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Abstract 23 

1. Assessing ecological stability across populations or communities is a prime goal in biodiversity 24 

monitoring and conservation research. Quantifying stability is not trivial because its different aspects can be 25 

measured with various metrics. However, to date, no software enables measuring different stability metrics 26 

on ecological time-series data.  27 

2. We present the estar R package that standardises and facilitates the use of ten established stability 28 

properties that have been used to assess systems’ responses to press or pulse disturbances at different 29 

ecological levels (e.g. population and community).  30 

3. estar provides two sets of functions. The first set corresponds to functions that can be applied to 31 

univariate data, i.e., a time series of a system’s state variable (e.g., individual body mass, population 32 

abundance, or species richness). The metrics included in this set are: invariability, resistance, extent and rate 33 

of recovery, and persistence. The second set of functions can be applied to multivariate data represented by 34 

the time series of the abundances of all species in a community. The functions in this set measure the 35 

stability of a community at short and long time scales. In the short term, community’s response to a pulse 36 

(sudden) perturbation is measured by maximal amplification, reactivity and initial resilience (i.e. initial rate 37 

of return to equilibrium). In the long term, stability can be measured as asymptotic resilience and intrinsic 38 

stochastic invariability.  39 

4. The package includes vignettes demonstrating the use of all functions and an introduction to the 40 

multivariate autoregressive state-space models necessary for the second set of functions. estar constitutes 41 

a toolbox with standardised, ready-to-use functions that bridge dichotomies in definitions and enable 42 

comparisons across state variables, taxa and scales.  43 
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Introduction 44 

Measuring stability at different levels of ecological organisation, from individuals to populations and 45 

communities, is of utmost importance for biodiversity monitoring and conservation because of widespread 46 

human-driven perturbations such as climate change, pollution, species invasions, and their multiple effects 47 

on biodiversity. Consensus emerges that ecological stability can be broadly defined as the ‘overall ability of 48 

a system (…) to retain its function and structure in the face of perturbations’ (Noy-Meir, 1973 apud Van 49 

Meerbeek et al., 2021), but since its introduction in Ecology in the 1950s, stability has been shown to be a 50 

multidimensional concept (Donohue et al., 2013; Grimm & Wissel, 1997; Pimm, 1984; Van Meerbeek et al., 51 

2021). This multidimensional character of stability manifests itself in at least four ways. First, different 52 

stability properties are not easily comparable because they are uncorrelated and capture different aspects of 53 

the system’s response trajectory at different temporal scales (Donohue et al., 2016; Kéfi et al., 2019). 54 

Secondly, the same stability property can be measured at different organisational levels (Hillebrand & 55 

Kunze, 2020) or for different  state variables (e.g. total community biomass or Shannon index). Thirdly, 56 

different metrics have been proposed to calculate a single stability property. For example, resistance is often 57 

measured immediately after a perturbation but can also be measured when the difference between the state 58 

variable of the disturbed system and its pre-disturbed state is the largest (also known as “maximum 59 

attenuation”, Capdevila et al., 2020). Further, different stability properties are not necessarily correlated 60 

(Arnoldi et al., 2018; Domínguez-García et al., 2019; Downing et al., 2020; Neubert & Caswell, 1997; 61 

Radchuk et al., 2019), making it necessary to estimate several of them when studying a system’s stability. 62 

These four issues hamper synthesis across ecological stability studies. Beyond the necessity of quantifying 63 

multiple properties of stability, there is one practical concern: no software permits quantifying stability in the 64 

diverse ways it has been measured so far. Therefore, the time is ripe for a tool to measure different stability 65 

properties (or dimensions) in a standardised, comparable and reproducible way.  66 

In addition to the multifaceted nature of the stability concept, there is a large divide between the metrics used 67 

by empiricists and theoreticians (Donohue et al., 2016). While empirical studies often measure the temporal 68 

invariability of population and community state variables, theoretical studies mainly quantify asymptotic 69 
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stability properties derived from species interaction matrices ( species interaction matrix, Donohue et al., 70 

2016), which are rarely available for observational studies. Assessing interaction strength in empirical 71 

systems is a rather laborious task and can be accomplished with various methods (e.g. controlled pairwise 72 

species experiments; Carrara et al., 2015). However, estimations from different methods are usually not 73 

comparable (Carrara et al., 2015b). In that context, the first-order Multivariate Autoregressive Models 74 

(MARs) are a flexible method, as they can be applied to time-series data on community composition to 75 

derive species interaction matrices, which can be used to derive asymptotic stability properties (Downing et 76 

al., 2020; Ives et al., 2003). Still, the use of MARs outside of freshwater plankton community studies 77 

remains limited (Hampton et al. 2013). Therefore, a user-friendly tool that integrates MARs and allows the 78 

user to derive asymptotic stability properties has the potential to close the gap between empirical and 79 

theoretical stability research. 80 

Here, we present estar, an R package designed to facilitate the use of ten stability properties. We present 81 

the properties in two groups, distinguished by the format of the input data: i) if the input is in the form of a 82 

time series of a single state variable measured at any organisational level we talk about univariate 83 

properties (invariability, resistance, extent of recovery, rate of recovery, and persistence; Table 1), and ii) if 84 

the input is a matrix of species abundances over time or a species interaction matrix, i.e. multivariate data, 85 

we talk about multivariate properties (maximal amplification, initial resilience, asymptotic resilience, 86 

intrinsic stochastic invariability, and intrinsic deterministic invariability; Table 2). We showcase the use of 87 

the package to measure the stability of a real-world freshwater invertebrate community perturbed by an 88 

insecticide (van den Brink et al., 1996). 89 

Package overview 90 

Although ecological stability attracts much research interest, we still lack R and Python software to readily 91 

calculate the variety of stability metrics available in the literature. At the community level, the codyn 92 

package (Hallett et al., 2020) provides four functions to measure stability in terms of species variances and 93 

covariance. The package MAR1 (Scheef & Holmes, 2023) offered functionality to both fit MARs and derive 94 



estar package 

5 

asymptotic stability properties from the output of those models, but it was taken down from R’s centralized 95 

repository (CRAN) in 2019. The package MARSS, which can be used to estimate  species interaction 96 

matrices, does not provide formulas to calculate the stability properties (sensu Ives et al., 2003). Moreover, 97 

while MARSS has been used in aquatic communities (Hampton et al., 2013; Ruhí et al., 2015; Tolimieri et 98 

al., 2017), it remains largely unused in terrestrial systems. At the population level, the R package popdemo 99 

(Stott et al., 2021) allows performing transient analyses and thus calculating demographic resilience, a 100 

concept that was recently introduced to population ecology from community ecology (Capdevila et al., 101 

2020). Further, although many stability properties (e.g. resistance and recovery rate) apply to a single time 102 

series (univariate data) and seem conceptually simple, no single software allows the quantification of all of 103 

them simultaneously. Thus, a tool is needed to derive asymptotic stability properties at the community level 104 

and stability properties from univariate time-series data (applicable to any level of organization). To address 105 

this, we provide the estar package. It has been submitted to CRAN and can currently be downloaded from 106 

https://anonymous.4open.science/r/estar-251E and installed from source: devtools::install.packages("estar", 107 

repos = NULL, type = "source"). 108 

 109 

Univariate stability properties 110 

Univariate stability properties are calculated from the time series of a state variable measured in a system 111 

disturbed by a pulse disturbance (or white noise, in the case of invariability; Fig. 1-2, Table 1). These 112 

univariate properties can be calculated using a variable measured at any organisation level, for example, 113 

individual stress hormone levels, species richness, and Shannon-Weaver index.  Baseline is a central 114 

concept for quantifying multiple stability properties. The stability values depend on whether the state 115 

variable of the disturbed system is normalised relative to the baseline (Ingrisch & Bahn, 2018). Our functions 116 

give the user flexibility to specify the baseline and whether the state variable should be normalised by the 117 

baseline (e.g. by using the log ratio between the values measured on the disturbed and undisturbed systems). 118 
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We implemented functions to calculate five univariate stability properties. Invariability (I, 119 

invariability(), Fig. 2a), the most common stability measure (Donohue et al., 2016), measures the 120 

system’s response to white noise. Resistance (R, resistance(), Fig. 2b) is the magnitude of change in 121 

the state variable following a disturbance (Pimm, 1984). It can be calculated as the maximum magnitude of 122 

change in the state variable or the magnitude at a user-defined time step after the disturbance (e.g. at the first 123 

time step to capture the system's initial resistance). Recovery is the return of the system’s state variable to the 124 

baseline state (Medeiros et al., 2021; Van Meerbeek et al., 2021). estar contains two properties for it: the 125 

extent of recovery, i.e. how close the system returns to the baseline (Er, recovery_extent(), Fig. 2c) 126 

and the rate of recovery, i.e. how fast it returns to the baseline (Rr, recovery_rate(), Fig. 2d). Finally, 127 

persistence (P, persistence(), Fig. 2e) is the proportion of time a variable stays within one standard 128 

deviation from the baseline’s mean during the user-defined period (Pimm, 1984). Descriptions of the variants 129 

of each metric and an evaluation of the functions’ performance can be found in the vignette “Univariate 130 

metrics”. 131 

Multivariate stability properties 132 

The multivariate properties measure the community’s responses to a perturbation, both in the short-term and 133 

in the long-term. The long-term (asymptotic) rates are usually estimated for theoretical systems (Arnoldi et 134 

al., 2018; Neubert & Caswell, 1997), while empirical studies mainly assess the short-term (transient) rates 135 

(Arnoldi et al., 2018). The long-term data are rarely available for empirical systems, limiting the possibility 136 

of deriving dominant eigenvalues from  Jacobian matrices to calculate the asymptotic resilience of 137 

theoretical systems (Table 2).  138 

In contrast to the single time series of the state variable that is required as data input for univariate stability 139 

properties, multivariate properties are calculated from species interaction matrices (denoted as  B). Our 140 

package requires the estimation of B from the user-supplied time series data on species abundances in the 141 

community (termed “multivariate data”). We provide the function (extractB()) to format the output of 142 

the multivariate autoregressive state space (MARSS) model fitted by the R package MARSS (Holmes et al., 143 
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2012; Holmes, Scheuerell, et al., 2024; Holmes, Ward, et al., 2024). MARSS models estimate B while 144 

accounting for uncertainty in the observation process that generated the data. We exemplify how MARSS 145 

models work and comment on possible pitfalls and the functions’ performance in the “MARSS in estar” 146 

vignette.  147 

We provide three functions to characterise a community’s transient response to a pulse disturbance (Fig. 3). 148 

Two of these functions calculate the metrics describing the “amplification envelope” — the curve describing 149 

the upper bound response to a perturbation (Neubert & Caswell, 1997). The amplification envelope can be 150 

interpreted as an estimation of initial instability (Arnoldi et al., 2016) and is characterised by measures of 151 

reactivity (Ra, reactivity(), Table 2) and maximal amplification (Amax, max_amp()). 152 

Complementing the amplification envelope, the initial resilience (𝑅𝑅0, init_resil()) characterises the 153 

system’s initial rate of return to equilibrium (Table 2, Arnoldi et al., 2018).  154 

To measure stability in the long term, we provide a function to calculate asymptotic resilience (𝑅𝑅∞, 155 

asympt_resil(), Table 2, Fig. 3), the long-term rate of return to equilibrium, complementary to 𝑅𝑅0 156 

(Arnoldi et al., 2018). Further, to measure instability under press disturbance or white noise, estar 157 

provides the intrinsic stochastic invariability (𝐼𝐼∞, stoch_var()), a theoretical equivalent of the univariate 158 

measure of invariability (Arnoldi et al., 2016), albeit uncorrelated to it (Downing et al., 2020). 159 

Example: Stability of an aquatic macroinvertebrate community 160 

To exemplify the use of estar, we applied it to data from a species-rich community of freshwater 161 

macroinvertebrates that was disturbed by the insecticide chlorpyrifos in a previously conducted eco-162 

toxicological experiment (van den Brink et al., 1996). We analysed the effect of two concentrations of the 163 

insecticide on the abundance of three functional groups of aquatic macroinvertebrates (herbivores, 164 

carnivores, and detritivores; Supplementary information S3). According to the univariate properties, 165 

detritivores recovered better than carnivores and herbivores under the lower insecticide concentration, as 166 

quantified by the extent of recovery and rate of recovery (at week 28, Fig. 4-a, b). Under the higher 167 
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insecticide concentration, carnivores had the highest rate of recovery because by week 28 their abundance 168 

increased to higher values in relation to their pre-disturbance state, whereas detritivores stayed at lower 169 

abundances. Finally, resistance (calculated as the magnitude of abundance change in the first week) was 170 

particularly low for the detritivores, demonstrating that resistance and recovery correlate negatively in this 171 

system. 172 

Regarding the multivariate stability properties, the higher reactivity and maximal amplification values at 173 

high insecticide concentration reflect the strong decreases in herbivore and detritivore abundances (Table 3). 174 

Similarly, both the initial and asymptotic resilience were lower at a higher concentration of chlorpyrifos, 175 

indicating a slower rate of return to equilibrium compared to the communities subjected to a lower 176 

concentration. Nonetheless, we obtained much higher stochastic invariability for the community under 177 

higher insecticide concentration. 178 

Conclusion 179 

The estar package provides functions for calculating different stability properties, grouped in two sets: 180 

those applicable to time series 1) of single state variables and 2) of community compositional data. With the 181 

functions applied to time series of single state variables, we offer a flexible tool that quantifies stability at 182 

different levels of organisation, from individual to community. With the functions applied to community 183 

compositional data, we offer a tool for easy computing of the stability properties that were hitherto mainly 184 

used by theoreticians. Thus, estar closes the gap between empiricists and theoreticians in stability 185 

research. Finally, this package will facilitate cross-system comparisons of stability and further our 186 

understanding of how stable systems are across organisation levels, spatiotemporal scales and environmental 187 

conditions.  188 

  189 
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Glossary 190 

Baseline:  state variable value(s) the user defines to represent an undisturbed system. It can be measured 191 

before a disturbance affects the focal system, from a separate undisturbed system, or from a single point 192 

considered to be representative of an undisturbed system (Fig. Error: Reference source not found-b). 193 

Jacobian matrix: a functional matrix or derivative matrix of a differentiable function of all first partial 194 

derivatives in the case of total differentiability. The Jacobian is used, for example, to approximate 195 

multidimensional functions in mathematics or, in the community ecology context, for functions of interaction 196 

strength.  Species interaction matrix. 197 

Press disturbances: a press disturbance affects a system permanently and continuously (Ryo et al., 2019), 198 

e.g. climate change or ongoing pollution from leakage. 199 

Pulse disturbance: an event that suddenly affects a system and recedes quickly after reaching a peak, e.g. 200 

fires or storms (Ryo et al., 2019). 201 

Species interaction matrix (B): a matrix quantifying the strength of density dependence between the 𝑛𝑛 202 

species in a community, i.e. the effect of one species’ density on the per capita growth rate of another (or of 203 

its own, Hampton et al., 2013). It is often referred to as “community matrix” (or “a discrete-time version of a 204 

 Jacobian matrix”; Downing et al., 2020).  205 

State variable: a variable describing a system, e.g. population abundance (whereby the population is a 206 

system) or species richness (whereby the community is a system).  207 

  208 
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Table 1: Definitions of the univariate stability metrics and their variants, along with the options of baseline 300 

(b) used, and the options of response from which the metric is calculated. vb refers to an independent 301 

baseline; vp, to a baseline defined by pre-disturbance values; and vd, to the state variable values in the 302 

disturbed time series; t stands for time. Notes: a usually the first time step following disturbance, b 303 

summarised as the mean or median of values of a user-defined time period, c usually the last time step of the 304 

time series, d time steps of disturbed systems and baseline match. User-defined values do not have a default 305 

value in the function.306 
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 307 

Metric, function name 
Formal definition (several definitions are possible for the 

same metric) 
Baseline Response Notation of metric 

Invariability 

(I, invariability(),also 

referred to as “temporal 

stability”, Hillebrand et al., 

2018) 

The inverse of the standard deviation of residuals of the linear 

model where the response is predicted by time. 

vb, vP 
Log-ratio 

l = log(vd/vb) 

1
𝜎𝜎(𝜀𝜀), where 𝜎𝜎(𝜀𝜀) is the standard deviation of e, the residuals of 

the linear model 𝑙𝑙 = 𝛽𝛽𝛽𝛽 + 𝜀𝜀, with 𝛽𝛽referring to the time, 𝛽𝛽 to the 

regression coefficients of the model, and 𝜀𝜀 to its errors. 

none vd 
Same as above, but the response in the linear model is the state 

variable, 𝑣𝑣𝑑𝑑 = 𝛽𝛽 + 𝜀𝜀 

The inverse of the coefficient of variation of response. 

vb Log-ratio, l 
1

𝐶𝐶𝐶𝐶(𝑙𝑙)
 

none vd 
1

𝐶𝐶𝐶𝐶(𝑣𝑣𝑑𝑑) 

Resistance  

(R, resistance()) 

Log response ratio between the state variable’s value in the 

disturbed and in the baseline systems, on the user-defined time 

stepa. 

vb Log-ratio log(vd/vb) 

vp
b Log-ratio log(vd/vp) 

Maximal log response ratio between the state variable’s value vb Log-ratio max(log(vd/vb) 
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in the disturbed and the baseline systems, over user-defined 

time interval. 
vp 

Log-ratio 
max(log(vd/vp)) 

Absolute difference between the state variable’s value in the 

disturbed and in the baseline systems, on the user-defined time 

stepa. 

vb Difference |vd – vb| 

vp Difference |vd – vp| 

Maximal difference between state variable’s value in the 

disturbed and in the baseline systems, over user-defined time 

interval. 

vb Difference max(|vd - vb|) 

vp Difference max(|vd – vp|) 

Extent of recovery  

(Er, recovery_extent()) 

Log-response ratio between the state variable in the disturbed 

system and the baseline taken on the user-defined time step 

tpost when the recovery is assumed to have taken placec. 

vb Log-ratio log(vd/vb) 

vp Log-ratio log(vd/vp) 

Difference between the state variable in the disturbed system 

and the baseline, taken on the user-defined time step tpost when 

the recovery is assumed to have taken placec. 

vb Difference vd - vb 

vp Difference vd – vp 

Rate of recovery (Rr,, 

recovery_rate() - also 

called “engineering 

resilience” by Pimm (1984)) 

The slope of a linear model, where the response is predicted by 

time. 

vb Log-ratio, l l = Rr.t + b 

none vd vd = Rr.t + b 
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Persistence  

(P, persistence()) 

The proportion of the user-defined time frame ta during which 

the response stayed within the limits of an interval determined 

by the baseline mean ± sd (tP). 

vb vd 𝛽𝛽𝑃𝑃 𝛽𝛽𝑎𝑎⁄  

  308 
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Table 2: Definitions of the multivariate stability metrics, based on species interactions matrix (B). 309 

Metric, function name Formal definition and interpretation Equation 

Reactivity (Ra, reactivity()) Maximum initial amplification rate of a perturbation (Neubert & Caswell, 1997). 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑�𝐻𝐻(𝐵𝐵)�, where 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑is the dominant 

eigenvalue, and 𝐻𝐻 is the Rayleigh quotient. 

Maximal amplification (𝐴𝐴𝑑𝑑𝑎𝑎𝑚𝑚, 

max_amp()) 

The factor by which the perturbation that grows the largest is amplified, calculated as the 

Euclidian norm of the species interaction matrix (Neubert & Caswell, 1997). 𝐴𝐴𝑑𝑑𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡≥0(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0≠0
��𝑒𝑒𝐵𝐵

𝑇𝑇
𝑚𝑚0��

�|𝑚𝑚0|�
) , where 

|𝑒𝑒𝐵𝐵𝑇𝑇 ∨ is the matrix norm of B and x0 is the vector 

of initial abundances (Domínguez-García et al., 

2019). 

Initial resilience (𝑅𝑅0, 

init_resil()) 

Initial resilience is calculated as the initial rate of return to equilibrium (Downing et al., 

2020). The larger its value, the more stable the system, as its “worst case” initial rate of 

return to equilibrium is faster (Downing et al., 2020). 

𝑅𝑅0 = −𝑙𝑙𝑙𝑙𝑙𝑙 ��𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵𝑇𝑇𝐵𝐵)� 

Asymptotic resilience (𝑅𝑅∞, 

asymp_resil()) 

The slowest/long-term asymptotic rate of return to equilibrium after a pulse perturbation 

(Arnoldi et al., 2016; Downing et al., 2020). 𝑅𝑅∞ is a positive real number. The larger its 

value, the more stable the system, as its rate of return to equilibrium is faster (Downing et 

al., 2020). 

 𝑅𝑅∞ = −𝑙𝑙𝑙𝑙𝑙𝑙(|𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵)|) 
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Intrinsic stochastic invariability 

(𝛪𝛪𝑆𝑆, stoch_var()) 

Inverse of the maximal response variance to white noise. The larger its value, the more 

stable the system, as its rate of return to equilibrium is higher. 

𝛪𝛪𝑆𝑆 = 1
‖𝐵𝐵−1‖

where �𝐵𝐵−1� where the spectral norm of 

the inverse of matrix �𝐵𝐵−1� = 𝐵𝐵⊗ 𝐼𝐼 + 𝐼𝐼 ⊗ 𝐵𝐵, 

with 𝛪𝛪 being an identity matrix. 

 

 

  310 
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Table 3: Multivariate metrics calculated by estar for the aquatic macroinvertebrate community subjected to two concentrations of the chlorpyrifos 311 
insecticide. 312 

313 
 Insecticide concentration 

 0.9 µg/L 6 µg/L 

Multivariate metrics   

Reactivity 0.593 0.972 

Maximal amplification 2.308 3.14 

Stochastic invariability 7.510 119.061 

Initial resilience 0.350 0.275 

Asymptotic resilience 0.651 0.173 



estar package 

20 

 314 

Figure 1: Schematic representation of possible univariate inputs (a and b) and the two types of 315 

transformation applied for some metrics (c and d). Relevant time steps: td time when pulse disturbance is 316 

applied to the system, td+1 first time step after disturbance, thigh time step where the absolute distance 317 

between state variable value in the disturbed system and baseline is the highest, tpost time step where 318 

recovery is considered to have happened, tend end of time series. a) The data for which a metric is to be 319 

calculated must constitute a time series of a state variable in the disturbed system (vd). b) Most functions 320 

require a time series of the same state variable in the baseline system. This baseline can be taken from a 321 

separate undisturbed system (vb, b.1) or from the pre-disturbance values of the disturbed system (vp, b.2). 322 

It can be a single value or a summary of the time series. The stability metrics that require both the 323 

disturbed and baseline time series are applied to either the log response ratio (l) between the values in 324 

these two time series (c) or the difference between them (d). 325 
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 326 

Figure 2: Schematic representation of how some of the variants of univariate properties are calculated with 327 

estar: a) invariability (I) as the coefficient of variation of the state variable in the disturbed state; b) 328 

resistance (R) as the log-ratio (l) between the disturbed and baseline time series in the first time step after 329 

disturbance (td+1); c) extent of recovery (Er) as log-ratio between the disturbed and baseline time series at 330 

the user-defined time step the system is expected to have recovered (tpost); d) rate of recovery (Rr) as the 331 

slope of the linear model fitted to the disturbed time series; and e) persistence (P) calculated as the 332 

proportion of time during which the disturbed time series stayed in the interval defined as +/- 1 standard 333 

deviation from the baseline (vb ± sdb) over the total user-specified time period (ta). The metrics are 334 

calculated from a time series of a state variable (v; black line) and the log response ratio (l; orange line). All 335 

variants are demonstrated in the “Univariate properties” vignette. 336 

  337 
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 338 

Figure 3: Schematic representation of the multivariate properties: reactivity (Ra), calculated at the first time 339 

step following disturbance (td+1); maximal amplification (Amax); initial resilience (R0); asymptotic resilience 340 

(R∞); and intrinsic stochastic invariability (IS). To facilitate comprehension, we illustrate metrics in relation 341 

to a state variable (v) disturbed at time td, but the metrics, in fact, are calculated from the community’s 342 

species interactions matrix and not a single state variable. All properties are demonstrated in the “MARSS 343 

models” vignette. 344 

  345 
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 346 

Figure 4: Example of estar application to measure the stability of three macroinvertebrate functional 347 

groups to two concentrations of the chlorpyrifos insecticide. a) Log of mean abundance over the 60 weeks 348 

of the experiment. Insecticide was applied at week 0 (vertical dashed line). b) Univariate metrics calculated 349 

by estar under two concentrations of the insecticide (0.9μg/L and 6µg/L). 350 


