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ABSTRACT 1 

Climate change is altering the timing of species’ life-cycle events (i.e., phenology), but the 2 

rates of phenological shifts vary across taxa. These mismatches in phenological response 3 

may disrupt interactions between interdependent species, such as plants and their 4 

pollinators, which may lead to reduced plant reproduction via pollen limitation and 5 

contribute to secondary extinction risks for plants. However, secondary extinction risk is 6 

rarely assessed under future climate-change scenarios. Here, we used ca. 15,000 7 

crowdsourced specimen records of Viola species and their solitary bee pollinators, 8 

spanning 120 years across the eastern United States, and integrated climate data, 9 

phenological information, and species distribution models to quantify the risk of 10 

secondary plant extinction associated with phenological mismatch with their pollinator 11 

bees. We further examined geographical patterns in secondary extinction risk for plants 12 

and explored how their interactions between plants and generalist versus specialist 13 

pollinators influence such risk. Secondary extinction risk of Viola spp. increases with 14 

latitude, indicating that future climate change likely will pose a greater threat to plant-bee 15 

pollinator networks at northern latitudes. Additionally, the sensitivity of secondary 16 

extinction risk to phenological mismatch with both generalist and specialist bee 17 

pollinators decreases with latitude: specialist bees display a sharper decrease at higher 18 

latitudes. Our findings demonstrate that existing conservation priorities based solely on 19 

primary extinction risk directly caused by climate change may not be sufficient to support 20 

self-sustaining populations of plants. Incorporating secondary extinction risk resulting 21 

from ecological mismatches between plants and pollinators into future global conservation 22 

frameworks should be carefully considered.    23 

 24 

 25 

 26 

 27 
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SIGNIFICANCE 28 

Climate change can directly contribute to primary extinction and indirectly lead to 29 

secondary extinction risks for plants if it decouples the timing of when plants flower and 30 

their pollinators are active. However, secondary extinction risk remains understudied. 31 

Using specimen records of Viola species and the bees that pollinate them, we demonstrate 32 

an increased secondary extinction risk with increasing latitude, indicating that climate 33 

change is expected to disrupt plant-bee pollinator networks more severely in northern 34 

latitudes; Plants growing at different latitudes differ in their secondary extinction risk, 35 

which also varies with the relative importance of generalist and specialist pollinators.  36 

Improved conservation plans should account for both primary and secondary extinction 37 

that can be anticipated in the face of future climate change.   38 

  39 
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Introduction 40 

Phenology–the timing of species’ life-cycles–plays a critical role in the survival and 41 

reproductive success of species (1, 2). In recent decades, it has become increasingly clear 42 

that anthropogenetic climate change has driven significant shifts in the phenology of many 43 

organisms in all environments worldwide. Global meta-analyses (3, 4) and regional case 44 

studies (5, 6) consistently have demonstrated that numerous species are advancing their 45 

phenological events (e.g., plant flowering, bird migration) by several days to weeks, largely 46 

in response to rising temperatures. However, species are rarely isolated; their survival and 47 

reproduction depend on interactions with other organisms such as mutualists, 48 

competitors, and predators. Variation in the direction and magnitude of phenological shifts 49 

across taxa has raised concerns that ecological interactions are becoming increasingly 50 

asynchronous, leading to “phenological mismatches” (2, 7, 8). For example, the timing and 51 

fidelity of interactions between plants and pollinators may become destabilized, as when 52 

bees emerge before flowers bloom, resulting in a mismatch between pollinator availability 53 

and floral sources (9-11). 54 

Phenological mismatch remains poorly understood even though it has been widely 55 

hypothesized because most studies of this phenomenon have been done only on small 56 

temporal, spatial, and taxonomic scales (12-14). The lack of long-term, multi-species 57 

datasets across broad spatial extents has limited our ability to fully explore and predict 58 

phenological mismatches at larger spatiotemporal scales. Such small-scale studies also 59 

have further hindered our understanding of the cascading consequences of asynchronous 60 

phenological shifts between species for species fitness and population dynamics (2, 15), 61 

both of which are crucial for assessing the long-term implications of biodiversity loss, 62 

especially as the climate continues to change rapidly.  63 

These issues are specifically pressing for many North American plants, which have 64 

experienced large-scale phenological shifts in the last few decades (5, 16, 17). In particular, 65 

findings that pollinator occurrences are diverging from plant flowering times in response 66 

to climatic changes have raised concerns that elevated extinction risk of plants may be 67 
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resulting from, at least in part, disruptions in pollination services (18-20). However, the 68 

extinction risk associated with pollination disruptions—and phenological mismatch more 69 

generally—has not yet been assessed quantitatively, and the geographic pattern of such 70 

risk is also poorly understood.      71 

To estimate the extinction risk of plants resulting from phenological mismatches with 72 

pollinators, we integrate three essential components (Fig. 1): assessments of the influence 73 

of climate change on plants and pollinator phenology (i.e., construct phenology-climate 74 

relationship); joint evaluation of phenological mismatches between these interacting 75 

partners (i.e., calculate the difference in days between plant flowering time and bee 76 

occurrence time); and incorporation of phenological mismatch into species distribution 77 

models (SDMs). SDMs are commonly used tools for estimating probability of occurrence of 78 

one or more species (and by inference, their fitness) as a function of environmental 79 

variables (21-22). Our analytical approach adjusts the probability of occurrence of a plant 80 

species in a favorable habitat by incorporating the temporal difference between flowering 81 

time and pollinator occurrence time. As the phenological mismatch increases, the final 82 

probability of occurrence of plants decreases proportionally, thereby raising the extinction 83 

risk for the plant (Fig. 2A).                84 

Our study focuses on the plant genus Viola and takes advantage of ca. 120 years of 85 

historical data on these plants and their principal bee pollinators in the eastern United 86 

States (Fig. 3; SI Appendix, Tables S1-S2). Viola species are typical early-spring flowering 87 

plants with a wide geographic distribution. We explore the phenological mismatch 88 

between Viola spp. and both generalist and specialist pollinator bees, and test whether 89 

plants’ secondary extinction risk is more sensitive to phenological mismatch with one 90 

group than the other (Fig. 2B). For example, generalist pollinators can obtain floral 91 

resources from multiple plant taxa and thus may be more effectively alleviate the negative 92 

impacts of climatically-driven phenological shifts in flowering. In contrast, given the same 93 

extent of phenological mismatch, plants that depend on specialist pollinators (i.e., 94 

pollinators that visit only one or a few closely related plant taxa) are likely to experience 95 



5 

 

greater negative impacts than those associated with generalist pollinators (23). Based on 96 

these data, we aim to 1) examine and forecast the geographical patterns of the plants’ 97 

extinction risk related to phenological mismatch with pollinator bees under future climate 98 

change scenarios, and 2) document how interactions between plants and generalist versus 99 

specialist pollinators influence such risk. 100 

Our work highlights the urgent need for a more integrated approach to phenological 101 

studies to effectively address and forecast biodiversity loss in mutualistic networks under 102 

the increasingly severe effects of climate change. Importantly, digitized natural history 103 

collections, which enable the integration of climate change data, phenological information 104 

and species distributions, provide a valuable source for better assessing and forecasting 105 

future biodiversity patterns at large taxonomic, temporal, and spatial scales (24, 25). The 106 

exponential growth and expanding utility of these collections are crucial, as they remain 107 

relatively underexplored compared to other data sources in current research (26). 108 

Predicting species responses to rapid climate change is crucial for understanding 109 

biodiversity loss and guiding effective conservation strategies (27-29). Given that most 110 

biodiversity research focuses on “primary” extinction risks directly caused by climate 111 

change, our study evaluates “secondary” risks from disrupted interactions, which will offer 112 

new insights into conservation strategies for mitigating the broader impacts of climate 113 

change on ecosystems.   114 

Results 115 

Phenological responses of plants and bees along climatic gradients 116 

To predict and forecast plant flowering time and bee occurrence time under current and 117 

future climatic conditions, we built separate models for plants and bees to examine the 118 

relationship between phenology and climate (see Materials and Methods). The flowering 119 

times of Viola species were significantly affected by both the long-term average and 120 

anomaly of mean annual temperature (MAT), and by the interaction between MAT and 121 

annual precipitation anomalies. Holding other variables constant, an increase of 1 122 

standard deviation (SD) in long-term average of MAT (i.e., 4℃) advanced flowering by 18 ± 123 
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0.3 d across all species. An increase of 1 SD in MAT anomaly (i.e., 0.7℃) advanced 124 

flowering by 2 ± 0.2 d on average. Our model also identified a positive interaction between 125 

MAT and annual precipitation anomalies: increased annual precipitation was associated 126 

with delayed flowering during warmer years (For statistical details, see SI Appendix, Table 127 

S3). 128 

The mean activity time of pollinator bees for Viola also was influenced by climate. For 129 

generalist bees, their mean activity time was affected only by long-term averages of MAT 130 

and annual precipitation, but not by any climate-anomaly variable. An increase of 1 SD in 131 

long-term average of MAT (i.e., 3.2℃) advanced the mean activity time of generalist bees 132 

by 17 ± 0.4 d, whereas an increase of 1 SD of long-term average of annual precipitation 133 

(i.e., 113.8 mm) delayed their mean activity time by 1.7 ± 0.3 d across all species. For the 134 

specialist bee, the long-term average of MAT and anomaly in annual precipitation strongly 135 

affected its mean activity time. An increase of 1 SD in long-term average of MAT (i.e., 1.7℃) 136 

advanced activity time by 10 ± 0.9 d on average. An increase of 1 SD in the annual 137 

precipitation anomaly (i.e., 20% of the long-term average) advanced mean activity time by 138 

3 ± 1.0 d (for statistical details, see SI Appendix, Tables S4–S5). 139 

Species distribution models and primary extinction risk 140 

We divided the eastern United States into 20 × 20 km grid cells. We then built SDMs for 141 

each of the plant species using three algorithms and calculated the probability of 142 

occurrence at each grid cell (see Materials and Methods). Most of the SDMs for Viola had 143 

high predictive power, with mean TSS values of 0.7, 0.73 and 0.76 for GAM, GLM and 144 

MaxEnt, respectively. Fewer than 5% of models were excluded due to insufficient 145 

predictive power (TSS < 0.5). The probabilities of occurrence calculated by the three 146 

different SDM algorithms were highly correlated under both current and most future 147 

conditions estimated by three GCMs (mean r > 0.7 across all species; SI Appendix, Table 148 

S6–S7), suggesting that our results were not affected by the choice of SDM algorithm or 149 

GCM. Therefore, in the following sections we present only our results from MaxEnt and the 150 

median of all GCMs. 151 
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Secondary extinction risk 152 

We fit the relationship between estimated secondary extinction risk and the phenological 153 

mismatch under current conditions using a power function. The secondary extinction risk 154 

of Viola spp. was estimated to monotonically increase with phenological mismatch with 155 

their bee pollinators. Approximately 52% (i.e., 84 out of 161) of plant-pollinator pairs had 156 

R2 values > 0.2, and 30% (i.e., 47 out of 161) of pairs had R2 values > 0.5 (SI Appendix, 157 

Table S8). The geographic patterns in secondary extinction risks forecast for the 2070s 158 

significantly differed from the patterns in primary extinction risk (i.e., mean Pearson’s r 159 

between primary and secondary extinction risks across all plant-pollinator pairs < 0.4; Fig. 160 

4; SI Appendix, Table S9). 161 

In general, secondary extinction risk of Viola spp. increased with latitude as a function of 162 

their phenological mismatch with both specialist and generalist bees (Fig. 5). The 163 

phenological mismatch with generalist bees contributed more markedly to secondary 164 

extinction risk in high-latitude regions than did the mismatch with the specialist bee (Figs. 165 

5B, 5C; Table 1). The sensitivity of secondary extinction risk to phenological mismatch was 166 

significantly lower for mismatches with generalist bees than for the specialist bee (Fig. 6). 167 

However, the sensitivity to phenological mismatch with the specialist bee showed a 168 

sharper decrease in high-latitude regions relative to the mismatch with generalist bees 169 

(Table 2). These results were qualitatively consistent across different R2 thresholds used 170 

for filtering plant-bee pairs with low model fit (SI Appendix, Tables S10–S13) and across 171 

different GCMs (SI Appendix, Figs. S1–S2). 172 

After accounting for potential buffering effects using the minimum phenological mismatch 173 

value across all generalist bees for each plant species at each grid cell, we still observed a 174 

significant increase in the secondary extinction risk of Viola spp. with latitude (SI Appendix, 175 

Table S14). The sensitivity of plants’ secondary extinction risk to phenological mismatch 176 

also decreased with latitude for interactions with both generalist and specialist bees. 177 

Likewise, the sensitivity to phenological mismatch with the specialist bee showed a 178 

sharper decrease in high-latitude regions relative to the mismatch with generalist bees (SI 179 
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Appendix, Table S15). These results suggest that generalist bees have no significant 180 

buffering effects on our conclusions.  181 

Discussion 182 

Many plant species are being negatively affected by climate change (5, 29). However, their 183 

potential extinction risk might be especially severe for those that have lost their principal 184 

pollinators or for species whose phenological responses to climate change lead to 185 

temporal mismatches with their pollinators (18, 19, 30-32). This mismatch can effectively 186 

create a “secondary extinction vortex” (20). While relatively little is known about the 187 

prevalence of such ecological mismatch, even less is known about the geographical 188 

patterns in the risks of secondary extinctions for plants. Our results strongly demonstrate 189 

increased risks of secondary extinctions for Viola species with latitude and reveal how 190 

interactions between plants and generalist and specialist pollinators influence secondary 191 

extinction risk across latitudes. These findings will help to inform conservation policies to 192 

mitigate further extinction risks resulting from disrupted plant-pollinator interactions 193 

under future climate change. 194 

Secondary extinction risk increases with latitude  195 

We identified a significant increase in secondary extinction risk of Viola spp. with 196 

increasing latitude that appears to be driven by phenological mismatch with generalist 197 

bees (Fig. 5). This result is likely attributable to the accelerated warming and the high 198 

climatic variability observed at higher latitudes (33, 34), and to the differing phenological 199 

sensitivities of plants and pollinators to climate change. A high degree of warming and 200 

high climatic variability often lead to an acceleration in phenology (5). The different 201 

sensitivities of plants and pollinators results in increasing asymmetry in phenological 202 

responses between these groups, thereby increasing the likelihood of phenological 203 

mismatch (35, 36). Our results demonstrate that the flowering time of Viola spp. is 204 

predominantly influenced by temperature, but the activity time of a specialist bee is more 205 

strongly shaped by precipitation (SI Appendix, Table S3-S4). However, generalist bees 206 

were not significantly affected by any climate factor we included in our models (SI 207 
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Appendix, Table S5). This indicates that phenological (mis)matches between plants and 208 

pollinators likely depend on species (or taxa)-specific responses to climatic cues that vary 209 

with latitude.      210 

It is worth noting that plants’ secondary extinction risks may be ameliorated by 211 

reproductive strategies or other traits that may buffer against phenological mismatches 212 

with pollinators or their loss altogether. Relevant here is that the self-pollinating 213 

cleistogamous flowers of Viola spp. ensure reproductive success especially in 214 

environments such as high-latitude regions with unstable conditions, short growing 215 

seasons, and a lack of pollinators, albeit with a potential cost of inbreeding depression 216 

resulting from reduced genetic variability and fitness of offspring (37, 38). Other species 217 

may also evolve the ability for self-pollination, thereby achieving self-sustaining or even 218 

short-term expansion of plant populations during periods of rapid climate change (e.g., 219 

Capsella rubella) (39). However, inbreeding depression associated with self-pollination 220 

may severely limit the ability of plants to adapt to novel environmental conditions 221 

expected to occur under different climate change scenarios, ultimately increasing both 222 

primary and secondary extinction risks. Limited detection by crowdsourcers precluded 223 

our ability to include cleistogamous flowers in our analysis, but future research should 224 

assess whether there is any association between the relative proportion of cleistogamous 225 

and chasmogamous flowers, climate change, and phenological mismatch. 226 

More generally, our results indicate that climate change likely will pose a more serious 227 

threat to plant-pollinator networks at higher latitudes, with expected negative effects on 228 

ecosystem stability, gene flow, population maintenance, and biodiversity in these areas (9, 229 

40). Future studies should explore mechanisms behind the different phenological 230 

responses of plants and insects to climate change, such as phenotypic plasticity, local 231 

adaptation, and evolutionary change in reaction norms (17), and assess the potential 232 

impacts of these changes on other important ecological interactions (e.g., seed dispersal, 233 

vegetation regeneration). 234 

The sensitivity of secondary extinction risks to phenological mismatch 235 
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The secondary extinction risk for plants depends on the type of pollinator group they 236 

interact with. In some regions, plants have evolved to rely on just one or a few pollinators, 237 

which can help them avoid competition with other plants for the same resources, a 238 

phenomenon known as “biotic specialization” (41, 42). Several studies have reported 239 

increasing biotic specialization in the tropics toward the equator. Because resources are 240 

divided more finely among many plant species at lower latitudes, each species tends to 241 

rely on specific resources to reduce interspecific competition (42-44). Therefore, plant 242 

secondary extinction risks should have been more sensitive to phenological mismatches 243 

with specialist bees at lower latitudes. However, we identified that the sensitivity of Viola 244 

to phenological mismatch decreased with latitude for both specialist and generalist bees, 245 

with specialist bees showing a sharper decrease at higher latitudes (Fig. 6). This result 246 

suggests that plants can rely on both specialists and generalists for pollination at low 247 

latitudes but may depend more heavily on generalist bees at high latitudes.  248 

This may reflect the strategies of plant individuals at different latitudes to mitigate the 249 

risks of secondary extinction. Although higher diversity at low latitudes leads to greater 250 

specialization among individuals (41), the high resource diversity at low latitudes also 251 

requires pollinator bees to generalize their diet (45). Pollinator bees must thus diversify 252 

their food sources to meet the needs of various plants (46). Thus, it appears the high 253 

dependency of Viola on both specialist and generalist bees increases pollination efficiency 254 

and reduces secondary extinction risk in environments with high competition at low 255 

latitudes. 256 

At high latitudes, in contrast, shorter growing seasons require plants to maximize 257 

pollination efficiency to ensure successful reproduction (47). Generalists associated with 258 

many partners may have distinct selective advantages compared to specialists because of 259 

sampling, complementarity, and portfolio effects, enabling these generalists to visit a 260 

variety of plants within a short time frame (48). Generalized pollination at higher latitudes 261 

is likely to increase functional redundancy and resistance of plant communities to 262 

secondary extinctions (9, 49). 263 
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Because our study incorporates only one plant taxon, our understanding of the 264 

evolutionary strategies behind variations in the sensitivity of secondary extinction risk to 265 

phenological mismatch with generalist and specialist bees across latitudes remains 266 

somewhat limited. Future research should seek to include multiple plant taxa at larger 267 

spatial and phylogenetic scales to gain a deeper insight into mechanisms driving these 268 

variations and make the relevant conclusions more broadly applicable.      269 

Implications for future conservation planning 270 

Although the protection of individual species remains the fundamental premise of 271 

conservation biology, conservation biologists (or ecologists) have evolved from their early 272 

emphasis on preserving individual species to a broader remit that now includes the 273 

maintenance of interaction networks and ecosystem services that improve human well-274 

being (e.g., food and fruit supply) (50). For example, it is estimated that 5–8% of global 275 

crop production would be lost without effective pollination, especially by insects (51, 52). 276 

We identified that the geographical patterns in primary extinction risk of Viola spp. 277 

resulting from climate change were not strongly correlated with secondary extinction risk 278 

associated with phenological mismatch with bees (Fig. 4; SI Appendix, Table S9). This 279 

suggests that conservation priorities identified based solely on primary extinction risks as 280 

is commonly done is likely insufficient to address the multivalent complexities of 281 

extinction risk and could fail to support self-sustaining populations of either the plants or 282 

their mutualist bee pollinators (53). Our results underscore the importance for future 283 

conservation planning of addressing secondary extinction risks caused by asynchrony 284 

between plants and pollinators. These conservation strategies may include establishing 285 

effective pollinator corridors, long-term phenological monitoring of both plants and 286 

pollinators, protecting climate-sensitive pollinator habitats, and integrating secondary 287 

extinction risk into global conservation frameworks. Of course, continued basic science 288 

research into the nature, timing, and disposition of plants and associated pollinator 289 

interactions needs greater focus and emphasis in the coming years. Natural history 290 

collections remain an essential resource for such efforts (26, 54, 55). 291 
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Our study assumed that all bee species occurred across the entire eastern United States 292 

and focused only on the risks of secondary extinctions for plants. However, reduced floral 293 

resources could also cause the activity periods of bees to decline when no food plants are 294 

available, leading to decreased diet breadth and subsequent secondary extinction risks for 295 

pollinators (19). Future studies should further develop modeling frameworks to 296 

comprehensively consider the impacts of climate change on the secondary extinction of 297 

both plants and pollinators. 298 

Materials and Methods 299 

Study system 300 

We focused on 23 Viola plant species and 7 solitary bee species (SI Appendix, Tables S1–301 

S2) in the eastern United States (i.e., coastal states from Maine in the north to Florida, and 302 

also westward to West Virginia). We chose this system for several reasons. First, there is 303 

reliable, published information on generalist versus specialist bees that pollinate Viola spp. 304 

in this large geographic region. Second, both Viola and its pollinators have been widely 305 

collected, and abundant historical specimen records are available and digitized as part of 306 

the global metamuseum (26, 56). Herbarium specimens for Viola spp. have easily 307 

identifiable chasmogamous flowers, enabling us to estimate their corresponding flowering 308 

times using previously published methods (16, 24, 25). Finally, both Viola and its 309 

pollinators have large geographic ranges across the eastern United States (Fig. 3), which 310 

allow us to examine phenological shifts across latitudes. 311 

Viola is a large genus of flowering plants in the family Violaceae. Many species of Viola 312 

have a dual reproductive strategy, which involves two distinct flower types: the early-313 

stage floral bud is predetermined to develop into either a chasmogamous (open and 314 

outcrossing) or cleistogamous (closed, and self-pollinating) flower (57). Among the 73 315 

species of Viola in the US north of Mexico, 60 are reported to have cleistogamous flowers 316 

(https://beta.floranorthamerica.org/Viola). 317 
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Solitary bees in the families Andrenidae, Anthophoridae, and Megachilidae are among the 318 

most important pollinators of chasmogamous Viola flowers (58). Andrena violae 319 

(Andrenidae) is a genus-level specialist pollinator of Viola in the eastern United States 320 

(https://jarrodfowler.com/specialist_bees.html). The other six bee species we studied are 321 

genus-level generalist pollinators with contrasting natural histories (solitary ground 322 

nesting Andrena spp. [Andrenidae] and solitary above-ground cavity nesting Osmia spp. 323 

[Megachilidae]; SI Appendix, Table S2). These generalist bee species are reported to 324 

pollinate plants belonging to genera other than Viola. For example, Andrena carlini is 325 

known to visit flowers from genera such as Taraxacum, Rubus, and Vaccinium. We follow 326 

the coding by Bartomeus et al. (49) of pollination relationships between Viola and these 327 

generalist bees. These bee species are known to emerge in early spring, which is a 328 

particularly important time period in terms of organismal response to climate change (59) 329 

and can be compared with early-flowering plants such as Viola spp. 330 

Viola occurrence data 331 

We derived occurrence and phenology data for Viola spp. from herbarium specimens 332 

digitized by the Consortium of Northeastern Herbaria (CNH; 333 

https://portal.neherbaria.org/portal/) and the Southeast Regional Network of Expertise 334 

and Collections (SERNEC; https://sernecportal.org/portal/index.php). The 23 Viola 335 

species we used for our study (SI Appendix, Table S1) met the following criteria: 1) there 336 

were at least 50 unique specimens per species across the eastern United States; 2) the 337 

specimens had both an exact collection date (which we expressed as day of year [DOY] 338 

ranging from 1–365) and either exact or county-level location information (the latter were 339 

georeferenced to the geographic centroid of the county); and 3) the specimens included 340 

reproductive structures that were easily identifiable and countable (i.e., buds, flowers, and 341 

fruits).  342 

For species distribution modeling, we augmented the occurrence data of the 23 Viola 343 

species from CNH and SERNEC with county-level distribution data (i.e., presence/absence 344 

data) from the Biota of North America Program’s (BONAP; http://www.bonap.org/) North 345 

https://portal.neherbaria.org/portal/
https://sernecportal.org/portal/index.php
http://www.bonap.org/
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America Plant Atlas (NAPA) (60) and from the Global Biodiversity Information Facility 346 

(GBIF; https://gbif.org/). County-level occurrence data were then overlaid onto 40×40-km 347 

grid cells (Mercator projection EPSG 3857) covering the eastern United States. As some 348 

grid cells were located on the borders and along the coasts of the eastern United States, we 349 

removed incomplete grid cells (i.e., those with an area smaller than 800 km2). If more than 350 

half of a grid cell was covered by one or several counties with the occurrence of a species, 351 

it was considered to be present in that grid cell (61). 352 

Viola phenology 353 

We hired crowdsourcers through Amazon’s Mechanical Turk service (MTURK; 354 

https://www.mturk.com/) to count the number of buds, flowers, and fruits of each 355 

digitized herbarium specimen from CNH and SERNEC using the CROWDCURIO platform 356 

(25) following well established protocols (62, 63). Each specimen was independently 357 

evaluated by three individuals (on average), and we used a reliability score to assess the 358 

reliability of each individual and their data (16, 61). Specifically, each 10-image set, in 359 

random order and scored by one person, included nine unique images and one duplicate 360 

image. This duplicate image was randomly selected from the remaining nine images. The 361 

reliability scores were calculated as the absolute difference in counts of buds, flowers, and 362 

fruits between the two duplicate specimens, divided by the total counts for each 363 

phenological state separately, and then subtracted from 1 (64). Specimen observations 364 

scored by crowdsourcers with a reliability score of zero were excluded from our analyses 365 

following Park et al. (16). If an individual received a reliability score of zero for one organ, 366 

all organs would be assigned a score of zero and thus excluded from our analyses.  367 

In total, the crowdsourcers provided reliable data on Viola flowering phenology from 368 

8,200 specimens spanning 124 years (i.e., 1895–2018). Of these, ≈50% (4,075 specimens) 369 

were considered to represent the main flowering period following (63) of the Viola spp. 370 

and were used in subsequent analyses. That is, each of these 4,075 specimens: i) contained 371 

at least one open flower; ii) contained more open flowers than the combined number of 372 

buds and fruits; iii) contained a number of flowers representing at least 5% of the 373 

https://gbif.org/
https://www.mturk.com/
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maximum number of flowers observed on a given species; and iv) had collection dates 374 

between the 5% and 95% quantile of observed flowering dates (DOYs).  375 

Bee occurrence data 376 

Approximately 80% of the occurrence records of the seven bee pollinator species 377 

(henceforth “bees”) were gathered from the online Symbiota Collections of Arthropods 378 

Network (SCAN) (65); additional collection records of preserved specimens were obtained 379 

from GBIF. Only SCAN and GBIF records that included an exact date and location (i.e., 380 

latitude and longitude or county information that could be assigned to its centroid) were 381 

included in our analysis. To prevent bias introduced by different collection efforts, only 382 

one record representing a certain collection event was retained; occurrence records were 383 

considered to be from the same collection event if they had both the same date and 384 

coordinates of collection (8). The 6,714 bee occurrence records that met the above criteria 385 

were collected in the eastern United States between 1900 and 2022. Bee occurrence data 386 

were mapped onto the same 40×40-km grid cells covering the eastern United States that 387 

we used to map the Viola occurrence data. 388 

Bee phenology 389 

We used DOY of the collection date of each unique bee occurrence record as a proxy for a 390 

day on which it was actively foraging. To estimate the main occurrence time of each bee 391 

species, we used MaxLike, a formal likelihood model that explicitly estimates the 392 

probability of species occurrence given presence-only data and a set of environmental 393 

covariates (66). Here, we assume that specimen records with a high probability of 394 

occurrence, generated by MaxLike, represent those periods when the focal bee species is 395 

most likely active. This is because MaxLike models are trained on presence-only data and 396 

can capture the temporal and environmental preferences associated with species’ activity 397 

patterns. Although this approach ignores finer-scale behavioral variations, it provides a 398 

relatively reliable proxy for the main activity periods in MaxLike. We initially chose six 399 

bioclimatic variables relevant to bee distributions to build the models: temperature 400 

seasonality, mean temperature of the warmest quarter, mean temperature of the coldest 401 
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quarter, precipitation seasonality, precipitation of the wettest quarter and precipitation of 402 

the driest quarter. We excluded mean temperature of the coldest quarter due to its high 403 

correlation with other variables (r > 0.7). Climatic data for each year-locality combination 404 

were obtained from PRISM database (see the detailed description in Environmental data, 405 

below).  406 

For each bee species, we randomly selected 80% of the occurrence data as the training 407 

dataset, and this process was replicated 100 times. To evaluate the predictive accuracy of 408 

each model, we first identified the minimum predicted area (MPA) (67), which is the 409 

proportion of the study area predicted as present based on the probability threshold that 410 

ensures a user-defined percentage of the test data is correctly classified as present. Here, 411 

we set this proportion to 90%. Models yielding a low MPA are considered superior and 412 

models with an MPA larger than 0.7 were excluded, following Engler et al. (67). We 413 

calculated the median probability of occurrence value from the remaining models for each 414 

species and extracted the 95% confidence interval to present their main activity periods. 415 

However, it is worth noting that these data points do not fully represent the complete grid-416 

cell level distributions of bee species when we overlap data points with 40km grid cells. 417 

Therefore, we did not construct SDMs for bee species and assumed that all bee species 418 

occurred over the entire eastern United States when calculating the secondary extinction 419 

risk of plant species.     420 

Environmental data 421 

Climatic and geographic data of specimen localities for plants and bees 422 

We used estimates of historic (1895–2022) average monthly air temperature and 423 

precipitation data at a 4-km resolution from PRISM (product AN81m; 424 

https://prism.oregonstate.edu/). For each specimen with a specific location and year 425 

combination, we estimated the mean annual temperature (MAT) and annual precipitation 426 

and assigned these values to the corresponding specimens for both plants and bees. For 427 

each collection site, we first calculated the long-term mean temperature and precipitation 428 

conditions separately for plants and for bees. We then calculated the temperature and 429 

https://prism.oregonstate.edu/
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precipitation anomalies, which we defined as the difference in climatic conditions between 430 

the year of collection and the long-term mean for the entire collection range (i.e., 1895-431 

2018 for plants and 1900-2022 for bees), for each record location, following Munson and 432 

Long (68) and Pearson et al. (69). Climatic anomalies have been shown to be associated 433 

with plant flowering time and are used widely in modeling phenology-climate 434 

relationships (36, 68). 435 

Environmental data used for modeling plant distributions 436 

Recent (1970–2000) and future forecasted (2061–2080; henceforth referred to as 437 

“2070s”) climatic data at a resolution of 2.5-arc-minute were obtained from WorldClim 438 

(https://www.worldclim.org/, ver. 2.1; all 19 climatic variables, bio1–bio19) and climate 439 

values assigned to each grid cell were the means of all data points within it. We also 440 

included five soil variables (i.e., sand content, clay content, silt content, bulk density, and 441 

coarse fragments) in the SDMs for plants (70). We assumed these soil variables were 442 

constant through time, and calculated their within-grid-cell mean values at two soil depths 443 

(0–5 cm and 5–15 cm) using data from the SoilGrid250m database 444 

(https://www.soilgrids.org/). 445 

We reduced the number of environmental and climatic variables using principal 446 

component analysis (PCA) on 24 soil and climatic variables. The eigenvectors were used to 447 

calculate the scores of the first seven derived principal components, which represent 448 

97.3% of the total variance and were used as new predictors for creating the SDMs for all 449 

Viola species. The same eigenvectors were used to calculate the scores of the principal 450 

components for future environmental scenarios.   451 

Future climatic projections were derived from three General Circulation Models (GCMs)— 452 

GISS-E2-1-G, HadGEM3, and INM-CM4-8—run for the most extreme Shared Socio-453 

economic Pathways (SSPs)—SSP5-8.5 (71). 454 

Statistical modeling 455 

Relationships between climate and phenology 456 

We applied linear mixed-effect models (LMMs) to examine the phenological sensitivities of 457 

https://www.worldclim.org/
https://www.soilgrids.org/
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plants and occurrence of bees to current and future climates across the eastern United 458 

States. This model framework allowed us to hierarchically incorporate the variation in 459 

phenological responses to climate across multiple species (72). The same structure and 460 

predictor variables were used for separate models fitted for Viola, the six generalist bees, 461 

and the specialist bee. All predictor variables were centered and scaled to a mean value of 462 

0 and a SD of 1 to avoid introducing bias. Correlation coefficients among all selected 463 

predictor variables were < 0.1, limiting the effects of collinearity. 464 

For the full Viola model, the response variable was the DOY for each specimen (as 465 

representing its mean flowering time). Predictor variables included as fixed effects the 466 

long-term average (1895-2018) and inter-annual anomalies of mean temperature and 467 

total precipitation, the interaction between temperature and precipitation anomalies. The 468 

full model also included a random-intercept term for species and random slopes for 469 

species responses to temperature and precipitation anomalies. The random slopes are 470 

interpreted as species-specific phenological sensitivities to inter-annual climate change.  471 

For the full model for generalist bees, the response variable was the DOY for each 472 

collection record (as representing its mean activity time). Fixed predictor variables 473 

included long-term average (1900-2022) and inter-annual anomalies of mean temperature 474 

and total precipitation, the interaction between temperature and precipitation anomalies. 475 

The full model also included a random-intercept term for generalist bee species and 476 

random slopes for the responses of generalist bee species to temperature and 477 

precipitation anomalies. Since the dataset included only one specialist bee, the model for 478 

the specialist bee did not incorporate any random components.  479 

All models were fitted using the “lmer” function in the “lmerTest” package (ver. 3.1-2) (73) 480 

of the R software system (ver. 4.2.1). The significance of the effects of the predictor 481 

variables was evaluated using the z-distribution to obtain p-values from the Wald t-values 482 

provided by the model output (74). We also applied the “fitme” function in the “spaMM” 483 

package to check whether our results were affected by spatial autocorrelation of response 484 

variables (ver. 4.5.0) (75). We found no substantial differences in the results of the LMMs 485 



19 

 

that either included or excluded potential autocorrelation structures for both plants and 486 

bees, so we report only the results of the models without spatial autocorrelation included.  487 

To predict the mean flowering time for each plant species in each grid cell and mean 488 

activity time for each bee species in each grid cell under recent (i.e., 1970–2000) and 489 

future (2070s) conditions, we applied the “predict” function in the “stats” package (ver. 490 

4.0.0) to the fits of the LMMs. Recent and future temperature anomalies for each grid cell 491 

were estimated as differences from its long-term mean temperature, whereas 492 

precipitation anomalies were calculated as a proportion of its long-term mean 493 

precipitation.   494 

Species distribution models to estimate the primary extinction risk of Viola species 495 

As our Viola dataset lacked true absences, we generated random pseudo-absences (i.e., 496 

randomly selected grid cells that were considered as species absences) (76). For each 497 

species, twice as many pseudo-absences as real presences were generated; the entire 498 

procedure was repeated 10 times, each time with a new set of pseudo-absences. SDMs 499 

were calibrated for each species using three algorithms: generalized linear models (GLMs), 500 

generalized additive models (GAMs) and MaxEnt. We used a repeated data-splitting 501 

procedure to evaluate the predictive power of each individual model. Each model was 502 

trained on 80% of the distribution data of each species before being assessed against the 503 

remaining 20% using the true skill statistic (TSS) (77). This data-splitting procedure was 504 

also repeated 10 times (resulting in a total of 100 individual models for each algorithm and 505 

species). Those models with TSS > 0.5 were adopted to project the probability of 506 

occurrence of each plant species per grid cell under both current and future conditions. 507 

Model projections were carried out over the entire eastern United States and all models 508 

were projected at the same spatial resolution as the distribution data (i.e., 40-km). We 509 

used the median value of all model predictions as the final forecast of occurrence 510 

probability for each Viola species. In the context of extinction, the primary extinction risk 511 

(Pe) of plant species within each grid cell was simply calculated as 1−the probability of 512 

occurrence (78).    513 
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Calculation of secondary extinction risk of Viola species 514 

We inferred the secondary extinction risk of Viola spp. based on their predicted 515 

probability of occurrence from SDMs and their predicted phenological mismatch with 516 

bees. The temporal gap (i.e., phenological mismatch) between the mean flowering DOY and 517 

the mean activity DOY of bees for each plant-bee species pair was calculated at each grid 518 

cell under both recent (1970–2000) and future (2070s) climatic conditions. Since 519 

phenological events are cyclical and repeat annually, the entire year can be represented as 520 

a 360-degree circle. We first converted DOY to angles to directly compare the mean 521 

flowering time of plants and the activities of bees on a standardized circular scale (Eqns. 1 522 

and 2). We then calculated the absolute value of the difference between 𝐴𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑛𝑡 and 523 

𝐴𝑛𝑔𝑙𝑒𝑏𝑒𝑒 of each plant-bee pair (Eqn. 3). To ensure the difference accounted for the 524 

cyclical nature of angles, we adjusted the difference so it would not exceed 180° (Eqn. 4). 525 

                                  𝐴𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑛𝑡 = (
𝐷𝑂𝑌𝑝𝑙𝑎𝑛𝑡

365
) ∗ 360°               (Eqn. 1)                     526 

                 𝐴𝑛𝑔𝑙𝑒𝑏𝑒𝑒 = (
𝐷𝑂𝑌𝑏𝑒𝑒

365
) ∗ 360°                    (Eqn. 2) 527 

                 𝑑𝑖𝑓𝑓 =  |𝐴𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑛𝑡 −  𝐴𝑛𝑔𝑙𝑒𝑏𝑒𝑒|                              (Eqn. 3) 528 

             𝑃ℎ𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = min  (𝑑𝑖𝑓𝑓 , 360° − 𝑑𝑖𝑓𝑓)                 (Eqn. 4) 529 

We assumed that the phenological mismatch between plants and bees would lead to a 530 

proportional decrease in probability of occurrence of plant species (as in Fig. 2A). 531 

Therefore, the secondary extinction risk of each plant species at each grid cell could be 532 

estimated approximately as follows (Equations 5 and 6): 533 

 𝑃(mismatch) = 𝑃(occurrence) ∗ (1 −
𝑃ℎ𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

180°
  )             (Eqn. 5) 534 

                    𝑆𝑒 = 𝑃(occurrence) −  𝑃(mismatch)                   (Eqn. 6) 535 

where 𝑃(mismatch) represents the adjusted probability of occurrence of each Viola 536 

species in each grid cell after accounting for the phenological mismatch with each bee 537 

species; 𝑃(occurrence) was the original probability of occurrence of each Viola species in 538 
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each grid cell inferred from the SDMs; and 𝑆𝑒 was the estimated secondary extinction risk 539 

(i.e., decreases in probability of occurrence) of each Viola species at each grid cell. As the 540 

phenological mismatch increases, the adjusted probability of occurrence decreases, 541 

leading to a greater increase in potential secondary extinction risk. 542 

Because estimated phenological mismatches between Viola and the bees usually spanned 543 

at most a few dozen days, dividing them by 180° resulted in relatively small values. 544 

Consequently, the final value of 𝑆𝑒  may be predominantly influenced by the 545 

𝑃(occurrence). To more intuitively describe the relationship between the 𝑆𝑒 of each Viola 546 

species and its phenological mismatch with the bees, we fitted 𝑆𝑒 to the phenological 547 

mismatch estimated under current conditions using a power function (Fig. 2A). We used 548 

three different R-squared thresholds (i.e., R2 = 0.2, 0.3, 0.5) to exclude plant-bee pairs with 549 

poor model fit.  550 

The phenological mismatch for the 2070s of each plant-bee pair with a high model fit was 551 

then substituted into the power function to obtain future 𝑆𝑒 of each Viola species. Since 552 

we used the median value of the species’ probability of occurrence at each grid cell across 553 

three GCMs, we extracted the median phenological mismatch across these GCMs to 554 

minimize the impact of extreme climate values on the mismatch and used it to estimate the 555 

future 𝑆𝑒 . This approach allowed for a more robust representation of climate conditions 556 

by mitigating the influences of outliers that may skew the phenological mismatch 557 

estimates. We also reported the results from each GCM for the subsequent analysis (SI 558 

Appendix, Figs. S1-S2).    559 

Finally, we compared the geographical patterns in Pe and 𝑆𝑒 of each plant species. We then 560 

compared 𝑆𝑒 of plant species resulting from its phenological mismatch with generalists 561 

and specialist bee species across latitudes. We used mixed-effects beta regression for this 562 

comparison; latitude, pollinator type (generalists vs. specialist), and their interactions 563 

were considered to be fixed factors, and individual plant and bee species were treated as 564 

separate random factors. To further examine how plant  𝑆𝑒 changed with latitude under 565 

equivalent phenological mismatches and how this relationship varied between plants 566 



22 

 

pollinated by generalists and aa specialist, we fitted two additional models: the first was a 567 

mixed-effects beta-regression model with  𝑆𝑒 as the response variable, latitude and 568 

phenological mismatch of each plant-generalist pair as fixed factors, and plant and bee 569 

species as separate random factors. For the second one, we did not include a random 570 

component for bees because we only had a single specialist species. Since beta regression 571 

is designed for continuous outcomes strictly within the (0, 1) interval, it is not suitable 572 

when the response variable includes exact zero values. Therefore, we used alternative 573 

zero-inflated beta regression models to account for the presence of zeros in the  𝑆𝑒 data. 574 

All these analyses were carried out using the “glmmTMB” function in the “glmmTMB” 575 

package (ver. 1.1.9) (79).  576 

Because plant species depend on multiple generalist pollinators, they may still be able to 577 

rely on the most temporally aligned pollinator even in the presence of significant 578 

phenological mismatches with other generalist bees. To account for this buffering effect, 579 

we extracted the minimum phenological mismatch value across all generalist bees for each 580 

plant species at each grid cell and built two beta-regression models to separately explore 581 

the latitudinal patterns in  𝑆𝑒 of plant species and the sensitivity of plant  𝑆𝑒 to 582 

phenological mismatch across latitude. The beta-regression model structure is the same as 583 

the model described above, which included all generalist bee species within each grid cell 584 

(SI Appendix, Tables S14-S15). 585 

The flowchart illustrating the analytical framework is shown (SI Appendix, Fig. S3).   586 

Data availability 587 

All codes and data used in the analyses are currently deposited on Github 588 

(https://github.com/Shijia818/Plant-bee-interactions) and will be available on Zenodo 589 

once accepted.  590 
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Fig. 1. Conceptual figure linking species’ phenological response, phenological mismatch, 799 

and fitness. The diagram illustrates the interconnectedness of these three components in 800 

shaping secondary extinction risk. Species’ phenological response, represented by the 801 

green block, refers to how species' phenological events (e.g., flowering, pollination) shift in 802 

response to climate change. Variation in the direction and magnitude of these phenological 803 

shifts leads to asynchronous ecological interactions between plants and their pollinator 804 

bees, known as “phenological mismatch”, depicted by the purple block. Species 805 

distribution models, represented by the brown block, estimate the probability of 806 

occurrence of plants in a given environment. This probability is adjusted by the amount of 807 

phenological mismatch (i.e., the difference in days between plant flowering time and bee 808 

occurrence time), ultimately estimating the secondary extinction risk. The intersection of 809 

all three components represents the potential for secondary extinction, highlighting the 810 

cascading effects of ecological disruption in pollination services on plant survival under 811 

changing climatic conditions.  812 
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 817 

Fig. 2. Conceptual diagram showing hypothesized effects of the impacts of phenological 818 

mismatch between plants and pollinator bees on plants’ secondary extinction risk. 819 

Standard models of how secondary extinction risk of plants is related monotonically to 820 

phenological mismatch with pollinator bees (A). The relationship can be fit with a general 821 

exponential model (y ~ axb; dashed purple line: 0 < b < 1; orange line: b > 1). If the plants 822 

located in low-latitude regions are more dependent on specialist bees for pollination due 823 

to high specialization at low-latitudes whereas plants at high latitudes rely more on 824 

generalist bees, the sensitivity of secondary extinction risk to phenological mismatch could 825 

either decrease from low to high latitudes for plants interacting with specialist pollinators 826 

(dashed red line) or increase for plants interacting with generalist pollinators (dark blue 827 

line) (B). 828 
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 835 

Fig. 3. Occurrence records and herbarium specimens separately collected for seven 836 

pollinator bee species (A) for the Viola genus and 23 Viola plant species (B) used in our 837 

study across the eastern United States. 838 
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 849 

Fig. 4. The relationship between the primary extinction risk directly caused by climate 850 

change and the secondary extinction risk indirectly resulting from phenological mismatch 851 

with pollinator bees for Viola spp. Pearson’s correlation coefficients (r) are shown for each 852 

panel, with each panel representing one of the seven bee species (generalists, A-F; 853 

specialist, G) in interaction with all Viola species across all grid cells. 854 
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 863 

Fig. 5. The relationship between latitude and (A) primary extinction risk of plants; (B), 864 

phenological mismatch (separately for interactions with generalist and specialist 865 

pollinator bees); and (C) secondary extinction risks of plants (separately due to 866 

phenological mismatch with generalist and specialist pollinator bees) in the 2070s. The 867 

risk of secondary extinction for plants is calculated based on both species’ probability of 868 

occurrence and phenological mismatch with pollinator bees. The median values of species’ 869 

probability of occurrence and phenological mismatch at each grid cell are calculated across 870 

three General Circulation Models (GCMs, GISS-E2-1-G, HadGEM3, INM-CM4-8). 871 
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 884 

Fig. 6. Sensitivity of secondary extinction risk for Viola spp. to phenological mismatch with 885 

(A) generalist bees and (B) a specialist bee across latitudes in the 2070s. The median 886 

values of species’ probability of occurrence and phenological mismatch at each grid cell 887 

are calculated across three GCMs (as in Fig. 5). 888 
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Table 1 Summary of mixed-effects beta regression for secondary extinction risk of Viola 902 

associated with phenological mismatch with six generalist and a specialist pollinator bee 903 

across latitudes. We included 47 plant-bee pairs with a model fit greater than 0.5 for the 904 

regression of secondary extinction risk on phenological mismatch. The median 905 

phenological mismatch value derived from three GCM climate scenarios was used to 906 

calculate the secondary extinction risk of plants for each grid cell. 907 

*P < 0.05; **P < 0.01; ***P < 0.001 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

Variable Estimate ± SE Z-value P-value 

Intercept −3.028 ± 0.183 −16.58 < 0.001*** 

Scale(latitude) 0.413 ± 0.003 131.61 < 0.001*** 

Specialist −1.027 ± 0.398 −2.58 0.009** 

Scale(latitude): Specialist −0.044 ± 0.011 3.91 < 0.001*** 
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Table 2 Summary of mixed-effects beta regression for the sensitivity of secondary 920 

extinction risk of Viola to phenological mismatch across latitudes. Beta regressions were 921 

constructed separately for plants pollinated by generalist bees and those pollinated by a 922 

specialist bee. We included 47 plant-bee pairs with a model fit greater than 0.5 for the 923 

regression of secondary extinction risk on phenological mismatch. The median 924 

phenological mismatch value derived from three GCM climate scenarios was used to 925 

calculate the secondary extinction risk of plants for each grid cell. 926 

 927 

 Variable Estimate ± SE Z-value P-value 

 

Generalists 

Intercept −3.007 ± 0.122 −24.7 < 0.001*** 

Phenological mismatch 0.761 ± 0.002 382.4 < 0.001*** 

Latitude 0.174 ± 0.002 95.8 < 0.001*** 

Phenological mismatch: Latitude −0.051 ± 0.002 −34.1 < 0.001*** 

 

Specialist 

Intercept −4.149 ± 0.137 −30.33 < 0.001*** 

Phenological mismatch 1.073 ± 0.006 179.64 < 0.001*** 

Latitude 0.155 ± 0.006 25.63 < 0.001*** 

Phenological mismatch: Latitude −0.205 ± 0.006  −36.22 < 0.001*** 

*P < 0.05; **P < 0.01; ***P < 0.001 928 
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