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Abstract 1 

Ecological responses to climate extremes vary drastically in different spatiotemporal contexts. For 2 

instance, the seasonal timing could be a major factor influencing community responses, but its 3 

importance is likely to vary at different spatial settings, such as high or low elevation. Here, we investigate 4 

how soil communities at high- and low-elevation sites respond to extreme heat events at different 5 

seasons (spring, summer and autumn). We simulated one-week heat events based on site-specific 6 

climatic history in several laboratory experiments using 360 field-collected soil cores, and measured the 7 

resistance and recovery of two major groups of soil biota: Collembola and fungi. We found that 8 

Collembola communities from low elevations showed the lowest resistance to extreme heat in spring and 9 

summer, with full recovery only observed in spring soils. However, species-specific analysis using joint 10 

species distribution models showed that cold-adapted taxa from lower elevations could not recover 11 

completely after extreme heat, suggesting range contractions due to climate extremes. Although fungal 12 

communities generally remained stable, pathogens increased and saprotrophs declined following extreme 13 

heat. Network analysis revealed that the connectance of negative associations between Collembola and 14 

fungi increased in response to extreme heat events, indicating that deleterious fungal species constrained 15 

the recovery of certain collembolan species. We provide experimental evidence for how heat events can 16 

restructure and destabilize ecological communities depending on spatiotemporal contexts like elevation 17 

and seasonal timing.   18 

 19 

Significance Statement 20 

As climate extremes become more frequent and severe, examining how distinct ecological settings differ 21 

in their degree of vulnerability has direct implications for our broad understanding of climate change 22 

effects on biodiversity. We experimentally exposed soil communities collected at different elevations and 23 

seasons to extreme heat events –based on site-specific climatic history- and measured the stability 24 

(resistance and recovery) of Collembola and fungi, representing key trophic groups in belowground food 25 

chains. Our results show that lowland communities responded strongly to the extreme heat events, while 26 



 

 

3 

 

highland communities remained largely unaltered. Remarkably, lowland communities recovered better in 27 

spring than in summer, underscoring the importance of the seasonal context in determining ecological 28 

stability to climate extremes.  29 

 30 

 31 

Introduction 32 

Contemporary climate change is causing more frequent and severe extreme heat events, with significant 33 

ecological impacts (1–3). For instance, extreme heat can push organisms beyond their adaptive 34 

capacities, exceeding physiological thermal optima and leading to declines in their performance (4, 5). 35 

Short-term vulnerability to extreme heat (i.e., resistance during and immediately after the disturbance) is 36 

determined by the magnitude of thermal change experienced by an organism (i.e., exposure) and the 37 

concomitant fitness response (i.e., sensitivity) (6–8) . It has been shown that thermal vulnerability varies 38 

across latitudinal gradients, with tropical and mid-latitude ectotherms being more susceptible to elevated 39 

temperatures. This increased vulnerability occurs because, despite having similar heat tolerances to 40 

organisms from higher latitudes (9), tropical and mid-latitude ectotherms experience temperatures closer 41 

to their thermal limits (10, 11). However, when scaling up from organismal to population and community 42 

levels, additional factors can influence thermal vulnerability (12), such as the seasonal timing of heat 43 

events (13, 14).  44 

The ecological significance of the timing of extreme events depends on the degree of exposure of 45 

heat-sensitive life-history processes (e.g., juvenile survival (15), reproduction (16)). Consequently, the 46 

impact of extreme heat will be amplified when it coincides with key phenological periods (13, 17), with 47 

implications for long-term ecological dynamics such as population recovery (7, 18). For example, when 48 

heat extremes occur during reproductive periods, recruitment may be able to compensate for heat-49 

induced impacts on adult survival (19), but such impacts may also persist in the long term if additional 50 

breeding attempts are no longer feasible (20) (e.g., late in the reproductive period) or if recruitment is 51 

hindered (19) (e.g., owing to reduced juvenile viability). These key phenological periods are not only 52 

seasonally dependent but also change spatially, as they are shaped by local climatic conditions (21). 53 
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Thus, given that phenology and thermal vulnerability vary across geographic gradients (12, 21), the 54 

ecological consequences of extreme heat events could differ depending on both the seasonal timing and 55 

the geographical context. Yet, these important spatial and temporal ecological dimensions (i.e., 56 

geography and seasonal timing) have rarely been considered in comparative studies of thermal 57 

vulnerability, despite their potential to interactively influence short- and long-term ecological stability to 58 

extreme heat events. 59 

 Elevational gradients provide unique opportunities to examine variation in ecological responses to 60 

temperature changes (22), including extreme heat events. Local climatic conditions vary radically over 61 

short distances across elevations as a result of temperature lapse rates (23), and, in many temperate 62 

environments, due to orographic precipitation (24). These abiotic factors are main drivers of phenology at 63 

the site scale (17), and thereby generate variation in phenological patterns across elevations (24). For 64 

instance, in temperate ecosystems, organisms living at high elevation sites have typically short activity 65 

periods condensed around the summer months (17, 24). In turn, organisms inhabiting low elevation sites 66 

have generally longer activity periods, only interrupted in dry summers and in the winter months. These 67 

distinct phenological patterns may underlie distinct periods of high thermal vulnerability and, therefore, the 68 

seasonal timing of extreme heat events is expected to exert distinct impacts across elevations. For 69 

example, at low elevations, very hot conditions during the summer months can have significant impacts 70 

on survival (25). However, avoidance strategies commonly displayed by low-elevation organisms, such as 71 

seasonal escape or induced diapause, may enable them to evade the harsh effects of extreme heat (26, 72 

27) . At higher elevations, summer is typically a favorable period for reproduction and recruitment in many 73 

species, but these processes could be compromised if temperatures during extreme heat events exceed 74 

the thermal limits for fertility or embryo viability (16, 28).  75 

 Within a given community, there is enormous variation across different taxa in their life-histories 76 

and thermal responsiveness (29, 30), potentially leading to trophic mismatches after extreme heat events 77 

(31, 32). In belowground or soil communities, fungi are key drivers of ecosystem functioning (33) and 78 

represent important resources for many invertebrate consumers, especially for microbivores such as 79 
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Collembola (34, 35). Fungi form the foundation of the slow energy channel in soil food webs (36, 37). 80 

Consequently, fungal communities are often highly resistant to climate extremes (e.g., heat (38) and 81 

drought (39)), although they tend to recover slowly after disturbances (40). Given the overall stability of 82 

fungal communities to climate extremes, they can represent readily available resources for recovering 83 

populations of invertebrate consumers like Collembola, thereby promoting overall food web stability (41). 84 

However, increasing severity of climate extremes could affect fungal responses in the long term (38, 42), 85 

constraining the recovery of invertebrate consumers. In addition, climate-driven shifts in fungal 86 

communities could also result in increased dominance of fungal species that represent poor-quality 87 

resources (because of e.g., low palatability or nutritional value) (43) or even pathogens (44), further 88 

limiting the recovery of soil Collembola. The structure of association networks between Collembola and 89 

fungi can therefore yield additional insights into their responses to extreme heat events. Specifically, more 90 

prevalent positive associations between Collembola and fungi in recovering communities after extreme 91 

heat (i.e., more connectance, indicating more generalized associations) (45, 46) can be expected, as 92 

Collembola might become more reliant on fungal resources to sustain their populations. Correspondingly, 93 

negative Collembola-fungal associations could also become more frequent during the recovery after 94 

extreme heat, as a result of climate-driven increases of fungi representing low-quality resources and/or 95 

pathogenic species (43), thus limiting the recovery of Collembola species.     96 

Here, we investigated how belowground communities respond to extreme heat events, using intact 97 

soil cores collected from temperate grasslands at two different elevations (spanning ~1000 m of altitude 98 

difference) and across three seasons (spring, summer, autumn) (Fig. 1). We exposed these field-99 

collected soil cores to one-week extreme heat events in controlled laboratory conditions, and tracked the 100 

responses of two trophic levels (Collembola and fungi) at the end of extreme heat (i.e., resistance 101 

response) and after a five-week recovery period (i.e., recovery response) -representing the generation 102 

time of several Collembola species. We examined how the extreme heat events altered total abundances, 103 

species-specific abundances (using joint species distribution models), diversity indices (calculated via Hill 104 

numbers), and bipartite association networks of Collembola and fungi (focusing on connectance and 105 

network dissimilarity). Our hypotheses are (1) that heat events reaching higher temperatures (e.g., low 106 



 

 

6 

 

elevation sites in summer) will induce more negative responses, given that the thermal safety margins of 107 

organisms are narrower (i.e. closer to their thermal limits) and metabolic costs are greater at high 108 

absolute temperatures (10, 47). Moreover, we expect that (2) negative resistance responses, driven by 109 

heat-induced mortality, will be followed by negative recovery responses, primarily influenced by 110 

recruitment following the extreme heat event in closed populations. This will apply mainly to cold-adapted 111 

organisms, due to their lower heat tolerance or reduced performance at high temperatures (18), and 112 

those permanently living belowground, given their greater sensitivity to thermal variation (48, 49). We 113 

finally anticipate (3) heat-induced shifts in the structure of association networks between Collembola and 114 

fungi, resulting in higher connectance of positive (46) (indicating increased reliance of Collembola on a 115 

broader range of fungal resources) and/or negative (43) associations (indicative of greater limitation of 116 

Collembola by low-quality resources or pathogens).   117 

 118 

 119 

Results 120 

Collembola communities: total abundance and diversity responses 121 

Collembola abundance and diversity were affected by extreme heat at low elevation in spring and 122 

summer, while the effects in autumn and at high elevation (across seasons) were negligible (Fig. 2; Fig. 123 

S6). At low elevation sites, Collembola abundance dropped in spring (-69%) and summer (-77%) at the 124 

resistance phase. Remarkably, Collembola abundance at low elevation recovered completely in spring, 125 

but significant deviations from control treatments (i.e., negative recovery) persisted in summer (-76%; Fig. 126 

2, Table S9). Diversity metrics mirrored the responses of Collembola abundance in spring at low elevation 127 

(i.e., negative resistance in all diversity metrics, e.g., -49% Shannon-Hill; followed by complete recovery), 128 

but not in summer, since diversity metrics were not affected by extreme heat in this case (Fig. S6). 129 

Negative recovery responses of Shannon-Hill and Simpson-Hill diversity were also observed at high 130 

elevation in autumn, although the magnitude of such responses was less notable (-23% Shannon Hill and 131 

-26% Simpson-Hill compared to control treatment; Fig. S6).  132 
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 133 

Collembola communities: species-specific abundance responses 134 

Out of the nine Collembola species included in the analysis of species abundances (see Methods for 135 

the inclusion criteria), eight species showed negative responses in spring at our low elevation sites at the 136 

resistance phase (Fig. 3a). Later, most of them attained a complete recovery (6 out of 9), except for 137 

Protaphorura pseudovanderdrifti, Isotomiella minor and Lepidocyrtus cyaneus (Fig. 3b). Even though 138 

these species occurred at both elevations, they were significantly lesser abundant at low elevation sites 139 

(Fig. 3; Fig. S7). The mean proportion of raw variance in species abundances explained by extreme heat 140 

increased from the baseline (pseudo-R2 = 0.05) to the resistance phase (pseudo-R2 = 0.10), and was then 141 

maintained at the recovery phase (pseudo-R2 = 0.09; Fig. 3). Besides, we found that the vertical 142 

stratification across the soil profile of Collembola species did not explain changes in species abundances 143 

driven by extreme heat (Fig. S8).  144 

 145 

Fungal communities 146 

Fungal communities generally remained stable in response to the extreme heat events across elevations 147 

and seasons, as extreme heat did not alter either fungal diversity (Fig. S9) or, in general terms, the 148 

occurrences and abundances of fungal species (Figs. S10-12). However, various fungal trophic groups 149 

responded to extreme heat in the recovery response: total saprotroph reads declined in autumn (-34%) 150 

(Fig. 4a) and non-significantly in spring and in summer at low elevation (Table S10), whereas pathogen 151 

reads increased markedly in summer at low elevation (+129%) (Fig. 4b; Table S11). Besides, total reads 152 

of unassigned fungi increased (+28%), while those of symbiotic fungi declined (-61%) in autumn at low 153 

elevation (Fig. S14). The occurrences of several pathogens exposed to extreme heat were higher at the 154 

recovery response (mainly in spring at low elevation, and in summer at high elevation; Fig. S13), but not 155 

their species abundances (Fig. S12).  156 

 157 
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Collembola-fungal association networks at the recovery response 158 

Extreme heat altered the connectance of Collembola-fungal association networks in recovering 159 

communities from low elevation in spring (Fig. 5; Table S12). Compared to random expectations from null 160 

models, the connectance of negative associations increased in networks exposed to extreme heat events 161 

(connectance difference: 0.075; P = 0.003) (Fig. 5; Table S12). This rise in network connectance was 162 

driven by a higher number of negative associations between Collembola and saprotrophic fungi species 163 

(Table S12). Moreover, we observed that the dissimilarity between control and extreme heat networks 164 

from low elevation in spring was primarily determined by compositional effects, with species composition 165 

accounting for 65% of network dissimilarity (Table S12). This indicates that a distinct set of species 166 

contributed to the assembly of association networks during the recovery period (Fig. S15).  167 

 168 

 169 

Discussion  170 

We found that belowground communities responded differently to experimental extreme heat events 171 

across elevations and seasons, as well as depending on the trophic level. Collembolan communities were 172 

especially more susceptible to extreme heat events at low elevations, confirming our initial expectations. 173 

However, recovery was season-dependent at low elevations, as collembolan communities managed to 174 

compensate previous heat-induced declines in spring but not in summer, further suggesting that 175 

collembolans from summer soils in lowlands were the most vulnerable ones. Fungal communities were in 176 

general stable to extreme heat events, with some marked exceptions for fungal saprotroph and pathogen 177 

species, also notably so at low elevations. Our results further revealed that extreme heat altered the 178 

structure of Collembola-fungal associations in recovering lowland communities, mainly by increasing the 179 

connectance of negative associations in spring.  180 

 181 

Extreme heat events caused stronger ecological effects on low elevation communities  182 
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Low elevation belowground communities were disproportionally impacted by extreme heat compared to 183 

those at high elevation, particularly the collembolan communities. This finding supports the known 184 

geographic patterns of thermal vulnerability across latitudinal gradients (12), demonstrating that 185 

organisms currently experiencing warm conditions or occasional hot periods (e.g., at low elevations) are 186 

prone to greater physiological and metabolic costs with further warming (10, 11, 47). In turn, organisms at 187 

high elevations tend to have wider thermal safety limits because their heat tolerances remain constant 188 

across elevations (50). This pattern might be explained by a lack of local adaptation in widely-distributed 189 

temperate species (9, 51), or alternatively, by high heat tolerances that enable highland organisms to 190 

cope with radiation-driven thermal extremes common in these environments  (52, 53). Even though the 191 

abundances of Collembola at higher elevations remained unaltered by extreme heat, some typical 192 

highland species were particularly impacted when they also occurred at lower elevations. For example, 193 

Protaphorura pseudovanderdrifti showed negative resistance and recovery responses to spring heat 194 

events, and Lepidocyrtus cyaneus displayed negative recovery in summer. Such negative recovery 195 

responses are likely explained by the deleterious impacts of heat on fecundity, as previously showed in 196 

laboratory populations of P. pseudovanderdrifti (18). These findings suggest the (elevational) range 197 

contraction of typical high-elevation species in response to extreme heat events, especially as warm-198 

adapted species may recover better and therefore exclude other species closer to their thermal niche 199 

limits (54). Importantly, heat extremes of similar severity to those simulated in our experiment are already 200 

taking place occasionally (Table S8), underscoring the relevance of our findings for natural communities 201 

in the face of present-day and future heat extremes. One limitation of our results is that greater 202 

responsiveness in certain collembolan communities may have been explained by the lack of possibilities 203 

to behaviorally thermoregulate by moving deeper in the soil (50, 55), given the depth of our soil cores. 204 

However, this limitation should not alter qualitatively our main insight, that is, that soil communities are 205 

more susceptible to extreme heat events at lower elevations, especially for species at the edge of their 206 

thermal niches.   207 

  We also found that fungal communities remained generally unaltered in response to the 208 

experimental heat events. Given that soil fungi utilize nutrients relatively slowly, they represent the slow 209 
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energy channel within soil microbial communities, which could help them to buffer pulse disturbances and 210 

increase their resistance to climate extremes (41). Indeed, it has been previously shown that many soil 211 

fungal communities are generally robust to extreme heat and drought (38, 39, 56), partly because water 212 

and nutrients can be redistributed from different parts of the fungal mycelium (57). Nonetheless, certain 213 

trophic groups from low elevation fungal communities (i.e., saprotrophs and pathogens) responded 214 

strongly to the extreme heat events, mainly in the recovery response. In particular, saprotrophic fungi 215 

reacted negatively to extreme heat after the recovery phase in autumn, and similar non-significant trends 216 

were observed in spring and summer (Fig. 4a; Table S10). These findings are consistent with their global 217 

distribution patterns, as saprotrophs are more abundant in cold and wet regions with high soil carbon 218 

content (59). In contrast, fungal pathogens became much more abundant with extreme heat after the 219 

recovery phase in summer (Fig. 4b; Table S11), partly because of increased occurrences of pathogen 220 

species (Figs. S12-13), corroborating previous findings that hotter conditions promote fungal pathogens 221 

at the global scale (44).  222 

 223 

Seasonal-dependent effects of extreme heat on low elevation communities 224 

Extreme heat events had distinct effects on low elevation collembolan communities depending on 225 

whether they occurred in spring or summer. In these seasons, extreme heat generally affected 226 

collembolan survival, as revealed by their negative resistance responses. Remarkably, this was followed 227 

by a complete recovery of the abundances of most species in spring, indicating that their recruitment 228 

managed to compensate for the previous heat-induced mortality. Those individuals that survived the heat 229 

event may have benefited from reduced competition, allowing for a higher fecundity and/or enhanced 230 

juvenile viability during the recovery period. By contrast, recovery remained incomplete in the summer 231 

season. We suspect that most species used a strategy of seasonal escape (26), which implies that 232 

recruitment was possibly delayed until the end of a summer diapause period (60, 61). The influence of 233 

pathogens might additionally explain the limited recovery of Collembola in summer, given that pathogenic 234 

fungi became more abundant in heat-exposed soils (Fig. 4), and were therefore more likely to infect 235 
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Collembola hosts (62). However, this possibility remains unclear, given that Collembola can exhibit high 236 

tolerance to various entomopathogenic fungi found in soils (63).   237 

In autumn, resistance and recovery responses to extreme heat events were generally negligible, or 238 

even positive at low elevation in some Collembola species (Fig. 3). As opposed to spring and summer, 239 

ecological responses to extreme heat in autumn are likely delayed for a much longer period than the 240 

recovery phase used in our study. Many species enter a period of reduced activity or complete dormancy 241 

before the onset of winter (61), especially at high elevations. During this period, non-active individuals 242 

need to endure metabolic costs that can become even greater during extreme heat events, leading to 243 

reduced survival after the winter diapause (64). It is thus plausible that our recovery responses could not 244 

capture the deleterious effects of autumn extreme heat events, which would require the measurement of 245 

post-winter or multiyear effects in controlled experiments (e.g., (65)).  246 

 247 

Extreme heat increased the connectance of Collembola-fungal association networks  248 

We show that extreme heat events induced higher connectance of negative associations between 249 

Collembola and fungi in recovering communities at low elevation, mostly in spring. While these 250 

associations mainly capture the statistical signature of the relationships between collembolan and fungal 251 

abundances and not the realized feeding interactions (as in e.g., (62)), the observed shifts in association 252 

network properties can have plausible implications for the functioning of soil communities under extreme 253 

heat. As discussed above, low elevation communities were severely impacted after being exposed to 254 

spring heat events –especially so for Collembola-, but their species composition was mostly restored 255 

during the recovery period in our experiment. However, we show that alterations in the structural 256 

properties of Collembola-fungal networks persisted at the recovery response, possibly as a result of the 257 

restructuring of the communities after extreme heat events. Our results suggest that locally abundant 258 

saprotrophic fungi, possibly representing poor-quality resources, constrained the recovery of certain 259 

Collembola species, resulting in the observed pattern of increased connectance of negative Collembola-260 

fungal associations. This occurred even if saprotrophs remained constant or even declined in response to 261 
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extreme heat. In addition, we show that the network dissimilarity between temperature treatments was 262 

largely driven by compositional effects (Table S12), which implies that increased connectance in networks 263 

from extreme heat soils might involve associations with a different set of species compared to networks in 264 

control soils. These findings confirm our hypothesis of increased heat-induced connectance of negative 265 

associations, but we did not observe higher connectance of positive associations as we also anticipated. 266 

We suggest that, as a result of temperature effects on feeding rates (66), collembolans should have more 267 

generalized (46) or stronger interactions with fungi, especially in spatiotemporal settings characterized by 268 

cooler conditions, such as at higher elevations. Further studies evaluating realized feeding interactions or 269 

food web responses during and after heat events, as previously done in freshwater systems (67), will be 270 

needed to verify this expectation in belowground communities.   271 

To conclude, the findings from our comparative experiment, testing the impacts of extreme heat 272 

events in distinct spatiotemporal contexts (i.e., different elevations and seasons), corroborate that lowland 273 

communities are disproportionally sensitive to extreme heat, with stronger effects on invertebrate 274 

consumers (Collembola) than on their microbial resources (fungi), in line with the trophic mismatch 275 

hypothesis. Notably, collembolan communities managed to recover in spring but not in summer, which 276 

emphasizes the importance of phenological processes in determining recovery after pulse disturbances 277 

like heat extremes. Despite the general stability of fungal communities, heat-induced shifts in the relative 278 

abundances of certain trophic groups could have cascading effects on other ecological processes (e.g., 279 

infection prevalence, decomposition of organic matter), especially if these changes prevail over longer 280 

timescales. Our study illustrates how depicting resistance and recovery to heat extremes in different 281 

spatiotemporal contexts (e.g., elevation and seasons) and across trophic groups can contribute to draw a 282 

more complete picture of ecological stability in a changing world.  283 

 284 

 285 

 286 

Materials and Methods 287 
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 288 

Field sites and experimental design 289 

The study area was located in the Swiss Jura Mountains, consisting of two blocks (regions) located ca. 40 290 

km apart (Fig. S1). Each block had two sites at contrasting elevations: low (ca. 500 m.a.s.l.) and high 291 

elevation (ca. 1550 m.a.s.l.) (Fig. 1.; Figs. S1-2). The climate in the study area is temperate continental, 292 

with low elevations characterized by average yearly temperatures of 10.7 °C (monthly average of the 293 

coldest and warmest month: 1.8 °C and 20.1 °C, respectively) and 956 mm of annual precipitation (based 294 

on the weather station at 485 m.a.s.l.; Table S3). At high elevations, the average yearly temperature is 295 

4.3 °C (monthly average of the coldest and warmest months: −2.8 °C and 12.1 °C, respectively) with 296 

1396 mm of annual precipitation (based on the weather station at 1594 m.a.s.l.; Table S3). All sites were 297 

located in extensively managed dry meadows representative of the study area, on south-facing slopes 298 

and with no recent soil disturbances (Table S1). The vegetation at high elevation sites was generally 299 

dominated by Agrostis capillaris, Carex nigra and Carex montana, while at low elevations Bromus 300 

erectus, Trisetum flavescens and Securigera varia were most abundant (Table S1). We monitored soil 301 

temperatures (at 5 cm depth) at 30-min intervals throughout the duration of the study (6 May – 9 302 

November 2022) using data loggers (HOBO Pendant® MX, Onset Computer Corporation, USA), and 303 

retrieved mean, minimum, and maximum daily temperatures at each of the study sites (Fig. S4).  304 

Our experimental units were intact soil cores (diameter 4.8 cm, depth 5.5 cm; Vienna Scientific 305 

Instruments, Austria) obtained in 2022 at three different seasons: spring (6-9 May), summer (4-7 July) 306 

and autumn (13-16 September). We used a split-plot experimental design (68), composed by three 307 

grouping factors (block, site and plot), as well as predictors at the site level (elevation), at the plot level 308 

(season), and at the sample level (temperature regime and harvest (69)) (Fig. 1). Within each site and 309 

season, we sampled five plots of 1.5 m x 1 m. We collected six soil cores from each plot, and randomly 310 

allocated them to the experimental treatments: one of the two temperature treatments (control conditions 311 

vs. extreme heat; details in Temperature treatments), and one of the three destructive harvests (details in 312 

Data collection). We therefore established a total of 360 experimental units: 2 elevations x 2 sites (nested 313 



 

 

14 

 

within elevation) x 3 seasons x 5 plots (nested within season) x 2 temperature treatments x 3 harvests. 314 

With this sampling design, we aimed to capture large-scale variation in the composition of soil 315 

communities from different sites, hence enhancing the generality of our study, while minimizing small-316 

scale variation by sampling all experimental treatment combinations within the same plot (Fig. 1).   317 

Before all soil cores were sampled, we cut the vegetation at 5 cm from the ground level to avoid 318 

overcrowding when soil cores were later incubated in the laboratory. Immediately after collecting the soil 319 

cores, we stored them in polypropylene pots (height: 7.5 cm and diameter: 8 cm) with a 90 µm mesh at 320 

the bottom and a 5 cm high plastic fence (from the top of the pot), to minimize the escape of invertebrates 321 

from the pots while allowing for vegetation growth. The pots containing intact soil cores (hereafter referred 322 

as microcosms) were transported to the laboratory on the same day of field sampling, weighed, and 323 

allocated to lit incubators set at their respective temperature regimes (details in the next section; Table 324 

S3). The gravimetric soil water content at the time of sampling was determined by drying five additional 325 

soil samples at 70 °C for 48h (Table S2; Fig. S3). We maintained the same water content as in the time of 326 

sampling during the entire duration of the experiment (except in the extreme heat treatment during the 327 

week of the heat event; details in the following section), by weighing each microcosm every third day and 328 

adjusting evaporative losses with deionized water. In order to avoid keeping exceedingly dry soil 329 

conditions during the experiments, we made sure that the sampling of soil cores took place shortly after 330 

the occurrence of precipitation events in the field sites (> 5 mm during the previous week). Additionally, 331 

we took three soil cores across seasons to determine soil pH (Table S2), and one soil core to monitor soil 332 

temperature in the incubators over the course of the experiments (collected at a random location within 333 

the plots).  334 

 335 

Temperature treatments 336 

Ambient (control) temperatures in the incubators were set to simulate the average climatic 337 

conditions in the field sites, and were therefore adjusted to the corresponding elevation and season of the 338 

samples. We retrieved climatic data of the reference period 2015-2020 from two representative weather 339 
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stations (one for each elevation, Table S3). This time reference was chosen due to the increasing 340 

frequency of heat waves in the region, especially in recent years (70).  Ambient conditions were defined 341 

as the mean average daily temperatures of the two months that our microcosms were incubated in the 342 

laboratory. For example, samples collected in spring were exposed to the average temperature conditions 343 

of May and June as the ambient temperature in our lab experiment for the entire experimental duration of 344 

this season. To simulate heat events that were statistically extreme in all elevations and seasons (2, 70), 345 

we calculated the 99th percentile of average daily temperature across the reference period (14), and 346 

applied this temperature during seven consecutive days (Fig. 1). All ambient and extreme heat 347 

temperature values for each season and site are provided in Table S3. We additionally assessed how our 348 

experimental extreme heat events compared to naturally occurring heat extremes in the field sites during 349 

the study period (details in Table S8). 350 

 To imitate typically dry conditions encountered during extreme heat events, microcosms 351 

allocated to the extreme heat treatment did not receive any water inputs during the week of the heat 352 

event, and water losses were compensated only at the start of the recovery phase (soil water content 353 

data shown in Fig. S3). All temperature regimes adopted a diel light and temperature cycle (8h night/ 16h 354 

day), with a 6 °C-amplitude between night and day (Table S3). Air temperature and humidity, light 355 

intensity and soil temperature (depth 3-5 cm; Fig. 1) were monitored in the incubators (SANYO MIR-253, 356 

Japan) at 30-min intervals (HOBO® MX Multi-Channel, Onset Computer Corporation, USA). The 357 

incubators (N = 6) were randomly rotated among treatments at each season (Table S3). 358 

 359 

Data collection 360 

After field sampling, all soil microcosms were acclimated for one week in the incubators at ambient 361 

temperatures. We collected data of soil-living communities of microarthropods (Collembola) and fungi 362 

across three harvests for each season. Each microcosm was accordingly allocated to one of three 363 

harvests: harvest 1 (week 2 after field sampling, before the extreme heat event), harvest 2 (week 3, 364 

immediately after the extreme heat event), and harvest 3 (week 8, after a five-week recovery period 365 
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following the extreme heat event). At each harvest, we collected a scoop of moist soil from the bottom of 366 

each microcosm to minimize sample disturbance, rather than using the common practice of homogenizing 367 

the sample (mean weight subsamples (g) ± SD: 8.55 ± 0.44). The subsamples were then stored at -20 °C 368 

until extraction of fungal DNA (March-May 2023). Next, we extracted all microarthropods from the 369 

microcosms with gradual heating from 25 °C up to 55 °C for 7 days following the Macfayden extraction 370 

method (71). All animals were collected in glycol water solution (1:1) and later transferred to 70% ethanol.  371 

Collembolans were sorted and identified to species level (details in Table S4). We retrieved 372 

information on the vertical stratification of Collembola species to examine how this trait mediates species 373 

responses to extreme heat. We assigned each species to one of three categories depending on their 374 

adaptations to occupy different depths of the soil profile: epedaphic (surface-living), hemiedaphic (living in 375 

litter and upper soil layers) and euedaphic (permanently living in the soil). The abundances and vertical 376 

stratification of all Collembola species are listed in Table S4.  377 

 378 

 Fungal ITS metabarcoding  379 

Fungal DNA was extracted from 250 mg of bulk fresh soil (subsamples) using the Qiagen DNAeasy 380 

PowerSoil Pro Kit, following the manufacturer’s instructions. We then carried out PCR-amplification 381 

targeting the primers ‘TCCGTAGGTGAACCTGC’ (forward) and ‘GCATATCAATAAGCGGAGGA’ 382 

(reverse), followed by amplicon sequencing of the full ITS region (ITS1-ITS2) with PacBio Sequel II 383 

instrument (Pacific Biosciences, USA). Libraries were loaded into three SMRTcells, each including five 384 

blanks and five controls (listed in Table S5). PCR and amplicon sequencing were conducted at the Next 385 

Generation Sequencing Platform of the University of Bern. Processing of the HiFi reads was performed 386 

with the pb-16S-nf pipeline (https://github.com/PacificBiosciences/HiFi-16S-workflow), which makes use 387 

of QIIME2 (72) and DADA2 (73). Briefly, after demultiplexing, low-quality reads (<Q20) were discarded, 388 

primers trimmed (mean read length after processing: 670 bp), and denoised ASVs were obtained. Next, 389 

singletons and ASVs with less than five reads were filtered out, and taxonomical assignment with 390 

VSEARCH was performed using the UNITE QIIME release 9 (74). We then merged the data from the 391 

https://github.com/PacificBiosciences/HiFi-16S-workflow
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different sequencing runs and retained only fungal ASVs agglomerated at the species level (R package 392 

phyloseq v. 1.48.0) (75). We also obtained the main trophic strategy of each fungal species (i.e., 393 

saprotroph, symbiotroph, pathogenic) using the package FUNGuildR v. 0.2.0.9000 (76). We selected the 394 

first annotated trophic strategy for those taxa with mixed trophic modes, and we only retained the trophic 395 

strategies assigned with “probable” and “highly probable” confidence (following (76)), treating the 396 

remaining as “unassigned”.   397 

 398 

Data analyses: total abundances and diversity indices 399 

All analyses were performed in R version 4.4.0 (77). We tested how the effects of extreme heat on 400 

belowground communities were modulated by elevation and season, using the following three-way 401 

interaction model:  402 

Eq. 1.  𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ~ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑥 𝑆𝑒𝑎𝑠𝑜𝑛 𝑥 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + (1 | 𝑆𝑖𝑡𝑒) 403 

Where Site (N = 4) was treated as a random factor in all models to control for non-independence among 404 

experimental units at each site (69). All models were fitted separately for each experimental harvest: 405 

harvest 1 or baseline (H1), harvest 2 or resistance response (H2), and harvest 3 or recovery response 406 

(H3; Fig. 1). Linear models with univariate response variables were fitted with the R package glmmTMB 407 

v.1.1.9 (78). Linearity assumptions (i.e., normality of residuals, overdispersion, zero-inflation, 408 

homogeneity of variance) were verified with the package DHARMa v.0.4.6 (79). We obtained marginal 409 

means and contrasts between control and extreme heat treatments using the emmeans package v.1.10.1 410 

(80), and calculated conditional and marginal R2 of the linear models (81) with the r.squaredGLMM 411 

function from the package MuMIn v.1.47.5 (82). 412 

 Total Collembola abundances were analyzed with generalized linear mixed-effects models 413 

(GLMM) with negative binomial distribution (Eq. 1). We also employed negative binomial GLMMs to 414 

analyze the total number of reads for different groups of fungi according to their trophic strategy 415 

(saprotrophs, pathogens, symbionts and unassigned fungi), including the log-transformed number of 416 



 

 

18 

 

reads as a covariate to control for variation in sequencing depth across samples (83, 84). The diversity of 417 

Collembola and fungi was assessed by means of diversity profiles, obtained across three values of Hill 418 

numbers (order q): q = 0 (species richness), q = 1 (Shannon-Hill) and q = 2 (Simpson-Hill). The diversity 419 

profiles describe how the different diversity metrics change along a gradient of leverage of species’ rarity, 420 

with lower values of q emphasizing the contribution of rare species, while higher values of q heighten the 421 

contribution of more common species (85). We computed diversity estimates using coverage-based 422 

rarefaction and extrapolation to equalize samples (coverage value of 0.90 for Collembola, and 0.98 for 423 

fungi) with the iNEXT package v.3.0.1 (86, 87). The resulting point estimates of diversity were tested 424 

using linear mixed models (Eq. 1) with Gaussian distribution. Before calculating the diversity indices, we 425 

applied an abundance cut-off to restrict the diversity analysis to samples with at least ten individuals (only 426 

needed for Collembola). 427 

 428 

Data analyses: species abundances and association networks 429 

Species abundances were evaluated using joint species distribution models (jSDMs) (88, 89) 430 

within the Hierarchical Modelling of Species Communities framework (package Hmsc v.3.0-13) (90), 431 

assuming default prior distributions (91). The ecological interpretation of the parameters estimated with 432 

the jSDMs is shown in Table S6. Block (N = 2) was added as a random effect in all fitted jSDMs to 433 

account for variation in species occurrences driven by their large-scale geographic distributions (see Fig. 434 

S5). We adopted a prevalence threshold of 25% to discard rare taxa (i.e., species occurring in less than 435 

30 out of the 120 experimental units sampled at each harvest), which may provide low statistical power 436 

due to the scarcity of data (e.g., (92)). In the jSDMs, we performed variance partitioning to extract the 437 

proportion of total variance explained by the experimental treatment (extreme heat), the natural variables 438 

(elevation and season), and the random effects (site and block). We built three sets of models with 439 

different groups of response variables: 1) the Collembola model, measuring responses of Collembola 440 

communities; 2) the fungi model, assessing responses of fungal communities; and 3) the Collembola-441 

fungi models, examining associations between Collembola and fungi (details below). First, in the 442 
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Collembola model, we used the log-normal Poisson distribution (analogous to negative binomial 443 

distribution) (91). We further modelled the influence of the species’ traits on their abundance responses, 444 

by including the species’ vertical stratification as a factor variable with three levels (epedaphic, 445 

hemiedaphic, and euedaphic). Second, in the fungal model, we accounted for zero-inflation, as typically 446 

encountered in sequencing data, by constructing a hurdle model that consisted of two parts: presence-447 

absence (modelled with probit regression), and abundance conditional on presence (linear regression 448 

with normal distribution, using log-transformed and scaled counts). We further controlled for variation in 449 

sequencing depth by including the log-transformed number of reads as a covariate (83, 84). We 450 

additionally included the fungal species’ trophic strategy in the models as a factor variable with four levels 451 

(saprotrophs, symbionts, pathogens, and unassigned), to examine how this trait can mediate fungal 452 

occurrence and abundance responses. The explanatory power of the jSDMs was evaluated by means of 453 

pseudo-R2 (Collembola model), Tjur R2 (presence-absence part of the fungal model) and R2 (abundance 454 

part of the fungal model) (91). MCMC convergence for all estimated parameters was assessed in terms of 455 

potential scale reduction factors (Table S7) (93). All jSDMs were fitted with four chains of 250 samples 456 

each, yielding 1000 posterior samples in total. The thinning intervals and the number of samples used as 457 

burn-in were adjusted for the different models according to the amount required to achieve adequate 458 

model convergence (Table S7) (Collembola model: thinning 1,000 and burn-in 125,000; fungal models: 459 

thinning 300 and burn-in 37,500; Collembola-fungi association models: thinning 100 and burn-in 12,500). 460 

The third set of jSDMs (Collembola-fungi models) allowed us to estimate associations between 461 

Collembola and fungi, followed by the analysis of network properties to summarize these associations at 462 

the network level. We focused this analysis on the recovery response to gain more robust and 463 

ecologically meaningful insights into the role of biotic effects in mediating responses to extreme heat. 464 

Resistance responses are primarily driven by abiotic effects of extreme heat on species’ abundances, 465 

while recovery responses can be more strongly influenced by biotic effects, such as associations with 466 

other species (7). This is because heat-driven changes in the abundance of one species (e.g., fungi) may 467 

take time to affect the abundance of a second species (e.g., Collembola). We assume that our 468 

measurement of recovery (i.e., five weeks after the end of the extreme heat events) can generally capture 469 
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such a time lag in disturbance effects across the two trophic levels (94). For this analysis, we created 470 

separate subsets from the full dataset for each elevation and season, resulting in six subsets, each 471 

containing 20 samples. We applied a prevalence threshold of 25% within each subset (i.e., discarding 472 

species occurring in fewer than five samples) for all Collembola and fungal species, as previously 473 

described. Due to the very low prevalence of Collembola species in summer at low elevation, we could 474 

not determine associations in this case. Next, we built the jSDMs using fungal species abundances as 475 

response variables (log-transformed and scaled abundances, conditional on presence), while treating 476 

Collembola species abundances (log-transformed +1 and scaled) and their interactive effects with 477 

extreme heat as explanatory variables. We retained the associations between Collembola and fungi with 478 

95% credible intervals not overlapping zero for control and extreme heat treatments, using the ci function 479 

from the bayestestR package v. 0.15.0 (95). Extreme heat associations were obtained by summing the 480 

parameter estimates of every Collembola-fungal association in the control treatment and the interactive 481 

effects of extreme heat, in all posterior samples. These associations can be indicative of bottom-up 482 

regulation through feeding (positive associations) or repulsion (negative associations), but they should be 483 

interpreted with care, as they may also capture the signal of joint responses to unmeasured abiotic 484 

variables (89, 96). Additionally, the mismatch in the spatial scales at which Collembola and fungi were 485 

measured (see Data collection in Methods) may lessen the statistical signal of their associations (96), 486 

particularly due to small-scale variation in fungal composition within the soil cores (97) (although 487 

experimental replication partly accounts for this issue; see Fig. S5).  488 

After fitting the jSDMs, we examined how two association network properties differed between 489 

control and extreme heat treatments: connectance and network dissimilarity. We visualized the 490 

associations resulting from the Collembola-fungi jSDMs using the igraph package v.2.0.2 (98). For the 491 

analysis of connectance (i.e., the ratio of the number of realized associations to the number of potential 492 

associations) (99), we calculated the observed differences in network connectance between the 493 

experimental treatments, and further generated null models to test how the observed differences diverged 494 

from random expectations. To do this, we first trimmed the control and extreme heat networks obtained 495 

from the same jSDM (i.e., same spatiotemporal context) to retain only the species having associations in 496 
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either of the two networks (metaweb). We then produced 1000 permutations of each association network 497 

using the r2dtable algorithm (implemented in the package vegan v.2.6-4) (100), as this method keeps the 498 

matrix dimensions and marginal totals constant while allowing for variation in the number of non-zero 499 

elements (i.e., number of Collembola-fungal associations), and hence connectance (101). We then 500 

calculated differences in connectance between the random networks from control and extreme heat 501 

treatments, and compared these to the observed differences. To do so, we computed z-scores (Eq. 2), 502 

and obtained the corresponding p-values using two-tailed tests of population proportion.  503 

Eq. 2  𝑧 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑀𝑒𝑎𝑛 𝑛𝑢𝑙𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 

𝑆𝐷 𝑛𝑢𝑙𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠
 504 

 505 

To pinpoint the specific fungal groups driving changes in network connectance, we repeated the 506 

connectance analysis separately for saprotrophic and pathogenic fungi. Finally, we assessed the 507 

dissimilarity of control and extreme heat networks (using presence-absence of associations, as in the 508 

connectance analysis), and partitioned network differences into their compositional (i.e., differences in the 509 

composition of the species between the networks) and rewiring components (i.e., dissimilarity in the 510 

associations among shared species in control and extreme heat networks) (102), with the betalinkr 511 

function implemented in the bipartite package v.2.20 (103). 512 

 513 

Data and code availability statement 514 

The complete dataset and R scripts used in this study are available in the Figshare repository: 515 

https://figshare.com/s/6e97dcd9e93c64ff6b60. 516 
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Figures  744 
 745 
 746 

 747 
 748 
Figure 1. Scheme of the experimental design of the study. We used a split-plot sampling design (left 749 
side of the figure), whereby samples (intact soil cores) were taken from two regional-scale blocks, each 750 
containing one high- and one low-elevation site (Fig. S1). Sites were defined as a delineated 5 x 5 m area 751 
representative of the dry grasslands of the study region (pictures in Fig. S2). Within sites and seasons 752 
(i.e., spring, summer, autumn), six soil cores were obtained from each of five 1 m x 1.5 m plots. The 753 
sampling locations of data-level predictors (temperature regimes and harvests) were randomized within 754 
each plot, whereas the sampling locations of plot-level predictors (seasons) were kept constant in all sites 755 
to avoid the sampling from adjacent plots in the same season. The pictures displayed in the figure were 756 
taken in the summer season from one of our high (above: Chasseron) and low (below: Onnens) elevation 757 
sites (site-specific information is provided in Table S1). The colors of the plots (site scale) denote different 758 
sampling seasons: spring (green), summer (yellow) and autumn (orange). The circles shown at the plot 759 
scale represent the soil cores used as microcosms in the laboratory experiment (right side of the figure), 760 
which were allocated to one of two temperature treatments (control: blue; extreme heat: red) and one of 761 
three harvests (H1: baseline or harvest 1; H2: resistance phase or harvest 2; H3: recovery phase or 762 
harvest 3). All harvests were destructive, meaning experimental replications were true for each harvest. 763 
The size of the soil cores relative to the plot is enhanced for visualization purposes. Average daily soil 764 
temperatures (depth 3-5 cm) measured over the course of the laboratory experiments are shown, 765 
together with the temperatures recorded in the field sites during the same period (6 May – 9 November 766 
2022). Mean temperatures from the two sites at the same elevation are displayed as grey lines; site-767 
specific temperature values are provided in Fig. S4. 768 
  769 
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 770 
 771 
Figure 2. Responses of Collembola abundance to experimental extreme heat events across 772 
elevations and at different seasons. Estimated marginal means (± 95 confidence intervals) of 773 
Collembola abundance (log-transformed) are shown over the course of the experiments in spring, 774 
summer and autumn. The labels on the x-axis specify the different time points in which Collembola 775 
densities were assessed during the experiment (i.e., harvests): baseline (harvest 1); resistance phase 776 
(harvest 2); recovery phase (harvest 3). The faded red areas represent the one-week extreme heat 777 
events. Colours indicate different experimental temperature treatments: blue: control; red: extreme heat. 778 
Asterisks show significant differences between treatments at each harvest: **P < 0.01, ***P < 0.001. Full 779 
model outputs are provided in Table S9. 780 
 781 
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 783 

Figure 3. Output of the joint species distribution models (jSDMs) fitted to investigate the 784 
responses of Collembola species abundances. We tested the effects of season, elevation, treatment, 785 
and their three-way interactions, in the resistance (a; harvest 2: H2; panels above) and the recovery 786 
response (b; harvest 3: H3; panels below). The results from the baseline response are provided in Fig. 787 
S7. Estimates from the beta parameters (left panels) show the responses of species abundances (x-axis) 788 
to each of the model parameters (y-axis). Green and orange colors indicate positive and negative 789 
responses with 95% posterior probability, respectively, while blank spaces denote responses that lacked 790 
statistical support (should, therefore, be interpreted as neutral response). Species abundances at the 791 
intercept (spring, high elevation, control treatment) denote more abundant species in green, less 792 
abundant species in orange, and blank spaces indicating intermediate abundances (Table S6). 793 
Parameters enclosed within the red area represent species responses to the experimental treatment 794 
(extreme heat: EH; see Table S6 for an ecological interpretation of the model parameters). The proportion 795 
of raw explained variance (right panels) is provided for different groups of variables: random effects (site 796 
and block), natural variables (season and elevation), and treatment (containing the variance explained by 797 
all parameters influenced by extreme heat, shown within the red area of the left panels). Collembola 798 
species are ordered according to their vertical stratification across the soil profile: epedaphic (surface-799 
living), hemi-edaphic (living in litter and shallow soil layers), and euedaphic (permanently living in the 800 
soil).  801 
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 803 

 804 

Figure 4. Responses of saprotrophic and pathogenic fungi to experimental extreme heat events 805 
across elevations and at different seasons. Estimated marginal means (± 95 confidence intervals) of 806 
the number of reads (log-transformed) of saprotrophs (a; upper panel) and pathogenic fungi (b; lower 807 
panel) over the course of the experiments in spring, summer and autumn. The labels on the x-axis specify 808 
the different time points in which fungal metabarcoding reads were assessed during the experiment (i.e., 809 
harvests): baseline (harvest 1); resistance phase (harvest 2); recovery phase (harvest 3). The faded red 810 
areas represent the one-week extreme heat events. Colours indicate different experimental temperature 811 
treatments: blue: control; red: extreme heat. Stars show significant differences between treatments at 812 
each harvest: *P < 0.05, **P < 0.01. Full model outputs are provided in Tables S10-S11. 813 
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  815 

Figure 5. Collembola-fungal association networks and connectance at the recovery response. (a) 816 
Comparison of Collembola-fungal association networks between control and extreme heat treatments. An 817 
example is shown from the association networks from spring at low elevation. Positive links are displayed 818 
with green colors and negative links are shown with orange colors. The width of the links is proportional to 819 
the strength of the associations (i.e., parameter estimates of the Collembola-fungal jSDM). Black and 820 
white nodes denote Collembola and fungal species, respectively. Different node shapes represent various 821 
fungal trophic groups: saprotrophs (circle), pathogens (square), symbionts (pie), and unassigned fungi 822 
(triangle). Nodes without associations (i.e., degree = 0) are not displayed. (b) The differences in 823 
connectance between extreme heat and control treatments were calculated and tested against those 824 
differences obtained from null models. The height of the barplot shows the observed connectance 825 
differences, while the points display the connectance differences from the null models. Positive values 826 
indicate higher connectance in extreme heat treatments, whereas negative values denote higher 827 
connectance in control treatments. Z-scores and p-values are provided in Table S12. Stars show 828 
significant greater observed connectance differences between treatments compared to networks 829 
generated from the null models: **P < 0.01. All association networks are shown in Fig. S15.  830 
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Table S1. Description of the field sites. All plots were located in extensively managed dry meadows (i.e. 848 
one hay cut per year occurring not before July 1st and/or low-intensity grazing, no inputs of fertilizer or 849 
irrigation), with no recent soil disturbances.    850 

 851 

 852 

 853 

  854 

Location Chasseral Le Landeron Chasseron Onnens 

Block North North South South 

Elevation  High (1558 m) Low (481 m) High (1565 m) Low (540 m) 

Coordinates 
47°07’43” N 
7°02’52” E 

47°03’39” N  
7°03’49” E 

46°50’58” N 
6°32’18? E 

46°50’49” N 
6°41’07” E 

Aspect 170° (S) 210° (SSW) 190° (S) 140° (SE) 

Slope 6% 21% 10% 5% 

Mowing 
(frequency, 
period) 

Annually; 
August-
September 

Biannually; July-
August 

No mowing  
Annually; July-
August 

Grazing (type, 
period) 

Not grazed Not grazed 

Cow grazing in 
the past years, 
currently not 
grazed 

Sheep grazing, 
October-
November 

Dominant plant 
species 

Carex nigra, 
Agrostis 
capillaris, 
Dactylis 
glomerata 

Securigera varia, 
Bromus erectus, 
Carex sp.  

Carex montana, 
Sanguisorba 
officinalis, 
Agrostis 
capillaris 

Bromus erectus, 
Trisetum 
flavescens,  
Salvia pratensis 
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Table S2. Description of soil physicochemical parameters at the time of field sampling (i.e., not exposed 855 
to subsequent incubation in the laboratory) across the three studied seasons (spring, summer, autumn). 856 
For soil pH, we measured N = 3 per site and across seasons. For bulk density and gravimetric water 857 
content, we measured N = 5 per each site and season. 858 

  859 

Site 
(block and 
elevation) 

Season Soil pH Bulk density 
(g cm-3) 

Gravimetric 
water content 
(%) 

Chasseral 
(north high) 

Spring 5.54 ± 0.67 0.60 ± 0.15 44.91 ± 3.94 
 

Summer 0.69 ± 0.11 36.10 ± 2.37 
 

Autumn 0.80 ± 0.20 36.70 ± 2.60 

Le 
Landeron 
(north low) 

Spring  7.91 ± 0.05 0.84 ± 0.13 24.47 ± 3.90 

Summer 0.95 ± 0.21 24.51 ± 1.93 

Autumn 0.89 ± 0.14 22.44 ± 1.07 

Chasseron 
(south 
high) 

Spring 5.10 ± 0.21 0.72 ± 0.12 44.00 ± 3.09 

Summer 0.68 ± 0.13 30.35 ± 2.86 
 

Autumn 0.61 ± 0.13 28.90 ± 4.55 

Onnens 
(south low) 

Spring  5.98 ± 0.25 1.19 ± 0.15 25.56 ± 1.30 

Summer 1.27 ± 0.05 15.29 ± 1.10 

Autumn 1.29 ± 0.16 20.35 ± 1.38 
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Table S3. Description of the experimental temperature regimes. Climatic data representative of high 860 
elevations was obtained from the weather station in Chasseral (47°07′54″N 7°03′16″E; 1596 m.a.s.l.), 861 
whereas for low elevation, we acquired data from the weather station in Neuchâtel (47°00′00″N 862 
6°57′12″E; 485 m.a.s.l.). We retrieved air temperatures recorded at 2 m aboveground from the period 863 
2015-2020 (source: Meteoswiss). Control temperatures were set as the average daily temperature over 864 
the reference period per elevation and season. To establish the extreme heat events for each elevation 865 
and season, we adopted the 99th percentile of daily temperatures across the reference period for spring 866 
(May-June), summer (July-August) and autumn (Spring-October). For both control and extreme heat 867 
temperature regimes, we included a diel light and temperature cycle (8h night/ 16h day), with a 6 °C-868 
amplitude between night and day. C: Control temperature, EH: Extreme heat. The identity of the 869 
incubators (#1 to #4) containing each treatment combination is provided. 870 

 871 

 872 

  873 

Elevation Season Temperature 
treatment 

Average 
daily 
temperature 
(°C) 

Daytime 
temperature 
(°C) 

Nighttime 
temperature 
(°C) 

Incubator 
ID 

High Spring 
 

C 8.8 10.8 4.8 #3 

EH 20.5 22.5 16.5 #1 

Summer 
 

C 13.5 15.5 9.5 #1 

EH 21.7 23.7 17.7 #4 

Autumn C 7.3 9.3 3.3 #2 

EH 16.2 18.2 12.2 #4 

Low Spring 
 

C 16.5 18.5 12.5 #2 

EH 26.6 28.6 22.6 #4 

Summer 
 

C 21.2 23.2 17.2 #2 

EH 28.0 30.0 24.0 #3 

Autumn C 13.6 15.6 9.6 #3 

EH 21.7 23.7 17.7 #1 
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Table S4. Total Collembola species abundances (N = 360) and vertical stratification of the species across 874 
the soil profile: epedaphic (surface-living), hemiedaphic (living in litter and upper soil layers) and 875 
euedaphic (permanently living in the soil). The sources for the identification of Collembola species were: 876 
Dunger & Schlitt (2011); Fjellberg (1998, 2007); Gisin (1960); Hopkin (2007); Thibaud et al. (2004). The 877 
vertical stratification of each Collembola species was extracted mainly from Gisin (1943), as well as 878 
Chauvat et al. (2014); Ferlian et al. (2015); Leinaas & Bleken (1983); Urbášek & Rusek (1994). The 879 
abundances of immature individuals that could not be assigned to a particular species are displayed at 880 
the bottom of the table.  881 

 882 

 883 

  884 

Collembola 
species 

Family Vertical 
stratification 

Total 
abundance 

Folsomia 
quadrioculata Isotomidae Hemiedaphic 3502 

Parisotoma notabilis Isotomidae Hemiedaphic 2867 

Isotoma viridis Isotomidae Hemiedaphic 918 

Isotomiella minor Isotomidae Euedaphic 890 

Protaphorura 
pseudovanderdrifti Onychiuridae Euedaphic 863 

Lepidocyrtus 
cyaneus Entomobryidae Hemiedaphic 820 

Pseudosinella alba Entomobryidae Euedaphic 750 

Lepidocyrtus 
lignorum Entomobryidae Epedaphic 461 

Ceratophysella 
denticulata Hypogastruridae Epedaphic 351 

Stenaphorura denisi Tullbergiidae Euedaphic 288 

Sminthurinus 
signatus Katiannidae Hemiedaphic 251 

Choreutinula inermis Hypogastruridae - 116 

Sminthurinus aureus Katiannidae Epedaphic 48 

Sphaeridia pumilis Sminthurididae Hemiedaphic 41 

Neanura muscorum Neanuridae Hemiedaphic 20 

Sminthurus viridis Sminthurididae Epedaphic 15 

Orchesella 
flavescens Orchesellidae Epedaphic 5 

Entomobrya 
multifasciata Entomobryidae Epedaphic 4 

Pogonognathellus 
flavescens Tomoceridae Hemiedaphic 2 

Heteromurus nitidus Orchesellidae Euedaphic 1 

 
Immature 
individuals 

 

  

Isotomidae   397 

Hypogastruridae   191 

Entomobryidae   132 

Symphypleona   7 
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Table S5. List of the controls incorporated in the amplicon sequencing pipeline.  885 

 886 

  887 

Type of control Description Reference 

Blank Buffers from the extraction 
kit; added at the extraction 
phase 

https://www.qiagen.com/us/products/disco
very-and-translational-research/dna-rna-
purification/dna-purification/microbial-
dna/dneasy-powersoil-pro-kit  

Negative Elution buffer: buffer used 
to dilute samples, primers 
and in MasterMix 

https://www.pacb.com/wp-
content/uploads/Procedure-Checklist-
%E2%80%93-Amplification-of-Full-
Length-16S-Gene-with-Barcoded-Primers-
for-Multiplexed-SMRTbell-Library-
Preparation-and-Sequencing.pdf   

Negative MasterMix https://www.pacb.com/wp-
content/uploads/Procedure-Checklist-
%E2%80%93-Amplification-of-Full-
Length-16S-Gene-with-Barcoded-Primers-
for-Multiplexed-SMRTbell-Library-
Preparation-and-Sequencing.pdf  

Positive ATCC MSA-1010 https://www.atcc.org/products/msa-1010  

Positive ZymoBIOMICS Microbial 
Community Standard 

https://zymoresearch.eu/products/zymobio
mics-microbial-community-dna-standard-
ii-log-distribution  

https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/microbial-dna/dneasy-powersoil-pro-kit
https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/microbial-dna/dneasy-powersoil-pro-kit
https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/microbial-dna/dneasy-powersoil-pro-kit
https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/microbial-dna/dneasy-powersoil-pro-kit
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.pacb.com%2Fwp-content%2Fuploads%2FProcedure-Checklist-%25E2%2580%2593-Amplification-of-Full-Length-16S-Gene-with-Barcoded-Primers-for-Multiplexed-SMRTbell-Library-Preparation-and-Sequencing.pdf&data=05%7C02%7Cgerard.martinezdeleon%40unibe.ch%7C156efd6d37324a9244a208dc8f77c98d%7Cd400387a212f43eaac7f77aa12d7977e%7C1%7C0%7C638542991845812552%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=udxelZhMLEBAReB2HrJQHxP72ahVm%2Bx2%2BmzaJvaTra8%3D&reserved=0
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Table S6. Ecological interpretation of the parameters from the joint species distribution models (jSDMs) 888 
used in our study. We tested the effects of season, elevation, treatment, and their three-way interactions, 889 
on Collembola and fungal species abundances. In the schematic visualization, green and orange lines 890 
represent positive and negative parameter estimates, respectively, while grey lines represent estimates 891 
that lack statistical support (i.e., blank fields in Fig. 3).  892 

Parameter Ecological interpretation Schematic visualization 

Intercept  Species abundances in the treatment 
combination set as the intercept: spring, at 
high elevation, in the control treatment.  
 
 
 
 

 
Summer Shifts in abundance from spring to summer 

(relative to the intercept). 
 
  

 

Autumn Shifts in abundance from spring to autumn 
(relative to the intercept). 
 
 

Low elevation Shifts in abundance from high to low 
elevation (relative to the intercept). 

 
Summer x Low 
elevation 

Given the seasonal abundance shifts as 
described above, it shows whether this 
effect is modulated by elevation (in control 
treatment). 
 

 

Autumn x Low 
elevation 

EH (extreme heat; 
including all the 
interactions involved) 

Effect of the extreme heat event, compared 
to their corresponding reference level in the 
control treatment. 
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Table S7. Potential scale reduction factors for the parameters estimated in the joint species distribution 893 
models.  894 

Model Collembola 

Harvest Baseline Resistance Recovery 

Parameter Beta Gamma Beta Gamma Beta Gamma 

Min.  1.00 1.00 1.00 1.00 1.00 1.00 

1st Qu. 1.00 1.00 1.00 1.00 1.00 1.00 

Median 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

3rd Qu. 1.00 1.01 1.00 1.00 1.00 1.00 

Max. 1.01 1.01 1.01 1.01 1.01 1.01 

 

Model Fungi (presence-absence) 

Harvest Baseline Resistance Recovery 

Parameter Beta Gamma Beta Gamma Beta Gamma 

Min.  1.00 1.00 1.00 1.00 1.00 1.00 

1st Qu. 1.00 1.00 1.00 1.00 1.00 1.00 

Median 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

3rd Qu. 1.00 1.00 1.00 1.00 1.00 1.00 

Max. 1.02 1.01 1.02 1.01 1.01 1.01 

 

Model Fungi (abundance conditional on presence) 

Harvest Baseline Resistance Recovery 

Parameter Beta Gamma Beta Gamma Beta Gamma 

Min.  1.00 1.00 1.00 1.00 1.00 1.00 

1st Qu. 1.00 1.00 1.00 1.00 1.00 1.00 

Median 1.00 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 1.00 

3rd Qu. 1.00 1.00 1.00 1.00 1.00 1.00 

Max. 1.01 1.01 1.02 1.01 1.02 1.01 

 

Model Collembola-fungal models (only recovery) 

Parameter Beta 

Treatment Low spring High spring High summer Low autumn High autumn 

Min.  1.00 1.00 1.00 1.00 1.00 

1st Qu. 1.00 1.00 1.00 1.00 1.00 

Median 1.00 1.00 1.00 1.00 1.00 

Mean 1.00 1.00 1.00 1.00 1.00 

3rd Qu. 1.00 1.00 1.00 1.00 1.00 

Max. 1.02 1.02 1.02 1.08 1.04 

 895 

 896 
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Table S8. Output of model used to compare the average daily soil temperature (measured at 3-5 cm 897 
depth) in the extreme heat events simulated in the lab, against the hottest days recorded in the field sites 898 
during the study period (N = 6 days, per each elevation and season combination). This analysis was 899 
conducted to evaluate the severity of our experimental treatments compared to the natural variability of 900 
heat extremes in the field sites. We fitted a linear mixed effect model with the R package nlme v.3.1-163 901 
(Pinheiro et al., 2023), accounting for heterogeneity of residuals by taking the origin of the data (field or 902 
lab) as an offset term, due to the greater variance of the data collected from the field compared to the 903 
temperature data from the lab experiments. We note that the year in which the study took place (2022) 904 
was one of the warmest on record in the area, exceeding the norm of monthly mean temperature of May-905 
October by 2.3-2.5 °C on average (relative to the 1990-2010 reference period; source Meteoswiss).  906 

 907 

Average daily soil temperature (°C) 

Elevation Season  
Origin of 
data 

Estimate SE P 
Marginal/ 

Conditional R2 
 

 
 

   
 

High 

Spring  
Lab 19.60 0.33 

0.060 

0.993 / 0.998 

Field 18.02 0.24 

Summer  
Lab 20.75 0.33 

0.087 

Field 19.44 0.26 

Autumn 
Lab 15.72 0.33 

0.011 

Field 11.87 0.26 

Low 

Spring  
Lab 25.47 0.33 

0.962 

Field 25.49 0.24 

Summer  
Lab 27.23 0.33 

0.322 

Field 26.69 0.26 

Autumn 
Lab 21.03 0.33 

0.010 

Field 16.82 0.26 
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Table S9. Output of the generalized linear mixed-effects model with negative binomial distribution used to 908 
evaluate the effect of the temperature treatments, modulated by elevation and season, on total 909 
Collembola abundances. Separate models were fit for each experimental harvest: baseline (harvest 1, 910 
before extreme heat), resistance (harvest 2, at the end of extreme heat) and recovery (harvest 3, five 911 
weeks after the end of extreme heat). Estimates, standard errors (SE), p-values (P) of the contrasts 912 
between temperature treatments, marginal and conditional R2 (trigamma estimate) are provided. 913 
Significant p-values (P < 0.05) are highlighted in bold. Abbreviations of temperature treatment levels: C: 914 
Control temperature, EH: Extreme heat. 915 

 916 

Total Collembola abundances (log-scale) 

 
Elevation Season  

Temperature 
treatment 

Estimate SE P 
Marginal/ 

Conditional R2 
  

 

 

   

 

B
a
s
e
lin

e
 (

h
a
rv

e
s
t 
1
) 

High 

Spring  
C 3.86 0.21 

0.651 

0.263/0.305 

EH 3.76 0.21 

Summer  
C 3.71 0.22 

0.356 
EH 3.93 0.20 

Autumn 
C 3.18 0.25 

0.218 
EH 3.53 0.23 

Low 

Spring  
C 3.28 0.25 

0.949 
EH 3.26 0.25 

Summer  
C 2.60 0.30 

0.827 
EH 2.68 0.29 

Autumn 
C 3.70 0.22 

0.356 
EH 3.92 0.20 

R
e
s
is

ta
n
c
e
 (

h
a
rv

e
s
t 
2
) 

High 

Spring  
C 3.88 0.24 0.969 

0.512/0.566 

EH 3.89 0.24 

Summer  
C 3.79 0.24 0.965 
EH 3.80 0.24 

Autumn 
C 3.22 0.27 0.208 
EH 3.56 0.25 

Low 

Spring  
C 3.47 0.26 <0.001 
EH 2.29 0.35 

Summer  
C 2.68 0.32 0.007 
EH 1.19 0.52 

Autumn 
C 3.68 0.25 0.277 
EH 3.40 0.27 

R
e
c
o
v
e
ry

 (
h
a
rv

e
s
t 
3
) 

High 

Spring  
C 3.88 0.24 0.787 

0.356/0.387 

EH 3.80 0.24 

Summer  
C 3.76 0.25 0.503 
EH 3.55 0.26 

Autumn 
C 4.01 0.23 0.378 
EH 3.77 0.24 

Low 

Spring  
C 4.00 0.23 

0.747 
EH 3.91 0.24 

Summer  
C 3.09 0.29 

0.005 
EH 1.65 0.47 

Autumn 
C 4.14 0.22 

0.323 
EH 3.88 0.24 
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Table S10. Output of the generalized linear mixed-effects model with negative binomial distribution used 917 
to evaluate the effect of the temperature treatments, modulated by elevation and season, on the total 918 
number of metabarcoding reads of saprotrophic fungi. Separate models were fit for each experimental 919 
harvest: baseline (harvest 1, before extreme heat), resistance (harvest 2, at the end of extreme heat) and 920 
recovery (harvest 3, five weeks after the end of extreme heat). Estimates, standard errors (SE), p-values 921 
(P) of the contrasts between temperature treatments, marginal and conditional R2 (trigamma estimate) 922 
are provided. Significant p-values (P < 0.05) are highlighted in bold. Abbreviations of temperature 923 
treatment levels: C: Control temperature, EH: Extreme heat. 924 

 925 

Number of reads of saprotrophic fungi (log-scale) 

 
Elevation Season  

Temperature 
treatment 

Estimate SE P 
Marginal/ 

Conditional R2 
  

 

 

   

 

B
a
s
e
lin

e
 (

h
a
rv

e
s
t 
1
) 

High 

Spring  
C 7.503 0.226 0.167 

 

0.804/0.818 

EH 7.870 0.225 

Summer  
C 7.586 0.226 

0.319 
EH 7.322 0.225 

Autumn 
C 8.120 0.232 

0.471 
EH 7.925 0.226 

Low 

Spring  
C 6.525 0.231 

0.068 
EH 7.013 0.239 

Summer  
C 6.974 0.225 

0.730 
EH 7.066 0.225 

Autumn 
C 7.401 0.225 

0.562 
EH 7.555 0.225 

R
e
s
is

ta
n
c
e
 (

h
a
rv

e
s
t 
2
) 

High 

Spring  
C 7.223 0.322 0.581 

0.720/0.820 

EH 7.347 0.322 

Summer  
C 7.148 0.322 0.503 
EH 7.297 0.322 

Autumn 
C 7.712 0.322 0.843 
EH 7.667 0.323 

Low 

Spring  
C 6.680 0.327 0.680 
EH 6.775 0.322 

Summer  
C 6.710 0.322 0.351 
EH 6.502 0.322 

Autumn 
C 6.953 0.325 0.195 
EH 6.652 0.322 

R
e
c
o
v
e
ry

 (
h
a
rv

e
s
t 
3
) 

High 

Spring  
C 7.465 0.250 0.616 

0.742/0.817 

EH 7.564 0.249 

Summer  
C 7.524 0.250 0.735 
EH 7.591 0.249 

Autumn 
C 7.917 0.248 0.490 
EH 8.054 0.252 

Low 

Spring  
C 7.112 0.250 0.092 
EH 6.775 0.249 

Summer  
C 7.320 0.249 0.089 
EH 6.986 0.249 

Autumn 
C 7.511 0.253 

0.038 
EH 7.094 0.249 
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Table S11. Output of the generalized linear mixed-effects model with negative binomial distribution used 926 
to evaluate the effect of the temperature treatments, modulated by elevation and season, on the total 927 
number of metabarcoding reads of pathogenic fungi. Separate models were fit for each experimental 928 
harvest: baseline (harvest 1, before extreme heat), resistance (harvest 2, at the end of extreme heat) and 929 
recovery (harvest 3, five weeks after the end of extreme heat). Estimates, standard errors (SE), p-values 930 
(P) of the contrasts between temperature treatments, marginal and conditional R2 (trigamma estimate) 931 
are provided. Significant p-values (P < 0.05) are highlighted in bold. Abbreviations of temperature 932 
treatment levels: C: Control temperature, EH: Extreme heat. 933 

934 
Number of reads of pathogenic fungi (log-scale) 

 
Elevation Season  

Temperature 
treatment 

Estimate SE P 
Marginal/ 

Conditional R2 
  

 

 

   

 

B
a
s
e
lin

e
 (

h
a
rv

e
s
t 
1
) 

High 

Spring  
C 5.845 0.277 

0.606 

0.649/0.689 

EH 5.997 0.278 

Summer  
C 6.211 0.277 

0.544 
EH 6.034 0.276 

Autumn 
C 6.327 0.280 

0.136 
EH 5.892 0.279 

Low 

Spring  
C 6.417 0.280 

0.945 
EH 6.396 0.287 

Summer  
C 6.887 0.277 

0.906 
EH 6.922 0.276 

Autumn 
C 6.602 0.277 

0.449 
EH 6.377 0.280 

R
e
s
is

ta
n
c
e
 (

h
a
rv

e
s
t 
2
) 

High 

Spring  
C 5.497 0.235 0.272 

0.643/0.671 

EH 5.795 0.235 

Summer  
C 5.983 0.234 0.837 
EH 5.928 0.234 

Autumn 
C 6.241 0.233 0.571 
EH 6.394 0.236 

Low 

Spring  
C 6.326 0.239 0.952 
EH 6.342 0.235 

Summer  
C 6.781 0.235 0.560 
EH 6.625 0.240 

Autumn 
C 6.301 0.234 0.774 
EH 6.224 0.233 

R
e
c
o
v
e
ry

 (
h
a
rv

e
s
t 
3
) 

High 

Spring  
C 6.557 0.199 0.151 

0.656/0.659 

EH 6.172 0.193 

Summer  
C 6.195 0.198 0.541 
EH 6.365 0.204 

Autumn 
C 6.782 0.193 0.114 
EH 6.353 0.197 

Low 

Spring  
C 6.383 0.194 0.241 
EH 6.703 0.198 

Summer  
C 6.642 0.196 0.002 
EH 7.471 0.196 

Autumn 
C 6.704 0.193 

0.126 
EH 7.110 0.193 
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Table S12. Output of the network analysis evaluating differences between the Collembola-fungal association networks from extreme heat and 935 
control treatments. Z-scores and p-values were computed to establish whether the observed connectance differences were significantly greater or 936 
smaller compared to those from random networks generated with null models (1000 permutations for each network). Significant p-values (P < 937 
0.05) are highlighted in bold. The connectance analysis was repeated separately for each fungal trophic group, on subsets of networks only made 938 
of either pathogens or saprotrophs. Connectance differences within the subsets of specific fungal groups are indicated; asterisks indicate the level 939 
of statistical significance (**P < 0.01). Whole network dissimilarity (WN) and its additive components are provided, based on Poisot et al. (2012) 940 
and Dormann et al. (2009): dissimilarity explained by the rewiring of associations among shared species (OS) and dissimilarity explained by 941 
differences in species composition between networks (ST). The percentages (%) of whole network dissimilarity explained by OS and ST 942 
components are shown. The observed association networks are displayed in Fig. S12. 943 

 944 

 945 

Elevation Season 
Sign of 
associations 

Connectance 
extreme heat 

Connectance 
control 

Connectance 
difference 

z-
score 

P 

Connectance 
differences 
within fungal 
groups 

WN OS ST 
% 
OS 

% 
ST 

High 
 

Spring 
Positive 

0.082 0.099 -0.017 
-

0.475 0.635 
None 

0.719 0.234 0.484 32.6 67.4 

Negative 0.124 0.085 0.040 1.201 0.230 None 0.676 0.203 0.473 30.0 70.0 

Summer 
Positive 0.076 0.044 0.032 0.233 0.815 None 0.967 0.283 0.683 29.3 70.7 

Negative 0.097 0.058 0.038 0.504 0.614 None 0.896 0.156 0.740 17.4 82.6 

Autumn 
Positive 0.123 0.055 0.069 1.095 0.274 None 0.912 0.298 0.614 32.7 67.3 

Negative 0.075 0.055 0.020 0.299 0.765 None 0.880 0.361 0.518 41.1 58.9 

Low 
 

Spring 
Positive 

0.059 0.063 -0.005 
-

0.037 0.970 
None 

0.815 0.241 0.574 29.5 70.5 

Negative 0.136 0.061 0.075 2.958 0.003 Saprotroph** 0.770 0.287 0.483 37.3 62.7 

Autumn 
Positive 0.078 0.032 0.046 1.383 0.167 None 0.891 0.145 0.745 16.3 83.7 

Negative 0.087 0.054 0.032 0.486 0.627 None 0.886 0.257 0.629 29.0 71.0 
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 946 

Fig. S1. Map of the study area showing the geographic position and elevation of the sampling 947 
sites, indicated with star signs. The shortest distance between sites of different blocks (north 948 
block: Chasseral and Le Landeron; south block: Chasseron and Onnens), as well as the distance 949 
between sites of the same block, are provided. Stars’ colors indicate sites at different elevations: 950 
red: high elevation; orange: low elevation. Map adapted from https://map.geo.admin.ch.  951 

  952 

https://map.geo.admin.ch/
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 953 

Fig. S2. Pictures of the field sites taken at various seasons: a) Chasseron (summer), b) 954 
Chasseral (autumn), c) Onnens (summer), d) Le Landeron (early spring, before the start of the 955 
experiments). The pictures are arranged in a grid, so that the rows indicate the elevation (high 956 
and low), and the columns show the block (south and north).   957 
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 958 

Fig. S3. Gravimetric soil water content, measured immediately after field sampling. Solid black 959 
points represent means, grey bars represent standard errors, and faded points are raw data (N = 960 
10 per each elevation and season combination). 961 

 962 

  963 
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 964 

Fig. S4. Site-specific maximum (a), average (b) and minimum (c) daily soil temperatures at 5 cm 965 
depth, together with the daytime (a), average (b), and nighttime temperatures (c) recorded during 966 
the lab experiment, for both control (blue lines) and extreme heat treatments (red lines). 967 
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 968 

Fig. S5. Visualization of Collembola (a) and fungal communities (b) using non-metric 969 
multidimensional scaling (NDMS), implemented in the package vegan (version 2.6-4; Oksanen et 970 
al. 2022). Different colors indicate the sites: green: Chasseral; orange: Le Landeron; blue: 971 
Chasseron; pink: Onnens. The experimental treatments are shown with different shapes: round: 972 
control; triangle: extreme heat. We note that the first axis (NMDS1) mainly represents 973 
compositional differences between elevations (high/low), while the second axis (NMDS2) 974 
captures differences between the blocks (north/south). k=3 in both NDMS.  975 

976 
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 977 

Fig. S6. Estimated marginal means (± 95 confidence intervals) of diversity profiles of Collembola 978 
communities, showing three indices calculated from various values of Hill number exponents (q): 979 
q = 0 (species richness), q = 1 (Shannon-Hill), q = 2 (Simpson-Hill). Lower values of the q 980 
exponent provide diversity estimates that give more leverage to rare species (e.g., species 981 
richness), while higher values give more leverage to dominant species (Roswell et al., 2021). 982 
Diversity profiles are shown for each experimental harvest separately: a) baseline or harvest 1 983 
(H1; N = 97), b) resistance or harvest 2 (H2; N = 91), and c) recovery or harvest 3 (H3; N = 103). 984 
Colours indicate different experimental temperature treatments: blue: control; red: extreme heat. 985 
Stars show significant differences between treatments at each harvest: *P < 0.05, **P < 0.01.   986 
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 987 

Fig. S7. Output of the joint species distribution models (jSDMs) fitted to investigate the responses 988 
of Collembola species abundances to season, elevation, treatment, and their three-way 989 
interactions, in the baseline response (i.e., harvest 1: H1; before the onset of the extreme heat 990 
events). Estimates from the beta parameters (left panels) show the responses of species 991 
abundances (x-axis) to each of the model parameters (y-axis). Green and orange colors indicate 992 
positive and negative responses with 95% posterior probability, respectively, while blank spaces 993 
denote responses that lacked statistical support. Species abundances at the intercept (spring, 994 
high elevation, control treatment) denote more abundant species in green, less abundant species 995 
in orange, and blank spaces indicating intermediate abundances. Parameters enclosed within the 996 
red area represent species responses to the experimental treatment (extreme heat: EH; see 997 
Table S6 for an ecological interpretation of the model parameters). The proportion of raw 998 
explained variance (right panels) is provided for different groups of variables: random effects (site 999 
and block), natural variables (season and elevation), and treatment (containing the variance 1000 
explained by all parameters influenced by extreme heat, shown within the red area of the right 1001 
panels). Collembola species are ordered according to their vertical stratification across the soil 1002 
profile: epedaphic (surface-living), hemi-edaphic (living in litter and shallow soil layers), and 1003 
euedaphic (permanently living in the soil).  1004 

  1005 
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 1006 

Fig. S8. Output of the joint species distribution models (jSDMs) fitted to investigate the responses 1007 
of Collembola species abundances to season, elevation, treatment, and their three-way 1008 
interactions, in the baseline (H1), resistance (H2) and recovery responses (H3). Estimates from 1009 
the gamma parameters show whether species traits (i.e., vertical stratification; x-axis) mediate 1010 
species abundance responses to each of the model parameters (y-axis). Three types of the 1011 
vertical stratification of Collembola across the soil profile were investigated: epedaphic (surface-1012 
living), hemi-edaphic (living in litter and shallow soil layers), and euedaphic (permanently living in 1013 
the soil). Green and orange colors indicate positive and negative responses with 95% posterior 1014 
probability, respectively, while blank spaces denote responses that lacked statistical support. 1015 
Parameter estimates at the intercepts (x-axis: epedaphic Collembola; y-axis: spring, high 1016 
elevation, control treatment) denote higher overall abundances in green, lower overall 1017 
abundances in orange, and blank spaces indicating intermediate abundances. The variation in 1018 
species abundances explained by their vertical stratification (𝑅𝑇

2; Ovaskainen et al. 2017) amounts 1019 
to: 0.15 (baseline), 0.36 (resistance), 0.43 (recovery). Parameters enclosed within the red area 1020 
represent species responses to the experimental treatment (extreme heat: EH; see Table S6 for 1021 
an ecological interpretation of the model parameters).   1022 
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 1023 

Fig. S9. Estimated marginal means (± 95 confidence intervals) of diversity profiles of fungal 1024 
communities, showing three indices calculated from various values of Hill number exponents (q): 1025 
q = 0 (species richness), q = 1 (Shannon-Hill), q = 2 (Simpson-Hill). Lower values of the q 1026 
exponent provide diversity estimates that give more leverage to rare species (e.g., species 1027 
richness), while higher values give more leverage to dominant species (Roswell et al., 2021). 1028 
Diversity profiles are shown for each experimental harvest separately: a) baseline or harvest 1 1029 
(H1; N = 120), b) resistance or harvest 2 (H2; N = 120), and c) recovery or harvest 3 (H3; N = 1030 
120). Colours indicate different experimental temperature treatments: blue: control; red: extreme 1031 
heat. The extreme heat treatment did not have significant effects on fungal diversity in any case.   1032 
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 1033 

Fig. S10. Output of the joint species distribution models (jSDMs) fitted to investigate the 1034 
responses of fungal species occurrences (panels above) and abundances (panels below) to 1035 
season, elevation, treatment, and their three-way interactions, in the baseline response (i.e., 1036 
harvest 1: H1; before the onset of the extreme heat events). Estimates from the beta parameters 1037 
(left panels) show the species responses (x-axis) to each of the model parameters (y-axis). Green 1038 
and orange colors indicate positive and negative responses with 95% posterior probability, 1039 
respectively, while blank spaces denote responses that lacked statistical support. Species 1040 
abundances at the intercept (spring, high elevation, control treatment) denote more abundant 1041 
species in green, less abundant species in orange, and blank spaces indicating intermediate 1042 
abundances. Parameters enclosed within the red area represent species responses to the 1043 
experimental treatment (extreme heat: EH; see Table S6 for an ecological interpretation of the 1044 
model parameters). The proportion of raw explained variance (right panels) is provided for 1045 
different groups of variables: random effects (site and block), natural variables (season and 1046 
elevation), and treatment (containing the variance explained by all parameters influenced by 1047 
extreme heat, shown within the red area of the right panels). Fungal species are ordered 1048 
according to their main trophic modes: pathogens, saprotrophs, symbionts, and unassigned fungi.  1049 
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 1050 

Fig. S11. Output of the joint species distribution models (jSDMs) fitted to investigate the 1051 
responses of fungal species occurrences (panels above) and abundances (panels below) to 1052 
season, elevation, treatment, and their three-way interactions, in the resistance response (i.e., 1053 
harvest 2: H2; after the extreme heat events). Estimates from the beta parameters (left panels) 1054 
show the species responses (x-axis) to each of the model parameters (y-axis). Green and orange 1055 
colors indicate positive and negative responses with 95% posterior probability, respectively, while 1056 
blank spaces denote responses that lacked statistical support. Species abundances at the 1057 
intercept (spring, high elevation, control treatment) denote more abundant species in green, less 1058 
abundant species in orange, and blank spaces indicating intermediate abundances. Parameters 1059 
enclosed within the red area represent species responses to the experimental treatment (extreme 1060 
heat: EH; see Table S6 for an ecological interpretation of the model parameters). The proportion 1061 
of raw explained variance (right panels) is provided for different groups of variables: random 1062 
effects (site and block), natural variables (season and elevation), and treatment (containing the 1063 
variance explained by all parameters influenced by extreme heat, shown within the red area of 1064 
the right panels). Fungal species are ordered according to their main trophic modes: pathogens, 1065 
saprotrophs, symbionts, and unassigned fungi.  1066 

  1067 
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 1068 

Fig. S12. Output of the joint species distribution models (jSDMs) fitted to investigate the 1069 
responses of fungal species occurrences (panels above) and abundances (panels below) to 1070 
season, elevation, treatment, and their three-way interactions, in the recovery response (i.e., 1071 
harvest 3: H3; five weeks after the end of the extreme heat events). Estimates from the beta 1072 
parameters (left panels) show the species responses (x-axis) to each of the model parameters (y-1073 
axis). Green and orange colors indicate positive and negative responses with 95% posterior 1074 
probability, respectively, while blank spaces denote responses that lacked statistical support. 1075 
Species abundances at the intercept (spring, high elevation, control treatment) denote more 1076 
abundant species in green, less abundant species in orange, and blank spaces indicating 1077 
intermediate abundances. Parameters enclosed within the red area represent species responses 1078 
to the experimental treatment (extreme heat: EH; see Table S6 for an ecological interpretation of 1079 
the model parameters). The proportion of raw explained variance (right panels) is provided for 1080 
different groups of variables: random effects (site and block), natural variables (season and 1081 
elevation), and treatment (containing the variance explained by all parameters influenced by 1082 
extreme heat, shown within the red area of the right panels). Fungal species are ordered 1083 
according to their main trophic modes: pathogens, saprotrophs, symbionts, and unassigned fungi.  1084 

  1085 
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 1086 

Fig. S13. Output of the joint species distribution models (jSDMs) fitted to investigate the 1087 
responses of fungal species occurrences (i.e., presence-absence) to season, elevation, 1088 
treatment, and their three-way interactions, in the baseline (H1), resistance (H2) and recovery 1089 
responses (H3). Estimates from the gamma parameters show whether species traits (i.e., fungal 1090 
trophic modes; x-axis) mediate species occurrence responses to each of the model parameters 1091 
(y-axis). Three types of the fungal trophic modes were investigated: pathogens, saprotrophs and 1092 
symbionts. Unassigned fungi represent the species for which a trophic mode could not be reliably 1093 
determined. Green and orange colors indicate positive and negative responses with 95% 1094 
posterior probability, respectively, while blank spaces denote responses that lacked statistical 1095 
support. Parameter estimates at the intercepts (x-axis: pathogenic fungi; y-axis: spring, high 1096 
elevation, control treatment) denote higher overall occurrences in green, lower overall 1097 
occurrences in orange, and blank spaces indicating intermediate occurrences. The variation in 1098 
species occurrences explained by their trophic modes (𝑅𝑇

2 ; Ovaskainen et al. 2017) amounts to: 1099 
0.08 (baseline), 0.07 (resistance), 0.05 (recovery). Parameters enclosed within the red area 1100 
represent species responses to the experimental treatment (extreme heat: EH; see Table S6 for 1101 
an ecological interpretation of the model parameters).   1102 
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 1103 

Fig. S14. Estimated marginal means (± 95 confidence intervals) of the number of reads (log-1104 
transformed) of unassigned (a; upper panel) and symbiotic fungi (b; lower panel) over the course 1105 
of the experiments in spring, summer and autumn. The labels on the x-axis specify the different 1106 
time points in which fungal metabarcoding reads were assessed during the experiment (i.e., 1107 
harvests): baseline (harvest 1); resistance (harvest 2); recovery (harvest 3). The faded red areas 1108 
represent the one-week extreme heat events. Colours indicate different experimental temperature 1109 
treatments: blue: control; red: extreme heat. Stars show significant differences between 1110 
treatments at each harvest: *P < 0.05.   1111 

  1112 
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 1113 

Fig. S15. Association networks of Collembola and fungi in the different spatiotemporal contexts 1114 
(i.e., season and elevation) at the recovery response, separately for control (left column) and 1115 
extreme heat treatments (right column). Positive associations are displayed with green colors and 1116 
negative associations are shown with orange colors. The width of the links is proportional to the 1117 
strength of the associations (i.e., parameter estimates of the Collembola-fungal jSDM). Black and 1118 
white nodes denote Collembola and fungal species, respectively. Different node shapes 1119 
represent various fungal trophic groups: saprotrophs (circle), pathogens (square), symbionts 1120 
(pie), and unassigned fungi (triangle). Nodes without associations (i.e., degree = 0) are not 1121 
displayed. A high-resolution version of the figure is available at the data repository (Data from: 1122 
Belowground Communities in Lowlands Are Less Stable to Climate Extremes across Seasons, 1123 
2025). 1124 
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