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Abstract1

Ecological conservation and management benefits from tools that can foresee impending2

problems, or those in early stages. Statistical early warnings of regime shifts, which can identify3

generic changes in system behavior associated with stability loss and potential abrupt changes to4

a new, distinct state, are theoretically well grounded and have been successfully applied in5

real-world settings. However, early warning indicators have seldom been applied to empirical6

animal population data. We quantified early warning metrics in 29 fishes using > 4 decades of7

monitoring data from the San Francisco Estuary and Sacramento-San Joaquin river system to8

develop an index describing the magnitude of evidence of population stability loss and potential9

regime shifts, relative to other studied species. Spatial synchrony increased in over twice as many10

species as it decreased, but temporal variance and lag-1 autocorrelation showed no tendency to11

have increased across species species. A composite early warning indicator (EWI) index12

developed from these metrics identified higher-risk species (e.g., white croaker, tule perch) from13

lower-risk ones (e.g., northern anchovy, fathead minnow). The composite index was uncorrelated14

with long-term abundance trends or whether the species is native or non-native. We also15

developed an index of confidence in the composite EWI score; considering both the EWI score16

and confidence index simultaneously suggests possible responses for research and management.17

For high EWI score, high confidence species may be candidates for targeted research and18

interventions, while high EWI score, low confidence species may be candidates for enhanced19

monitoring to better constrain population dynamics. Despite concerns about attributing changes20

in EWI metrics to regime shifts in short time series, there appears to be value in applying generic21

EWIs to population time series of animals with generation times ≥ 1 year, and approaches like22

ours may be valuable when little is known about organism life history, and when applying a23

consistent protocol can facilitate comparison across many species.24
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Introduction25

Species conservation and ecosystem management are resource limited, motivating creative26

ways to identify priorities for enhanced monitoring, management interventions, and scientific27

study. Prioritization schemes that can foresee impending problems, or those in early stages, can28

be especially valuable (Dietze et al., 2018; Scheffer et al., 2009), in part because interventions at29

these incipient stages tend to be less costly and more effective (Ellis et al., 2011; Mandel et al.,30

2010). Statistical early warnings of regime shifts quantify changes in the dynamics of a system31

that are associated with abrupt changes between system states (Kéfi et al., 2014; Dakos et al.,32

2008; Scheffer et al., 2009). Here, a regime shift is defined as an abrupt change to a new, distinct33

state–such as a shift from a clear-water to an algal bloom state in a lake–which is assumed to34

correspond to a shift from one dynamical basin of attraction to another. Early warning indicators35

include measures of variance, autocorrelation, and other distributional properties (Scheffer et al.,36

2009; Dakos et al., 2012; Kéfi et al., 2014; Seekell et al., 2011). Despite a robust body of theory37

on early warning indicators (EWIs; e.g., Scheffer et al., 2009; Kéfi et al., 2014; Dakos et al.,38

2012) and successful applications in anticipating regime shifts in real-world ecosystems (e.g.,39

Pace et al., 2017; Wilkinson et al., 2018), EWIs have scarcely been applied to animal population40

data to evaluate potential regime shifts in population dynamics.41

Well-developed theory on the stability of complex systems and regime shifts proposes that42

regime shifts may be preceded by general changes in system dynamics, including increased43

variance and autocorrelation (Dakos et al., 2012; Kéfi et al., 2014; Buelo et al., 2018; Nolting and44

Abbott, 2016; Patterson et al., 2021; Scheffer et al., 2009). The intuition behind these dynamical45

changes is often illustrated using a so-called “ball and cup diagram” representing a system’s46

stability landscape (see, e.g., Figure 1 of Scheffer et al., 2009). A ball representing the system47

state sits in a depression in the stability landscape, representing an attractor. Modest perturbations48

(e.g., environmental variation) nudge the ball away from its attractor, causing the ball’s position in49

the stability landscape to vary. As the system’s stability erodes, an equivalent perturbation moves50
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the ball further from the attractor (i.e., increased variance). The ball also moves more slowly back51

toward the attractor, causing measurements of the system at successive times to become more52

similar to the previous one (i.e., increased autocorrelation). For spatially extended systems,53

increases in spatial variance and autocorrelation may also accompany loss of resilience as a54

regime shift is approached (Scheffer et al., 2009; Kéfi et al., 2014; Buelo et al., 2018). When a55

regime shift takes place, some perturbation ‘kicks’ the ball into a different basin of attraction.56

Empirical research in a range of settings has successfully applied EWIs to the prediction of57

regime shifts, even developing functioning regime shift alarm systems (Carpenter et al., 2011;58

Wilkinson et al., 2018) and demonstrating that early intervention triggered by an EWI-based59

alarm system can reverse an ecosystem regime shift (Pace et al., 2017).60

To date, natural populations of animals are largely unexplored from the perspective of EWIs,61

and differences between animal populations and other applications of EWIs should make us62

cautious. One important difference is that many successful applications of EWIs in real-world63

systems feature much higher data density (e.g., hourly) on organisms like phytoplankton with64

rapid growth and generation times. By contrast, populations of animals that have generation times65

≥ 1 year are often censused only once per year, and variation in higher-frequency (e.g., monthly)66

measurements may likely confound demographic change with organism phenology or behavior.67

As a result, it may take many decades to accumulate analogous data. With fewer observations and68

lower sampling resolution, we might expect EWI metrics to have greater sampling variation, and69

for shorter lags (in terms of number of observations) between changes in EWI metrics and a70

regime shift. Despite this, many of the same statistics used as EWIs (e.g., measures of temporal71

variance) are also ubiquitous metrics of stability in ecology (Donohue et al., 2016; Kéfi et al.,72

2014; Wang and Loreau, 2014; Schindler et al., 2015). Thus, it stands to reason that there is value73

to applying EWI metrics to animal population time series to investigate changes in population74

stability, even if specific connections to regime shifts are imprecise. Additionally, while the field75

has often been concerned about catastrophic regime shifts, EWIs can indicate more subtle76
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changes in regime (Kéfi et al., 2013); and while EWIs agnostic to the direction of change in the77

focal variable, whether an increase or decrease in the focal variable is harmful is78

context-dependent. For example, we may be concerned about population crashes (decreases) in79

native species, but about population booms (increases) in non-native ones.80

We quantified temporal change in regime shift early warning indicator statistics (EWIs) in a81

suite of 31 fish species in central California, USA by leveraging long-term monitoring studies in82

the San Francisco Bay Estuary and Sacramento-San Joaquin river system spanning more than83

four decades. We developed a composite relative index of change in EWI/stability metrics and84

asked whether values of this index were associated with long-term population trends or85

native/non-native status. Additionally, we developed a confidence metric that takes into account86

differences among species in data quality and agreement across spatial units and metrics.87

Considering these two axes, composite EWI score and certainty, can facilitate prioritization of88

research and management action. For example, studying or (if known) managing drivers of89

population change could be logical steps for high EWI score/high confidence species, whereas90

improving monitoring may be needed for high EWI score/low confidence taxa.91

Methods92

Study system93

The San Francisco Estuary and Sacramento and San Joaquin river systems form a large94

estuary and inland delta draining the Central Valley of California, USA. A region with a large95

human population and intensive agriculture, the system’s geomorphology, hydrology, and biota96

are heavily altered by human activities. Dams and water diversions have altered the magnitude97

and timing of downstream flows (Hanak, 2011; Yarnell et al., 2015), and water control structures98

have restricted access to spawning and rearing habitats (Hanak, 2011; Moyle, 2002). Climate99

warming and changes in flows have jointly altered water temperature (Brown et al., 2013; Willis100

et al., 2021). Invasions of numerous aquatic organisms have altered habitat quality, primary101

production, and trophic and competitive interactions (Moyle, 2002; Moyle et al., 2011). Several102
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fish populations, especially those of native anadromous fishes, are in steep decline (Moyle et al.,103

2011), including including delta smelt, winter and spring run Chinook salmon (Oncorhynchus104

tshawytscha) and southern distinct population segment green sturgeon (Acipenser medirostris),105

each of which receive protections under state and federal Endangered Species Acts. Additionally,106

longfin smelt (Spirinchus thaleichthys) has undergone major population declines (Tobias et al.,107

2023) and is listed under the California and Federal Endangered Species Acts; and white sturgeon108

(A. transmontanus) became a formal candidate for listing under the California Endangered109

Species Act in 2024. These concerns and others have motivated multiple long-running,110

multi-location monitoring studies that can be leveraged to study the dynamics of target and111

non-target taxa (Stompe et al., 2020; Tempel et al., 2021; Colombano et al., 2022). However,112

many fish species remain understudied, leading to uncertainties concerning their population113

dynamics and responses to changing environmental conditions.114

Data115

We analyzed a suite of long-term fish monitoring data in Central California for potential early116

warnings of regime shifts. (Bashevkin et al., 2024) compiled data from 10 monitoring studies; we117

selected data from 3 studies (Table 1), focusing on those that have operated the longest and over118

the broadest geography, and conducted sampling in fall months (September-December). We used119

data spanning 1980 to 2023 because effort measures (e.g., sample volume) began becoming120

widely available in the selected monitoring studies in 1980. We combined fall fish sampling with121

determinations of age-0 maximum lengths thresholds based on expert knowledge and122

length-frequency analyses (Walter et al. in review) to quantify fall age-0 fish catch per unit effort123

(CPUE), except in cases where this was inconsistent with aspects of species life history, as124

detailed here. For white sturgeon, we used a threshold of 1000 mm, corresponding to an age of125

approximately 10 years; white sturgeon begin reaching reproductive maturity at ≈ 10−15 years126

of age (Blackburn et al., 2019).127

We focused on fall age-0 CPUE for two primary reasons: 1) the sampling gears used in these128
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Monitoring study First year Months Method Regions sampled

SFBS 1980 All
Midwater trawl,

otter trawl

Central,
Confluence,
San Pablo,
South Bay,

Suisun

DJFMP 1976 All
Beach seine,

midwater trawl

Central,
Confluence,
North Delta,

San Pablo Bay,
South Delta,

Suisun,
Sacramento River,
San Joaquin River

FMWT 1967 Sep-Dec Midwater trawl

Central,
Confluence,
Napa River,
North Delta,

San Pablo Bay,
South Delta,

Suisun

Table 1: Attributes of monitoring studies contributing data to this study. SFBS = San Francisco
Bay Study. DJFMP = Delta Juvenile Fish Monitoring Program. FMWT = Fall Midwater Trawl
Survey.

monitoring programs primarily select for small-bodied fishes, so excluding larger size classes,129

which are caught less reliably, reduces noise arising from sampling variation; 2) most studied130

species spawn in spring to early summer and must persist through relatively poor (e.g., low flow,131

supraoptimal water temperatures, low dissolved oxygen) conditions during summer and early fall132

before the wet season begins—as a result, fall age-0 abundances provide an index of recruitment.133

Point observations were aggregated by region-sampling method combinations and to an annual134

time step by averaging. Some sampling methods (e.g., midwater trawl) are used by multiple135

monitoring programs, with some differences in detailed sampling protocols, but preliminary136

analyses and earlier research (Walter et al. in review) showed good agreement between samples137

using the same method, but greater variability between methods. The different sampling methods138
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Region

South Bay
Central Bay
San Pablo
Napa River
Suisun Bay
Confluence
South Delta
San Joaquin R.
North Delta
Sacramento R.

50 km

N

NA

N
A

Figure 1: Map of study area and and analysis regions.

contributing to this study (midwater trawl, beach seine) sample different habitats (pelagic,139

benthic, and littoral, respectively), and monitoring locations span different regions with140

characteristic environmental conditions and fish communities (Figure 1) so we considered each141

region-sampling method combination a spatial unit. All fishing gears have selectivity biases142

related to fish size and portion of the water column sampled (Zale et al., 2012; Mitchell et al.,143

2017), making it difficult to simply combine catch information across surveys. We collated data144

on 39 candidate species, focusing on a subset of relatively commonly sampled and relatively145

abundant species, as well as those identified by wildlife and natural resource agency partners as146

species of interest, though some species were later discarded for having insufficient data for our147

analyses, resulting in a total of 29 species (Table S1).148
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Analyses149

We focused on three early warning indicator (EWI) statistics: the temporal coefficient of150

variation (CV), the lag-1 temporal autocorrelation, and spatial synchrony. The temporal CV and151

lag-1 temporal autocorrelation were computed for each region-gear type combination in moving152

temporal windows so that we could quantify temporal trends in each. The moving window width153

was 5 years. As a robustness check, we also computed results using a window width of 7 years.154

EWI statistics were not computed in windows having > 1 year of missing data. Spatial synchrony155

was calculated using the same moving temporal windows by taking the mean of Pearson rank156

correlations between all pairs of spatial units having > 1 year of missing data during the window.157

Windows in which < 3 spatial units lacked sufficient data were ignored. We also considered158

unreliable and discarded EWI statistic measures that were more than than 3.5 standard deviations159

above or below the mean.160

Temporal trends in EWI statistics for each species-by-spatial unit combination (temporal CV,161

lag-1 autocorrelation) or each species (spatial synchrony) were computed using ordinary least162

squares (OLS) linear regression. Although temporal autocorrelation is a concern for evaluating163

statistical significance when present, OLS regression provides unbiased estimates of regression164

parameters even for correlated data, and in this study we did not seek to determine whether trends165

were statistically significant. To ignore potentially spurious trends supported by few data points,166

we computed EWI trends only when there were at least 5 EWI measurements spanning no fewer167

than 10 years. EWI trends were represented by their t-statistic, i.e., the regression parameter168

describing the linear relationship between the EWI statistic and year divided by its standard error.169

Thus, we give the largest values to high-magnitude (increasing or decreasing) trends that also170

have high precision in their estimates (i.e., low variability around the trend). Assigning higher171

weight to more precisely estimated trends helps to reflect uncertainty that can arise from172

measurement error or stochasticity. Due to differences in true population size and sampling173

efficiency, we expected uncertainty to differ among species.174
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We developed an index describing the relative evidence of EWIs for each species by scaling175

and aggregating the spatial synchrony, temporal CV, and temporal autocorrelation components as176

follows. As spatial synchrony is already a single value for each species, it was simply rescaled on177

an interval from 0 (minimum relative risk) to 1 (highest relative risk). Because the temporal CV178

and temporal autocorrelation components were computed by spatial unit, we first aggregated179

among spatial units by averaging, and then rescaled to the 0-1 interval. A combined risk index180

was computed by averaging across the aggregated and rescaled component indices, and again181

rescaling to the 0-1 interval. Our aggregation and rescaling procedures effectively assign equal182

weight to all spatial units and component EWI metrics.183

To investigate whether the EWI score was associated with long-term fish population trends,184

we examined the Pearson correlation between EWI scores and fish population trends. Fish185

population trends were quantitatively estimated using mixed effects linear regression with the186

natural logarithm of CPUE as the response variable, year as a fixed effect, and spatial unit as a187

random effect on the intercept. Linear mixed effects models were fit using the ’lme4’ R package188

(Bates et al., 2015). To investigate whether the EWI score was associated with native/non-native189

status, we used analysis of variance in the ’stats’ R package (R Core Team, 2024).190

We also developed an index describing confidence in the relative risk index that takes into191

account agreement across EWI statistics, invariability among spatial units, and the number of192

sampling units contributing to the EWI metrics. We assumed that the species for which we could193

make the most confident assessment were those for which the EWI statistic trends agreed on their194

sign, for which variability among spatial units in EWI trends is lowest, and for which the EWI195

estimates were derived from a large number of samples. The confidence score had four196

components: the base-10 logarithm of total number of sampling events in which a species was197

detected (i.e., non-zero catch); -1 times the standard deviation (SD) of lag-1 autocorrelation198

trends (t-values); -1 times the SD of temporal CV trends (t-values), and the number of EWI trends199

components having the same sign. The SDs of lag-1 autocorrelation trends and temporal CV200
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trends were multiplied by -1 so that larger values would correspond to less variability across201

spatial units. As above, for the lag-1 autocorrelation trends and the temporal CV trends, t-values202

for distinct spatial units were averaged to yield one representative metric for each species. Also203

similar to above, the confidence score components were first rescaled to the 0-1 interval, the204

components were averaged to produce a combined metric, and this combined metric was again205

rescaled to the 0-1 interval so that 1 corresponds to the species with the highest confidence score206

and 0 to the species with the lowest.207

Results208

Inspection of select EWI time series provides examples in which EWI statistics increased or209

were elevated corresponding with apparent fish population regime shifts (Figure 2). Delta smelt210

and striped bass are two species known to have exhibited concerning abundance declines across211

the study area over recent decades (Moyle et al., 2016; Colombano et al., 2022). Delta smelt, an212

endangered species, saw its abundances in South the delta confluence region decline substantially,213

particularly after ≈ 2000; over that same period, the lag-1 temporal autocorrelation also increased214

(Figure 2a). Striped bass, a long-established non-native game fish, was sampled at higher215

abundances in the delta confluence during the first ≈ 10 years of the time series but was216

uncommon thereafter; the temporal CV was elevated at the beginning of the time series, declining217

substantially around the time of population collapse (Figure 2b). Because of a known population218

collapse in striped bass (Stevens et al., 1985), this pattern was interpreted as being already219

elevated in the earliest years of our time series because of stability loss and potential regime shifts220

realized early in the 1980-2023 study period. Mississippi silverside is an invasive forage fish221

introduced to California in 1967 that has quickly expanded its range (Cook Jr and Moore, 1970;222

Mahardja et al., 2016); its spatial synchrony rose quickly as population abundances began to223

increase and has subsequently declined, possibly signaling a transition to a new, high-density224

population regime (Figure 2c).225

We focus in the main text on aggregated and relativized metrics, as the central goal of this226
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study was to develop a relative index of change in EWIs/stability at the species level for our study227

region; trends in the component metrics for individual species-spatial unit combinations are228

shown in Supplementary Material Figures S.1-S.3. For context, we provide a brief summary here.229

The median t-value for trends in temporal CV, across all species and spatial units, was -0.08.230

After aggregating (averaging) by species, the median t-value was -0.34. The median t-value for231

trends in lag-1 autocorrelation, across all species and spatial units, was -0.20. After aggregating232

(averaging) by species, the median t-value was -0.11. The median t-value for trends in spatial233

synchrony across all species was 1.01; although there was a slight tendency for temporal variance234

and autocorrelation to have decreased over time, there was a larger-magnitude tendency for235

spatial synchrony to have increased in more species than it declined.236

Composite relative EWI scores varied among fishes (Figure 3). Species with the highest EWI237

scores, corresponding to the greatest loss of population stability compared to the set of studied238

species, include white croaker, bay pipefish, and tule perch. Species with the lowest risk included239

northern anchovy, white catfish, and fathead minnow. Species’ EWI score components (i.e., EWI240

metric trend t-statistics, averaged by species and rescaled) were modestly negatively correlated to241

weakly positively correlated with each other. The Pearson correlation between the spatial242

synchrony and temporal CV components was -0.04; the Pearson correlation between the trends in243

spatial synchrony and in lag-1 autocorrelation was 0.32; and the Pearson correlation between the244

trends in temporal CV and lag-1 autocorrelation was -0.26. EWI scores were uncorrelated with245

long-term abundance trends (Pearson correlation = 0.11, p = 0.58). EWI scores also did not differ246

between native and non-native species (F = 0.55; df = 1, 27; p = 0.47).247

Relative confidence also varied substantially among fishes (Figure 4). Fishes with the highest248

relative confidence included American shad and northern anchovy; fishes with the lowest249

confidence included bay pipefish, Pacific pompano, and channel catfish.250

Considering the relative EWI and confidence scores together facilitates categorization of251

species with, for example, relatively high EWI score and high confidence versus relatively high252
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Figure 3: Relative risk of fish population regime shifts based on EWI statistics. The lower 3 rows
show relative risk from three component metrics developed by rescaling long-term trends
(t-values) to the 0-1 interval. The top row shows the combined (averaged) statistic. Note that
several species were not consistently observed in ≥ 3 regions and so the spatial synchrony
component was not included.

EWI score but low confidence. The species’ EWI and confidence scores were not correlated253

(Pearson correlation = -0.005, p = 0.98).254

As a robustness check, we also computed results using a window width of 7 years; the EWI255

scores and confidence metrics were largely similar regardless of window width (Figures S.4-S.8).256

As for the results with a window width of 5 years, the species EWI and confidence scores were257

not significantly correlated (Pearson correlation = 0.17, p = 0.37). However, there were modest258

changes to how species were categorized into quadrants of the EWI score-confidence plot (Figure259

S.9). For example, delta smelt, chinook salmon, and striped bass were in quadrant I (high risk,260

high confidence) when using a window width of 7 years. These differences were present despite261

strong numerical similarities between the scores computed with 5 versus 7 years, highlighting262
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Figure 4: Relative confidence in EWI-based risk assessment. We considered confidence in the
EWI score to be highest when the metrics were based on a large number of samples, when the
direction of trends in EWI metrics agreed, and when there was less spatial variability in the trends
in lag-1 autocorrelation and temporal cv. Note that for the purposes of this metric, the spatial
variability in EWI trends have been rescaled so that 1 corresponds to the lowest variability
(highest confidence) and 0 corresponds to the greatest variability (lowest confidence).

limitations of discrete categorization based on simple thresholds.263

Discussion264

Directional trends in metrics of stability that also serve as statistical early warnings of regime265

shifts varied widely among fishes in central California, USA, highlighting species exhibiting loss266

of stability potentially heralding a nearing regime shift (e.g., white croaker, tule perch, Pacific267

lamprey), as well as others that may have gained population stability over the study period (e.g.,268

northern anchovy, fathead minnow). Across species, there was no systematic tendency for269

temporal variance or autocorrelation to have increased, but spatial synchrony increased on270

average. Composite EWI scores, which took into account changes in all three EWI metrics, were271

unrelated to long-term population trends or to whether the species is native or non-native. Despite272

15



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative confidence

R
el

at
iv

e 
E

W
I s

co
re

III
III IV

a)

Relative confidence
R

el
at

iv
e 

E
W

I s
co

re

Shiner perch
Topsmelt

Yellowfin goby
Mississippi silverside

Threadfin shad
American shad

Red shiner

White croaker
Sardine

Plainfin midshipman
Bay pipefish

Shimofuri goby
Starry flounder
White sturgeon

Tule perch

Pacific staghorn sculpin
Pacific pompano
Chinook salmon

Delta smelt
Channel catfish
Fathead minnow

Jacksmelt
Northern anchovy

Striped bass
Longfin smelt

Sacramento splittail
White catfish

Bluegill

b)

Figure 5: Relative EWI score versus confidence. a) scatterplot of index values; b) names of
species in each quadrant of the scatterplot, where quadrant boundaries are defined by the median
of each axis.

this, the potential for population regime shifts in declining native species like white sturgeon273

should be highly concerning for conservation and fishery management, as well as in non-native274

species like Mississippi silverside that may transition to a new, high-density regime. Additionally,275

the lack of correlation between long-term population trends and EWI scores corroborates that276

EWI measures provide information on stability that is largely orthogonal to long-term abundance277

trends, as expected. In other words, measures of stability can provide an additional dimension of278

information to support decision-making in conservation and natural resource management.279

In synthesizing across 29 species using data from multiple monitoring programs, we280

encountered varying degrees of uncertainty. A primary way we sought to take this into account281

was to develop a metric of certainty that took into account agreement across spatial units and EWI282

metrics, as well as how more data generally leads to greater precision and a higher signal-to-noise283
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ratio. Simultaneous consideration of the composite EWI scores and the certainty metric can aid284

decision-making. We propose that the quadrants of Figure 5 can be translated into general285

recommendations for research and management, though we emphasize that other sources of286

information should also be used to identify at-risk species and to prioritize research and287

management efforts. This analysis supports that those in quadrant 1 (high risk, high confidence)288

be investigated for drivers of population dynamics, to determine whether changes to289

environmental conditions are having negative consequences, and to ascertain possible population290

management strategies. Those in quadrant II (high risk, low confidence) should be candidates for291

additional monitoring to help constrain population variability and temporal dynamics. Those in292

quadrant III (low risk, low confidence) are also candidates for strengthened monitoring, but may293

be of lower priority than those in the quadrant II. Those in quadrant IV (low risk, high confidence)294

would not be prioritized for additional monitoring or research based on these criteria, but may still295

be high priority based on different criteria.296

Although we found no systematic association between long-term population trends and the297

EWI score, we found it notable that four species whose populations have been described as298

having collapsed (striped bass, Chinook salmon, delta smelt, longfin smelt) had relatively low299

EWI scores, often with relatively high confidence (Figure 5). While it’s not fully known whether300

the severe and rapid declines of these species precisely fulfill the dynamical assumptions301

underpinning theory on EWIs, they seem reasonably described as regime shifts in the broad sense.302

Why, then, in our study have they scored relatively low for evidence of EWIs and loss of stability?303

A likely explanation is timing: the roots of these population collapses generally began prior to the304

beginning of our study in 1980 and had already manifest by the middle of the study period. For305

example, historical surveys suggest that prior to 1980, the first year of this study, delta smelt306

abundances were markedly higher on average than after (Moyle et al., 2016). In other studies of307

early warnings of regime shifts, early warning indicators often returned toward normal following308

the regime shift (Buelo et al., 2018, 2022), so we do not expect EWIs to remain elevated309
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throughout the time series if the population in in a new, low-density regime. Since a primary goal310

of our approach was to identify species showing current evidence of loss of stability and potential311

for regime shifts, not to describe regime shifts in the distant past, we consider this characteristic312

of our results a feature, not a bug. However, this characteristic highlights the importance of313

temporal frame for understanding ecological trends (Bahlai et al., 2021; Wilkinson et al., 2020).314

While there was no tendency across species for temporal variance and autocorrelation to have315

increased through time (i.e., median t-statistics near zero), more than twice as many species316

exhibited increases in spatial synchrony (13) as decreases (6). In addition to its role as a generic317

EWI, spatially synchronous metapopulations are thought to be more prone to extinction (Heino318

et al., 1997), and spatial synchrony is closely related to the stability of total region-wide319

abundances because the synchronous components of local fluctuations reinforce each other in the320

regional total, whereas the asynchronous ones tend to cancel out (Anderson et al., 2021). Note321

that we quantified changes in temporal variance in local spatial units, not in region-wide totals, so322

these findings are not in conflict. This finding contributes to an emerging consensus that spatial323

synchrony in biotic variables (e.g., population size, carbon assimilation) has recently risen in324

many systems, likely as a result of climate change (Reuman et al., 2024; Hansen et al., 2020).325

Above, we asserted that applying EWIs to annual-interval animal population time series was326

valuable, particularly considering that change in EWIs corresponds to change in stability even if a327

tipping point is not near, but that caution was warranted. Selected examples documented change328

in EWIs that were consistent with apparent regime shifts, such as marked population declines329

(Figure 2), offering some support. However, rarely did we detect unambiguous increases in the330

EWIs that were unambiguously prior to some apparent state change; the most prominent of these331

was for Mississippi silverside, where spatial synchrony rose markedly prior to apparent332

population booms in multiple spatial units (e.g., Figure 2c). Considering this evidence, it seems333

that EWI metrics may be unable to consistently and reliably provide early warnings when time334

series are short. Future studies might quantify how time series length and moving window width335
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affect the reliability of EWIs using appropriately realistic simulation models. We remain336

cautiously optimistic about the value of using generic statistical indicators of stability and regime337

shifts to animal population time series. They are simple empirical tools that provide information338

on a dimension of population health beyond long-term trends in mean abundance. While339

expectations concerning their behavior were first explored through simple theoretical models, the340

statistics themselves assume little about the dynamics of the underlying system; alternatives like341

population viability analysis (PVA; Morris and Doak, 2002) make projections that may be more342

sensitive to underlying model assumptions and structures, though we are not aware of research343

directly addressing this question. Other methods for reconstructing the stability of empirical344

(Carpenter et al., 2022) and modeled (Nolting and Abbott, 2016) populations can yield much345

more detailed and sophisticated insights, but are correspondingly more data hungry and reliant on346

model assumptions, limiting their potential applications. Approaches like ours could be especially347

valuable in cases where little is known about organism life history to aid in model design, or when348

applying a simple and consistent protocol can facilitate comparison across many species.349
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Species Habitat Family Native
White croaker
Genyonemus lineatus

Marine,
Benthopelagic Sciaenidae Yes

Sardine
Sardinops sagax

Marine,
Pelagic Alosidae Yes

Plainfin midshipman
Porichthys notatus

Marine, brackish,
Demersal Batrachoididae Yes

Pacific staghorn sculpin
Leptocottus armatus

Marine, brackish
Demersal Cottidae Yes

Bay pipefish
Syngnathus leptorhynchus

Marine, brackish,
Demersal Syngnathidae Yes

Shiner perch
Cymatogaster aggregata

Marine, brackish
Benthopelagic Embiotocidae Yes

Pacific pompano
Peprilus simillimus

Marine, brackish
Benthopelagic Stromateidae Yes

Jacksmelt
Atherinopsis californiensis

Marine, brackish
Pelagic Atherinopsidae Yes

Topsmelt
Atherinops affinis

Marine, brackish,
Pelagic Atherinopsidae Yes

Northern anchovy
Engraulis mordax

Marine, brackish
Pelagic Engraulidae Yes

Shimofuri goby
Tridentiger bifasciatus

Marine, brackish,
Demersal Oxudercidae No

Starry flounder
Platilichthys stellatus

Marine, brackish, fresh,
Demersal Pleuronectidae Yes
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Pacific herring
Clupea pallasii

Marine, brackish
Benthopelagic Clupeidae Yes

Chinook salmon
Oncorhynchus tshawytscha

Marine, brackish, fresh,
Benthopelagic Salmonidae Yes

White sturgeon
Acipenser transmontanus

Marine, brackish, fresh,
Demersal Acipenseridae Yes

Striped bass
Morone saxatilis

Marine, brackish, fresh,
Benthopelagic Moronidae No

Longfin smelt
Spirinchus thaleichthys

Marine, brackish, fresh
Benthopelagic Osmeridae Yes

Yellowfin goby
Acanthogobius flavimanus

Brackish,
Demersal Oxudercidae No

Sacramento splittail
Pogonichthys macrolepidotus

Brackish, freshwater,
Benthopelagic Cyprinidae Yes

Tule perch
Hysterocarpus traskii

Brackish, freshwater,
Benthopelagic Embiotocidae Yes

Mississippi silverside
Menidia audens

Brackish, fresh,
Pelagic Atherinidae No

Threadfin shad
Dorosoma petenense

Brackish, freshwater,
Pelagic Dorosomatidae No

Delta smelt
Hypomesus transpacificus

Brackish, freshwater,
Pelagic Osmeridae Yes

American shad
Alosa sapidissima

Brackish, freshwater,
Pelagic Alosidae No

White catfish
Ameiurus catus

Freshwater
Demersal Ictaluridae No

Channel catfish
Ictalurus punctatus

Freshwater,
Demersal Ictaluridae No

Bluegill
Lepomis macrochirus

Freshwater,
Benthopelagic Centarchidae No

Fathead minnow
Pimephales promelas

Freshwater,
Demersal Cyprinidae No

Red shiner
Cyprinella lutrensis

Freshwater,
Benthopelagic Cyprinidae No

Table S.1: Attributes of fish species used in this study. Information is from Fishbase and expert
knowledge.
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Figure S.1: Temporal trends (t-values) in spatial synchrony of fall age-0 CPUE by species. Blank
cells indicate that insufficient data were available to compute the trend in spatial CV, e.g., because
the species was not consistently caught by multiple region-gear type combinations.
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South Bay−MWT

Central Bay−BS

Central Bay−MWT

San Pablo Bay−BS

San Pablo Bay−MWT

Napa River−MWT

Suisun Bay−MWT

Confluence−BS

Confluence−MWT

South Delta−BS

South Delta−MWT

North Delta−BS

North Delta−MWT

San Joaquin R.−BS

Sacramento R.−BS

Figure S.2: Temporal trends (t-values) in the temporal coefficient of variation (CV) of fall age-0
CPUE by species and region-gear type combination. Blank cells indicate that insufficient data
were available to compute the trend in temporal CV.
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Figure S.3: Temporal trends (t-values) in the lag-1 temporal autocorrelation of fall age-0 CPUE
by species and region-gear type combination. Blank cells indicate that insufficient data were
available to compute the trend in lag-1 autocorrelation.
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Figure S.4: Temporal trends (t-values) in spatial synchrony of fall age-0 CPUE by species using
a 7-year window width. Blank cells indicate that insufficient data were available to compute the
trend in spatial CV, e.g., because the species was not consistently caught by multiple region-gear
type combinations.
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Figure S.5: Temporal trends (t-values) in the temporal coefficient of variation (CV) of fall age-0
CPUE by species and region-gear type combination using a 7-year window width. Blank cells
indicate that insufficient data were available to compute the trend in temporal CV.
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Figure S.6: Temporal trends (t-values) in the lag-1 temporal autocorrelation of fall age-0 CPUE
by species and region-gear type combination using a 7-year window width. Blank cells indicate
that insufficient data were available to compute the trend in lag-1 autocorrelation.
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Figure S.7: Relative risk of fish population regime shifts based on EWI statistics using a window
width of 7 years. The lower 3 rows show relative risk from three component metrics developed by
rescaling long-term trends (t-values) to the 0-1 interval. The top row shows the combined
(averaged) statistic. Note that several species were not consistently observed in ≥ 3 regions and
so the spatial synchrony component was not included.
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Figure S.8: Relative confidence in EWI-based risk assessment using a 7-year window width. We
considered confidence in the EWI score to be highest when the metrics were based on a large
number of samples, when the direction of trends in EWI metrics agreed, and when there was less
spatial variability in the trends in lag-1 autocorrelation and temporal cv. Note that for the
purposes of this metric, the spatial variability in EWI trends have been rescaled so that 1
corresponds to the lowest variability (highest confidence) and 0 corresponds to the greatest
variability (lowest confidence).
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Figure S.9: Relative EWI score versus confidence using a 7-year window width. a) scatterplot of
index values; b) names of species in each quadrant of the scatterplot, where quadrant boundaries
are defined by the median of each axis.
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