
   

 

1 

HusMorph: A simple machine learning app for automated 
morphometric landmarking 
 
Henning H. Kristiansen1,2,*, Moa Metz1, Lorena Silva-Garay1, Fredrik Jutfelt1,3,#, Robine H.J. 

Leeuwis1,# 

 
1 Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 

5, 7034, Trondheim, Norway.  
2 Department of Computer Technology and Informatics, Norwegian University of Science 

and Technology, Høgskoleringen 5, 7034, Trondheim, Norway. 
3 Department of Biological and Environmental Sciences, University of Gothenburg, 

Medicinaregatan 7B, 41390, Göteborg, Sweden. 

 

*Corresponding author: Department of Biology, Department of Computer Technology and 

Informatics. Email: skihenning@gmail.com. 
#F.J. and R.H.J.L. are co-senior authors and have contributed equally to this work. 

 

Email addresses: lorena.silvagaray@gmail.com (L.S.G.), rhjleeuwis@gmail.com (R.H.J.L.), 

fredrik.jutfelt@bioenv.gu.se (F.J.)  

 

Author’s ORCID numbers: 

M.M 0009-0002-4397-3948 

L.S.G. 0000-0002-9332-6311 

R.H.J.L.0000-0002-6687-4304 

F.J. 0000-0001-9838-3991 

 

Abstract 

Manually obtaining the length and other morphometric features of an animal can be time-

consuming, and consistent measurements are challenging with large datasets. By leveraging 

high-throughput computing power and machine learning-based computer vision, such 

phenotypic data can be rapidly collected with high accuracy. Here we present HusMorph, a 

novel application with a simple and intuitive graphical user interface (GUI), based on the 

same machine learning method used in other pipelines such as ML-morph. It consists of an 

all-in-one package with the goal of making machine learning easy to use for non-experts. The 

user starts by setting any number of landmarks on a set of photos captured with a 

standardized setup. From this set, a machine learning model is generated by automatically 

and randomly searching for the best performing parameters. Next, the user can apply the 

model to predict landmarks on new standardized photos, and visually confirm and export the 

results of the predictions. For measuring length between landmarks, an additional feature 

allows for detecting a scale bar for each photo to convert the length from pixels to a metric 

unit. Our application has been validated and applied to extract standard length from 1,935 

photos of zebrafish and performs with about 99.5% accuracy compared to manual 

measurements along with 100% scale bar detection. 
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Introduction 

Morphometric measurements are essential in most disciplines of biology, and important for 

advancing our understanding of evolution, species identification and taxonomy, genotype-

phenotype relationships, effects of various factors and environmental stressors on body 

condition, biomechanics, and paleontology (Klingenberg, 2010; Rohlf & Marcus, 1993; 

Rowiński et al., 2015). In recent years, there is a growing trend of large-scale morphometric 

datasets being collected by biological researchers, such as repositories consisting of 

thousands of images (Edlund et al., 2021; van der Linde et al., 2018). Traditionally, however, 

morphometric information is still extracted through manual annotation, which is time-

consuming and labour-intensive. Furthermore, inter- and intra-observer measurement errors 

in landmark placements can lead to inconsistencies and faulty estimates (von Cramon‐

Taubadel et al., 2007). 

 

Recent advances in artificial intelligence (AI) have opened up vast possibilities in the field of 

biology, including the potential to increase the scale, complexity, accuracy, efficiency, and 

reproducibility of phenotypic data collection (Wang et al., 2023). Computer vision is a 

prominent AI-based technology that allows for automated landmark placement and 

morphometric data collection, reducing variability introduced by manual annotation and 

improving the consistency of measurements across large datasets, and significantly 

decreasing processing time. Machine learning (ML) algorithms and methods common in 

computer science facilitate quick and accurate morphometric landmarking for complex 

dataset analyses that were previously impractical (He et al., 2024). 

 

Given that machine learning-based phenotyping pipelines and infrastructure available to date 

are implemented in Python (e.g., Porto and Voje (2020)), a sufficient level of Python coding 

and machine learning knowledge is required for biologists to use these resources. To remove 

this skillset barrier and increase the accessibility of machine learning-based landmarking of 

photos to non-experts, a graphical user interface (GUI) can be an important attribute of such a 

research tool. Additionally, a free and open-source software has the benefit of being available 

to all researchers regardless of financial resources. Here, we present HusMorph, a free stand-

alone and open-source machine learning application with a graphical user interface, 

automation of functions, and other user-friendly features to extract morphometric 

measurements from images. This stand-alone application runs on both Windows and Mac 

computers and makes it possible for anyone in the biological field to automate high-

throughput morphometric analyses. 

 

 

Materials and methods 

We developed HusMorph as an accessible application with a user-friendly graphical user 

interface based on Python code. This interface allows users to quickly place and view 

landmarks on images with minimal user input (i.e., number of button presses). It also enables 

automated landmark placements using computer vision and machine learning techniques, 

primarily leveraging OpenCV 4.10.0.84, dlib 19.24.6, Optuna 4.1.0 and matplotlib 3.9.3 

libraries. The interface is designed with intuitive and interactive elements (e.g. buttons and 

drop-down menus). Furthermore, the program is packaged as an executable file, allowing 

users to run it directly without needing to set up a Python environment or install additional 

dependencies, making it easy to use without requiring any coding knowledge. The application 

can be downloaded free from charge through GitHub 

(https://github.com/HenHus/Husmorph), and specific user instructions are available on the 

https://github.com/HenHus/Husmorph
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same web page. In the following sections, we provide a detailed explanation of the key 

features of HusMorph, and evaluate its performance on different datasets to validate the 

method and demonstrate its reliability. We tested the software on photos of fishes, although it 

should perform equally well on many other organisms or biological structures. 

 

Image requirements 

The machine learning training is easier if the images are optimised for the process. A 

homogenous background with a colour that is distinct from that of the organism is 

advantageous. We have mainly tested the process using zebrafish (Danio rerio) placed on 

their ventral side against a solid white background (Fig. 1A). However, machine learning can 

also work well with images containing slightly more complex backgrounds (Fig. 1B). 

Additionally, the method employed in the training process is sensitive to rotation, flipping, 

and scaling, indicating that better image standardization leads to improved results. 

 

 

Figure 1. Examples of fish images suitable for machine learning training. (A) Zebrafish (Danio rerio) 
against a white background with few other image elements. The black scale bar is for length 
calibration. (B) Atlantic salmon (Salmo salar) against a slightly more complex background with light 
reflection, but with sufficient contrast from the organism of interest to allow for automation of 
landmarking.  

 

As the machine learning training is computationally intensive, very high-resolution images 

require too much hardware without necessarily benefiting accuracy in landmark placements. 

Therefore, we recommend downscaling the images to match the processing power of the 

computer hardware available prior to training. We have used images around 1000 to 2000 

pixels on the long side, and recommend this as the highest resolution to be used. This image 

resolution is amenable to training large sets (i.e., hundreds) of images on regular desktop 

computers and modern laptops. Very fast stationary computers (e.g., server clusters, 

workstations, gaming computers) may handle training sets with higher resolution images.  

 

The number of images needed for successful training depends on the complexity and 

variability of the dataset, as well as the desired accuracy. Generally, a larger number of 

photos improves the accuracy of automated landmarking by increasing the diversity of 

training samples. To determine the optimal balance, we tested different training set sizes to 

identify the point where accuracy becomes sufficient and additional training data yield 

minimal improvement. 

 

Computer hardware requirements 

Training of machine learning algorithms is a computationally demanding process that 

requires both high-performance hardware and/or extended training duration. The accuracy of 
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landmark predictions is highly dependent on the size of training datasets, with larger dataset 

and longer training times, generally leading to better results. To ensure efficient training, we 

primarily used a high-performance desktop computer with a high performance processor 

(Apple Mac Studio M2 Ultra). Additionally, we tested the training on various MacBook and 

Windows laptops. On modern laptops, a session of machine learning training can take around 

one to two days of continuous training, depending on factors such as dataset size, image 

resolution, number of machine learning trials, and hardware specifications. It is important to 

note that dedicating the whole processor to training may become hot and slow to perform 

other processes. However, machine learning training is a one-time process. Once the machine 

learning training is complete, it becomes substantially less computationally demanding, 

allowing it to place landmarks on large datasets of new images within seconds, even on 

standard laptops. 

 

Automation of the machine learning process 

To eliminate the need for users to possess an in-depth understanding of machine learning, the 

training parameters that affect the final outcome are not manually adjusted. Instead, 9 

parameters are automatically optimized using the Optuna library—an open-source 

hyperparameter optimization framework that employs advanced algorithms to efficiently 

search for optimal parameter configurations (Akiba et al., 2019). Based on the training and 

testing conducted in this study, we have established a range for each parameter that 

performed well. Within these defined ranges, Optuna autonomously explores the optimal 

combination, avoiding the exhaustive search required by traditional methods like grid 

search—especially when dealing with rational-valued parameters. This streamlined approach 

reduces computational time and enhances overall efficiency. 

 

Setting and viewing landmarks  

One of the key features of the HusMorph app is its ability to efficiently place landmarks on 

images, providing a workflow similar to commonly used tools like ImageJ. It simplifies batch 

processing, as it saves landmarks in an XML format for seamless downstream use. While it 

can act as a stand-alone feature for quickly placing landmarks on smaller batches of images, 

its primary role is as a preprocessing step for training machine learning models. 

 

Landmarks are represented as coordinate points on the image, with the origin located in the 

upper-left corner. The coordinate data are saved directly in an XML format, ensuring 

compatibility with machine learning workflows. Users can revisit and view the landmarks at 

any time, as the saved XML file contains all the necessary information for displaying the 

landmarks. This feature is particularly helpful for visually assessing the performance of 

machine learning models. By displaying the landmarks on the images, it provides a clear, 

intuitive way to evaluate accuracy - something that can be challenging to grasp from numeric 

measures like pixel deviation or percentage values alone.  

 

Predicting landmarks 

In this context, a trial represents a specific combination of the nine parameters used to train 

and test the machine learning model, while a study is a collection of trials aimed at 

identifying and saving the best-performing trial. Through the graphical user interface, users 

can specify the number of trials to include in a study, allowing them to balance the likelihood 

of finding a high-performing trial and minimizing the total time required to achieve the 

desired accuracy. 
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The tool automatically splits the dataset and performs a 5-fold cross-validation for each trial. 

The mean deviation across the folds is calculated and compared with other trials within the 

study to determine the most accurate configuration. The final selected model is derived from 

the best-performing fold from the trial with the lowest mean deviation, ensuring optimal 

accuracy. 

 

Landmark accuracy  

To quantify the accuracy in placement of landmarks, we measured the Euclidean distance in 

pixels between each landmark’s true location and that predicted by the model, which is then 

normalized against the diagonal pixel distance of the total image. This is a different measure 

for accuracy compared to the deviation relative to the total length of the biological structure. 

The percentage error of the diagonal reflects how well the model handles the input image 

itself. Meanwhile, although the error normalized by the length of the biological structure is a 

conventional accuracy metric in the field, it fails to take into consideration the extent that the 

structure fills up the image frame. Indeed, an image of a small structure surrounded by a large 

amount of background is predisposed to have a lower deviation in pixels relative to the length 

of the structure and hence, higher accuracy, compared to an image of a large structure filling 

the frame. This puts the latter type of image in an unfair disadvantage when evaluating 

accuracy, because one pixel corresponds to a smaller physical distance. Therefore, by setting 

deviations as a percentage of the image diagonal - the biggest error possible - allow for an 

unbiased comparison of the prediction errors across different datasets and species. 

 

To further validate the results, we will compare the model’s performance with intra-observer 

error. Intra-observer error quantifies the variability in landmark placement when the same 

human expert annotates the same images on different occasions, serving as a baseline for 

manual accuracy. By comparing the model’s deviation metrics to this error, we can assess 

whether the automated predictions achieve a level of consistency comparable to that of an 

expert. This evaluation helps test if the model's performance falls within an acceptable range 

of accuracy, examining its robustness and practical applicability for high-throughput 

morphometric analyses where reproducibility is critical. 

 

Scale bar detection 

The HusMorph machine learning application includes a convenient extension for 

automatically detecting and measuring scale bars in images. This feature provides an efficient 

way to convert pixel distances into more meaningful units such as millimetres. Images first 

undergo automatic pre-processing to enhance line features, after which the Hough Line 

Transform is applied to detect lines based on user-defined parameters for threshold, minimum 

line length, and maximum line gap. With minor coding adjustments tailored to the specific 

scale bar, the tool can be customized to ensure accurate calibration across all images. This 

functionality is valuable because even small movements of the camera or subject positions 

can cause variations in scale from image to image. 

 

Testing dataset size and accuracy 

To evaluate the performance of the application, we conducted tests using image datasets of 

varying sizes: 50, 100, 250, and 500 images. All images were standardized at a medium 

resolution of 1800x1200 pixels to analyse the relationship between dataset size and prediction 

accuracy. The images were randomly selected from a pool of 1,900 standardized images of 

zebrafish. Each image featured labelled zebrafish on a white background, all oriented in the 

same direction and positioned relatively horizontally with an extended caudal fin (Fig. 2). 
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Figure 2: A selection of zebrafish (Danio rerio) images illustrating the variability within the landmark 
dataset used to evaluate app performance. (A) Slightly overexposed image, (B) highly underexposed 
image, (C) slightly blurred image featuring a very small zebrafish, and (D) zebrafish with an irregular, 
unspread caudal fin. The blue landmarks at the tip of the snout and the hypural joint of the caudal 
peduncle were used for determining standard length. The black scale bar below the zebrafish 
facilitates the conversion of pixel measurements to millimetres. 

The dataset introduced variability, including being gathered by multiple people, two different 

cameras, differences in zebrafish size (ranging from 10 to 28 mm in standard length), 

variations in image clarity (e.g., focus and blur) and changes in lighting and exposure. This 

variability enabled evaluating the application robustness under varying image qualities and 

conditions in a standardized dataset. 

 

Each image included two landmarks: one at the tip of the snout and another at the point 

where the caudal fin begins. Figure 2 illustrates these placements (blue filled circles). The 

two landmarks entailed different levels of detection difficulty. The snout landmark, located at 

the edge of the background, was easier to identify, while the caudal peduncle landmark, 

positioned at the hypural joint, was more challenging to detect. For clarity, we will refer to 

the landmarks as “simple” and “complex”, respectively, and intra-observer error as “human” 

error. 

 

Testing a field dataset 

To further assess the robustness of the landmark prediction, we conducted tests using hand-

held field images of Atlantic salmon parr and smolts, which had minimal standardization 

(Fig. 1B). A total of 261 images with a resolution of 1200x900 pixels were analysed, with 

landmarks placed at the tip of the snout, the base of the caudal fin, the fork of the tail, and the 

base of the dorsal fin (Fig. 3). After completing the training process, an additional set of 29 

previously unseen images was used for final validation to further evaluate the model's 

performance. 
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Figure 3: Subsample of the images of the Atlantic salmon used in experiment 2. Each image shows 4 
blue dots, representing the 4 landmarks used; at tip of the snout, at the hypural joint of the caudal 
peduncle, at the fork of the tail fin and at the base of the dorsal fin. 

 

 

Results 

Image dataset size and variability 

The accuracy was measured by measuring the performance on 1548 unseen images of 

zebrafish, and the accuracy was compared with intra observer error where the same person 

manually placed landmarks on the same dataset 9 months apart. 

 

Figure 4: Visual representation of the accuracy of automated HusMorph landmarks. Image A is an 
enlargement of the full image shown in image B. The black circle in image A illustrates a 5-pixel 
deviation—a level of accuracy achieved after training on 500 images across 200 trials. 

 

All models performed with accuracy <1% of image diagonal on the unseen images. The 

results showed that the dataset of 50 images has the highest mean error both for the simple 

landmark and the complex landmark (0.76% and 0.92% of image diagonal, or 16 and 20 

pixels), and drastically dropped to dataset size of 100 (0.54% and 0.64% of image diagonal, 

or 12 and 13 pixels), before it dropped further for size 250 (0.24% and 0.37% of image 

diagonal, or 5 and 8 pixels), and stabilized towards the dataset of size 500 (0.23% and 0.32% 

of image diagonal, or 5 and 7 pixels). The simple landmark had overall less error compared to 

the complex error (Fig. 5). When compared to intra-observer error—0.19% of image diagonal 

(4 pixels) for the simple landmark and 0.28% of image diagonal (6 pixels) for the complex 

landmark—the model trained on 500 images was only 0.04% worse for both landmarks, 

approaching the theoretical maximum performance expected from a machine learning model. 
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Figure 5: Comparison of the placement error between intra-observer error, marked as ‘human’, and 
automated machine learning landmark placements, marked as ‘ML’, as a function of dataset size. Two 
types of landmarks are tested, the simple (blue triangles) shows high accuracy for both human and 
machine learning landmarking, while the more difficult “complex” landmarks are overall more difficult 
to place.  

 

Of the 200 trials conducted for each dataset, the dataset of size 50 exhibited significant 

improvements in the early trials but reached a performance plateau after trial 60. In contrast, 

the dataset of size 100 demonstrated a more gradual improvement throughout the study. 

Notably, the datasets comprising 250 and 500 images outperformed the smaller datasets, 

achieving high accuracy within the first 25 trials, with only marginal gains thereafter (Fig. 

6A). 

 

Figure 6B illustrates the probability of achieving various levels of deviation. Steeper curves 

indicate a higher likelihood of obtaining a model with low deviation. The figure demonstrates 

that datasets of 250, and 500 images have a higher than 80% chance of finding a model with 

less than 1% relative deviation. Sets of 100 images have around a 70% chance whereas a 

dataset of 50 images has a substantially lower chance of reaching the same level of accuracy. 

Notably, the small difference in performance between the 250- and 500-image datasets 

suggests that a dataset of around 250 images may offer the best balance between 

computational effort and accuracy. 
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Figure 6. Machine learning landmark placement accuracy is dependent on the number of images 
(batch size) and the number of trials (x-axis) (A). Cumulative distribution function depicts the 
probability of reaching a certain deviation relative to the image diagonal using various image batch 
sizes (B). Image shows that larger training datasets have a higher chance of high accuracy. 

 

Testing a field dataset 

Based on the evolution of the study from experiment 1, we decided to perform a study of 100 

trials, since the performance seemed to stabilize after this point. On the 29 unseen images, the 

trained model achieved a mean accuracy of 0.40% of image diagonal (6 pixels) per landmark. 

Intra-observer error was measured on the same 29 images with 1 day between the samplings, 

with a mean deviation of 0.21% of image diagonal (3 pixels). 

In a related experiment, we were able to train a model using 1,935 images of zebrafish, 

achieving an accuracy of 0.18% of the image diagonal by following the same procedure 

provided by the application. To further assess the model’s accuracy, a visual inspection of 

6,966 predicted landmarks across 3,483 previously unseen images was conducted. The results 

indicated that 99.5% of the predicted landmarks were visually indistinguishable from those 

that would have been placed manually by an expert. 

 

Discussion 

Here, we show that our machine learning based HusMorph application can automatically 

place landmarks with a high accuracy on par with human experts. Using training sets of 100 

to 250 photos, the application achieves a sufficient level of accuracy (5-14 pixels of 

deviation) from the optimal landmark location on high-definition images) for most biological 

purposes. A larger training dataset (more images) can further enhance accuracy (to ~6 pixels 

deviation), although it requires a higher computational effort (i.e., longer training time). We 

also show that bigger datasets have a very high chance of generating a well performing model 

that achieves good accuracy. It is generally not worthwhile to apply machine learning to 

smaller datasets (less than 100 images), as the accuracy was poor with training on 50 images. 

For smaller projects we therefore recommend placing the landmarks manually. However, 

beyond a dataset size threshold of around 100 images HusMorph offers a powerful solution to 

produce high-quality landmarks and automate morphometric data collection.  
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As expected, we found that the machine learning models detected simple (high contrast) 

landmarks more easily than complex (low contrast) landmarks regardless of dataset size. This 

suggests that the difficulty of landmark recognition (i.e., contrast to background and 

complexity of the landmarks) are crucial factors determining error rates and the level of 

accuracy. We demonstrate this when testing HusMorph to detect both fork length and 

standard length in fishes. Both measures use the tip of the snout as the anterior landmark; 

however, fork length uses the anterior end of the middle caudal fin rays, whereas standard 

length uses the hypural joint of the caudal peduncle. There is usually a clear contrast between 

caudal fin and background (Fig. 1), while differences in colouration and structure between 

caudal peduncle and caudal fin are much more subtle. Consequently, standard length 

landmarks are more difficult features to predict with machine learning. We should note, 

though, that it is common for human observers to have a similar difficulty in placing standard 

length landmarks with high accuracy (Carlander & Smith, 1945).  

 

A major advantage of automating morphometric data collection from images is the reduction 

of systematic biases and errors inherent in human observation (Holman et al., 2015; Marsh & 

Hanlon, 2007). For instance, human observers that have preconceived expectations of results 

may subconsciously skew landmark placements in favour of this outcome. Further, the 

location and accuracy of landmarks placed by observers may drift over time, especially when 

morphometricians spend many days to collect a dataset, which causes disparity between 

measurements made across a timespan. Finally, when multiple annotators are involved, there 

is a risk of increased data variance or inter-observer errors. Therefore, an automated 

landmarking approach is preferable in many contexts (Clark et al., 2020; Clements JC et al., 

2022; Jutfelt et al., 2017). Our machine learning based HusMorph application effectively 

achieves such automation, minimizes manual annotation errors and eliminates human biases. 

 

The built-in machine learning procedure of HusMorph is well-established in the computer 

vision field. More advanced variants to this approach also exist—for example, those that 

combine object detection with landmark prediction (Porto & Voje, 2020) or 3D-pose 

estimation with tracking (Mathis et al., 2018). However, in our view, users are still required 

to have prior expertise in coding or machine learning to successfully build and use such 

machine learning pipelines. We specifically designed HusMorph to be accessible to users 

without specialized technical knowledge, by automating the parameter optimization of the 

machine learning model and packing the method in a user-friendly application with an 

intuitive graphical user interface. This application is not intended to replace experts in the 

machine learning field; rather, it serves as a supplementary tool, enabling high-throughput 

analysis without the need for specialized technical knowledge. While expert users can also 

benefit from its capabilities, its primary focus is to support those without advanced expertise 

in the field. By integrating complex machine learning processes into a program with an easy-

to-use graphical user interface, HusMorph facilitates automation in phenotyping, allowing 

researchers in the morphometric community to quickly assess biological structures in images 

at a large scale regardless of technical background. 

 

The dlib library used in our machine learning software differs from typical CNN-based 

predictors, which typically train on large datasets containing thousands of input images and 

are harder to fine tune (Xue et al., 2021). Predictive models developed this way are generally 

more robust, exhibiting higher tolerance to image transformations such as rotation, scaling, 

and flipping, which can be weaknesses of our dlib library-based approach. However, most 

research studies in biology neither require nor have access to the resources that would support 

that level of versatility. Therefore, for moderately sized (i.e., hundreds of images) and 
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standardised datasets that are common in biological studies, the dlib library which HusMorph 

uses offers a great compromise between tolerance to variation in image quality and machine 

learning effort. 

 
Table 1: Recommended dataset specifications and built-in machine learning procedure steps and 
features used for automated landmarking with the HusMorph application. 

Component Description 

Input image recommendations 

Quality Standardized rotation, flipping and scaling 

Number ≥100 

Resolution ≤ 2 megapixels 

Background Distinct from object, ideally homogeneous 

Other Consistent lighting and focus 

Built-in machine learning procedure steps and features 

Manual landmarking in 
the training set 

Ground truth in the training dataset is established through expert manual 
landmark placements. 

Machine learning 
model training and 
testing 

Machine learning models are generated from the set of images with the 
manually placed landmarks.  

Automated 
landmarking and visual 
confirmation 

The model automatically places predicted landmarks on unseen images, 
which users can review to confirm accuracy. 

Automated scale bar 
detection 

Optional automated scale bar detection script converts pixels to length 
units for each image in batch mode. 

Export of predicted 
landmarking results 

Predicted landmark results can be conveniently exported in CSV format. 
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Conclusions 
 

The open-source HusMorph application allows researchers to quickly automate 

morphometric data collection from large sets of images. The program has an easy-to-use 

graphical interface and therefore allows anyone to employ the power of machine learning to 

their morphometric research questions, with a minimal learning curve. We show that the 

machine learning model can reach similar accuracy to human observers through training on a 

few hundred images over a day or two on a normal PC or Mac computer. We therefore hope 

that the HusMorph application will benefit researchers by increasing speed and ease of data 

collection, while at the same time promoting accuracy through reductions in biases and 

variation from human observation.  
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