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Abstract The field of systematics is central to how we understand, classify, and discuss organisms and
their evolution. Systematics directly or indirectly touches every branch of biology. Over the last 50 years,
methods in the field have been continually reshaped by advancing technologies, transitioning from pri-
marily relying on morphological data to utilizing genomic-scale data sets. As the methods systematists use
have changed, so too has our understanding of deep evolutionary relationships among flowering plants. In
this primer, we illustrate advances in systematic methods using two closely related botanical orders, Liliales
and Asparagales. Members of these orders were once both considered part of the same family, Liliaceae.
Molecular data steered us towards a more refined understanding, validating the decision to split Liliaceae
into several currently recognized orders including Liliales and Asparagales. In early molecular studies pri-
marily using chloroplast data, Liliales was most closely related to the group containing Asparagales and
another lineage, commelinids. Over the past decade, the increasing availability of large-scale nuclear data
across non-model plants has made possible several studies that demonstrate a direct sister clade relation-
ship between Liliales and Asparagales. Here, we summarize the history of angiosperm systematics and
demonstrate how advances in theory and practice have shaped the relative placements of Liliales and As-
paragales in the monocot phylogeny. We further discuss the impact of a sister relationship among Liliales
and Asparagales on our understanding of monocot trait evolution, and the implications of current and

advancing methodologies for the future of plant systematics.
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History of angiosperm systematics

Background

Understanding the plant tree of life is one of the major research areas of the botanical sciences (e.g., Baker
et al., 2022). Between cutting-edge global collaborations (Chase et al., 1993; APG 1V, 2016; Cheng et al,,
2018; Givnish et al., 2018; Zuntini et al., 2024), increasing availability of genome-scale genetic data (Cheng
et al., 2018; One Thousand Plant Transcriptomes Initiative, 2019), and ever-improving methods of analysis
(Cheng et al., 2018; Baker et al., 2022), researchers have made great strides towards a unified hypothesis of
plant evolutionary history. Given the central importance of DNA in modern-day systematics, it is hard to
believe that molecular systematics was only developed in the last 50 years (Mayr, 1974). So, how did we get
to where we are today? Here, we will provide an overview of the history of plant systematics and explore
how this history shaped current thinking and methods. To examine these questions, we will follow two
groups of monocots now prescribed as Liliales and Asparagales. As the methods and theory of systematics

changed, so did our understanding of the relationships between these important lineages.

Introduction to the Monocot Phylogeny

Monocots—vital to ecosystem stability and human well being—make up about 20-25% of angiosperm
species diversity (60,000-85,000 species; Givnish et al., 2010; Timilsena et al., 2022). Notable monocots in-
clude grasses (wheat, rice, bamboo), bananas, cardamom, pineapple, and palms (Palmaceae; Zeng et al.,
2014; Timilsena et al., 2022). Several morphological characters are shared by most or all monocots includ-
ing a single cotyledon, floral parts in groups of three (Fig. 1c, 1d, 1k, 11), parallel leaf venation (Fig. 1g, 10),
and a lack of the vascular cambium needed to form woody tissue (Chase, 2004).

Within monocots, those that possess two whorls of tepals were historically recognized as a distinct
group called the petaloid monocots (Zomlefer, 1999; Johansen and Frederikson, 2006). This group includes
the modern taxonomic orders Asparagales, Dioscoreales, and Liliales, with some exceptions (Judd, 1997;
Seberg et al., 2012). The history of two of these closely related orders, Liliales and Asparagales, has been
particularly fraught with taxonomic and phylogenetic instability. Liliales contains several important horti-
cultural plants including lilies (Fig. 11) and tulips (Vinnersten and Bremer, 2001), and Asparagales contains
crop plants such as onions and vanilla and ornamental plants like orchids (Seberg et al., 2012; Wang et al.,
2024). Difficulties grouping petaloid monocots have frustrated botanists for well over a century (Lindley,
1853; Cronquist, 1981), and, in the three decades since the first molecular phylogenetic studies of mono-
cots, the relative placements of Liliales and Asparagales have often been an obstacle to a consistent, well-

supported monocot phylogeny (Chase et al., 2000; Chase, 2004; Petersen et al., 2006; Givnish et al., 2010,
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Figure 1: Morphological features of Asparagales (left, orange) and Liliales (right, blue). (a) Allium douglasii bulb (b) Brodiaea coronaria
seeds (c) Sisyrinchium californicum flower (d) Hippeastrum striatum flower (e) Ornithogalum umbellatum ovary (f) Allium constrictum
inflorescence (g) Maianthemum stellatum leaves and flowers (h) Gasteria tukhelensis leaves (i) Bomarea obovata rhizome and root tubers (j)
Lilium columbianum seeds (k) Bomarea sp. flower (1) Lilium michiganense flower (m) Calochortus longebarbatus ovary (n) Xerophyllum tenax
inflorescence (0) Streptopus amplexifolius leaves and fruit (p) Bomarea obovata tepal with basal nectary. Photos by Gabriel Campbell,
Gerald D. Carr, Robert L. Carr, Emily Humphreys, and Carrie Tribble.

2018; Timilsena et al., 2022). In particular, hypotheses about how these orders are related to commelinids, a
major group of monocots containing grasses and palms, have changed over time (Chase et al., 2006; Zun-
tini et al., 2024). The challenges systematists face in placing Liliales and Asparagales, and the advances that

helped provide clarity, exemplify trends in systematics history.

The Goals of Systematics

Systematics is a broad field with two components: taxonomy—grouping, describing, and naming organ-
isms (Box 1, Turner et al., 2013), and phylogenetics—hypothesizing evolutionary relationships (Rouhan

and Gaudeul, 2021; Society of Systematic Biologists, 2024). In short, “systematics is the study of biological
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diversity and its origins” (Society of Systematic Biologists, 2024).

In systematics, how best to create a useful, stable, and informative taxonomy remains a major topic of
debate (The Angiosperm Phylogeny Group, 1998; International Commission on Zoological Nomenclature,
1999; Turland et al., 2018; Cantino et al., 2020; Laurin, 2024). Most systematists agree that named taxonomic
divisions should both reflect phylogenetic relationships and be practical for describing and discussing or-
ganisms (The Angiosperm Phylogeny Group, 1998). Overwhelmingly, when defining taxonomic groups at
the species-level and above, scientists strive for monophyly in classification, where groups of organisms
comprise an ancestor and all of its descendants (The Angiosperm Phylogeny Group, 1998; Horandl, 2006;
Laurin, 2024). It is important to note that while taxonomy aims to reflect something true about nature, tax-
onomy itself is a human construct; monocots could be divided into one order or twenty, and nothing would
have changed about our understanding of the evolutionary relationships in the group.

To reconstruct evolutionary relationships through phylogenetics, systematists identify characters that
provide evidence of evolutionary history. When looking at any character state shared by two taxa, it needs
to be determined whether it is shared through descent from a common ancestor and, thus, evidence of
phylogenetic relationship, or whether it has evolved independently in each taxon. Shared character states
that independently evolve in different lineages can introduce phylogenetic noise, which is similarity that
could appear to be informative, but conflicts with the true pattern of evolutionary divergence (Townsend
et al., 2012). It is similar to a radio signal with static; a little static is okay, but when the static gets to be
too much the message cannot come through. Selecting characters that change at an appropriate rate for
a group of interest and increasing the number of independent characters analyzed can help maximize the
information available for phylogenetic inference (Givnish and Sytsma, 1997; Townsend et al., 2012; Mishler,
2014; Givnish et al., 2018). Other challenges to phylogenetic reconstruction include interruptions in strict
ancestor-decedent relationships through processes such as hybrid speciation, introgression, or horizontal
gene transfer (See Box 2: Glossary, Mishler, 2014). Convergence can also mask true evolutionary relation-
ships as it leads to shared character states without shared evolutionary history (Patterson and Givnish,
2002; Givnish et al., 2006). Many of these complications have likely impacted our ability to understand
the relationship between Liliales and Asparagales (discussed further below in “Why do trees disagree?”).
Phylogenies represent hypotheses of evolutionary relationships and can change with new information and
techniques. Careful choice of methods and an appreciation for the complexity of evolutionary processes

help mitigate error.
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Systematics before DNA

A Brief History of Taxonomy

Throughout history, people have categorized living things (Laurin, 2024). Predating written language, tax-
onomy arose more than 5600 years ago (Rouhan and Gaudeul, 2021). Given the vastness of life on Earth,
grouping organisms through taxonomy is foundational to communication (Haider, 2018). Concepts so fun-

” o

damental as to be commonplace, such as “plants,” “grass,” or even "humans,” are in fact taxonomic group-
ings. These groupings form some of the building blocks of thought, shaping not only the way the natural
world is communicated about, but also how it is understood.

Modern plant taxonomy derives from

the revival of Greek thinking during
Box 1

Here, we focus on the history of western scientific plant
taxonomy which traces its roots to Greek botanical

the Renaissance (Rouhan and Gaudeul,

2021; Laurin, 2024). It was during this

time that monocots were first named traditions (Laurin, 2024). It is important to note that
there are many other taxonomies used for plants
by British botanist John Ray (1627-1705) around the world (Turner et al., 2013). These plant

taxonomies reflect extensive collective knowledge of

who recognized the single cotyledon the natural world. Many incorporate distinctions

as an important unifying characteristic between plants based on plant traits and/or the role
that plants play in the lives of the people who use the
(Ray, 1682, 1696, 1703). The most in- taxonomy. These taxonomies are highly practical and

complex, while largely serving a different purpose from

fluential taxonomic system of this pe- the taxonomy we describe throughout this article.

riod was created by Swedish naturalist

Carolus Linnaeus (1707-1778) (Linnaeus,

1753a,b). Linnaeus’ system grouped plants based on reproductive structures, reflecting the shift towards re-
lying on plant characteristics (e.g., anatomy, morphology) to inform taxonomy instead of plant uses (e.g.,
food, medicine) (Rouhan and Gaudeul, 2021; Laurin, 2024). Like many early taxonomists, Linnaeus” goal
was to describe groups he believed were created by the Christian god (Sloan, 1972; Mishler, 2014; Rouhan
and Gaudeul, 2021). Linnaeus divided plants into hierarchical ranks and popularized binomial nomen-
clature, forming the foundation of the nomenclatural system most widely used in botany today (Turland
etal., 2018; Rouhan and Gaudeul, 2021). Still, Linnaeus’ classification is quite divergent from our current un-
derstanding of relationships; he placed several members of Liliales and Asparagales together in his group
Hexandria monogynia (six stamens, one pistil), but also much more distantly related groups such as Berberis

(Ranunculales) and Richardia (Gentianales) (Linnaeus, 1753a).
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A major shift in taxonomic thinking began in the late 1850s when the work of Alfred R. Wallace (1823-
1913) and Charles Darwin (1809-1882) introduced the theory of evolution (Wallace, 1855; Darwin, 1859;
Lloyd et al., 2010). For the first time, shared morphology was seen not simply as a basis for describing
“natural” groupings, but as a reflection of homology and common ancestry (Sloan, 1972; Mayr, 1974; Judd
et al., 1999; Rouhan and Gaudeul, 2021). Despite this shift in understanding, the process of classification
remained functionally the same for nearly a century as methods for investigating evolutionary history had

yet to be developed (Endersby, 2009; Laurin, 2024).

Theory and Methods of Phylogenetic Analysis

The mid-20th century saw innovation in systematics. Cladistics, a new conceptual framework, led to one
of the most influential theoretical and practical shifts in the history of the field (Williams and Ebach, 2014).
Cladistics originated as a theory of classification in which organisms are grouped by common descent in-
ferred from synapomorphies (Mayr, 1974; Mishler, 2014). Cladistics holds two distinct but interconnected
goals: reconstruct phylogenetic relationships and use the resulting groupings as the basis of taxonomy
(Mayr, 1974). Our modern understanding of cladistics derives from the work of German entomologist,
Willi Hennig, whose book Phylogenetic Systematics (Fig 2.) popularized phylogenetics as the foundational
reference system of systematics and biology as a whole (Hennig, 1950, 1966). While methodological ad-
vances have continued, the “Hennigian revolution” of the 1970s and 1980s forever changed the discipline
of systematics (Mishler, 2014).

In parallel, the practicality of inferring evolutionary relationships greatly expanded with increasing
computational power (Sneath and Sokal, 1962; Williams and Ebach, 2014; Laurin, 2024). This facilitated an
early implementation of cladistic theory: parsimony analyses, which improved researchers’” ability to in-
fer phylogenetic relationships (Laurin, 2024). Parsimony centers around the idea that the tree that requires
the fewest character state changes best represents evolutionary history. This method relies on knowledge
of whether character states are ancestral or derived, as only derived character states are phylogenetically
informative (Mayr, 1974). Over time, proponents of parsimony came to be called ”cladists”. An alterna-
tive approach to phylogenetic inference, model-based analyses, boasted meaningful innovations, such as
the ability to consider the variation in the rates at which character states change (Laurin, 2024). For exam-
ple, the DNA of annual plants tends to accumulate nucleotide substitutions more quickly than perennial
plants (Gaut et al., 2011). Parsimony would treat nucleotide substitutions in both as equally likely, whereas
model-based analyses allow for more flexibility. Furthermore, model-based analyses consider the proba-

bility of reversals (for example, nucleotide A transitions to C, and then back to A), which are effectively



130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

History of angiosperm systematics

First Angiosperm
Phylogeny Group
classification

Hennig's Phylogenetic Universal nuclear
Systematics introduces Chase et al. present first Next generation angiosperm probe set,
cladistics to an English- large-scale molecular sequencing Angiosperms353
speaking audience Sanger sequencing angiosperm phylogeny commercially available developed
< 1966 | 1977 | | 1993 1998 | 2005 | 2018 | >
1970 1980 1990 2000 2010 2020
Cronquist’s classification
places modern Liliales Chase et al.’s chloroplast
and Asparagales in phylogeny provides APG [Il shows L+ACin
Liliaceae evidence for L+AC their summary tree
Dahlgren’s
classification
o Chloroplast
recognizes Liliales X .
and Asparagales evidence for L+AC Nuclear evidence for
mounts L+A mounts
4 2009
| l1981 1985 | 1993 | 2004-2008 | 120222024
1970 1980 1990 2000 2010 2020

Figure 2: (top) Major events in the recent history of plant systematics. (bottom) Major events in our recent understanding of the relative
placements of Liliales and Asparagales. There have been two main hypotheses for the patterns of relationships among these lineages:
L+AC (Liliales sister to Asparagales + commelinids) and L+A (Liliales + Asparagales). See the text for additional primary literature
supporting these hypotheses.

ignored by parsimony analyses. Overall, if there is complexity in the underlying evolutionary process, par-
simony will likely fail (Yang, 1996). Model-based analyses—which are more computationally intensive to
run than parsimony—include maximum likelihood and Bayesian methods which incorporate statistical
models that aid in development of phylogenetic hypotheses (Laurin, 2024). Like parsimony, these methods

can be applied to both morphological data and the molecular data most popular today.

Pre-molecular Understanding of Petaloid Monocots Relationships

Within petaloid monocots, taxonomic relationships remained poorly understood and hotly debated through
much of the 19th and 20th century. Though at times split, disagreement and uncertainty led to much of the
group being treated as a single family, Liliaceae, by multiple authors for over a century (Lindley, 1853; En-
gler and Prantl, 1889; Hutchinson, 1959; Cronquist, 1981; Zomlefer, 1999). Speaking on Liliaceae sensu lato,
Lindley (1853) wrote, “there are few great groups of plants which have been more neglected by the exact
botanist or which stand more in need of his patient attention.” Lindley (1853) opted to treat the group as
one family, fearing there was too little information to confidently subdivide it. His sentiment is strikingly
similar to that of Cronquist (1981) more than a century later, who also noted the great amount of work to

be done in Liliaceae and defined the family broadly in his treatment due to a lack of convincing evidence
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for subdivision (Fig. 2).

Cronquist’s 1981 treatment had an important place in plant systematics. Over a decade later, his dicot
circumscriptions were used by Chase et al. (1993) in, what was at the time, the largest cladistic analysis of
plants to have been conducted (Fig. 2). Notably, though, Chase et al. (1993) used the monocot circumscrip-
tion of Dahlgren et al. (1985), not Cronquist (1981). The work of Dahlgren et al. (1985) represented a major
step forward in angiosperm taxonomy as it was one of the first large-scale treatments to extensively incor-
porate emerging cladistic analyses. This approach overturned many established understandings of deep
monocot relationships which had put greater emphasis on qualitative notions of similarity and assump-
tions about which character states might be “advanced” (Takhtadzhian, 1958; Cronquist, 1981; Dahlgren
et al., 1985). Dahlgren et al. (1985) treated petaloid monocots, including genera that Cronquist (1981) had
placed in one family just four years earlier, as multiple taxonomic orders including Liliales and Asparagales
(Fig. 2). In drawing distinction between the morphologically similar Liliales and Asparagales, Dahlgren
et al. (1985) built on the work of Huber (1969) and referenced several morphological differences. These in-
cluded succulence in some Asparagales, spotted tepals in many Liliales, and differing nectary placement
in the two orders, among others (Fig. 1). One important synapomorphy he noted for most Asparagales
is a phytomelan layer in the seed coat which gives Asparagales seeds a shiny black appearance (Fig. 1b;
Dahlgren et al., 1985; Zomlefer, 1999). The classification of Dahlgren et al., complete with the major changes
in the circumscription of petaloid monocots, was widely accepted and remained highly influential as sys-
tematics transitioned towards molecular phylogenetics (Duvall et al., 1993a; Chase, 1995; APG II, 2003).
Future molecular analyses reveled Dahlgren et al. (1985) misplaced several monocot families perhaps due
to convergent evolution (Chase et al., 1993; Duvall et al., 1993a; Givnish et al., 2018). Still, Seberg et al.
(2012) asserts that Dahlgren et al. (1985) "may be considered the starting point of modern systematics of the

monocotyledons.”

Diverse Sources of Evidence in Phylogenetic Analysis

While morphology and anatomy were the primary sources of systematic data during the early- and mid-
20th century, botanists also turned to the fossil record, secondary plant chemistry, chromosome number
and structure, and more as they tried to interpret relationships (Dahlgren, 1983; Dahlgren et al., 1985;
Gandolfo et al., 2000; Soltis et al., 2009). Fossils provided early evidence that monocots were descended
from plants with two seed leaves (cotyledons), rendering the traditional group dicots non-monophyletic
(Dahlgren et al., 1985). Fossils were also included as tips in some early cladistic analyses of monocots (Gan-

dolfo et al., 2000). Serological data, which reflects the similarity of proteins (Boyden, 1936), showed that
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Asparagus may be most closely related to other members of Asparagales and less closely related to mem-
bers of Liliales (Dahlgren, 1983), potentially supporting the split of Cronquist (1981)’s Liliaceae. Chemical
analyses, while they provided little decisive evidence of evolutionary history, were comparatively revealing
in Liliales and Asparagales as these orders contain many unusual chemicals (Kite et al., 2000). For example,
colchicine alkaloids are common in the family Colchiaceaeae (Liliales), but uncommon outside of it (Kite
et al., 2000). These indicators of phylogenetic relationships were gradually replaced by direct comparison of
macromolecules such as DNA, RNA, and proteins (See Early molecular understanding, Zuckerkandl and
Pauling, 1965; Soltis et al., 2009). Although, by the late 1970s, higher order relationships among flowering
plants had become largely stable, these relationships were not to remain certain for long (The Angiosperm

Phylogeny Group, 1998).

Early molecular understanding

Transforming molecular phylogenetics from a theoretical ambition to a practical reality required method-
ological innovation. Early molecular techniques included RNA sequencing (Holley et al., 1965; Cedergren
et al., 1972), indirect inference of genetic relatedness though amino acid sequence data (Mayr, 1974; Mar-
tin et al., 1983) and comparison of DNA fragmentation patterns (Palmer and Zamir, 1982). Above all else,
the development of Sanger sequencing revolutionized molecular systematics (Fig. 2; Sanger and Coul-
son, 1975; Sanger et al., 1977; Graham and Hill, 2001; Barrett et al., 2016). Sanger sequencing made DNA
sequencing practical and reliable for the first time. The power of Sanger sequencing was magnified by the
development of polymerase chain reaction (PCR), which allows a small quantity of genetic material to be
amplified into the millions of copies of a region of interest commonly needed for Sanger sequencing (Mullis
etal., 1986).

By the 1990s, DNA-based systematic methods were generally quicker to complete than traditional,
largely morphological methods and required less training to implement (Mishler, 2014). Importantly, DNA
data introduced a vast swath of new, independent characters for analysis (Soltis et al., 2009). It was sug-
gested (Givnish and Sytsma, 1997) and later demonstrated (Givnish et al., 2018) that increasing the number
of independent characters greatly improves phylogenic resolution and support. Among these molecular
characters, inferring homology was often straightforward (Soltis et al., 2009). Moreover, DNA data was
seen as more objective than other characters used in systematics (Chase et al., 1993), and molecular phy-
logenetics was held in esteem as being at the cutting-edge of science (Mishler, 2014). Still, both molecular

and non-molecular phylogenetic techniques (such as chemistry and morphology) were in frequent use and
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were sometimes analyzed together (Chase, 1995; Soltis et al., 2000; Stevenson et al., 2000). Chase (1995)
took care to clarify that in taxonomic studies, molecular and morphological data are best as complements,
and they hoped the results of their molecular work on monocots would spur future morphological ex-
amination. Still, given the benefits of molecular phylogenetics, morphological and chemical analyses were
quickly overshadowed (Kite et al., 2000; Soltis et al., 2009; Mishler, 2014).

Between the 1990s and 2010s, botanical systematists primarily used data from chloroplast genes, as
well as a small number of genes that code for ribosomal RNA in their phylogenetic analyses (Chase et al.,
1993; Givnish et al., 2005; Graham et al., 2006; Givnish et al., 2010). There are several advantages to chloro-
plast data that contributed to its widespread use: compared to nuclear DNA, the chloroplast genome is
small in size, it accumulates genetic change slowly which can reduce false signal, it is relatively struc-
turally consistent, it is less likely to reflect incomplete lineage sorting (ILS), and there are large amounts
of chloroplast DNA in green plant cells (Davis et al., 1998, 2014; Naciri and Linder, 2015; Goncalves et al.,
2019; Do et al., 2020). Analyses informed by a small number of chloroplast genes were crucial in advancing
our understanding angiosperm evolutionary relationships towards a greater consensus (Chase et al., 1993;
Savolainen et al., 2000). Until recently, chloroplast data was the greatest contributor to our understanding
of the angiosperm phylogeny (Goncalves et al., 2019; Li et al., 2019; Zuntini et al., 2024).

Most of the initial molecular phylogenetic investigations that included Liliales and Asparagales used
chloroplast data and analyzed a limited number of gene regions (Chase et al., 1993; Duvall et al., 1993b,a;
Davis, 1995; Nadot et al., 1995; Davis et al., 1998; Kdllersjo et al., 1998; Givnish et al., 1999; Chase et al,,
2000; Fuse and Tamura, 2000; Savolainen et al., 2000; Soltis et al., 2000). Out of these early studies, a pattern
began to emerge. Despite the close relationship of Liliales and Asparagales in morphological phylogenies
(Chase et al., 1995; Stevenson et al., 2000), analyses conducted with primarily chloroplast data indicated
that Asparagales may be more closely related to commelinids than Liliales (Fig. 3a) (Chase et al., 1993;
Duvall et al., 1993b,a; Chase et al., 1995; Davis, 1995; Davis et al., 1998; Chase et al., 2000; Fuse and Tamura,
2000; Savolainen et al., 2000; Soltis et al., 2000). This pattern was also found in Soltis et al. (1997) using
a nuclear region. By 2000, this set of relationships was considered a general trend (Chase et al., 2000),
but a high degree of uncertainty was still acknowledged as relationships among Liliales and Asparagales
were still commonly unresolved or very weakly supported (Nadot et al., 1995; Fuse and Tamura, 2000;
Savolainen et al., 2000; Soltis et al., 2000). For example, multiple studies recovered a consensus tree in which
Asparagales and Liliales were part of a large polytomy (Chase, 1995; Soltis et al., 2000). An alternative set
of relationships was also recovered from plastid trees where Liliales and Asparagales were sister lineages

(L+A.; Fig. 3b); this result was more in line with the traditional morphological understanding, though these

10
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findings had little statistical support (Givnish et al., 1999; Savolainen et al., 2000) .

In 1998, among the buzz of molecular phylogenetic research, a collaborative group of experts, the An-
giosperm Phylogeny Group (APG), published their first classification of flowering plants (Fig. 2; The
Angiosperm Phylogeny Group, 1998). This classification was designed to remedy the tension between
authority-based plant classifications (Cronquist, 1981; Thorne, 1992; Takhtadzhian, 1997) and the new con-
sensus understanding of the angiosperm phylogeny (APG II, 2003). Where authority-based classifications
represented the informed opinion of experienced taxonomists, the APG classification was derived from ex-
plicit, repeatable analyses of primarily molecular data (The Angiosperm Phylogeny Group, 1998). In the
decades since, the APG treatment and subsequent updates have come to be widely regarded as a preemi-
nent authority on the standardized understanding of angiosperm relationships (Chase et al., 2006; Seberg
et al., 2012; Zeng et al., 2014). Both APG I and II summary trees resolved Liliales, Asparagales, Dioscore-
ales, Pandanales, and commelinids as a polytomy (The Angiosperm Phylogeny Group, 1998; APG 11, 2003),
further highlighting the historical lack of resolution in petaloid monocot relationships.

The new millennium ushered in the first whole plant nuclear genome (Arabidopsis Genome Initiative,
2000; Soltis et al., 2009). Despite advances in computing and sequencing, the chloroplast genome continued
to be the primary source of DNA used to study deep angiosperm relationships due to its relative abundance
within plant tissues and its sequencing reliability (Davis et al., 2014). From 2000 to 2010, multiple phyloge-
netic studies used primarily chloroplast data and found moderate to high support for Liliales as sister to a
clade comprised of Asparagales and Commelinids (L+AC; Figs. 2 and 3; Tamura et al., 2004; Chase et al,,
2006; Graham et al., 2006; Pires et al., 2006; Qiu et al., 2006; Saarela et al., 2008). Still, some studies incorpo-
rating chloroplast data that were published during this time recovered a variety of disparate relationships
among petaloid monocots and commelinids, accompanied by low or no support (Davis et al., 2004; Givnish
et al., 2005); generally, these analyses included fewer gene regions. A more limited set of analyses turned
to mitochondrial DNA for a source of genetic characters independent from the widely-used chloroplast
genome. These analyses overwhelmingly failed to recover L+AC, instead providing support for various
alternate relationships (Davis et al., 1998; Petersen et al., 2006; Qiu et al., 2006, 2010). Despite conflicting
signals among mitochondrial trees and a heavy reliance on chloroplast data for strong evidence supporting
L+AC, APG III presented this set of relationships in their summary tree in 2009 (Fig. 2; APG III, 2009). To

all the world, petaloid monocots were a polytomy no more.
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Why do Trees Disagree?

As molecular phylogenetic evidence mounted, most deep relationships in the angiosperm phylogeny sta-
bilized across studies using different data sources and methods (Timilsena et al., 2022; Zuntini et al., 2024).
However, a few deep relationships, such as the one between Liliales and Asparagales, remained inconsis-
tently or poorly supported (Li et al., 2021; Zuntini et al., 2024). There are many reasons why uncertainties
may persist including long branch attraction, difficulties selecting appropriate evolutionary models, too
few independent characters, biased or insufficient taxon sampling, and incorrect identification of homology
often amplified by convergence (Patterson and Givnish, 2002; Heath et al., 2008; Zeng et al., 2014; Givnish
et al., 2018; Doyle, 2022; Zuntini et al., 2024). As a further complication, the major angiosperm lineages,
as well as Liliales and Asparagales, are likely the result of rapid radiations (Timilsena et al., 2022; Zuntini
et al., 2024). When speciation occurs quickly, genetic change between lineages has little time to accumulate.
As a result, the genomic signal uniting groups can be very weak (Soltis et al., 1997), making it difficult to
confidently reconstruct phylogenetic relationships.

Our understanding of the relationships among major angiosperm lineages has been influenced by the
heavy reliance on chloroplast sequence data for phylogenetic inference (Davis et al., 2014). Each of the
three plant genomes, chloroplast, mitochondrial, and nuclear, and different genes or regions within each,
may have their own, distinct evolutionary history (Tyszka et al., 2023). These unique evolutionary histo-
ries can diverge from one another or the evolution of the species as a whole (Doyle, 1992, 2022). When a
segment of DNA (a “gene”) is used to build a phylogenetic tree, the resulting gene tree represents the evo-
lutionary history of only that segment, which may not fully represent the history of diversification (i.e., the
species tree) (Doyle, 1992). When divergent relationships are recovered across gene tree(s) and a species
tree, this is termed phylogenetic incongruence (Doyle, 1992; Goncalves et al., 2019). Many factors may
lead to incongruence, including introgression, incomplete lineage sorting (ILS) (Timilsena et al., 2022), and
gene duplication (Doyle, 1992). Some of these phenomena are more likely to impact lineages that emerged
from rapid radiation (Koblmidiller et al., 2010; Slovék et al., 2023). Using multiple genes for phylogenetic
analysis and/or combining organellar data with nuclear data may reduce the impact of these drivers of
incongruence by providing multiple, independent indicators of evolutionary history (Doyle, 1992, 2022).
This was recognized early on. As far back as 1995, Chase (1995) emphasized that nuclear data in addition
to chloroplast data would be needed to understand relationships among higher-level monocots.

Analyses using multiple regions from an organellar genome are more likely to produce gene trees that

are inconsistent with the species tree than those built using multiple nuclear regions (Doyle, 1992, 2022).
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This is because organellar DNA is most often maternally inherited (McCauley, 2013; Davis et al., 2014), and
because it acts much more like a single evolutionary unit than nuclear DNA (Doyle, 2022). As such, a whole
chloroplast genome may contain a limited amount of independent evolutionary evidence. Analyses based
on many chloroplast regions can have high levels of support (Givnish et al., 2018), but this could be because
the singular chloroplast provides strong and consistent support of relationships, not necessarily because it
reflects the “true” history of speciation (Doyle, 2022). It is also possible for chloroplast or mitochondrial
genomes to be transmitted between species though organelle capture (Stegemann et al., 2012). This means
that the chloroplast genome of a modern plant could have a weak relationship to patterns of speciation. As
discussed above, major improvements in our understanding of the angiosperm phylogeny were and still
are deeply rooted in chloroplast sequence data (Goncalves et al., 2019; Li et al., 2019), and these data present
distinct benefits, including being less influenced by ILS (Naciri and Linder, 2015). In general, patterns of
relationships based on chloroplast data have been concordant with those derived from nuclear analyses
(Timilsena et al., 2022; Zuntini et al., 2024). Still, understanding the propensity of chloroplast data to gener-
ate gene tree-species tree incongruence provides important context for understanding discordance between
chloroplast and nuclear phylogenies, particularly in lineages that diversified rapidly, such as Liliales and

Asparagales.

Recent molecular understanding

Just as Sanger sequencing had done decades before, next-generation sequencing (NGS) changed the scale
of molecular phylogenetics (Fig. 2; Givnish et al., 2010; Godden et al., 2012; Barrett et al., 2016; Givnish
et al., 2018). Introduced in the mid-2000s (Margulies et al., 2005; Soltis et al., 2009; Egan et al., 2012), NGS
allowed the number of analyzed genomic regions to drastically increase and greatly reduced the cost and
time of sequencing (Margulies et al., 2005; Egan et al., 2012; Godden et al., 2012; Steele et al., 2012; Barrett
etal., 2016). In NGS, large numbers of genomic fragments are sequenced simultaneously. By 2010, NGS had
made it not only possible to sequence whole plastid genomes, but routine (Soltis et al., 2009; Givnish et al.,
2010).

In parallel with increases in the scale of molecular data available, there have been steady advances
in computing power and software for phylogenetic analyses. As it is the least computationally intensive,
many early analyses used parsimony methods (e.g., Chase et al., 1993; Soltis et al., 1997; Givnish et al.,
1999). As time went on, more studies came to employ maximum likelihood approaches (e.g., Duvall et al.,

1993b; Givnish et al., 2010; Wickett et al., 2014; Givnish et al., 2016, 2018), and computationally intensive
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Box 2 Glossary

Authority-based classification. A classification based on the informed opinion of an experienced
taxonomist.

Character. A trait or characteristic used for phylogenetic or taxonomic inference.
Character state. A particular form taken on by a trait or characteristic.

Cladistics. A conceptual framework that posits that phylogenetics should be the foundational reference
system of biology. Now used primarily to refer to parsimony-based phylogenetics.

Consensus-based classification. A data-driven classification created collaboratively by a diverse
group of expert systematists.

Gene duplication. The duplication of a genomic region. Results in two or more copies of the original
gene which can take on independent evolutionary trajectories.

Gene tree. A phylogenetic tree that represents relationships for a gene.
Homology. Similarity due to shared evolutionary history.

Horizontal gene transfer.  Transfer of genetic material from one organism to another through any
mode other than reproduction.

Hybrid speciation.  Speciation resulting from hybridization.

Incomplete lineage sorting. A phenomenon in which multiple character states are passed down from
a variable ancestral population to a variable descendent population, complicating the search for
phylogenetic signal.

Introgression.  Hybridization between taxa and subsequent backcrossing resulting in the transfer of
genetic material from one taxon to another.

Long branch attraction. A phenomenon in which long branches are more likely to group together in a
phylogenetic tree regardless of evolutionary history.

Model-based analyses. Methods for inferring phylogenetic relationships based on a model of
evolution. These methods allow for variation in the rates of character state changes.

Molecular systematics. DNA-based systematics.

Monophyletic. A group of organisms comprised of an ancestor and all of its descendants.
Morphology. Gross characteristics of physical structures.

Next-generation sequencing. Methods for sequencing many regions in parallel.

Organelle capture. A phenomenon in which an organelle, but not the nucleus, transfers from one
organism to another.

Parsimony analyses. A method of estimating phylogenetic trees that minimizes the number of
character state changes needed to explain the data.

Phylogenetic incongruence. Disagreement in hypothesized evolutionary relationships between
different phylogenetic trees.

Phylogenetic noise. Information that could appear to be phylogenetically informative but is not a result
of shared evolutionary history.

Phylogenetics. The field devoted to the study of evolutionary history.

Polytomy. A set of unresolved phylogenetic relationships represented in a phylogeny by more than two
branches sharing a node.

Rapid radiation. A burst of speciation occurring over a short period of time.

Sanger sequencing. The first scalable method of DNA sequencing. Provided the basis of early
molecular phylogenetic understanding.

Species tree. A phylogenetic tree that represents relationships among species.
Synapomorphy. A shared, derived trait.

Systematics. A branch of evolutionary biology dedicated to grouping, describing, and naming
organisms (taxonomy) based on evolutionary history (phylogenetics)

Taxonomy. The field devoted to grouping, describing, and naming organisms.
Topology. The pattern of relationships depicted by a phylogenetic tree.

2z Bayesian analyses became more common and were used across increasingly large data sets (e.g., Hilu et al.,
20 2003; Kim et al., 2013; Wickett et al., 2014; Do et al., 2020). It is not uncommon for analyses to incorporate

s multiple analytical methods (parsimony, maximum likelihood, Bayesian), which may support incongruent
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topologies.

Amidst this backdrop of hope and growth, assembling a comprehensive plant tree of life came to be seen
as practical and achievable (Soltis et al., 2009; Givnish et al., 2010). In 2010, the Monocot Assembling the Tree
of Life project was announced (Givnish et al., 2010), which sought to develop a fully resolved phylogeny
of monocots by greatly increasing sampling of plastid and nuclear gene regions, including by investing
heavily in sequencing whole plastid genomes. A landmark publication out of this project provided the
most robust support to date for the L+AC relationship using whole plastid data (Givnish et al., 2018).
Simultaneously, the European monocot initiative worked to sequence two plastid regions for all ~2400
genera in the monocotyledons (Givnish et al., 2010), and the 1000 Plants Initiative aimed to sequence 1000
transcriptomes across all green plants (One Thousand Plant Transcriptomes Initiative, 2019). Continuing
the tradition of large collaborations in botanical systematics (e.g., Chase et al., 1993), these projects and
others worked to increase the breadth, depth, and variety of monocot DNA sequenced.

As the number of regions analyzed grew dramatically throughout the 2010s, chloroplast phylogenies
continued to find strong evidence for L+AC (Soltis et al., 2011). This general set of relationships was recov-
ered with moderate or high support across analyses using NGS (Givnish et al., 2010, 2016, 2018; Gitzen-
danner et al,, 2018; Lam et al., 2018; Li et al., 2019), though analytical method sometimes impacted the
topology recovered (e.g., Ruhfel et al., 2014). Given this evidence, the most recent APG publication, APG
IV, maintained L+AC on their summary tree (APG 1V, 2016).

At the same time, spurred by NGS and increasing computational capacity, large analyses of nuclear
DNA quickly increased in feasibility and popularity (Davis et al., 2014). In these analyses, an alternate pat-
tern of petaloid monocot relationships repeatedly emerged. While some analyses in the early 2010s found
low support and inconsistent relationships among petaloid monocots and commelinids using nuclear data
(Morton, 2011; Wickett et al., 2014), later studies using large nuclear data sets have consistently recovered
L+A with moderate to high support (Fig. 2, Zeng et al., 2014; Baker et al., 2022; Timilsena et al., 2022, 2023;
Zuntini et al., 2024; Liang et al., 2025). The placement of Liliales and Asparagales was repeatedly found
to be the largest discordance in major relationships within monocots between plastid and nuclear derived
phylogenies (Timilsena et al., 2022, 2023).

With continued improvements in sampling and sequencing, what has long been a trend seems to be a
well-supported pattern: chloroplast data tends to resolve L+AC and nuclear data tends to resolve L+A (Fig.
3). Recent analyses that rely solely on chloroplast DNA continue to find strong support for L+AC (Do et al.,
2020; Li et al., 2021), suggesting that for Liliales and Asparagales, the difference in topologies truly rests

with different signals across genomes, not methodological differences between older and newer studies.
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commelinids

Asparagales

Liliales

Figure 3: (left) Understanding of Liliales, Asparagales, and commelinid evolutionary relationships derived from chloroplast data.
(right) Understanding of Liliales, Asparagales, and commelinid evolutionary relationships derived from nuclear data. The body of
literature supporting these two hypotheses is summarized throughout the text.

Given that large nuclear analyses encompass many more regions with independent evolutionary histo-
ries than large chloroplast analyses (Doyle, 1992), it seems likely that L+A best represents the species tree.
In retrospect, there is evidence our understanding of the relationships among Liliales, Asparagales, and
commelinids was not fully settled even before large nuclear analyses became feasible. Alternate topologies
were repeatedly recovered from mitochondrial DNA (Davis et al., 1998; Petersen et al., 2006; Qiu et al.,
2006, 2010), and a persistent portion of chloroplast analyses recovered low or no support for the relation-
ships among these lineages though these were often based on a limited number of genes (e.g., Hilu et al,,
2003; Givnish et al., 2005). Our shifting understanding of the relationship between Liliales and Asparagales
demonstrates the impact of sampling and analytical methods on tree topologies, especially for lineages
that rapidly diverged. With increasing sampling, new types of data being analyzed, and new phylogenetic
methods continuing to be developed, our understanding of evolutionary relationships may change as the

tree of life continues to be refined and stabilized.

Implications of a Sister Relationship between Liliales and Asparagales

Changes in accepted phylogenetic relationships often have important implications for trait evolution. This
is evident as we reinterpret the history of Liliales and Asparagales evolution. If we understand the relation-
ship among Liliales and Asparagales to be L+AC, it seems as though the long-recognized morphological
similarity of the two orders (Cronquist, 1981; Seberg et al., 2012; Givnish et al., 2016) might best be attributed
to shared common ancestry deeper in the monocot phylogeny and shared traits being conserved over time.
Understanding the relationship as L+A, on the other hand, suggests these morphological similarities may
in fact be synapomorphies or evidence of uniquely shared genetic architecture. For example, floral forms in

Liliales and Asparagales are often strikingly similar (Dahlgren et al., 1985). Most members of both orders
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have two whorls of similar tepals, distinct perianth segments, 6 stamens, and superior 3-locular ovaries
(Cronquist, 1981; Hitchcock and Cronquist, 2018). These similarities are exemplified when comparing the
striped Barbados lily (Asparagales, Fig. 1d) and Michigan lily (Liliales, Fig. 11). Moreover, members of both
families typically have underground storage organs such as bulbs, corms, or rhizomes (Asparagales, Fig.
1a; Liliales, Fig. 1i; Cronquist, 1981; Hitchcock and Cronquist, 2018). It it possible that high-level molecular
mechanisms shared due to evolutionary history may facilitate similar morphology in both orders, making
them more likely to evolve similar forms. A sister relationship between Liliales and Asparagales invites this
hypothesis and many more.

This new understanding also shapes how we look back on the taxonomic history of Liliales and Aspara-
gales. Morphological similarity between the orders led to members of modern Liliales and Asparagales
being prescribed as part of the same family as recently as the 1981 (Cronquist, 1981). Despite the strong
morphological affinity between Liliales and Asparagales, for two decades molecular evidence led us to-
wards the conclusion that Asparagales was sister to the more morphologically divergent commelinids.
Notably, as nuclear data refines our understanding, it seems that the relationship between the two orders
is actually more similar to that indicated by the morphological classification of Liliaceae sensu lato than the
relationship suggested by early molecular phylogenetic work. This full-circle understanding is a testament
to the careful work of morphological systematists, the importance of multiple modes of evidence including

morphology, and the non-linear nature of the scientific process as we work towards consensus.

Botanical phylogenetic methods today

Throughout the history of systematics there has been a continual effort to consider a greater number and
diversity of characters in phylogenetic inference. We now appear to be entering the age of whole nuclear
phylogenetics. In 2025, the first whole annotated nuclear genomes became available for Liliales (Liang et al.,
2025). Several whole nuclear genomes have likewise been published for economically important members
of Asparagales (Hao et al., 2023).

DNA data revolutionized phylogenetic reconstruction, but DNA can only be used to consider extant
plants found today. Recently, there has been a focus on integrating molecular and morphological data from
extant species with morphological and temporal data from fossils to model evolutionary history in a pro-
cess called total evidence dating (Zhang et al., 2016; Gavryushkina and Zhang, 2020). As fossil evidence
and morphological characters informed much early systematic work (Cronquist, 1981; Gandolfo et al., 2000;

Hamilton, 2014), the renewed appreciation for the value of these data alongside molecular evidence repre-
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sents an integration of old and new understanding.

Today, a wealth of collaborative initiatives seek to infer the angiosperm phylogeny at never-before-
seen genomic and taxonomic scales. The success of the 1000 Plants Initiative lead to the launch of the
10,000 Plants Genome Sequencing Project which seeks to construct annotated reference genomes for every
genus of land plant (Cheng et al., 2018). Similarly the Plant and Fungal Tree of Life Project (PAFTOL)
aims to sequence one member of every angiosperm genus (Baker et al., 2022). Instead of sequencing whole
genomes, PAFTOL researchers are focusing on 353 nuclear regions dubbed ” Angiosperms353” regions (Fig.
2; Johnson et al., 2018; Baker et al., 2022). PAFTOL recently reached a major milestone with the publication
of Zuntini et al. (2024), which used the Angiosperms353 regions to construct an angiosperm phylogeny with
fifteen times the taxonomic sampling of previous phylogenies that used similar methods. This phylogeny
supported L+A (Zuntini et al., 2024). Pursuit of a fully-resolved tree of life extends far beyond plants.
Announced in 2018, The Earth BioGenome Project aims to sequence the genomes of all eukaryotic species
over 10 years (Lewin et al., 2018). Although Lewin et al. acknowledge the project’s goal is a “moonshot
for biology”, they emphasize that methodological advances make such a goal achievable for the first time.
Efforts such as these require a massive amount of collaboration, bringing together scientists from around
the world and from every branch of evolutionary biology. Fueled by ever advancing systematic methods

and an insatiable hope for the future, systematists work to understand the complex history of life on earth.

Conclusion

In a relatively short period of time, we have transitioned from single region molecular phylogenetics (Chase
et al., 1993) to sampling hundreds to thousands of regions for thousands of species (Zuntini et al., 2024) and
are working towards even loftier goals (Cheng et al., 2018; Lewin et al., 2018; Baker et al., 2022). The molecu-
lar phylogenetic era has led to well established relationships among the major lineages of angiosperms and
greater phylogenic clarity across all taxa and all scales of life (Soltis et al., 2009). Still, some relationships re-
main uncertain. Broad, unbiased sampling, consideration of multiple independent sources of phylogenetic
evidence, and an appreciation for how past methodologies shape current thinking will be instrumental
as we continue to deepen our understanding of phylogenetic relationships in an ever-changing scientific

landscape.
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