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Abstract 5 

Aim: Climate change is changing species distributions globally, but predicting these impacts on 6 

assemblages and their spatial overlaps under future scenarios is an ongoing challenge. Here, we 7 

explore how climate change influences distributions among two mutualistic assemblages. 8 

Location: The Mojave and Colorado Deserts, California, United States 9 

Methods: We developed stacked species distribution models for the community of extrafloral 10 

nectar (EFN)-bearing plants and their mutualistic ant community and projected these models 11 

under two future climate scenarios. To assess the vulnerability of this mutualism due to spatial 12 

mismatches, we examined potential shifts in geographic overlap between the EFN-bearing plants 13 

and ant species under both scenarios. We analyzed the bioclimatic factors influencing species 14 

richness and distribution in both the plant and ant communities, as well as their responses to 15 

future climate change. We also tested whether environmental breadth and phylogeny could 16 

predict the responses of ants to climate change. Lastly, we evaluated the significance of the EFN 17 

community on ant species distributions by determining whether the inclusion of EFN plants in 18 

ant distribution models enhances their predictive accuracy.  19 

Results: The species richness of both the EFN-bearing plant communities and ant communities 20 

decreased under both predicted climate change scenarios. The geographic overlap between EFN 21 

plants and ants significantly decreased under both future scenarios. The response of different ant 22 

species to climate change varied based on their environmental generalization but not their 23 

evolutionary relationships. Including the EFN plant community as a predictor in the species 24 

distribution models for ants improved their predictive performance.  25 

Main conclusions: The EFN plant community is an important driver of their ant mutualists' 26 

geographic distribution and diversity. More environmentally generalized ant species benefit from 27 

the changing climate, whereas the EFN-bearing plants are uniformly and negatively impacted 28 

despite their environmental generalization. Despite the range increase of some ant species across 29 
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the Mojave and Colorado Deserts, these mutualisms are vulnerable to climate change because of 30 

the decrease in geographic overlap between pairs of ant and EFN-bearing plant species. 31 

 32 

Introduction 33 

Climate change is profoundly changing the diversity and distribution of species globally. The 34 

responses of individual species to a changing climate can decrease or increase their range size, as 35 

well as causing spatial shifts leading to changes in the spatial overlap of species (Thomas 2010, 36 

Lenoir and Svenning 2015). Spatial overlaps play a key role in biotic interactions, and thus, 37 

climate change impacts the capacity for interactions in addition to the species themselves 38 

(Walther 2010, Gómez-Ruiz and Lacher 2019). The loss of the interaction partners resulting 39 

from the spatial reorganization of communities can decrease the delivery of ecosystem services, 40 

as well as reducing ecosystem functioning and stability (Walther 2010, Pyke et al. 2016). 41 

Generalized mutualisms i.e., species have flexible interactions with multiple partners, are 42 

expected to be more resilient to climate change than specialized mutualisms i.e., species rely on 43 

specific partners for interactions, because having flexibility in interaction partners buffers the 44 

interaction to species loss (Toby Kiers et al. 2010). However, generalized mutualisms can also be 45 

vulnerable if one community spatially shifts much more than the other, leading to potential 46 

declines in both participant species and the ecosystem services that they respectively provide. 47 

Many recent biogeographic studies look at future changes in species distributions and 48 

biodiversity (e.g., Tovar et al. 2022, Biber et al. 2023); however, relatively few of these examine 49 

interacting mutualistic communities on different trophic levels (but see Vasconcelos et al. 2017, 50 

Morales-Linares et al. 2021, Adedoja et al. 2024). Anticipating the impacts of climate change on 51 

spatial overlaps at the community level is a necessary step for predicting and mitigating the 52 

consequences of these shifts for mutualism. 53 

Ant-plant interactions are a model for understanding the ecology and evolution of generalized 54 

mutualisms (Heil and McKey 2003). These include ant defense mutualisms; ants obtain a 55 

nutrient-rich food nectar secreted from extrafloral nectaries (EFNs) by plants in exchange for 56 

defending the plant from herbivores, improving plant fitness (Heil and McKey 2003, Rico-Gray 57 

and Oliveira 2007, Rosumek et al. 2009). EFNs have been reported in 3941 species of plants 58 

within 108 families and have arisen 457 times independently, indicating that this trait is adaptive 59 
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in a wide range of systems (Weber and Keeler 2013). Global biogeographic studies have 60 

documented many positive correlations between ant diversity and EFN plant diversity and that 61 

they are also often mediated by climate (Luo et al. 2023). Ant-EFN interactions may be 62 

fundamental to the persistence of plants in arid ecosystems because the effectiveness of ant 63 

defense mutualisms for plants increases with decreasing precipitation (Leal and Peixoto 2017). 64 

However, ants and plants are different physiologically and likely have different climate niches 65 

and, therefore, different responses to climate change. The extent of this variation in climate 66 

sensitivity and, consequently, the future capacity of this mutualism is untested. Therefore, 67 

understanding how ant and plant distributions will shift is critical research to understanding the 68 

vulnerability of these interactions in the face of a dramatically changing climate. 69 

Species distribution models (SDMs) are powerful tools for predicting species distribution shifts 70 

under a changing climate. By linking aspects of species biology, such as phylogeny and 71 

environmental breadth, to predicted distribution shifts, we can gain generalizable insights into 72 

how communities will respond to climate change. Understanding and predicting assemblage-73 

level responses to climate change have been proposed as critical components of ecological 74 

forecasting, yet these remain challenging tasks due to incomplete field sampling of assemblages 75 

(Suding et al. 2008, Walther 2010, Urban et al. 2016). One solution is to use stacked species 76 

distribution models (s-SDMs), which extend the functionality of SDMs from understanding the 77 

distribution of single species to understanding the distribution of communities (Del Toro et al. 78 

2019). When stacked, the models can provide both species richness and composition for a given 79 

area (Dubuis et al. 2011). S-SDMs stacked using probabilities provide richness estimates 80 

comparable to macroecological models (MEMs), i.e., models that statistically relate species 81 

richness to environmental variables, while avoiding the issues of overestimation associated with 82 

thresholded s-SDM (Gould 2000, Dubuis et al. 2011). An advantage of s-SDMs is that they can 83 

be developed using presence-only data, allowing researchers to leverage public biodiversity data 84 

clearinghouses such as the Global Biodiversity Information Facility (GBIF) (GBIF 2022). With 85 

climate change occurring now and limited time to study each community in the field, these tools 86 

can provide valuable support.  87 

Here, we conduct a synthesis to explore the role of current and future climate on the geographic 88 

distribution of two mutualistic guilds. We tested the hypothesis that EFN mutualisms couple 89 
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plant and ant communities together in space but become decoupled with climate change. We 90 

modelled the distributions of the EFN-bearing plant and their mutualistic ant communities of the 91 

Mojave Desert and Colorado Deserts using s-SDMs. We tested for shifts in geographic overlap 92 

between EFN-bearing plant and ant species under two different future scenarios to evaluate the 93 

impacts on the potential for this mutualism to occur. We contrasted the environmental drivers of 94 

species richness and distributions between the plant and ant communities, and their responses to 95 

future climate change. We then tested if environmental breadth and phylogeny predict individual 96 

ant species' responses. Finally, we evaluated evidence for the importance of EFN plants on the 97 

distribution of mutualistic ants by testing the following predictions: 1) Including the EFN plant 98 

community into the SDMs for ant species will improve the ant model’s predictive accuracy; 2) 99 

Variation in the EFN plant community richness explains variation in ant richness independent of 100 

covariation that arises from shared climate needs. This synthesis contributes to our understanding 101 

of the biotic drivers of species distributions, as well as the drivers of diversity and the 102 

consequences of climate change for two important Mojave Desert communities. 103 

Methods 104 

Species data collection 105 

A species list of EFN-bearing plants of the Mojave and Colorado deserts was created from the 106 

paper by Pemberton (1988) that documented the percent ground cover of EFN-bearing plants 107 

using field surveys. A more exhaustive list of all EFN-bearing species of the area has not been 108 

published and the surveys covered the major plant communities of the area (Pemberton 1988). 109 

Additionally, these EFN-bearing species have been reported to be used by ants within the 110 

Mojave, Colorado or Sonoran deserts (Pemberton 1988, Chamberlain and Holland 2009). Ant 111 

defense improves at least two of the included plant species’ fitness: Cylindropuntia echinocarpa 112 

and C. acanthocarpa (Braun and Lortie, unpub, Pickett and Clark 1979). 113 

We created a list of ant species found within the Mojave and Colorado deserts that use EFN 114 

nectar, honeydew or have been reported to interact with EFN-bearing plants from published 115 

species lists. We used the Mojave National Preserve ant species list (Ikeda and des Lauriers 116 

2008) and ant species from a published Sonoran ant-EFN interaction network (Chamberlain and 117 

Holland 2009) that are also found within the Mojave desert.  118 
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The boundaries of the Mojave and Colorado deserts were defined as the watershed boundary 119 

delineated by the USGS (USGS 2006, Figure 1). We used the minimum convex polygon (MCP) 120 

around the watershed boundary map as the study boundary for extracting occurrences to increase 121 

the sample size for several ant species with low sample sizes (Figure 1). We used species 122 

occurrences and environmental data from within the MCP to include within the species 123 

distribution models but clipped out model outputs to the study area boundary.   124 

Occurrences for plant and ant species were extracted from the Global Biodiversity Information 125 

Facility database (GBIF, www.gbif.org) using the rgbif package (Chamberlain et al. 2022). We 126 

supplemented the GBIF occurrences with occurrences extracted from the Global Ants 127 

Biodiversity Informatics databased (GABI) (Guenard et al. 2017). We retained species with at 128 

least 10 occurrences within the MCP area as focal species, for a total of 11 EFN-bearing plant 129 

species (Table 1) and 16 ant species (Table 2).  130 

Environmental variables 131 

We used 19 bioclimatic variables from WorldClim Version 2 global climate gridded data at a 132 

resolution of 30 seconds (~1 km2) (Fick and Hijmans 2017). The bioclimatic variables represent 133 

climate averages for the years 1970-2000. We used PCA for dimension reduction to eliminate 134 

correlations between the variables objectively (Harrell 2001, Dormann et al. 2013). The PCA 135 

was done using 100 000 random points sampled across the study area, and the bioclimatic 136 

variables were centred and scaled prior to analysis. We retained rasters for the first four PCA 137 

axes, accounting for 90% of the variation within the climate data (SI Fig 1 and SI Fig 2). 138 

The CNRM-CM6-1 model is a widely used and well-validated climate model. It is a fully 139 

coupled atmosphere-ocean general circulation model developed by Centre National de 140 

Recherches Météorologiques (CNRM) for the sixth generation of the IPCC Coupled Model 141 

Intercomparison Project 6 (CMIP6) (Eyring et al. 2016, Voldoire 2019). We used two future 142 

CNRM-CM6-1 models for the same 19 bioclimatic variables at the same 30-second resolution 143 

for the years 2041-2060 obtained from WorldClim 2.1 (Fick and Hijmans 2017, Voldoire 2019). 144 

Shared Socioeconomic Pathway (SSP) models are updates to the previous RCP models. Of the 145 

five possible pathways, we chose the following two scenarios: SSP2-4.5 (optimistic, some effort 146 

is made to limit warming to around 3 degrees, closest to RCP 4.5) and SSP3-7.0, the middle of 147 

http://www.gbif.org/
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road baseline outcome if no changes are made to global climate policy) (Eyring et al. 2016, 148 

O’Neill et al. 2017). 149 

We then applied the PCA model to each of the two future datasets and again retained the first 150 

four rasters for analysis. All future climate rasters were masked using the watershed boundary of 151 

the Mojave and Colorado deserts (USGS 2006).  152 

Distribution models 153 

We built SDMs for each plant and ant species using the R package SDMtune (Vignali et al. 154 

2020). We used Maxent because it is suitable for use with presence-only data and because it has 155 

been shown to work well with even small datasets (Hernandez et al. 2006).We used the Maxnet 156 

method of Maxent as described in Philips et al (2017), which improves previous versions of 157 

Maxent by implementing a complementary log-log (clog-log) transformation to produce an 158 

estimate of occurrence instead of the estimates of habitat suitability produced by the exponential 159 

method because this method models species occurrences as an inhomogeneous Poisson process 160 

(IPP) (Phillips et al. 2017).  161 

Occurrence points were thinned to one point per raster cell for each species to reduce spatial 162 

bias. We generated pseudo-absences by randomly sampling 10000 points from across the study 163 

area ('randompoints()', 'dismo' package (Hijmans et al. 2017). We used random k folds at a value 164 

of five to determine which partitions to hold back for cross-validation. We repeated models for 165 

each species 40 times each with different subset randomization. We assessed the predictive 166 

performance of each model using the area under the receiver operating characteristic curve 167 

(AUC). AUC ranges between 0 and 1, where 1 is perfect prediction and 0.5 is the baseline 168 

accuracy of a binary outcome. Models with AUC values >= 0.7 are considered good (Phillips 169 

and Dudík 2008). Only species with mean AUC >= 0.7 across replicates were retained in the 170 

stacked SDMs (SI Table 1 and Table 2, two species of ants were thus excluded due to low AUC: 171 

Camponotus sayi and Forelius pruinosis. All EFN-bearing plant species tested were retained).  172 

We predicted each species’ distribution across the study area and used the clog-log 173 

transformation to obtain a probability of presence between 0 and 1 for each of the 40 model runs. 174 

To account for the uncertainty of the SDM predictions, we took the aggregate mean of the 40 175 

prediction rasters to form a consensus distribution raster for each species.  176 
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We then projected each of the 40 model runs for each ant and plant species onto both future 177 

climate scenarios. We again took the means of the resulting rasters to determine the final 178 

consensus distribution model for each species for each future climate scenario. 179 

Stacking procedures 180 

To create the plant and ant community richness rasters, we stacked the consensus rasters for each 181 

community and summed the continuous probabilities. This approach to creating stacked SDMs 182 

outperforms thresholded binary stacked SDMs and the output is equivalent to species richness 183 

(Dubuis et al. 2011, Calabrese et al. 2014, Zurell et al. 2020). We also created predicted future 184 

community richness rasters for each community under each future climate change scenario.  185 

Distributional relationship between EFN plants and ants 186 

We sampled 5000 random points from the plant and ant community stacked SDMs. We 187 

calculated Pearson’s correlation coefficient to quantify the strength of the association between 188 

the species richness of the two communities.  189 

Correlations in species richness between the two communities can arise from shared 190 

environmental preferences, thus we used variance partitioning to determine the independent and 191 

shared components of ant community richness variation explainable by EFN-bearing plant 192 

species richness and climate ('varpart', vegan package, Oksanen et al. 2010). The four PCA axes 193 

were used as the climate predictor matrix and EFN plant community richness was used as the 194 

second predictor. 195 

We then evaluated if EFN plant richness influences ant species distributions by fitting two 196 

additional sets of SDM for each ant species: the first with the EFN plant community richness 197 

raster included as a predictor alongside the climate variables, and the second with the EFN plant 198 

community as the sole predictor. We followed all the same procedures as the climate-only 199 

models. 200 

We tested for differences in the predictive performance of the three sets of models by fitting 201 

linear mixed models (LMM) using the test AUC as the response variable and the ant species as a 202 

random effect (glmmTMB, Brooks et al. 2017). We used the model type (climate, climate+EFN 203 
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or EFN only) as the predictor. All model runs (40) for each ant species were included in the 204 

models and the species was included as a random effect. 205 

Comparing environmental responses between ant and plant communities 206 

We calculated the variable importance of each of the four climate predictors (PC1 through PC4) 207 

for each ant and plant species using 50 permutations (‘varimp’ function in SDMtune). The 208 

function randomly permutes one variable at a time and computes the decrease in training AUC. 209 

The result is normalized to percentages for each predictor variable (Vignali et al. 2020). 210 

We tested for differences in ant and EFN plant environmental needs by contrasting the variable 211 

importance scores. For each climate variable (PC1 through PC4), we conducted a t-test between 212 

the ant species’ scores and the EFN plant species’ scores. 213 

Understanding ant and plant community-level responses to climate change 214 

To understand how climate change will impact future diversity patterns across the Mojave and 215 

Colorado deserts, we tested for shifts in ant and plant communities’ richness distributions for 216 

each future climate change scenario. These, and all subsequent analyses for future distributions 217 

used the climate-only SDMs. Using 5000 random points, we extracted the species richness for 218 

both communities under each scenario. We fit separate LMM for ants and plants each with the 219 

scenario (present, SSP 245 and SSP 370) as the predictor and species richness as the response. 220 

The pixel identifier was included as a random effect. We used emmeans (Lenth et al. 2018) to 221 

contrast the three scenarios. 222 

To test if the plant and ant communities become mismatched due to species-specific differences 223 

in responses to climate change, we calculated the geographic overlap between each ant and plant 224 

species in the present and for both climate scenarios using Schoener’s D niche overlap index 225 

('calc.niche.overlap', ENMeval package, Kass et al. 2021). We then used paired t-tests to test for 226 

differences in overlap between the present and each of the future scenarios. 227 

Understanding species-specificity in response to climate change 228 

We conducted a post hoc investigation to explain the observed variation in the responses of 229 

individual species to climate change. We chose two possible explanations for species-specific 230 

responses to the future climate scenarios: phylogeny and environmental breadth.  231 
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We individually quantified the change in mean environmental suitability across the study area 232 

for each ant and plant species by subtracting the present distribution from the future distribution 233 

and calculating the mean pixel value. Negative values represent an average decrease in 234 

suitability, and positive values represent an average increase in the study area's environmental 235 

suitability. 236 

We first asked if phylogeny explains the variation in ant species’ distribution shifts in response 237 

to climate change. A complete species-level phylogenetic tree for ants is still lacking. We used 238 

the tree created by Moreau and Bell (2013). In our study, five genera contained a single species 239 

(Table 2). We pruned the tree to a single species for each of these genera. For the remaining 240 

genera, we added the missing species as random congeners to the tree for a total of 14 tips (SI 241 

Fig 3) We tested for a phylogenetic signal in ant distribution changes by calculating Blomberg’s 242 

K using the change in environmental suitability for each ant species ('phytools', Revell 2012). 243 

This method permutes values among the tips of the phylogenetic tree and compares the values to 244 

those from a Brownian motion model of evolution (the variance in values is proportional to the 245 

tree branch length) (Münkemüller et al. 2012).  246 

Environmental breadth is the range of environmental conditions that a species uses (Sexton et al. 247 

2017). Environmental breadth metrics measure the uniformity of the geographic distribution of 248 

environmental suitability scores for a species (Warren et al. 2021). We calculated Levins’ (1968) 249 

metric of environmental breath i.e., the spatial heterogeneity of the distribution of suitability 250 

scores ('raster.breadth', ENMtools, Warren et al. 2021). We then calculated Pearson’s correlation 251 

between environmental breadth and the difference in suitability under each climate change 252 

scenario for each species within the ant and plant communities. We additionally tested for 253 

phylogenetic signal in environmental breadth for the ant community. 254 

All analyses were done using R version 4.3.1 (R Core Team 2023). 255 

Results 256 

Distributional relationship between EFN plants and ants 257 

Ant species richness was positively correlated with EFN plant species richness across the 258 

Mojave and Colorado Deserts (Pearson’s = 0.765, p < 0.001). Variance partitioning revealed that 259 

EFN plant species richness independently explained 50% of the variation in ant species richness. 260 
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Climate and EFN plant species richness jointly explained 20% of the variation in ant species 261 

richness, and climate explained 9% of the variation independently.  262 

Ant species distribution models that included EFN richness as a predictor alongside climate 263 

performed significantly better in terms of test AUC than models built with only climate (Figure 264 

2, GLMM: coef = 0.014 ± 0.003 SD, z = 5.18, p < 0.001). Climate-only ant SDMs outperformed 265 

models built using only EFN plant richness as a predictor (Figure 2, GLMM: coef = -0.04 ± 266 

0.003 SD, z = -13.04, p > 0.001). The EFN-only models were not tractable for three ant species 267 

(C. fragilis, F. mccooki and M. testaceus). Distribution models for each ant and plant species 268 

with occurrence points overlaid are available in SI Fig 4 and 5.  269 

Comparing environmental responses between ant and plant communities 270 

The bioclimatic variables with the largest impact on the PC1 gradient were related to temperature 271 

and precipitation (e.g., Maximum temperature of warmest month, mean temperature of warmest 272 

quarter, annual precipitation, precipitation of driest quarter, SI Fig. 1 and 2). The PC1 gradient 273 

ranges from warmer/drier to cooler/wetter and can be characterized as an aridity gradient (SI Fig. 274 

1 and 2). The major bioclimatic contributors to the PC2 gradient were related to the variation in 275 

temperature and precipitation (e.g., temperature annual range, precipitation seasonality and 276 

temperature seasonality, SI Fig. 1 and 2). 277 

The relative importance of the climatic predictors differed between the ant and plant 278 

communities. The PC1 gradient made a significantly larger contribution to the ant species 279 

models than the plant species models (t-test, ant mean = 33.12, EFN mean = 13.45, t = 2.33, df = 280 

17.2, p = 0.03). However, the PC2 gradient made a significantly larger contribution to the EFN 281 

plant species models (t-test, mean ants = 23.2, mean EFN plants = 43.57, df = 14.2, p = 0.018). 282 

Precipitation frequency is a key environmental driver for desert plant communities (Reynolds et 283 

al. 2004).  284 

Consequences of climate change for mutualist communities 285 

EFN plant and ant species richness were both projected to decline across the Mojave and 286 

Colorado Deserts due to a changing climate (Figure 3, GLMM: Chisq = 2115, p < 0.001, 287 

emmeans, present – SSP 245: est = 0.036, p < 0.001; SSP 370: est = 0.039, p < 0.001). Richness 288 

declines were significantly greater under the SSP 370 scenario, i.e., the more severe scenario, 289 
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than the SSP 245 scenario for both communities (emmeans, plants: est = 0.03, t = 3.59, p = 290 

0.001; ants: est = 0.038, t = 5.27, p < 0.001). The western part of the Mojave Desert (Figure 3) 291 

was predicted to gain both EFN and ant species; however, those areas had low species richness 292 

for both communities during the present scenario. Across the Mojave and Colorado Deserts, 293 

there was an increase in temperature variability with a decrease in precipitation variability (SI 294 

Fig 6). Combined with the warming trend, this suggests an increase in extreme heat events. The 295 

decrease in precipitation variability suggests that it will become more uniformly dry. 296 

Geographic overlap between ants and plants (Shoener’s D) significantly decreases under both 297 

climate change projections for future distributions (Figure 4, 245 paired t-test: mean difference = 298 

0.03, t = 6.24, df = 153, p < 0.001; 370: mean difference = 0.03, t = 6.7, df = 153, p < 0.001). 299 

Understanding species-specificity in response to climate change 300 

The response of species within the ant community to future climate change were more variable 301 

than the responses of the EFN plant community. Mean environmental suitability of the Mojave 302 

and Colorado Deserts decreased for eight species of ants but increased for six (SI Table 3). In 303 

contrast, mean environmental suitability decreased for all EFN plant species except for Prosopis 304 

juliflora (SI Table 4).  305 

More environmentally generalized ant species tended to have increased environmental suitability 306 

in the future. The mean difference in suitability between the future scenarios and the present was 307 

significantly correlated with environmental breadth (Figure 5, SSP 245: Pearson’s cor = 0.61, df 308 

= 12, p = 0.019; SSP 370: Pearson’s correlation = 0.598, df = 12, p = 0.024). However, this 309 

relationship was absent within the EFN plant community (Figure 5, SSP 245: Pearson’s cor = 310 

0.12, df = 9, p = 0.73; SSP 370: Pearson’s cor = 0.095, df = 9, p = 0.78). There was no 311 

significant difference in mean environmental breadth between the EFN plant and ant 312 

communities (t.test: mean ants = 0.63, plants = 0.52, t = 1.37, p = 0.18). 313 

There was not a phylogenetic signal for environmental breadth (Blomberg’s K = 0.56, p = 0.3) 314 

nor for the mean change in suitability for ants (SSP245: Blomberg’s K = 0.61, p = 27; SSP 370: 315 

Blomberg’s K = 0.59, p = 0.28). 316 

 317 
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Discussion 318 

In this study, we analyzed the climatic factors that drive the current and potential future 319 

distributions of two mutualistic species guilds. The hypothesis that EFN mutualisms couple plant 320 

and ant communities together in space but become decoupled with climate change was 321 

supported. We found that including the EFN-bearing plant community as a predictor, alongside 322 

climate, improved the predictive performance of SDMs for ants; however, the actual effect size 323 

was relatively small. Thus, the EFN-bearing plant community is an important driver of the 324 

geographic distribution and diversity of their mutualists, but climate-based SDMs are suitable to 325 

model the distribution of these ant communities. Our study highlights that climate change will 326 

negatively impact nearly all EFN-bearing plant species and approximately half of the associated 327 

ant communities of the Mojave and Colorado Deserts by reducing habitat suitability for both 328 

guilds. In contrast, environmental suitability and thus range size is expected to increase for 42% 329 

of the ant species. Nonetheless, pairwise geographic overlap between ant and EFN-bearing plant 330 

species is expected to decrease, demonstrating that the range increases of some species within 331 

the ant guilds do not compensate for the range losses of the plants. The dispersal capacities of 332 

these EFN-bearing species are relatively low (Martínez-Berdeja 2015) making it unlikely that 333 

these plant species can disperse beyond the desert study area in these timelines. Thus, the 334 

potential for this mutualism to persist under climate change will decrease because of this spatial 335 

mismatch as well as the capacity for either guild to respond to shifted climates in space. 336 

This synthesis revealed that more environmentally generalized ant species benefit from the 337 

changing climate, whereas the EFN-bearing plants are negatively impacted more uniformly 338 

despite their environmental generalization. Species with a broader environmental niche are 339 

generally expected to cope better with a changing climate because they possess greater 340 

ecological tolerance than those with narrower niches (Thuiller et al. 2005, Carscadden et al. 341 

2020). Our results suggest that caution is needed when comparing environmental breadth across 342 

taxa on different trophic levels, as these groups often have distinct physiological strategies. We 343 

found that the environmental breadth of these ant species was unrelated to their phylogeny. 344 

While our results do not preclude the role of phylogeny at larger scales, they highlight the role of 345 

local adaptation within this desert ant community. While the PC1 and PC2 gradients decrease 346 

across the deserts, the PC4 gradient exhibits both increases and decreases in the future (see SI 347 
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Figure 6). The PC4 gradient is marked by increases in the mean temperature of the wettest 348 

quarter, precipitation during the warmest quarters, and isothermality (SI Fig 2). Most 349 

precipitation in the Mojave Desert occurs during the colder winter months (WRCC, 2024), which 350 

suggests that some environmentally generalized ant species may benefit from the warming 351 

winter temperatures.  352 

Interactions between species can cause correlations in species richness between communities 353 

(Gaston 1996). The interactions between the ant species and EFN-bearing plants in our study 354 

were established a priori (e.g. Pemberton 1988, Chamberlain and Holland 2009); however, we 355 

found multiple lines of evidence for a relationship between the diversity of the two communities 356 

across the Mojave and Colorado Deserts. This includes a strong correlation between the diversity 357 

of the EFN-bearing plant community and the diversity of the ant community. Additionally, the 358 

variation in EFN-bearing plant community diversity explained a large component of the variation 359 

in the diversity of the ant community, independent of their shared environmental needs. Meta-360 

analyses have shown that plant richness supports animal richness, and these relationships are 361 

stronger between trophically linked arthropods and plants (Castagneyrol and Jactel 2012) and 362 

plant-pollinator mutualisms (Kral-O’Brien et al. 2021). Globally, EFN-bearing plant diversity 363 

clusters with ants in several biogeographic regions (Luo 2022) but these relationships are not 364 

well studied in arid ecosystems because there are relatively few surveys of EFN plant diversity in 365 

deserts. Collectively, our results join those of the literature suggesting that the benefits of 366 

maintaining EFN-bearing plant diversity will extend beyond that focal community into their ant 367 

mutualists with implications for ecosystem functioning.  368 

Considering interspecies dependencies is necessary when considering the full extent of climate 369 

change impacts. SDMs that contain species interactions can help identify which species rely 370 

more heavily on their partners for persistence within an ecosystem (Filazzola et al. 2018). 371 

Including the EFN plant community as a predictor into the ants’ SDM improved their predictive 372 

performance on average; however, we used richness as the measure of the plant community and 373 

therefore our results reveal which species’ distributions depend more strongly on the diversity of 374 

their mutualists (Figure 2). Generalized interactions are expected to be more resilient to climate 375 

change because species can switch interaction partners. However, we found that spatial overlap 376 

between mutualists decreases significantly in the future. Thus, the capacity for the generalized 377 
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nature of this interaction to buffer it is constrained by the climatic responses of its participant 378 

species.  379 
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Table 1: List of the 11 Mojave Desert EFN-bearing plant species included in this study. 556 

Species name Common names Family 

Cylindropuntia acanthocarpa Buckhorn cholla Cactaceae 

Cylindropuntia echinocarpa Silver cholla Cactaceae 

Senegalia greggii Catclaw acacia Fabaceae 

Fouquieria splendens Ocotillo Fouquieriaceae 

Chilopsis linearis Desert willow Bignoniaceae 

Opuntia basilaris Beavertail prickly pear Cactaceae 

Cylindropuntia bigelovii Teddy-bear cholla Cactaceae 

Ferocactus cylindraceus California barrel cactus Cactaceae 

Prosopis juliflora Mesquite Fabaceae 

Prunus fasciculata Desert almond Rosaceae 

Prunus fremonti Desert apricot Rosaceae 

 557 

Table 2: List of 14 Mojave Desert EFN-associated ant species included in this study. 558 

Ant species names Subfamily 

Solenopsis xyloni Myrmicinae 

Forelius mccooki Dolichoderinae 

Crematogaster depilis Myrmicinae 

Dorymyrmex bicolor Dolichoderinae 

Dorymyrmex insanus Dolichoderinae 

Camponotus fragilis Formicinae 

Camponotus ocreatus Formicinae 

Camponotus semitestaceus Formicinae 

Myrmecocystus kennedyi   Formicinae 

Myrmecocystus testaceus Formicinae 

Myrmecocystus flaviceps   Formicinae 

Myrmecocystus mimicus Formicinae 

Pheidole vistana Myrmicinae 

Liometopum luctuosum Dolichoderinae 

 559 
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 560 

Figure 1: Map of Southwestern USA showing the Mojave and Colorado Deserts. The main study 561 

area used was the watershed boundary from the United States Geological Survey (USGS).  562 

 563 
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 564 

 565 

Figure 2: Boxplots comparing the predictive performance of ant species distribution models built 566 

using only climatic, climatic predictors or only extrafloral nectary (EFN) richness as a predictor. 567 

Lines on boxplots show median values, and the means are represented by the red diamonds. The 568 

variation in performance is summarized from 40 model runs per species, per set of predictors. 569 

 570 

 571 

 572 

 573 

 574 
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 575 

Figure 3: Current and forecasted species richness of EFN-bearing plants (top row) and their 576 

associated ant species (bottom row) across the Mojave and Colorado deserts, as well as the 577 

predicted change in richness. 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 
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 590 

Figure 4: Proportional change in interspecific overlap of distribution ranges (Schoener’s D niche 591 

overlap index) between the periods 1970-2000 and 2041-2060 for two climate scenarios: SSP 592 

245 (left) and SSP 370 (right). Negative values in red indicate a decrease in range overlap 593 

between species over the time periods; blue indicates an increase in range overlap, and zero 594 

values in white indicate no changes to overlap. 595 

 596 

Figure 5: Correlations between environmental breadth and suitability changes for the EFN plant 597 

and ant communities of the Mojave and Colorado deserts. The solid trendline denotes a 598 

significance at the p < 0.05 level and the dashed line denotes an insignificant relationship. 599 

 600 

 601 
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Supplementary Information 602 

 603 

 604 

Figure 1: PCA of the 19 bioclimatic variables across the Mojave and Colorado deserts. The first 605 

four PCA axes explained 90% of the total bioclimatic variation.  606 
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 615 

 616 

 617 

Figure 2: Loadings for each of the four PCA axes in the study. 618 
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 620 

 621 

Table 1: Maxent species distribution model performance measures for each EFN bearing plant 622 

species used in the study and the number of occurrences after thinning included in the model. 623 

Area under the curve (AUC) ranges between 0 and 1, where 0.5 is the baseline performance. 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

Latin binomial Occurrences after thinning AUC (Mean ± SD) 

Cylindropuntia acanthocarpa 1563 0.86 ± 0.000 

Cylindropuntia echinocarpa 3243 0.79 ± 0.000 

Senegalia greggii (previously 

Acacia) 

1747 0.87 ± 0.000 

 

Fouquieria splendens 2298 0.83 ± 0.000 

Chilopsis linearis 1220 0.79 ± 0.001 

Opuntia basilaris 4666 0.78 ± 0.000 

Cylindropuntia bigelovii 125 0.87 ± 0.002 

Ferocactus acanthodes syn 

cylindraceus 

3166 0.86 ± 0.000 

 

Prosopis juliflora 21 0.73 ±  

0.03 

Prunus fasciculata 798 0.84 ± 0.001 

Prunus fremontii 437 0.97 ± 0.000 
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Table 2: Maxent species distribution model performance measures for each ant species used in 649 

the study and the number of occurrences after thinning included in the model. Area under the 650 

curve (AUC) ranges between 0 and 1, where 0.5 is the baseline performance. Species with a 651 

score of N/A had too few occurrences to model. Two species, Camponotus sayi and Forelius 652 

pruinosis were excluded due to poor predictive performance. 653 

Ant Species Occurrences after 

thinning 

AUC (Mean ± SD) 

Brachymyrmex depilis 4 N/A 

Camponotus sayi 14 0.6 ± 0.04 - Excluded 
 

Lasius californicus 5 N/A 

Liometopum luctuosum 26 0.85 ± 0.01 

Myrmecocystus mimicus 23 0.78 ± 0.02 

Pheidole vistana 27 0.85 ± 0.01 

Pseudomyrmex apache 10 N/A 

Psedumomyrmex gracilis 0 on gbif N/A 

Pseudomyrmex pallidus 11 N/A 

Solenopsis xyloni 191 0.77 ± 0.00 

Forelius pruinosis 78 0.62 ±0.02 - Excluded 

Forelius mccooki 27 0.7 ±0.03 
Crematogaster depilis 38 0.79 ± 0.02 
Dorymyrmex bicolor 172 0.76 ± 0.00 
Dorymrmex insanus 42 0.7 ± 0.01 
Camponotus fragilis 32 0.81 ± 0.01 
Camponotus semitestaceus 15 0.83 ± 0.06 
Camponotus ocreatus 45 0.81 ±  0.02 
Myrmecocystus kennedyi 30 0.7 ± 0.02 
Myrmecocystus testaceus 15 0.93 ±0.00 
Myrmecocystus flaviceps 26 0.71 ± 0.03 

 654 

 655 

 656 

 657 
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 658 

Figure 3: Pruned phylogenetic tree of ant species based on Moreau and Bell 2013.  659 

 660 

 661 

 662 

 663 

 664 
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 669 

Figure 4: Consensus prediction maps for EFN-bearing plant species of the Mojave and Colorado 670 

deserts. Points are the thinned occurrences extracted from GBIF and the boundary file is the 671 

watershed boundary from USGS. 672 
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 697 

 698 

 699 

Figure 5: Consensus prediction maps for ant species of the Mojave and Colorado deserts. Points 700 

are the thinned occurrences extracted from GBIF and GABI, and the boundary file is the 701 

watershed boundary from USGS. 702 
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 704 

 705 

 706 

 707 

 708 

Figure 6: Shifts in the four main environmental gradients between SSP 370 and present 709 

conditions.  710 

 711 

 712 

 713 

 714 
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 718 

 719 

Table 3: Mean change in environmental suitability for individual ant species. 720 

Ant species names Mean difference in 

future suitability 

under 245 

Mean difference in 

future suitability 

under 370 

Solenopsis xyloni -0.012 -0.02 

Forelius mccooki 0.027 0.0327 

Crematogaster depilis -0.09 -0.1 

Dorymyrmex bicolor 0.004 0.004 

Dorymyrmex insanus -0.009 -0.013 

Camponotus fragilis 0.011 0.017 

Camponotus ocreatus -0.058 -0.062 

Camponotus semitestaceus -0.108 -0.11 

Myrmecocystus kennedyi   0.081 0.088 

Myrmecocystus testaceus -0.062 -0.068 

Myrmecocystus flaviceps   0.015 0.01 

Myrmecocystus mimicus 0.066 0.07 

Pheidole vistana -0.042 -0.046 

Liometopum luctuosum -0.045 -0.048 

 721 

 722 

Table 4: Mean change in environmental suitability for individual EFN-bearing plant species 723 

Species name Mean difference in future 

suitability under 245 

Mean difference in future 

suitability under 370 

Cylindropuntia 

acanthocarpa 

-0.049 -0.052 

Cylindropuntia 

echinocarpa 

-0.074 -0.082 

Senegalia greggii -0.03 -0.04 

Fouquieria splendens -0.02 0.023 

Chilopsis linearis -0.025 

 

-0.031 

Opuntia basilaris 0.06 -0.071 

Cylindropuntia bigelovii 0.03 -0.028 

Ferocactus acanthodes syn 

cylindraceus 

-0.057 -0.062 

Prosopis juliflora 0.11 0.122 

Prunus fasciculata -0.09 -0.099 

Prunus fremonti -0.003 -0.004 

 724 
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