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Abstract 
Cold air drainage is common in mountains, and leads to large, fine-scale differences in diurnal 
temperature range (DTR). DTR is hypothesized to drive plant community assembly, because 
areas with high DTR can be exposed to both extreme high and extreme low temperatures in the 
same day. We established networks of temperature and relative humidity sensors along DTR 
gradients in two montane forest basins, and conducted plant surveys around each sensor 
(n=45). We studied the seasonal stability of DTR and its effects on fine-scale variation in plant 
community composition; and used topographic metrics to create spatial models of DTR.  
 
We found that mean DTR was stable throughout the year, although it was more variable around 
the mean (i.e., the standard deviation was higher) in winter months. It achieved both time series 
stability and distinguishability in less than 100 days, and was most strongly associated with daily 
minimum vapor pressure deficit. DTR measured in situ was the only variable that explained 
more than 50% of the within-basin variation in species composition for both basins, but among 
basins coarser-scale climatic variables (actual evapotranspiration, topographic wetness index, 
and climatic water deficit) performed better. DTR had a small, negative effect on species 
richness. Our simple model of DTR explained 64% of the variation, using only topographic 
wetness index and elevation as predictors. 
 
These findings illustrate how at broad scales, average temperature and moisture conditions 
drive the regional species pool, but fine scales distribution of plant species within a basin is 
driven by microclimate. Accounting for fine-scale topoclimatic processes will lead to better 
models that capture topoclimate gradients, allowing for improved representation of complex 
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ecological processes in earth systems models. Future studies should account for microclimate, 
especially DTR, when designing experiments as sampling across microclimates will introduce 
bias into community observations.  

Introduction 
Identifying microclimatic refuges from high temperatures is emerging as an important strategy 
for mitigating the impact of shifting weather patterns on species diversity. Because fine-scale 
variation in microclimate is much greater than coarse-scale variation in macroclimate, species 
do not necessarily need to track broad-scale climatic shifts to find a suitable refuge from 
increasing temperatures (Maclean and Early, 2023). Large differences in species composition 
across small distances have been attributed to microrefugia—localized areas that are 
systematically colder than the surrounding landscape (Finocchiaro et al., 2023), with stable 
microclimatic conditions (Ashcroft and Gollan, 2013) that can be partially decoupled from the 
surrounding macroclimate (Finocchiaro et al., 2024). These systematically colder topographic 
depressions also serve as fire refugia (Rodman et al., 2023), so identifying these locations is 
doubly important. But while changing the scale of analysis to a finer resolution can improve 
predictions, the variables which are relevant as drivers of community composition may also 
change. The same bioclimatic variables that explain the composition of regional species pools 
may not be as meaningful when examining fine-scale species occurrence, because orographic 
processes drive highly variable conditions at the boundary layer at these scales (Mahrt, 2022).  
 
A common orographic process that creates stable areas of systematically colder air 
temperatures decoupled from bulk conditions is cold air drainage (CAD) (Mahrt, 2006, 2022; 
Ashcroft and Gollan, 2013). Cold air drainage events occur mainly on nights with low wind 
speeds, when colder, denser air flows down hill and accumulates in low lying areas. This 
creates areas that are systematically colder at night than the surrounding landscape. 
Meanwhile, daytime temperatures in these low lying areas deviate less from temperatures in 
surrounding areas, resulting in large diurnal temperature ranges (DTR, the difference between 
daily maximum (Tmax) and minimum temperatures (Tmin)). The more area upslope to a given 
location, the more cold air it receives, and the lower the nighttime low becomes (Dobrowski et al 
2009). But these places are also at lower elevations, so they have higher daily maximum 
temperatures. More ridgeward positions have lower daytime highs, but they also have higher 
nighttime lows, because after sundown katabatic flows carry colder, denser air downhill to valley 
bottoms, which is then replaced by less dense, warmer air (Figure 1). This results in 
temperature decreasing more slowly on ridgelines after sunset as cold air descends through 
gullies and pools in the valley. So while temperatures are expected to increase somewhat 
uniformly across scales as climate warms, the role of orographics in driving finer-scale 
patterning of climatic variability, especially in complex terrain, will remain constant (Dobrowski, 
2011). Therefore the locations that export and receive cold air via CAD, and thus will have low 
and high DTR, respectively, will have consistent deviations from bulk conditions. 
 
Diurnal temperature range is likely to be a key driver of plant community assembly (Gallou et al., 
2023), since both high and low temperatures can act as environmental filters on plant 
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occurrence and thus community assembly (Keddy and Laughlin, 2021). Frequent exposure to 
heat, drought and cold stress may therefore result in “range squeeze”, with fewer species that 
are able to persist in such an environment (Bai et al., 2019; Gallou et al., 2023). High 
temperatures can cause heat stress and exacerbate drought stress (Ruehr et al., 2015; Guha et 
al., 2018; Marchin et al., 2022). Colder temperatures limit which plant species can persist based 
on frost tolerance, photosynthetic pathways, and freeze-thaw stress (Manasa S et al., 2022). 
Places with frequent temperature inversions have been found to have inverted patterns in forest 
composition, in some cases causing a ‘reverse treeline’ phenomenon (Coop and Givnish, 
2007a; Pastore et al., 2024). Diurnal temperature range can also drive differences in plant 
morphology (Myster and Moe, 1995; Mu et al., 2022), growing season phenology (Barnard, 
Barnard and Molotch, 2017; Huang et al., 2020) and shifts in DTR due to climate change are 
expected to favor competitive dominance of non-native plants (Chen et al., 2017). Therefore, 
given the ubiquity of CAD, and that DTR appears to have a strong effect on plant community 
assembly, it is likely that many plant species may be adapted to grow in high or low DTR 
environments rather than tracking mean, minimum or maximum temperatures alone 
(Finocchiaro et al., 2024).  
 
It is becoming increasingly clear that fine-scale (<= 10m) measurements are necessary to truly 
capture fine-scale conditions and processes that shape ecosystem functioning (Kemppinen et 
al., 2024; Klinges et al., 2024). Diurnal temperature range is one such phenomena that is driven 
by different processes at fine scales than it is at coarse scales. Coarse-scale variation in DTR is 
primarily driven by aridity (Wang et al., 2014; Sun et al., 2019). Water vapor has a high specific 
heat and thus moderates daily temperature maximums while also carrying higher temperatures 
into the night. More arid areas also have a higher sunshine duration, which drives higher 
maximum daily temperatures, and less arid areas have higher soil moisture which dampens 
increases in Tmax via evaporation (Wang et al., 2014). Fine-scale variation DTR driven by CAD is 
not well captured by coarse-scale gridded climate products. Comparisons of in situ 
measurements against modeled data found that DTR is substantially underestimated even in 
grasslands with flat, simple topography (Bernath-Plaisted et al., 2023). Even if daily gridded Tmax 
and Tmin are used to calculate DTR from coarse-scale gridded products, the degree of DTR 
inaccuracy in gridded products is likely a function of topographic complexity within a given pixel. 
Without in situ training data, process-based models that can generate sub-daily microclimate 
estimations at fine resolutions are preferred for estimating fine-scale orographic processes 
(Maclean, Mosedale and Bennie, 2019; Maclean and Klinges, 2021; Kemppinen et al., 2024). 
Many modeling methods are now available, with a variety of approaches and levels of detail, 
that can incorporate CAD into sub-daily, high-resolution temperature estimates (Maclean, 
Mosedale and Bennie, 2019; Maclean and Klinges, 2021) from which DTR can be derived, but 
there are no out-of-the box gridded estimations of fine-scale DTR that we are aware of that 
currently available at a spatial resolution (<= 10 m) that captures the phenomenon.   
 
Here, we measured fine-scale temperature and relative humidity, along with plant community 
composition at 46 locations in two western US study sites of similar temperate forest 
ecosystems. Each study site constituted a single basin, with cold air drainage events flowing 
downslope from higher elevation ridges to the valley bottom. One site, Valles Caldera National 
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Preserve in New Mexico, is a wide, round basin that receives cold air from the surrounding 
mountains, while the other, Manitou Experimental Forest in Colorado, consists of low-lying river 
valley with ridgelines to the east and west consisting of narrow gulches that funnel CAD to the 
valley bottom (Figure 1). Our overarching theory is that CAD-driven DTR is an important and 
stable facet of microclimate/refugia, and a key driver of community assembly. Because CAD is 
analogous to water movement in complex terrain, generally flowing downhill and pooling in 
low-lying areas, geospatial estimates of topographic position such as the Topographic Wetness 
Index (TWI) (Beven and Kirkby, 1979) can be used to understand and predict CAD-driven DTR. 
In this regard, we were interested in three research questions. 1) How does CAD-driven DTR 
vary through space and time, how stable is it, and what other microclimatic variables are 
associated with it? 2) How does fine-scale variation in microclimate, including DTR, affect plant 
community composition and diversity? 3) How strongly associated with plant communities are 
these microclimatic variables compared to commonly used coarse-scale, gridded estimations? 
We hypothesized that (1) DTR would be stable throughout the year, and negatively associated 
with Tmin; (2) DTR would be a key driver of plant community composition and that sites with 
higher DTR would have lower diversity; and (3) that climate metrics that are typically used in 
coarse-scale species distribution models would work well at distinguishing among basins since 
those are the drivers of the composition of regional species pools, but within a basin, fine-scale 
metrics associated with CAD would distinguish between communities since those processes 
drive local heterogeneity in climate. Finally, researchers may benefit in incorporating fine-scale 
DTR variation into ecological modeling frameworks, but often do not have the time or resources 
to measure fine-scale DTR for months. Therefore, we explored how to create simple models of 
DTR at the 10 m scale from publicly available data topography data. 

Methods 

Study Basins 

Manitou Experimental Forest 
The first study basin was within the Manitou Experimental Forest (hereafter, Manitou) in central 
Colorado (Adams, Loughry and Plaugher, 2008). Manitou is a 6,758 ha research facility that 
ranges from 2,286 to 2,835 m in elevation. Its highest elevations occur near its eastern border, 
which follows a broad ridgeline. Gulches flow downhill from east to west off the ridgeline. It has 
a semi-arid, hemiboreal climate, with approximately 400 mm of precipitation falling annually and 
with annual temperatures averaging around 5.5 °C (Frank et al., 2021). The soils are granitic, 
coarse, and generally low in organic matter. Much of Manitou is covered by ponderosa pine 
(Pinus ponderosa) and ponderosa pine - Douglas-fir (Pseudotsuga menziesii)  forests. Dry and 
mesic mixed conifer forests (generally composed of mixtures of ponderosa pine, Douglas-fir, 
lodgepole pine (Pinus contorta), limber pine (Pinus flexilis), and blue spruce (Picea pungens)) 
and lodgepole pine forests are prevalent in gulches and at the highest elevations. Understories 
tend to be a diverse mixture of graminoids, forbs, and low-growing shrubs, but can be 
depauperate in areas of high forest cover. We installed sensors and conducted plant surveys 
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(described below) at locations along the top of the eastern ridgeline, and in and above Hotel 
Gulch, which flows off the ridgeline (Fig 1a). We also installed sensors and conducted plant 
surveys at the top of Mount Deception, the highest point on the Experimental Forest, and 
50-100 m downhill from the summit of Mount Deception in the cardinal directions. 

Valles Caldera National Preserve 
The second study basin was Valle Grande, part of the 35,977 ha Valles Caldera National 
Preserve (hereafter, Valles Caldera) in northern New Mexico. Valles Caldera is a resurgent 
caldera with an uplifted valley floor. It has a semi-arid, hemiboreal climate, with 600 mm of 
precipitation falling annually, and an average yearly temperature of 5.4 °C (Western Regional 
Climate Center, 2024). Elevation ranges from 2,500 to 3,400 m. This study area is characterized 
by dome-shaped mountains called cerros that were created by a series of volcanic eruptions 
over the last 1.23 million years. Soils of the slopes of the cerros and volcanic features are 
well-drained rhyolite and dacite flow rock, with welded and non-welded ash flow. Between the 
cerros are wide valleys formed from ancient lake sediments. Soils here are loamy and have 
varying degrees of organic matter, depending on groundwater availability (Valles Caldera Trust, 
2011). At the highest elevations of the preserve (above 3,050 m) are spruce-fir forests 
dominated by Engelmann spruce (Picea engelmannii) and corkbark fir (Abies lasiocarpa var. 
arizonica) (Muldavin and Tonne, 2003). Below spruce-fir forests and starting at approximately 
2,750 m are dry and mesic mixed conifer forests, generally co-dominated by fir and pine 
species: Douglas-fir, white fir (Abies concolor), blue spruce, southwestern white pine (Pinus 
strobiformis), limber pine, and ponderosa pine. Ponderosa pine forests appear below mixed 
conifer forests on the elevational gradient, and above montane grasslands. Montane grasslands 
can be found at different elevational gradients throughout the Preserve but the lower elevation 
grasslands occupy the largest area. Upland bunchgrasses dominate this community, but 
scattered trees or shrubs can be found in areas of infrequent fire. Montane wet meadows and 
wetlands occur throughout the lowland valleys, commonly adjacent to perennial streams of the 
valley bottoms, but also along seeps, springs, and creeks in the uplands. These diverse 
communities are dominated by facultative and obligate wetland graminoid species, mostly 
sedges (Carex spp.) and rushes (Juncus spp). We installed a transect of sensor and plant 
survey locations traversing between high points across the valley floor, with four additional 
locations in areas we assumed would receive substantial CAD (Fig 1b). Only one of our 
locations was at the edge of a wet meadow, and none were in grasslands or wetlands, so the 
locations at the valley bottom are still representative of the lower end of the ponderosa pine 
forest zone. Valles Caldera has a well-documented reverse treeline phenomenon, where tree 
establishment at the valley floor is limited by low temperatures (Coop and Givnish, 2007a, 
2007b, 2008). Manitou, in contrast, does not exhibit the reverse treeline phenomenon. 
 
 
 
 
 

5 

https://www.zotero.org/google-docs/?qcw0fO
https://www.zotero.org/google-docs/?qcw0fO
https://www.zotero.org/google-docs/?mTf1US
https://www.zotero.org/google-docs/?mTf1US
https://www.zotero.org/google-docs/?8MS5tm
https://www.zotero.org/google-docs/?7nkbnq
https://www.zotero.org/google-docs/?7nkbnq


 

6 



Figure 1: Map of the two study basins at (a.) the Manitou Experimental Forest, Colorado, and 
(b.) Valles Caldera National Preserve, New Mexico. Weather station (Wx) locations are 
represented as solid squares, and sensor locations are open circles. Rectangular outlines 
represent 800 m (30 second) PRISM grid cells. Some sensors were located very close to each 
other to capture aspect differences, so the points are overlapping on the map. The insets for 
each site show cold air drainage events at paired sensors, where the downhill sensor gets much 
colder on calm nights. 

Data 

In situ microclimate and plant survey measurements 
We deployed small sensors (https://bluemaestro.com) that logged hourly temperature and 
relative humidity at 27 locations at Manitou and 21 locations at Valles Caldera (Fig 1). Each 
sensor was hung two meters above the ground, situated within a radiation shield made of 2 inch 
PVC pipe with diagonal ventilation slots cut in the sides with a circular saw (Supplemental 
Figure 1). Before field deployment, we conducted pilot tests of the sensors with PVC radiation 
shields by deploying them alongside a HOBO shielded temperature and humidity sensor, to 
ensure that the shields were effective (Supplemental Figure 1). These pilot tests revealed that 
the measurements taken under the PVC shields matched the HOBO sensors well with the 
exception of the hour of peak temperature, which was solved by hanging them on the north side 
of a tree. Sensors were deployed at the field locations for approximately 1 year at both basins. 
At Manitou, three of the sensors failed and the data were unrecoverable, leaving us with a total 
of 24 sensors from which to characterize microclimate. Due to instrument failure and difficult site 
access during the winter months, the Valles Caldera sensors only had about three months of 
data for most sensors (September - November), requiring us to quantify microclimate stability 
and distinguishability (described below) to assess how well those data represented year-round 
conditions. We used data from local weather stations (Frank et al., 2021; Western Regional 
Climate Center, 2024), as well as ERA5 data acquired via the R package mcera5 (Klinges et al., 
2022), to validate and conduct quality assurance and control on the sensor data. We calculated 
hourly vapor pressure (VPD) deficit from temperature and relative humidity using the 
Clausius-Clapeyron equation. We then calculated the daily minimum, maximum, mean and 
range for temperature and VPD, and then we calculated the mean of the entire time series for 
each metric at each sensor.  
 
In August 2023, we documented plant community composition around each microclimate 
sensor. We identified every plant species encountered within a five meter radius of the sensor, 
as long as the slope, aspect, curvature and other topographic conditions were the same as they 
were directly below the sensor. If there was, for example, an abrupt change in slope or aspect 
within the 5 m radius, we adjusted the center of the survey so as to not include that break in the 
slope. We calculated species richness as the number of species encountered. 
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Gridded climate data 
We obtained three gridded datasets to compare how species associations with climate differed 
between our fine-scale sensor data and three sets of coarse-scale climate data products that 
are commonly used in studies of plant communities.The first was PRISM, an 800 m gridded 
climate reanalysis dataset (PRISM Climate Group, 2024). We used 30 year normals of 
maximum VPD (VPDmax), minimum VPD (VPDmin), Tmax, Tmin, mean annual precipitation, and 
mean annual temperature directly from PRISM, and we derived annual temperature range from 
Tmax and Tmin. The second was WorldClim, which is another climate reanalysis dataset that is 
produced at the same spatial resolution as PRISM. From WorldClim, we used the 30 year 
normal of DTR (Fick and Hijmans, 2017). The third dataset was TopoTerra (Hoecker et al., 
2025). TopoTerra was derived from 4 km resolution TerraClimate (Abatzoglou et al., 2018) and 
downscaled to 240 m via the gradient-plus-inverse distance squared method (Flint and Flint 
2012) using Topofire (Holden et al., 2019) as a template to capture fine-scale spatial variability 
in climatic water balance. TopoTerra is derived from a process-based model driven by 
topoedaphic features (aspect, slope angle, topographic position, soil water holding capacity), 
observations of biophysical variables (temperature, precipitation, insolation, and cloud cover) 
and explicitly includes CAD. We used 30 year normals of annual temperature range, Tmin, Tmax, 
actual evapotranspiration (AET) and climatic water deficit (CWD) from the TopoTerra dataset. 

Gridded topography data 
In order to characterize topography at the study locations, we acquired 10 m digital elevation 
models from the United States Geological Survey’s National Elevation Dataset (Gesch et al., 
2002) and from these grids we calculated slope, aspect, topographic wetness index (TWI) 
(Beven and Kirkby, 1979), heat load index (HLI) (McCune and Keon, 2002), and folded aspect 
using the terra (Hijmans, 2023), topomicro (Mahood, 2024), and spatialEco (Evans and Murphy, 
2023) R packages.  

Statistical Analysis 

Exploring the characteristics of diurnal temperature range 
Because our sensor data was limited to three months (September - November) at Valles 
Caldera and 12 months at Manitou, we conducted a sensitivity analysis on two years of weather 
station data to assess seasonal variability in DTR in order to understand how much data would 
be required to be representative of the variation among sensors. We used data from three 
weather stations at Valle Grande, the largest basin in Valles Caldera. Each weather station was 
situated in a different topographic setting in relation to cold air drainage (Figure 1b). One was a 
donor of cold air, located at the saddle between Redondo Peak and Redondito at (elevation 
3,260 m). One was a recipient of cold air, located at the mouth of Hidden Valley (2,500 m), 
where most of the cold air from the Valle Grande basin drains. The third, Valle Grande, was on 
the valley floor of Valle Grande, but upslope from Hidden Valley (2,620 m). It receives cold air 
from Redondo Peak and Redondito, but not from the entirety of the basin. In order to assess the 
stability of DTR at the three sites, we first selected a sample for 10 consecutive days and 
calculated the mean DTR, conducted an augmented Dickey-Fuller test using the adf.test 
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function from the tseries R package (Trapletti and Hornik, 2024) to assess the stability of the 
mean (Said and Dickey, 1984), and conducted a t-test between the three combinations of sites 
to assess our ability to distinguish between sites. We then increased the sample by one and 
repeated the process until we reached 600 days. Finally, we used linear models to assess how 
strongly associated DTR was with other microclimatic variables.  

Plant community composition and species richness 
We used non-metric multidimensional scaling (NMDS) ordinations (Minchin, 1987) to examine 
plant community composition. To create these ordinations, we used the metaMDS function in 
the vegan R package (Oksanen et al., 2022), using a Bray-Curtis dissimilarity matrix. In order to 
understand how our in situ microclimate measurements, climate model predictions (see below), 
and gridded climate and topography data were associated with those ordinations, we ran a 
permutational correlation between the ordinations and climate and topography variables with 
9,999 repetitions (the envfit function; (Oksanen et al., 2022)).  
 
During our exploratory analysis, our ordinations suggested that plant communities sorted 
themselves on either side of a threshold of DTR, rather than along a smooth gradient. 
Therefore, we decided to classify sensor locations as either donors or receivers of CAD and 
then use that threshold to test how  being a receiver or donor of CAD affected species richness.  
In order to quantify a DTR threshold, we chose a range of threshold values between 10 and 20 
°C, and on each value ran a permutational analysis of variance (PERMANOVA; the adonis2 
function in the vegan R package) (Anderson and Walsh, 2013). A PERMANOVA is a 
non-parametric, multivariate permutation test, with the dissimilarity matrix created from species 
occurrence data as the response variable, and environmental variables as predictors. Here, 
each site was binned as a CAD donor if the average DTR was below the threshold value, and a 
CAD recipient if it was above the threshold value. Because this threshold may differ by region, 
we determined separate thresholds for each basin.  We considered the best thresholds to be 
those with the highest the R2 values for the threshold value.  
 
In order to test our hypothesis that CAD recipients would have lower diversity than CAD donors, 
we fit a generalized linear model in a Bayesian framework using the R package brms (Bürkner, 
2017) with species richness as the dependent variable with a Poisson error distribution. Basin 
(Valles Caldera or Manitou), and whether the average DTR at the sensor station was above or 
below the threshold (CAD donor or recipient), were predictor variables. Model fit was assessed 
via Bayesian R2 (Gelman et al., 2019) using the performance R package (Lüdecke et al., 2021).  
 
Because CAD donors and recipients are also associated with higher and lower elevations, 
respectively, we constructed a structural equation model (SEM) to explore these causal 
pathways and rule out the contrasting idea that species richness was really only associated with 
soil moisture (with TWI as a proxy) or elevation. We created two generalized linear models, one 
with species richness as the poisson-distributed response and DTR, TWI and elevation as the 
predictors. The second model had DTR as the gaussian-distributed response and elevation and 
TWI as the predictors. We then used the R package piecewiseSEM to combine those models 
into an SEM (Lefcheck 2016). 
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Modeling diurnal temperature range 
We used spatial process models to estimate DTR at the study basins from 10 m digital elevation 
models. We selected predictor variables by creating linear models with a range of topographic 
predictors: slope, folded aspect, HLI, TWI, elevation, and relative elevation (elevation - minimum 
elevation of the basin). We explored modeling both basins together and separately, and settled 
on the most parsimonious model using AICc. We used the performance R package to visually 
check model assumptions (normality of residuals, normality of random effects, linear 
relationship, homogeneity of variance, multicollinearity) (Lüdecke et al., 2021). In order to also 
account for spatial autocorrelation, we fit a spatial process model using the fields R package 
(Nychka et al., 2021) using the same predictors, and used that model to create gridded 
predictions of DTR at both sites. We used Leave one out cross validation  to assess predictive 
accuracy for the spatial process model. 
 
All analysis was done in R (R Core Team, 2021). Data and code are provided at 
www.github.com/admahood/microclimate-veg (Mahood, 2025). 

Results 

Diurnal temperature range at reference sites was stable throughout the year, and more 
strongly associated with VPDmin than Tmin 

Mean DTR was relatively stable throughout the year at the three Valles Caldera weather 
stations (Figure 2a & d). Variation in DTR was higher during the winter months, especially at 
Hidden Valley, the location receiving cold air from the entire valley. Data from the Valles Caldera 
weather stations indicated that the time series of diurnal temperature range became stable in 
100 days or less (Figure 2b). Consistently finding significant differences between sites required 
less than 60 days at the p < 0.05 level (Figure 2c). Therefore, given that DTR stability was 
reached within roughly 3 months and DTR distinguishability within 2 months, we argue that 
three months is sufficient to capture differences among sites. At fine scales, mean DTR at our 
microclimate sensor locations had a mean of 13.6 °C and ranged from 8.6 to 20.4 °C at 
Manitou, and had a mean of 12.2 °C and ranged from 7.1 to 18.1 °C at Valles Caldera. Diurnal 
temperature range at our weather stations and microclimate sensor locations had a strong 
negative relationship with average daily  VPDmin (R2 = 0.66), more so than average daily  Tmin (R2 
= 0.12) (Figure 3c).  
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Figure 2: Exploration of the properties of cold air drainage-driven variation in diurnal 
temperature range (DTR). Mean DTR at three weather stations at Valles Caldera had minimal 
seasonal variability over two years (a). Augmented Dickey-Fuller tests showed the time series of 
DTR achieved stability in less than 100 days for all sites (b) and only two months of data was 
necessary to consistently find statistically significant differences between sites at the p < 0.05 
level (c). Panel d is a time series for the first two months of 2022. 

CAD-driven diurnal temperature range is associated with microscale community 
composition and diversity 
In our plant surveys, we encountered 254 total species. We found 129 species at Manitou and 
168 at Valles Caldera, with 42 species encountered at both basins. The most common 
understory species for both basins are given in Tables S1 and S2. Permutational correlations 
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showed that fine-scale DTR (R2 = 0.59 at both sites) and VPDmin (R2 = 0.62 at Manitou, 0.37 at 
Valles Caldera) were more strongly associated with the ordination than any other micro- or 
macro-climatic variable when basins were analyzed separately (Table 1). Communities at each 
site were grouped on either side of a basin-specific threshold in DTR (Figure 3). According to 
the PERMANOVA test, the threshold was estimated to be 14 °C for Valles Caldera (peak R2 = 
16.8) and 15 °C for Manitou (peak R2 = 21.0; Figure 3). Our model of diversity above and below 
the threshold was well-converged (R-hat = 1.0, ESS > 2000 for all coefficients), and showed a 
well-supported but small effect of higher diversity for CAD donors (R2 = 0.179) (Figure 3b; 
Table S3). In our SEM analysis, the model was well-fit (Χ2 =2.7, p > 0.05; Fisher’s C = 4.6, p > 
0.05). Diurnal temperature range as a continuous variable had a small, negative effect on 
species richness (p = 0.005), while relative elevation was not significant and TWI had a smaller 
but significant effect (p= 0.02). The standardised effect of DTR on species richness was 0.39 
compared to 0.24 for TWI (Table S4), providing more evidence that DTR is affecting species 
richness rather than simply being correlated with elevation and soil moisture. In an examination 
of the species associations with basin-level ordinations, 17 species were strongly associated (R2 
> 0.4, p < 0.01), and 4 of those species were orthogonal to the DTR threshold (Figure S2). 
Pseudotsuga menziesii was the only species common to both basins that was significantly 
correlated with the ordination, and in both cases it was associated with low-DTR communities 
(Figure S2). 

CAD-driven diurnal temperature range less important at broad scales 
When NMDS was conducted on the two basins grouped together, fine-scale DTR was not 
significantly associated with composition (Table 1). Rather, 30 year normal water balance 
metrics of AET (R2 = 0.39) and CWD (R2 = 0.77) modeled at coarser scales explained variation 
between the two basins, and 10 m TWI (R2 = 0.33) and in situ average daily VPDmin (R2 = 0.33) 
explained community composition within sites. Only TWI and in situ measurements of VPDmin 
and diurnal range in VPD were significant for both within- and between- basin analyses (Figure 
3, Table 1). 

DTR can be modeled based on TWI and elevation 
The most parsimonious and generalizable linear model of DTR had elevation and TWI as 
predictors, and included both basins. It had an adjusted R2 of 0.64. Including the basin as a 
predictor was not statistically significant, indicating that this simple model may be more broadly 
generalizable. The leave one out cross-validation of the spatial process model had an R2 of 0.58 
and a root mean squared error of 2.22 °C (Figure 4).  
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Figure 3: Panel a is a non-metric multidimensional scaling ordination on plant communities from 
both basins pooled together (left panel) and for each basin separately (right panel). 
Communities clearly separated along a threshold of diurnal temperature range (DTR) at both 
sites when ordinated separately, but not when the communities were pooled. Panel b shows the 
predicted species richness from a Bayesian hierarchical model, which was lower at both 
Manitou and Valles Caldera at locations over the DTR threshold. Panel c illustrates that DTR 
was more strongly associated with daily minimum VPD than with daily minimum temperature. 
Abbreviations: AET = actual evapotranspiration; CWD = climatic water deficit; TWI = 
topographic wetness index; DTR = Diurnal temperature range; VPDmin = average daily 
minimum vapor pressure deficit. 
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Table 1: Microclimate (in situ measurements) and macroclimate (coarser scale, gridded climate 
products) variables correlated with ordination. Only fine-scale diurnal temperature range 
measured in situ explained more than 50% of within-basin variation in composition at both 
basins, and the only other variable to explain more than 40% of within-basin variation in 
composition at both basins was modeled diurnal temperature range.  

 

  R2 

Variable Source Valles 
Caldera  

Manitou  Both 
Basins 

Diurnal Temperature Range In situ 0.59 ** 0.59 *** 0.01 

Daily Minimum VPD1 In situ 0.37 * 0.62 *** 0.35 *** 

Diurnal VPD Range In situ 0.28 . 0.32 * 0.15 * 

Daily Minimum Temperature In situ 0.26 . 0.09 0.18 * 

Daily Maximum VPD In situ 0.21 0.16 0.21 ** 

Daily Maximum Temperature In situ 0.18 0.19 0.11 . 

Daily Mean Temperature In situ 0.13 0.02 0.14 * 

Daily Mean VPD In situ 0.01 0.15 0.37 *** 

Diurnal Temperature Range Modeled (10 m) 0.44 ** 0.42 ** 0.02 

Annual Temperature Range PRISM (800 m) 0.62 *** 0.1 0.15 * 

Maximum VPD PRISM (800 m) 0.61 *** 0.19 0.17 * 

Minimum VPD PRISM (800 m) 0.56 ** 0.06 0.22 ** 

Maximum Temperature PRISM (800 m) 0.54 ** 0.21 . 0.14 * 

Minimum Temperature PRISM (800 m) 0.52 ** 0.35 * 0.08 

Mean Annual Precipitation PRISM (800 m) 0.51 ** 0.17 0.16 * 

Mean Annual Temperature PRISM (800 m) 0.24 . 0.31 * 0.09 

Annual Temperature Range TopoTerra (240 m) 0.73 *** 0.15 0.24 ** 

Actual Evapotranspiration TopoTerra (240 m) 0.52 ** 0.17 0.75 *** 

14 



Maximum Temperature TopoTerra (240 m) 0.43 ** 0.2 0.09 

Climatic Water Deficit TopoTerra (240 m) 0.16 0.23 . 0.17 * 

MInimum Temperature TopoTerra (240 m) 0.12 0.13 0.27 ** 

Elevation Topography (10 m) 0.45 ** 0.31 * 0.06 

Relative Elevation Topography (10 m) 0.45 ** 0.31 * 0.14 * 

Topographic Wetness Index Topography (10 m) 0.38 * 0.56 *** 0.32 *** 

Folded Aspect x Slope Topography (10 m) 0.1 0.18 0.02 

Heat Load Index Topography (10 m) 0.04 0.02 0.14 * 

Folded Aspect Topography (10 m) 0.02 0.12 0.05 

Diurnal Temperature Range WorldClim (800 m) 0.59 *** 0.22 . 0.3 *** 
1.VPD = Vapor pressure deficit 
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Figure 4. Spatial process model predictions of diurnal temperature range. In a and b, the 
midpoint of the color ramp, in white, corresponds to the thresholds from the prior figures. 
Observed vs predicted R2 was 0.63 (c). Open shapes indicate microclimate sensor locations. 

Discussion 
We found that in two topographically complex basins with similar plant communities, plant 
community composition and species richness were strongly associated with fine-scale patterns 
in DTR. When the two basins were pooled for analysis, however, DTR was weakly associated 
with composition. Rather, between-basin composition was most strongly associated with 
coarse-scale estimations of AET. This aligned with our expectation that while the composition of 
regional species pools are driven by coarse-scale climatic conditions (Cornell and Harrison, 
2014), fine-scale spatial variation within those species pools is driven by fine-scale processes 
including, but not limited to, CAD. We also found lower diversity in areas that were recipients of 
CAD and propose that the range squeeze hypothesis, wherein areas with high temperature 
ranges will have lower diversity because species have to be able to tolerate cold, heat and 
drought (Gallou et al., 2023), is a plausible explanation.  
 
When trying to understand the effect of CAD on biological communities, it may be more 
important to capture VPDmin and DTR, rather than Tmin. Fine-scale variation in DTR was more 
strongly associated with minimum VPD than with minimum temperature (Figure 3c). Fine-scale 
variation DTR is driven by gravity, rather than aridity which drives DTR at coarser scales 
(Ashcroft and Gollan, 2013; Sun et al., 2019). Because cold air drains to the same places that 
water drains to, areas with high DTR driven by CAD have lower VPD, so modeling minimum 
temperature at fine scales may not fully capture the effect of CAD on biological communities. 
Much of the literature on CAD modeling is focused on modeling Tmin and Tmax (Dobrowski et al., 
2009; Holden et al., 2011), and much of the microclimatic refugia work is focused on fine-scale 
variation in mean annual temperature and precipitation (Morelli et al., 2016; Maclean and Early, 
2023). Vapor pressure deficit is a fundamental property of the atmosphere that is essential for 
understanding plant physiological responses to drought, as well as flammability and fire risk 
(Seager et al., 2015; Grossiord et al., 2020). The results presented here indicate an association 
between fine scale variation in VPD, and CAD-driven DTR. DTR has thus far been largely 
overlooked with some exceptions, and this is perhaps because most coarse scale products fail 
to capture that fine-scale variation in DTR. Because DTR has year-round mean stability and 
represents exposure to two temperature extremes, it may represent a fundamental quality of the 
provenance of microsites that needs to be accounted for when studying any ecosystem at fine 
scales.  
 
DTR was one of the most strongly associated variables with community composition, and the 
only variable that performed well at both sites. It was, however, much less important between 
basins. Only fine-scale diurnal temperature range measured in situ explained more than 50% of 
within-basin variation in composition at both basins, and the only other variable to explain more 
than 40% of within-basin variation in composition at both basins was modeled diurnal 
temperature range. This result held true with DTR we estimated with spatial process models 
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(Figure 5, Table 1). Species that are not tracking coarse-scale gradients in elevation or latitude 
in their response to changing temperatures may be instead following fine-scale changes in 
topographically-driven variables like VPDmin and DTR. Some species may be specially adapted 
to both cold stress and drought stress, and so therefore would have a competitive advantage in 
high DTR areas, while for other species the two forms of physiological stress may limit their 
occurrence in those areas. If this is true, tracking their response to shifting weather patterns will 
require in situ plant sampling at high density, and high-resolution (5-10 m) estimates of 
microclimate (Patiño et al., 2023). Moreover, the impact of DTR, and thus topography, as a 
driver of community assemblage needs to be considered when planning sampling campaigns in 
mountainous regions as a lack of sampling stratification across topographic positions will likely 
introduce a substantial amount of variation in community composition that would otherwise not 
be a factor if sampling among within similar DTRs. 
 
High topographic complexity creates high microclimatic complexity which helps buffer against 
regional extirpations (Suggitt et al., 2018). But which topographic positions serve as 
microclimatic refugia is likely to be species-specific, and may or may not align with fire refugia. 
Species intolerant to extreme heat but tolerant of extreme cold may favor gullies or valley 
bottoms, where microclimatic refugia align with fire refugia. In these cases, refugia from fire and 
refugia from extreme maximum temperatures co-occur in CAD-receiving topographic positions 
(Rodman et al., 2023), because low nighttime VPD is the primary factor that limits fire spread at 
night (Balch et al., 2022). While CAD-receiving areas are more likely to be fire refugia, and they 
may also have more potential for productivity (Novick, Oishi and Miniat, 2016), they may not 
serve as plant biodiversity refugia since many plants are not adapted to high DTR (Gallou et al., 
2023). Fire refugia are emerging as priorities for restoration efforts as temperatures increase 
(Rodman et al., 2023). Seedlings and recent transplants are highly vulnerable to temperature 
extremes, and so conducting successful restoration in these areas may present unique 
challenges that require creative approaches specific to the problems that daily temperature 
extremes represent. Other types of microclimatic refugia, such as springs, may serve as refugia 
from fire and for tree regeneration, but would not necessarily have the problem of high DTR in 
CAD-receiving areas. 
 
While much of the current discussion centers around these low-lying areas with cooler mean 
temperatures as providing refuge from increasing temperatures, low-DTR areas on ridgeward 
positions may serve as a different type of microclimatic refugia—a refuge from both high and 
low temperature extremes. Non-generalist species that are intolerant to extreme cold may favor 
ridgeward positions (D’Odorico et al., 2013), which tend to burn at higher severity (Kane et al., 
2015). In these cases, the microclimatic refugia and fire refugia do not align.  Rare or threatened 
species that are both fire intolerant and prefer low-DTR areas may require special preparation 
for defense from fire, as those topographic positions are more vulnerable to high severity fire 
(Kane et al., 2015) and perhaps more difficult for firefighters to defend. Rare species that are 
adapted to these environments are disproportionately more at risk for local extirpation, 
especially in areas where changing fire regimes are likely to cause ecosystem type conversion 
(Keeley, van Mantgem and Falk, 2019; Mahood and Balch, 2019; Guiterman et al., 2022). 
Finally, since refugia are stable spatially (Platt, Chapman and Balch, 2024) and DTR is fairly 

18 

https://www.zotero.org/google-docs/?pT3MWq
https://www.zotero.org/google-docs/?pnhmkj
https://www.zotero.org/google-docs/?I1c4ao
https://www.zotero.org/google-docs/?orlkgS
https://www.zotero.org/google-docs/?zHfCOz
https://www.zotero.org/google-docs/?zBtydS
https://www.zotero.org/google-docs/?zBtydS
https://www.zotero.org/google-docs/?Imt3LK
https://www.zotero.org/google-docs/?xUPeRW
https://www.zotero.org/google-docs/?unS6wz
https://www.zotero.org/google-docs/?unS6wz
https://www.zotero.org/google-docs/?dMsq2Q
https://www.zotero.org/google-docs/?quFkT4
https://www.zotero.org/google-docs/?ZmGrhE


stable seasonally (Figure 2), those species that are adapted to high DTR may have a more 
positive outlook for persistence in a warmer world. Future studies on plant communities in 
topographically complex landscapes should be careful to stratify sampling according to 
microclimate variables like DTR that are driven by microtopographic position so as to not bias 
estimates of species composition and diversity (Fornwalt and Kaufmann, 2014).  
 
Changes in DTR are expected with increasing greenhouse gas concentrations (Rupp et al., 
2021). The intensity of CAD events is expected to decrease by 10% by 2100 under an RCP 8.5 
scenario (Rupp et al., 2021), with warmer, more humid regions being the most at risk to 
changes in CAD. Because CAD-driven DTR is driven by orographic processes, the way it 
changes in response to increasing temperatures will likely be more spatially variable than the 
way that coarse-scale, aridity-driven DTR will. Coarse-scale estimations of DTR have been 
decreasing globally since the early 1950’s, because nighttime minimum temperatures have 
been increasing faster than daytime highs (Braganza, Karoly and Arblaster, 2004; Lauritsen and 
Rogers, 2012; Sun et al., 2019).  
 
DTR was simple to model with only TWI and elevation. We expected elevation that was 
relativized to the basin to perform better when comparing across basins, but it did not (Adjusted 
R2 =  0.51). This may be because mean temperature is driven by elevation, or because TWI 
already captures relative differences in elevation. We expect that when estimating DTR across 
broader areas encompassing more basins, elevation relativized to each basin will emerge as a 
necessary variable to capture DTR. It may be possible to use coarse products like PRISM or 
WorldClim to represent DTR, and then downscale, but it is important to note that simply 
subtracting the Tmin from Tmax of an annual or monthly mean is providing an annual or monthly 
temperature range, rather than DTR. Calculating monthly or annual temperature range without 
downscaling may adequately represent DTR in areas with coarse topography, because DTR is 
relatively stable throughout the year (Figure 2), but it will still fail in areas where the topography 
is more fine-scale than the climate data. But even areas with comparatively much more gentle 
topography than the mountainous areas here can have large fine-scale variations in 
temperature due to CAD (Mahrt, 2022). Caution must be taken, since capturing fine-scale 
variation in DTR likely requires fine-scale topographic data in areas like Manitou with complex 
topography, while areas like Valles Caldera with smoother topographic features may not require 
data of such high-resolution (Kemppinen et al., 2024). Furthermore, directly using topographic 
variables that drive microclimate as predictors of ecological responses may not be an effective 
way to represent the effect of microclimate on communities (Man et al., 2022). Rather, one 
should use topography to model microclimate, and then use the modeled microclimate to 
understand communities (Mahood et al., 2024).  

Conclusions 
Microclimatic variation driven by orographic processes is a key driver of fine-scale variation in 
species distributions, and the particular ways in which these fine-scale processes manifest to 
affect species distribution is poorly understood. As the field of microclimate modeling continues 
to develop, it will be important to explore how different aspects of microclimatic variation drive 
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ecological processes. Variables that are key drivers of  coarse-scale variation in ecosystem 
composition and function may not be predictive of species occurrence at finer scales, and vice 
versa. Here, DTR was found to shape community composition at fine scales, but more research 
is needed to understand how general this phenomenon is. Other abiotic variables are also 
strong drivers of composition and diversity, but here we focus on DTR as it is a stable indicator 
of microsite provenance, but rarely included in ecological analyses. Fine-scale DTR appears to 
be straightforward to estimate from publicly available data and add to analysis workflows. 
Species distribution models relying on mean annual temperature and precipitation, even at fine 
scales, may not be well-suited to predict how species will respond to future changes in climate 
(Maclean and Early, 2023). Species adapted to low diurnal temperature range may have 
optimum microclimatic niches that lie on ridgelines or other fire-prone topographic positions, 
since those topographic positions have lower DTR. These species should be prioritized for 
monitoring and special attention during fire suppression. Land managers and scientists should 
focus on identifying species with habitat preferences where microrefugia and fire refugia do and 
do not match, in order to more effectively identify priority areas for both plant community 
restoration and fire suppression resources.  
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Supplemental Figures 
 
 

 

Figure S1. Sensors used and tests of radiation shields. In a, a sensor housed in the final design 
for radiation shield, attached to the north side of a tree. Panel b illustrates the testing of 
homemade radiation shields. The far left sensor was a HOBO RH/T sensor, second from the left 
was a Blue Maestro sensor housed in a HOBO radiation shield, and the four to the right were 
Blue Maestro sensors housed in different designs of our home-made shields. In c, a comparison 
of the data in the shade (Days 1 & 3) versus in sun (Days 2 & 4).  
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Figure S2: Species that were strongly correlated with the ordinations (p < 0.05; R2 > 0.4) 
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Table S1. Understory species occurring at 5 or more plot locations at Maintou Experimental 
Forest 

Species Prevalence 
Koeleria macrantha 18 
Achillea millefolium 17 
Carex sp 16 
Arctostaphylos uva-ursi 15 
Juniperus communis 15 
Ribes cereum 14 
Solidago missouriensis 13 
Antennaria microphylla 12 
Muhlenbergia montana 12 
Geranium caespitosum 10 
Allium cernuum 9 
Heterotheca foliosa 9 
Jamesia americana 9 
Penstemon sp 9 
Rosa woodsii 9 
Thalictrum fendleri 9 
Elymus elymoides 8 
Geranium richardsonii 8 
Artemisia ludoviciana 7 
Campanula rotundifolia 7 
Eremogone fendleri 7 
Festuca arizonica 7 
Fragaria vesca 7 
Carex geyeri 6 
Galium boreale 6 
Holodiscus discolor 6 
Poa fendleriana 6 
Acer glabrum 5 
Androsace septentrionalis 5 
Boechera pendulina 5 
Erigeron glabellus 5 
Fragaria virginiana 5 
Mertensia lanceolata 5 
Potentilla hippiana 5 
Sedum lanceolatum 5 
Taraxacum officinale 5 
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Table S2. Understory species occurring at 5 or more plot locations at Valles Caldera 

 
Species Prevalence 
Taraxacum  officinale 14 
Achillea  millefolium 13 
Bromus  ciliatus 13 
Poa  pratensis 13 
Koeleria  macrantha 12 
Taxistema  mysirites 9 
Bromus  porteri 8 
Carex  rossii 8 
Geranium  richardsonii 8 
Senecio  eremophilus 8 
Fragaria  vesca 7 
Fragaria  virginiana 7 
Lathyrus  lanzwertii 7 
Potentilla  hippiana 7 
Potentilla  pulcherrima 7 
Ribes  sp 7 
Carex  microptera 6 
Oreochrysum  parryi 6 
Trifolium  repens 6 
Vicia  americana 6 
Viola  canadensis 6 
Agrostis  scabra 5 
Artemisia  franseroides 5 
Festuca  thurberi 5 
 

Table S3. Model Coefficients for the diversity model. 

 

term estimate std.error CI 0.025 CI 0.975 

(Intercept) 2.899 0.059 2.775 3.013 

DTR threshold x CAD 
Recipient 

-0.223 0.105 -0.429 -0.02 

Site: Valles Caldera 0.231 0.081 0.073 0.396 

DTR threshold x CAD 
Recipient x Site: Valles 
Caldera 

0.101 0.145 -0.182 0.393 
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Table S4. Structural equation model coefficients.  

Response Predictor Estimate Standard 
Error 

DF Critical 
Value 

p-value Standardized 
Estimate 

nspp tdelta -0.041 0.0146 41 -2.8094 0.005** -0.3892 

nspp twi 0.0275 0.012 41 2.2866 0.0222* 0.2356 

nspp rel_elv 0 3.00E-04 41 -0.1516 0.8795 -0.0197 

tdelta elevation -0.0122 0.0016 42 -7.7592 0*** -0.7016 

tdelta twi 0.3772 0.1002 42 3.7637 5.00E-04*** 0.3403 
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