspectives on 595 

spotted owls, wildfire, and forest restoration. Fire Ecology, 13(3), 146–165. 596 

https://doi.org/10.4996/fireecology.130318020 597 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 598 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 599 

Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 600 

Goulden, M., & Bales, R. (2019). California forest die-off linked to multi-year deep soil drying 601 

in 2012–2015 droughttle. Nature Geosciences, 12, 632–637. 602 

Green, D. S., Martin, M. E., Powell, R. A., McGregor, E. L., Gabriel, M. W., Pilgrim, K. L., 603 

Schwartz, M. K., & Matthews, S. M. (2022). Mixed-severity wildfire and salvage logging 604 

affect the populations of a forest-dependent carnivoran and a competitor. Ecosphere, 605 

13(1), Article 1. https://doi.org/10.1002/ecs2.3877 606 

Hagmann, R. K., Hessburg, P. F., Prichard, S. J., Povak, N. A., Brown, P. M., Fulé, P. Z., Keane, 607 

R. E., Knapp, E. E., Lydersen, J. M., Metlen, K. L., Reilly, M. J., Sánchez Meador, A. J., 608 

Stephens, S. L., Stevens, J. T., Taylor, A. H., Yocom, L. L., Battaglia, M. A., Churchill, D. 609 

J., Daniels, L. D., … Waltz, A. E. M. (2021). Evidence for widespread changes in the 610 

structure, composition, and fire regimes of western North American forests. Ecological 611 

Applications, e02431. https://doi.org/10.1002/eap.2431 612 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, 613 

D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., 614 

Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st 615 

century forest cover change. Science, 134(November), 850–854. 616 

Hessburg, P. F., Miller, C. L., Parks, S. A., Povak, N. A., Taylor, A. H., Higuera, P. E., Prichard, 617 

S. J., North, M. P., Collins, B. M., Hurteau, M. D., Larson, A. J., Allen, C. D., Stephens, 618 

S. L., Rivera-Huerta, H., Stevens-Rumann, C. S., Daniels, L. D., Gedalof, Z., Gray, R. 619 

W., Kane, V. R., … Salter, R. B. (2019). Climate, Environment, and Disturbance History 620 



Govern Resilience of Western North American Forests. Frontiers in Ecology and 621 

Evolution, 7(July), 1–27. https://doi.org/10.3389/fevo.2019.00239 622 

Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, 623 

M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. 624 

G. (2016). Changing disturbance regimes, ecological memory, and forest resilience. 625 

Frontiers in Ecology and the Environment, 14(7), 369–378. 626 

https://doi.org/10.1002/fee.1311 627 

Jones, G. M., Goldberg, J. F., Wilcox, T. M., Buckley, L. B., Parr, C. L., Linck, E. B., Fountain, 628 

E. D., & Schwartz, M. K. (2023). Fire-driven animal evolution in the Pyrocene. Trends in 629 

Ecology & Evolution, xx(xx), 1–13. https://doi.org/10.1016/j.tree.2023.06.003 630 

Jones, G. M., Gutiérrez, R. J., Tempel, D. J., Whitmore, S. A., Berigan, W. J., & Peery, M. Z. 631 

(2016). Megafires: An emerging threat to old-forest species. Frontiers in Ecology and the 632 

Environment, 14(6), 300–306. 633 

Jones, G. M., Keyser, A. R., Westerling, A. L., Baldwin, W. J., Keane, J. J., Sawyer, S. C., Clare, 634 

J. D. J., Gutiérrez, R. J., & Peery, M. Z. (2022). Forest restoration limits megafires and 635 

supports species conservation under climate change. Frontiers in Ecology and the 636 

Environment, 20(4), 210–216. https://doi.org/10.1002/fee.2450 637 

Jones, G. M., Shirk, A. J., Yang, Z., Davis, R. J., Ganey, J. L., Gutiérrez, R. J., Healey, S. P., 638 

Hedwall, S. J., Hoagland, S. J., Maes, R., Malcolm, K., McKelvey, K. S., Sanderlin, J. S., 639 

Schwartz, M. K., Seamans, M. E., Wan, H. Y., & Cushman, S. A. (2023). Spatial and 640 

temporal dynamics of Mexican spotted owl habitat in the southwestern US. Landscape 641 

Ecology, 38(1), 23–37. https://doi.org/10.1007/s10980-022-01418-8 642 

Keeley, J. E., & Pausas, J. G. (2022). Evolutionary Ecology of Fire. Annual Review of Ecology, 643 

Evolution, and Systematics, 53, 2022. https://doi.org/10.1146/annurev-ecolsys-102320 644 

Keeley, J. E., & Syphard, A. D. (2021). Large California wildfires: 2020 fires in historical 645 

context. Fire Ecology, 17(1). https://doi.org/10.1186/s42408-021-00110-7 646 

Keppel, G., Mokany, K., Wardell-Johnson, G. W., Phillips, B. L., Welbergen, J. A., & Reside, A. 647 

E. (2015). The capacity of refugia for conservation planning under climate change. 648 

Frontiers in Ecology and the Environment, 13, 106–112. https://doi.org/10.1890/140055 649 

Keyser, A. R., & Westerling, A. L. (2019). Predicting increasing high severity area burned for 650 

three forested regions in the western United States using extreme value theory. Forest 651 

Ecology and Management, 432(September 2018), 694–706. 652 

https://doi.org/10.1016/j.foreco.2018.09.027 653 

Kimmerer, R. W., & Lake, F. K. (2001). The Role of Indigenous Burning in Land Management. 654 

Journal of Forestry, 99(11), 36–41. https://doi.org/10.1093/jof/99.11.36 655 

Kordosky, J. R., Gese, E. M., Thompson, C. M., Terletzky, P. A., Purcell, K. L., & Schneiderman, 656 

J. D. (2021). Landscape use by fishers ( Pekania pennanti ): Core areas differ in habitat 657 

than the entire home range. Canadian Journal of Zoology, 99(4), Article 4. 658 

https://doi.org/10.1139/cjz-2020-0073 659 



Kuntze, C. C., Pauli, J. N., Zulla, C. J., Keane, J. J., Roberts, K. N., Dotters, B. P., Sawyer, S. C., 660 

& Peery, M. Z. (2023). Landscape heterogeneity provides co-benefits to predator and 661 

prey. Ecological Applications, 33(8), e2908. https://doi.org/10.1002/eap.2908 662 

Lake, F. K., Wright, V., Morgan, P., McFadzen, M., McWethy, D., & Stevens-Rumann, C. 663 

(2017). Returning Fire to the Land: Celebrating Traditional Knowledge and Fire. Journal 664 

of Forestry, 115(5), 343–353. https://doi.org/10.5849/jof.2016-043R2 665 

Liebmann, M. J., Farella, J., Roos, C. I., Stack, A., Martini, S., & Swetnam, T. W. (2016). Native 666 

American depopulation, reforestation, and fire regimes in the Southwest United States, 667 

1492–1900 CE. Proceedings of the National Academy of Sciences, 113(6), E696–E704. 668 

https://doi.org/10.1073/pnas.1521744113 669 

Lofroth, E. C., Raley, C. M., Higley, J. M., Truex, R. L., Yaeger, J. S., Lewis, J. C., Happe, P. J., 670 

Finley, L. L., Naney, R. H., Hale, L. J., Krause, A. L., Livingston, S. A., Myers, A. M., & 671 

Brown, R. N. (2010). Conservation of Fishers (Martes pennanti) in South-Central British 672 

Columbia, Western Washington, Western Oregon, and California–Volume I: Conservation 673 

Assessment. 674 

Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Smith, A. M. S., Cansler, C. A., Abatzoglou, J. T., 675 

Meigs, G. W., Downing, W. M., & Krawchuk, M. A. (2018). Fire Refugia: What Are 676 

They, and Why Do They Matter for Global Change? BioScience, 68(12), 944–954. 677 

https://doi.org/10.1093/biosci/biy103 678 

North, M. P., York, R. A., Collins, B. M., Hurteau, M. D., Jones, G. M., Knapp, E. E., Kobziar, 679 

L., McCann, H., Meyer, M. D., Stephens, S. L., Tompkins, R. E., & Tubbesing, C. L. 680 

(2021). Pyrosilviculture Needed for Landscape Resilience of Dry Western United States 681 

Forests. Journal of Forestry, 119(5), 520–544. https://doi.org/10.1093/jofore/fvab026 682 

Parks, S. A., & Abatzoglou, J. T. (2020). Warmer and Drier Fire Seasons Contribute to Increases 683 

in Area Burned at High Severity in Western US Forests From 1985 to 2017. Geophysical 684 

Research Letters, 47(22). https://doi.org/10.1029/2020GL089858 685 

Parks, S., Dillon, G., & Miller, C. (2014). A New Metric for Quantifying Burn Severity: The 686 

Relativized Burn Ratio. Remote Sensing, 6(3), 1827–1844. 687 

https://doi.org/10.3390/rs6031827 688 

Pickett, S. T. A., & White, P. S. (1985). The ecology of natural disturbance and patch dynamics. 689 

Academic Press. 690 

Purcell, K. L., Mazzoni, A. K., Mori, S. R., & Boroski, B. B. (2009). Resting structures and 691 

resting habitat of fishers in the southern Sierra Nevada, California. Forest Ecology and 692 

Management 258(12): 2696-2706, 258(12), Article 12. 693 

https://doi.org/10.1016/j.foreco.2009.09.041 694 

Raley, C. M., Lofroth, E., Truex, R., Yaeger, J., & Higley, M. (2017). 10. Habitat Ecology of 695 

Fishers in Western North America: A New Synthesis: A New Synthesis. 696 

https://doi.org/10.7591/9780801466076-013 697 



Saberi, S. J., & Harvey, B. J. (2023). What is the color when black is burned? Quantifying 698 

(re)burn severity using field and satellite remote sensing indices. Fire Ecology, 19(1), 24. 699 

https://doi.org/10.1186/s42408-023-00178-3 700 

Safford, H. D., Paulson, A. K., Steel, Z. L., Young, D. J. N., & Wayman, R. B. (2022). The 2020 701 

California fire season: A year like no other, a return to the past or a harbinger of the 702 

future? Global Ecology and Biogeography, 31(10), 2005–2025. 703 

https://doi.org/10.1111/geb.13498 704 

Safford, H. D., & Stevens, J. T. (2017). Natural range of variation for yellow pine and mixed-705 

conifer forests in the Sierra Nevada, Southern Cascades, and Modoc and Inyo National 706 

Forests, California , USA (Issue September). PSW-GTR-256. 707 

Scheller, R. M., Spencer, W. D., Rustigian-Romsos, H., Syphard, A. D., Ward, B. C., & Strittholt, 708 

J. R. (2011). Using stochastic simulation to evaluate competing risks of wildfires and 709 

fuels management on an isolated forest carnivore. Landscape Ecology, 26, 1491–1504. 710 

https://doi.org/10.1007/s10980-011-9663-6 711 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., 712 

Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M., Trotsiuk, V., Mairota, P., Svoboda, M., 713 

Fabrika, M., Nagel, T., & Reyer, C. (2017). Forest disturbances under climate change. 714 

Nature Climate Change, 7(6), 395–402. https://doi.org/10.1038/nclimate3303 715 

Shirk, A. J., Jones, G. M., Yang, Z., Davis, R. J., Ganey, J. L., Gutiérrez, R. J., Healey, S. P., 716 

Hedwall, S. J., Hoagland, S. J., Maes, R., Malcolm, K., McKelvey, K. S., Vynne, C., 717 

Sanderlin, J. S., Schwartz, M. K., Seamans, M. E., Wan, H. Y., & Cushman, S. A. (2023). 718 

Automated habitat monitoring systems linked to adaptive management: A new paradigm 719 

for species conservation in an era of rapid environmental change. Landscape Ecology, 720 

38(1), 7–22. https://doi.org/10.1007/s10980-022-01457-1 721 

Sousa, W. P. (1984). The role of disturbance in natural communities. Annual Review of Ecology 722 

and Systematics, 15(1), 353–391. https://doi.org/10.1146/annurev.es.15.110184.002033 723 

Spencer, W. D., Sawyer, S. C., Romsos, H. L., Zielinski, W. J., Thompson, C. M., & Britting, S. 724 

A. (2016). Southern Sierra Nevada fisher conservation strategy (Version 1.0). 725 

Unpublished report produced by Conservation Biology Institute. 726 

Steel, Z. L., Jones, G. M., Collins, B. M., Green, R., Koltunov, A., Purcell, K. L., Sawyer, S. C., 727 

Slaton, M. R., Stephens, S. L., Stine, P., & Thompson, C. (2023). Mega-disturbances 728 

cause rapid decline of mature conifer forest habitat in California. Ecological 729 

Applications, 33(2), e2763. https://doi.org/10.1002/eap.2763 730 

Steel, Z. L., Koontz, M. J., & Safford, H. D. (2018). The changing landscape of wildfire: Burn 731 

pattern trends and implications for California’s yellow pine and mixed conifer forests. 732 

Landscape Ecology, 33(7), 1159–1176. https://doi.org/10.1007/s10980-018-0665-5 733 

Stephens, S. L., Collins, B. M., Fettig, C. J., Finney, M. A., Hoffman, C. M., Knapp, E. E., 734 

North, M. P., Safford, H., & Wayman, R. B. (2018). Drought, tree mortality, and wildfire 735 

in forests adapted to frequent fire. BioScience, 68(2), 77–88. 736 

https://doi.org/10.1093/biosci/bix146 737 



Taylor, A. H., Trouet, V., Skinner, C. N., & Stephens, S. L. (2016). Socioecological transitions 738 

trigger fire regime shifts and modulate fire-climate interactions in the Sierra nevada, 739 

USA, 1600-2015 CE. Proceedings of the National Academy of Sciences, 113(48), 13684–740 

13689. https://doi.org/10.1073/pnas.1609775113 741 

Thompson, C. M., Romsos, H., Spencer, W. D., Sawyer, S. C., Tucker, J. M., & Green, R. E. 742 

(2021). Southern Sierra Nevada Fisher Conservation Strategy Supplemental Report—743 

Fisher Reproductive Habitat Model Following Severe Drought. 744 

https://doi.org/10.6084/m9.figshare.16828570.v1 745 

Thompson, C. M., Smith, H., Green, R., Wasser, S., & Purcell, K. (2021). Fisher Use of Postfire 746 

Landscapes: Implications for Habitat Connectivity and Restoration. Western North 747 

American Naturalist, 81(2), Article 2. https://doi.org/10.3398/064.081.0207 748 

Tredennick, A. T., Hooker, G., Ellner, S. P., & Adler, P. B. (2021). A practical guide to selecting 749 

models for exploration, inference, and prediction in ecology. Ecology, 102(6). 750 

https://doi.org/10.1002/ecy.3336 751 

Tucker, J. M. (2013). Assessing changes in connectivity and abundance through time for fisher in 752 

the southern Sierra Nevada. Graduate Student Theses, Dissertations, & Professional 753 

Papers, 57. https://scholarworks.umt.edu/etd/57/ 754 

Tucker, J. M., King, C., Lekivetz, R., Murdoch, R., Jewell, Z. C., & Alibhai, S. K. (2024). 755 

Development of a non-invasive method for species and sex identification of rare forest 756 

carnivores using footprint identification technology. Ecological Informatics, 79, 102431. 757 

https://doi.org/10.1016/j.ecoinf.2023.102431 758 

Tucker, J. M., Schwartz, M. K., Truex, R. L., Pilgrim, K. L., & Allendorf, F. W. (2012). 759 

Historical and Contemporary DNA Indicate Fisher Decline and Isolation Occurred Prior 760 

to the European Settlement of California. PLOS ONE, 7(12), 1–13. 761 

https://doi.org/10.1371/journal.pone.0052803 762 

Tucker, J. M., Schwartz, M. K., Truex, R. L., Wisely, S. M., & Allendorf, F. W. (2014). Sampling 763 

affects the detection of genetic subdivision and conservation implications for fisher in the 764 

Sierra Nevada. Conservation Genetics, 15(1), 123–136. https://doi.org/10.1007/s10592-765 

013-0525-4 766 

Turner, M. G. (1989). Landscape ecology: The effect of pattern on process. Annual Review of 767 

Ecology and Systematics, 20(1), 171–197. 768 

https://doi.org/10.1146/annurev.es.20.110189.001131 769 

Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 770 

91(March), 2833–2849. 771 

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally Downscaled and Spatially 772 

Customizable Climate Data for Historical and Future Periods for North America. PLoS 773 

ONE, 11(6), e0156720. https://doi.org/10.1371/journal.pone.0156720 774 

Webb, R. W. (1946). Geomorphology of the middle Kern River Basin, southern Sierra Nevada, 775 

California. GSA Bulletin, 57(4), 355–382. https://doi.org/10.1130/0016-776 

7606(1946)57[355:GOTMKR]2.0.CO;2 777 



Weir, R. D., & Corbould, F. B. (2010). Factors Affecting Landscape Occupancy by Fishers in 778 

North-Central British Columbia. The Journal of Wildlife Management, 74(3), 405–410. 779 

Westerling, A. L. (2016). Increasing western US forest wildfire activity: Sensitivity to changes in 780 

the timing of Spring. Philosophical Transactions of the Royal Society of London. Series 781 

B, Biological Sciences. https://doi.org/10.1098/rstb.2015.0178 782 

Wimberly, M. C. (2006). Species dynamics in disturbed landscapes: When does a shifting habitat 783 

mosaic enhance connectivity? Landscape Ecology, 21(1), 35–46. 784 

https://doi.org/10.1007/s10980-005-7757-8 785 

Witt, C., Davis, R. J., Yang, Z., Ganey, J. L., Gutiérrez, R. J., Healey, S., Hedwall, S., Hoagland, 786 

S., Maes, R., Malcolm, K., Sanderlin, J., Seamans, M., & Jones, G. M. (2022). Linking 787 

robust spatiotemporal datasets to assess and monitor habitat attributes of a threatened 788 

species. PLoS ONE, 17(3 March), 1–22. https://doi.org/10.1371/journal.pone.0265175 789 

Wright, M. E., Zachariah Peery, M., Ayars, J., Dotters, B. P., Roberts, K. N., & Jones, G. M. 790 

(2023). Fuels reduction can directly improve spotted owl foraging habitat in the Sierra 791 

Nevada. Forest Ecology and Management, 549(July), 121430. 792 

https://doi.org/10.1016/j.foreco.2023.121430 793 

Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land 794 

cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171. 795 

https://doi.org/10.1016/j.rse.2014.01.011 796 

Zielinski, B., & Mori, S. (2001). What is the status and change in the geographic distribution 797 

and relative abundance of fishers? 798 

Zielinski, W. J., Baldwin, J. A., Truex, R. L., Tucker, J. M., & Flebbe, P. A. (2013). Estimating 799 

Trend in Occupancy for the Southern Sierra Fisher Martes pennanti Population. Journal 800 

of Fish and Wildlife Management, 4(1), 3–19. https://doi.org/10.3996/012012-JFWM-002 801 

Zielinski, W. J., & Gray, A. N. (2018). Using routinely collected regional forest inventory data to 802 

conclude that resting habitat for the fisher (Pekania pennanti) in California is stable over 803 

∼20 years. Forest Ecology and Management. 409: 899-908, 409, 899–908. 804 

https://doi.org/10.1016/j.foreco.2017.12.025 805 

Zielinski, W. J., Truex, R. L., Schmidt, G. A., Schlexer, F. V., Schmidt, K. N., & Barrett, R. H. 806 

(2004a). Home range characteristics of fishers in California. Journal of Mammalogy 807 

85(4): 649-657, 85(4), Article 4. 808 

Zielinski, W. J., Truex, R. L., Schmidt, G. A., Schlexer, F. V., Schmidt, K. N., & Barrett, R. H. 809 

(2004b). Resting habitat selection by fishers in California. Journal of Wildlife 810 

Management 68 (3): 475-492, 68(3), Article 3. https://doi.org/10.2193/0022-811 

541x(2004)068[0475:rhsbfi]2.0.co;2 812 

Zielinski, W. J., Tucker, J. M., & Rennie, K. M. (2017). Niche overlap of competing carnivores 813 

across climatic gradients and the conservation implications of climate change at 814 

geographic range margins. Biological Conservation, 209, 533–545. 815 

https://doi.org/10.1016/j.biocon.2017.03.016 816 



Zulla, C. J., Kramer, H. A., Jones, G. M., Keane, J. J., Roberts, K. N., Dotters, B. P., Sawyer, S. 817 

C., Whitmore, S. A., Berigan, W. J., Kelly, K. G., Wray, A. K., & Peery, M. Z. (2022). 818 

Large trees and forest heterogeneity facilitate prey capture by California Spotted Owls. 819 

Ornithological Applications, 124(3), duac024. https://doi.org/10.1093/ornithapp/duac024 820 

 821 

Data Accessibility Statement 822 

Data supporting the conclusions in this analysis are available here: 823 

https://datadryad.org/stash/share/rU1uBJuzt0DKijrqWMccgiHS4oij7R5IWLq8-OfcTSg. With 824 

permission from the journal editors, the precision of location data have been reduced to facilitate 825 

protection of this threatened distinct population segment.  826 

  827 

https://datadryad.org/stash/share/rU1uBJuzt0DKijrqWMccgiHS4oij7R5IWLq8-OfcTSg


Tables 828 

Table 1. Predictive statistics for female SSN fisher random forest species distribution models. 829 

We report the mean and standard deviation (across all 10 model folds) of the out-of-bag (OOB) 830 

error and area under the receiver operator curve (AUC) for each regional sub-model. 831 

Region OOB Error AUC 

North 0.0523 (0.0039) 0.996 (0.0029) 

Southwest 0.0487 (0.0029) 0.996 (0.0024) 

Kern Plateau 0.0703 (0.0052) 0.994 (0.0065) 

 832 

  833 



Figures 834 

 835 

Figure 1. Study area and southern Sierra Nevada fisher location data. (a) Map of female SSN 836 

female locations from non-invasive collection methods (colored points) within forested areas 837 

(green) in the study area in relation to the Sierra Nevada with the subregions: (1) North, (2) 838 

Southwest, and (3) Kern Plateau. (b) Photo of a fisher, Pekania pennanti. Photo by Zane Miller, 839 

USFS Pacific Southwest Research Station, used with permission. 840 
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 842 

Figure 2: (a) Probability of female fisher habitat in 2022 with an inset of the Kern Plateau and 843 

(b) the change in habitat quality from 1985 to 2022, with red cells showing a decrease in quality 844 

and blue showing an increase, with black borders indicating wildfire boundaries and insets of (c) 845 

the 2017 Railroad fire and (d) the Kern Plateau.  846 
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 848 

Figure 3. Habitat trends from 1985 to 2022 of (a) the SSN as a whole and (b) by subregion. 849 

Values on the y-axis represent area in 1000s of hectares, such that a value of 100 indicates 850 

100,000 hectares. 851 

  852 



 853 

Figure 4. Change in habitat area, where each year marks the difference between the previous 854 

year’s area from the following year’s area. Panel (a) shows the change in habitat in the entire 855 

SSN region and panel (b) shows the changes in each subregion’s habitat. The darker line 856 

indicates change in area in the entire region while the lighter line indicates change specifically 857 

within fire perimeters that occurred that year. Values on the y-axis represent change in area in 858 

1000s of hectares, such that a value of 10 indicates 10,000 hectares. 859 
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 861 

Figure 5. (a) Histogram of area burned in each fire severity class within SSN fisher habitat 862 

across the 38-year study period; (b) coefficients and 95% confidence intervals from a linear 863 

model of trends in burned area for each burn severity class across the 38-year study period in the 864 

SSN region as a whole or by subregion. Semi-transparent points and lines indicate that the 95% 865 

confidence intervals overlapped with zero and were thus insignificant. 866 
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 868 

Figure 6. (a) Distribution of pre-fire habitat quality within the fire severity class in which they 869 

burned the following year, and the results of the binomial test performed for the number of cells 870 

burned in each category compared to the null expectation; (b) distribution of habitat quality 871 

change pre- and post-fire within each fire severity class. 872 



Appendix A 873 

 874 

Table S1. Covariates used in the random forest species distribution models for SSN fisher. 875 

Covariate class Covariate name Abbreviation (Units) 

Topography 

Topographic ruggedness index TRI 

Slope slp (°) 

Heat load index HLI 

Topographic wetness index TWI 

Topographic position index  TPI_[90, 180, 360, 720, 1440] (m) 

Climate 

Average min temperature (spring, summer, 
autumn, winter; 30-year normal) 

Tmin_[sp, sm, at, wt] (°C) 

Average max temperature (spring, 
summer, autumn, winter; 30-year normal) 

Tmax_[sp, sm, at, wt] (°C) 

Mean temperature (spring, summer, 
autumn, winter; 30-year normal) 

Tave_[sp, sm, at, wt] (°C) 

Precipitation (spring, summer, autumn, 
winter; 30-year normal) 

PPT_[sp, sm, at, wt] (mm) 

Precipitation as snow (spring, summer, 
autumn, winter; 30-year normal) 

PAS_[sp, sm, at, wt] (mm) 

Growing degree days (spring, summer, 
autumn, winter; 30-year normal) 

DD5_[sp, sm, at, wt] (°C) 

Reflectance 

May 1/Aug 1 Landsat bands (CCDC 
predictions) 

blue, green, red, nir, swir1, 
swir2_[may1, aug1] 

May 1/Aug 1 Landsat bands (CCDC model 
coefficients) 

blue, green, red, nir, swir1, 
swir2_[SLP, COS(1, 2, 3), SIN(1, 2, 
3)]_[may1, aug1] 

May 1/Aug 1 normalized difference 
vegetation index 

NDVI_[may1, aug1] 

May 1/Aug 1 normalized difference water 
index 

NDWI_[may1, aug1] 



May 1/Aug 1 normalized difference snow 
index 

NDSI_[may1, aug1] 

May 1/Aug 1 normalized burn ratio NBR_[may1, aug1] 

May 1/Aug 1 normalized burn ratio 2 NBR2_[may1, aug1] 

876 



Table S2: Beta coefficients (and associated standard error) of the rate of habitat change in the 877 

total southern Sierra Nevada as well as each subregion, and how this rate of change differed 878 

before or after 2012.  879 

Region Period β (SE) 

Total 
Pre-2012 -0.124 (0.092) 

Post-2012 -8.056 (0.354) 

North 
Pre-2012 -0.034 (0.088) 

Post-2012 -5.812 (0.339) 

Southwest 
Pre-2012 0.330 (0.0572) 

Post-2012 -2.343 (0.221) 

Kern Plateau 
Pre-2012 -0.421 (0.077) 

Post-2012 0.099 (0.299) 

 880 
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 882 

 883 

Figure S1. The area under the receiver operator curve (AUC) for each training region and the 884 

region its model was projected to. The error bars represent the 95% confidence intervals across 885 

the 10 folds. 886 

  887 



 888 

Figure S2. The relative importance of all variables used in each region-model. The colors 889 

represent the category of environmental class the variable belongs to and the range lines show 890 

the 95% confidence intervals across the 10 folds.  891 
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 894 

Figure S3. Coefficients and 95% confidence intervals from a linear model of trends in habitat 895 

area in the SSN region as a whole (black) or by subregion from 1985–2012 (circle point and 896 

solid line) and 2012–2022 (triangle point and dashed line). Transparent points and lines indicate 897 

that the 95% confidence intervals crossed 0, meaning insignificant results. 898 
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Appendix B: Den site results 901 

We replicated methods explained in the main text with an alternative dataset comprised of known 902 

and possible denning sites (n=667, Fig. B1). However, these data are spatially biased, with the 903 

majority of locations found in the North region (n=646), only some in the Southwest region 904 

(n=21), and none in the Kern Plateau. Because of this, we did not fit a model for each subregion 905 

as we did in the main text and instead pooled all locations and fit a single global model and 906 

excluded the Kern Plateau from our mapping projections. Besides this modification, all other 907 

methods are identical to those in the main text.  908 

We predicted the amount and distribution of SSN fisher denning habitat from 1985 through 2022 909 

(Fig. B2). Similar to the results in the main text, this model was very accurate: across ten folds, 910 

the average AUC was 0.997 and the average out-of-bag error was 0.0485 (Table B1). 911 

Our model predicted there was approximately 85,972 ha of potential denning habitat in 1985 and 912 

48,862 ha in 2022, indicating to a loss of nearly 37,109 ha or about 43% decline (Fig. B3a). This 913 

decline mostly occurred after 2012 (β=-4.61, SE = 0.0338; Fig. B3b). When examining declines 914 

that occurred within fire perimeters compared to total change, about 49.5% of habitat loss 915 

occurred within fire perimeters (Fig. B3c).  916 

Across our modeled denning habitat, moderate and high severity fire significantly increased from 917 

1985 to 2022 (moderate: β=1.019, SE = 0.48; high: β=0.641, SE = 0.28) while areas that burned 918 

at low or lower severity did not significantly change across the study period (Fig. B4).  919 

When examining burned area and severity across the study period within pre-fire denning 920 

habitat, 227,467 cells were considered unburned/unchanged, 266,307 burned at low severity, 921 

659,158 burned at moderate severity, and 448,680 burned at high severity (Fig. B5a). The 922 

number of cells that burned at moderate severity within fisher denning habitat was greater than 923 

expected, with a null (expected) proportion of 0.300 and an actual proportion of 0.412 (95% CI 924 

[0.4108, 0.4123]). In contrast, the number of cells within fire perimeters that did not 925 

burn/remained unchanged or burned at high severity was lower than expected, with null 926 

proportions of 0.214 and 0.320 respectively but actual proportions of 0.142 [0.1415, 0.1426] and 927 

0.280 [0.2794, 0.2808] respectively. The null compared to the actual probability of cells that 928 

burned at low severity was insignificant (Fig. B5a).  929 

Fisher denning habitat that burned at low severity or lower did not experience meaningful 930 

changes in habitat quality post-fire, as these two distributions were both centered around zero 931 

(Fig. B5b). Areas that burned at moderate or high severity showed two peaks in their distribution, 932 

one peak centered at zero and one around -0.4 (indicating a loss of quality of around 40%). 933 

However, the percentage of cells that burned at moderate severity fire and showed little to no 934 

significant change in quality was around 22%, while this percentage for areas that burned at high 935 

severity was around 65%. In contrast, the percentage of cells that burned and significantly 936 

changed in habitat quality after was around 75% for moderate severity fires and 32% for high 937 

severity fires (Fig. B5b).  938 



 939 

Table B1. Predictive statistics for the random forest species distribution models of SSN fisher 940 

denning habitat. We report the mean and standard deviation (across 10 model folds) of the out-941 

of-bag (OOB) error and area under the receiver operator curve (AUC) for each regional sub-942 

model. 943 

Model fit statistic  Mean value Standard deviation 

OOB error 0.0485 0.0013 

AUC 0.997 0.00050 

  944 



 945 

 946 

Figure B1: Map of fisher denning locations (n=667) within the southern Sierra Nevada. Note 947 

that most locations are found within the North region (n=646), with only some locations found 948 

within the Southwest region (n=21) and none in the Kern Plateau (excluded from this figure).   949 



 950 

Figure B2: (a) Probability of fisher denning habitat in 2022 and (b) the change in habitat quality 951 

from 1985 to 2022, with red cells showing a decrease in quality and blue showing an increase.   952 



 953 

Figure B3: (a) Denning habitat trends from 1985 to 2022; (b) coefficients and 95% confidence 954 

intervals from a linear model of trends in denning habitat area in the SSN region from 1985–955 

2012 (circle point and solid line) and 2012–2022 (triangle point and dashed line) with 956 

transparency indicating if results were significant or not; (c) Change in habitat area, where each 957 

year marks the difference between the previous year’s area from the following year’s area; the 958 

darker line indicates change in area in the entire region while the lighter line indicates change 959 

specifically within fire perimeters that occurred that year. Values on the y-axis represent area in 960 

1000s of hectares, such that a value of 100 indicates 100,000 hectares.   961 



 962 

Figure B4: (a) Histogram of area burned in each fire severity class within SSN fisher denning 963 

habitat across the 38-year study period; (b) coefficients and 95% confidence intervals from a 964 

linear model of trends in burned area for each burn severity class across the 38-year study period; 965 

semi-transparent points and lines indicate that the 95% confidence intervals overlapped with zero 966 

and were thus insignificant. 967 

  968 



 969 

Figure B5: (a) Distribution of pre-fire habitat quality within the fire severity class in which they 970 

burned the following year, and the results of the binomial test performed for the number of cells 971 

burned in each category compared to the null expectation; (b) distribution of habitat quality 972 

change pre- and post-fire within each fire severity class. 973 
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