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ABSTRACT 1 

Climate change can lead to “secondary extinction risks” for plants owing to the decoupling 2 

of life-cycle events of plants and their pollinators (i.e., phenological mismatch). However, 3 

forecasting secondary extinction risk under future climate change remains challenging. We 4 

developed a new framework to quantify plants’ secondary extinction risk associated with 5 

phenological mismatch with bees using ca. 15,000 crowdsourced specimen records of 6 

Viola species and their solitary bee pollinators spanning 120 years across the eastern 7 

United States. We further examined latitudinal patterns in secondary extinction risk and 8 

explored how latitudinal variation in plant-pollinator specialization influence this risk. 9 

Secondary extinction risk of Viola spp. increases with latitude, indicating that future 10 

climate change likely will pose a greater threat to plant-bee pollinator networks at 11 

northern latitudes. Additionally, the sensitivity of secondary extinction risk to 12 

phenological mismatch with both generalist and specialist bee pollinators decreases with 13 

latitude: specialist bees display a sharper decrease at higher latitudes. Our findings 14 

demonstrate that existing conservation priorities identified solely based on primary 15 

extinction risk directly caused by climate change may not be sufficient to support self-16 

sustaining populations of plants. Incorporating secondary extinction risk resulting from 17 

ecological mismatches between plants and pollinators into future global conservation 18 

frameworks should be carefully considered.    19 

 20 
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SIGNIFICANCE 27 

Climate change can directly contribute to primary extinction and indirectly lead to 28 

secondary extinction risks for plants if it decouples the timing of when plants flower and 29 

their pollinators are active. However, secondary extinction risk remains understudied. 30 

Using specimen records of Viola species and the bees that pollinate them, we demonstrate 31 

an increased secondary extinction risk with increasing latitude, indicating that climate 32 

change is expected to disrupt plant-bee pollinator networks more severely in northern 33 

latitudes; latitudinal variations in plant-pollinator specialization would significantly affect 34 

secondary extinction risk. Conservation plans should thus account for both primary and 35 

secondary extinction risks that can be anticipated in the face of future climate change.   36 

  37 
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Introduction 38 

Predicting species responses to rapid climate change is of tremendous importance for 39 

understanding future biodiversity loss and directing limited resources toward the most 40 

effective conservation strategies (1-3). However, most research focuses on direct 41 

(“primary”) extinction risks resulting from climate change rather than indirect 42 

(“secondary”) extinction risks that arise for example from disrupted biotic interactions 43 

with key partners (i.e., ecological mismatch) (4-6). For example, phenological mismatches 44 

can occur when responses to climatic change cause plant flowering time and coincident 45 

pollinator activity to become temporally or spatially decoupled (7-9). Such decoupling may 46 

lead to reduced plant reproduction (i.e., fitness) via pollen limitation and possibly 47 

contribute to a “secondary extinction vortex” (5, 10) (Fig. 1A). However, the effects of 48 

climate change on secondary extinction risk in plants remain challenging to quantify and 49 

predict (5). Furthermore, the impacts of phenological mismatch on plants vary depending 50 

on the type of pollinators they interact with. For example, generalist pollinators can obtain 51 

floral resources from multiple plant taxa and thus could more effectively alleviate the 52 

negative impacts of climatically-driven phenological shifts in flowering. In contrast, plants 53 

that depend on specialist pollinators are more likely to be negatively impacted by 54 

phenological mismatch than those with generalist pollinators (11). 55 

Most studies involving natural variation in phenological mismatch and its consequences 56 

on plant fitness have focused on temporal trends (12) at one or only a few locations, rather 57 

than on its spatial variability. However, phenological responses of both plants and 58 

pollinators to climatic change may vary spatially across latitudes (13-15). For example, 59 

Weaver and Mallinger (16) identified that the rate at which Vaccinium flowering 60 

phenology is advancing (i.e., flowering earlier in the year) is highest in southern 61 

populations. In contrast, bee activity is occurring significantly earlier in more northern 62 

populations (16). Such differential variation in the phenological responses of plants and 63 

bees along latitudinal gradients may lead to unexpected and undetected latitudinal 64 

patterns of phenological mismatch and associated secondary extinction risks for plants, 65 
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especially if there are also latitudinal differences in pollinator specialization (17-20) (Fig. 66 

1B). 67 

Here, using crowdsourced historical specimen records of Viola species and their solitary 68 

bee pollinators spanning 120 years across the eastern United States (Fig. 2; SI Appendix, 69 

Tables S1-S2), we develop a new framework (Eqns. 1-6 in Methods) to quantify the risks of 70 

secondary extinctions for plants by integrating plant-pollinator interactions into species 71 

distribution models (SDMs). We then use this framework to assess (1) the latitudinal 72 

relationship between phenological mismatch and secondary extinction risk (Fig. 1A) and 73 

(2) document how latitudinal differences in plant-pollinator specialization versus 74 

generalization affects the risk of secondary extinction (Fig. 1B). Finally, we discuss how we 75 

can use our forecasts of geographical patterns in primary and secondary extinctions of 76 

plants to provide new directions for conservation planning under future climate change. 77 

Results 78 

Phenological responses of plants and bees along climatic gradients 79 

The flowering times of Viola species were significantly affected by both the long-term 80 

average and anomaly of mean annual temperature (MAT), and by the interaction between 81 

MAT and annual precipitation anomalies (SI Appendix, Table S3). Holding other variables 82 

constant, an increase of 1 standard deviation (SD) in long-term average of MAT (i.e., 4℃) 83 

advanced flowering by 18 ± 0.3 d across all species. An increase of 1 SD in MAT anomaly 84 

(i.e., 0.7℃) advanced flowering by 2 ± 0.2 d on average. Our model also identified a 85 

positive interaction between MAT and annual precipitation anomalies: increased annual 86 

precipitation was associated with delayed flowering during warmer years. 87 

The mean activity time of pollinator bees for Viola also was influenced by climate (SI 88 

Appendix, Tables S4-S5). For generalist bees, their mean activity time was affected only by 89 

long-term averages of MAT and annual precipitation, but not by any climate-anomaly 90 

variable (SI Appendix, Table S5). An increase of 1 SD in long-term average of MAT (i.e., 91 

3.2℃) advanced the mean activity time of generalist bees by 17 ± 0.4 d, whereas an 92 
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increase of 1 SD of long-term average of annual precipitation (i.e., 113.8 mm) delayed their 93 

mean activity time by 1.7 ± 0.3 d across all species. For the specialist bee, the long-term 94 

average of MAT and anomaly in annual precipitation strongly affected its mean activity 95 

time (SI Appendix, Table S4). An increase of 1 SD in long-term average of MAT (i.e., 1.7℃) 96 

advanced activity time by 10 ± 0.9 d on average. An increase of 1 SD in the annual 97 

precipitation anomaly (i.e., 20% of the long-term average) advanced mean activity time by 98 

3 ± 1.0 d. 99 

Species distribution models and primary extinction risk 100 

Most of the SDMs for Viola had high predictive power, with mean TSS values of 0.7, 0.73 101 

and 0.76 for GAM, GLM and MaxEnt, respectively. Fewer than 5% of models were excluded 102 

due to insufficient predictive power (TSS < 0.5). The probabilities of occurrence calculated 103 

by the three different SDM algorithms were highly correlated under both current and most 104 

future conditions estimated by three GCMs (mean r > 0.7 across all species; SI Appendix, 105 

Table S6–S7), suggesting that our results were not affected by the choice of SDM algorithm 106 

or GCM. Therefore, in the following sections we present only our results from MaxEnt and 107 

the median of all GCMs. 108 

Secondary extinction risk 109 

The secondary extinction risk of Viola spp. was estimated to monotonically increase with 110 

phenological mismatch with their bee pollinators. Approximately 52% (i.e., 84 out of 161) 111 

of plant- pollinator pairs had R2 values > 0.2, and 30% (i.e., 47 out of 161) of pairs had R2 112 

values > 0.5 (SI Appendix, Table S8). The geographic patterns in secondary extinction risks 113 

forecast for the 2070s significantly differed from the patterns in primary extinction risk 114 

(i.e., mean Pearson’s r between primary and secondary extinction risks across all plant-115 

pollinator pairs < 0.4; Fig. 3; SI Appendix, Table S9). 116 

In general, secondary extinction risk of Viola spp. increased with latitude as a function of 117 

their phenological mismatch with both specialist and generalist bees (Fig. 4). The 118 

phenological mismatch with generalist bees contributed more markedly to secondary 119 

extinction risk in high-latitude regions than did the mismatch with the specialist bee (Figs. 120 
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4B, 4C; Table 1). The sensitivity of secondary extinction risk to phenological mismatch was 121 

significantly lower for mismatches with generalist bees than for the specialist bee (Fig. 5). 122 

However, the sensitivity to phenological mismatch with the specialist bee showed a 123 

sharper decrease in high-latitude regions relative to the mismatch with generalist bees 124 

(Table 2). These results were qualitatively consistent across different R2 thresholds used 125 

for filtering plant-bee pairs with low model fit (SI Appendix, Tables S10–S13) and across 126 

different GCMs (SI Appendix, Figs. S1-S2). 127 

After accounting for potential buffering effects using the minimum phenological mismatch 128 

value across all generalist bees for each plant species at each grid cell, we still observed a 129 

significant increase in the secondary extinction risk of Viola spp. with latitude (SI Appendix, 130 

Table S14). The sensitivity of plants’ secondary extinction risk to phenological mismatch 131 

also decreased with latitude for interactions with both generalist and specialist bees. 132 

Likewise, the sensitivity to phenological mismatch with the specialist bee showed a 133 

sharper decrease in high-latitude regions relative to the mismatch with generalist bees (SI 134 

Appendix, Table S15). These results suggest that generalist bees have no significant 135 

buffering effects on our conclusions.  136 

Discussion 137 

Although many plant species are being negatively affected by climate change (3, 21), their 138 

potential extinction risk might be especially severe for those that have lost their principle 139 

pollinators or for species whose phenological responses to climate change cause temporal 140 

mismatches with their pollinators (22-26), effectively creating a “secondary extinction 141 

vortex” (5). However, less is known about the latitudinal patterns in the risks of secondary 142 

extinctions for plants. Our results demonstrate increased risks of secondary extinctions for 143 

Viola species with latitude and reveal how latitudinal variations in plant-pollinator 144 

specialization influence plants’ secondary extinction risk. These findings will help to 145 

inform conservation policies to mitigate further extinction risks resulting from disrupted 146 

plant-pollinator interactions under future climate change. 147 
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Secondary extinction risk increases with latitude  148 

We identified a significant increase in secondary extinction risk of Viola spp. with 149 

increasing latitude that appears to be driven by phenological mismatch with generalist 150 

bees (Fig. 4). This result is likely attributable to the accelerated warming and the high 151 

climatic variability observed at higher latitudes (27, 28), and to differing phenological 152 

sensitivities of plants and pollinators to climate change. A high degree of warming and 153 

high climatic variability often lead to an acceleration in phenology (21). The different 154 

sensitivities of plants and pollinators results in increasing asymmetry in phenological 155 

responses between these groups, thereby increasing the likelihood of phenological 156 

mismatch (29, 30). Our results demonstrate that the flowering time of Viola spp. is 157 

predominantly influenced by temperature, but the activity time of a specialist bee is more 158 

strongly shaped by precipitation (SI Appendix, Table S4). However, generalist bees were 159 

not significantly affected by any climate factor we included in our models (SI Appendix, 160 

Table S5). This indicates that phenological (mis)matches between plants and pollinators 161 

likely depend on species (or taxa)-specific responses to climatic cues that vary with 162 

latitude.      163 

It is worth noting that plants’ secondary extinction risks may be ameliorated by 164 

reproductive strategies or other traits that may buffer against phenological mismatches 165 

with pollinators or their loss altogether. Relevant here is that the self-pollinating 166 

cleistogamous flowers of Viola spp. ensure reproductive success especially in 167 

environments such as high-latitude regions with unstable conditions, short growing 168 

seasons, and a lack of pollinators, albeit with a potential cost of inbreeding depression 169 

resulting from reduced genetic variability and fitness of offspring (31, 32). Other species 170 

may also evolve the ability for self-pollination, thereby achieving self-sustaining or even 171 

short-term expansion of plant populations during periods of rapid climate change (e.g., 172 

Capsella rubella) (33). However, inbreeding depression associated with self-pollination 173 

may severely limit the ability of plants to adapt to novel environmental conditions 174 

expected to occur under different climate change scenarios, ultimately increasing both 175 
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primary and secondary extinction risks. Limited detection by crowd-sourcers precluded 176 

our ability to include cleistogamous flowers in our analysis, but future research should 177 

assess whether there is any association between the relative proportion of cleistogamous 178 

and chasmogamous flowers, climate change, and phenological mismatch. 179 

More generally, our results indicate that climate change likely will pose a more serious 180 

threat to plant-pollinator networks at higher latitudes, with expected negative effects on 181 

ecosystem stability, gene flow, population maintenance, and biodiversity in these areas 182 

(34, 35). Future studies should explore mechanisms behind the different phenological 183 

responses of plants and insects to climate change, such as phenotypic plasticity, local 184 

adaptation, and evolutionary change in reaction norms (36), and assess the potential 185 

impacts of these changes on other important ecological interactions (e.g., seed dispersal, 186 

vegetation regeneration). 187 

The sensitivity of secondary extinction risks to phenological mismatch 188 

The degree of specialization in plant-pollinator interactions is not spatially uniform. 189 

Several studies have reported increasing biotic specialization in the tropics toward the 190 

equator. Because resources are divided more finely among a large number of plant species 191 

at lower latitudes, each species tends to rely on specific resources to promote niche 192 

differentiation and reduce interspecific competition (37). Therefore, plants at lower 193 

latitudes may be more ecologically specialized than those at high latitudes (38, 39). Based 194 

on this, we hypothesized that plant secondary extinction risks should have been more 195 

sensitive to phenological mismatches with specialist bees at lower latitudes. However, we 196 

identified that the sensitivity of Viola to phenological mismatch decreased with latitude for 197 

both specialist and generalist bees, with specialist bees showing a sharper decrease at 198 

higher latitudes (Fig. 5). This result suggests that plants rely on both specialists and 199 

generalists for pollination at low latitudes but may depend more heavily on generalist bees 200 

at high latitudes, partially supporting the arguments of previous studies (38, 39).  201 

This may reflect the strategies of plant individuals at different latitudes to mitigate the 202 

risks of secondary extinction. Although higher diversity at low latitudes leads to greater 203 
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specialization among individuals (18), the high resource diversity at low latitudes also 204 

requires pollinator bees to generalize their diet (40). Pollinator bees must thus diversify 205 

their food sources to meet the needs of various plants (41). Thus, it appears the high 206 

dependency of Viola on both specialist and generalist bees increases pollination efficiency 207 

and reduces secondary extinction risk in environments with high competition at low 208 

latitudes. 209 

At high latitudes, in contrast, shorter growing seasons require plants to maximize 210 

pollination efficiency to ensure successful reproduction (42). Generalists associated with 211 

many partners may have distinct selective advantages compared to specialists because of 212 

sampling, complementarity, and portfolio effects, enabling these generalists to visit a 213 

variety of plants within a short time frame (43). Generalized pollination at higher latitudes 214 

is likely to increase functional redundancy and resistance of plant communities to 215 

secondary extinctions (7, 34). 216 

Because our study incorporates only one plant taxon, our understanding of the 217 

evolutionary strategies behind variations in the sensitivity of secondary extinction risk to 218 

phenological mismatch with generalist and specialist bees across latitudes remains 219 

somewhat limited. Future research should seek to include multiple plant taxa at larger 220 

spatial and phylogenetic scales to gain a deeper insight into mechanisms driving these 221 

variations and make the relevant conclusions more broadly applicable.      222 

Implications for future conservation planning 223 

Although the protection of individual species remains the fundamental premise of 224 

conservation biology, conservation biologists (or ecologists) have evolved from their early 225 

emphasis on preserving individual species to a broader remit that now includes the 226 

maintenance of interaction networks and ecosystem services that improve human well-227 

being (e.g., food and fruit supply) (44). For example, it is estimated that 5–8% of global 228 

crop production would be lost without effective pollination, especially by insects (45, 46). 229 

We identified that the geographical patterns in primary extinction risk of Viola spp. 230 
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resulting from climate change were not strongly correlated with secondary extinction risk 231 

associated with phenological mismatch with bees (Fig. 3; SI Appendix, Table S9). This 232 

suggests that conservation priorities identified based solely on primary extinction risks as 233 

is commonly done is likely insufficient to address the multivalent complexities of 234 

extinction risk and could fail to support self-sustaining populations of either the plants or 235 

their mutualist bee pollinators (47). Our results underscore the importance for future 236 

conservation planning of addressing secondary extinction risks caused by asynchrony 237 

between plants and pollinators. These conservation strategies may include establishing 238 

effective pollinator corridors, long-term phenological monitoring of both plants and 239 

pollinators, protecting climate-sensitive pollinator habitats, and integrating secondary 240 

extinction risk into global conservation frameworks. Of course, continued basic science 241 

research into the nature, timing, and disposition of plants and associated pollinator 242 

interactions needs greater focus and emphasis in the coming years. Natural history 243 

collections remain an essential resource for such efforts (48-50). 244 

Our study assumed that all bee species occurred across the entire eastern United States 245 

and focused only on the risks of secondary extinctions for plants. However, reduced floral 246 

resources could also cause the activity periods of bees to decline when no food plants are 247 

available, leading to decreased diet breadth and subsequent secondary extinction risks for 248 

pollinators (23). Future studies should further develop modeling frameworks to 249 

comprehensively consider the impacts of climate change on the secondary extinction of 250 

both plants and pollinators. 251 

Materials and Methods 252 

Study system 253 

We focused on 23 Viola plant species and 7 solitary bee species (SI Appendix, Tables S1-S2) 254 

in the eastern United States (i.e., coastal states from Maine in the north to Florida, and also 255 

westward to West Virginia). We chose this system for several reasons. First, there is 256 

reliable, published information on generalist versus specialist bees that pollinate Viola spp. 257 

in this large geographic region. Second, both Viola and its pollinators have been widely 258 
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collected, and abundant historical specimen records are available and digitized as part of 259 

the global metamuseum (50, 51). Herbarium specimens for Viola spp. have easily 260 

identifiable chasmogamous flowers, enabling us to estimate their corresponding flowering 261 

times using previously published methods (52-54). Finally, both Viola and its pollinators 262 

have large geographic ranges across the eastern United States (Fig. 2), which allow us to 263 

examine phenological shifts across latitudes. 264 

Viola is a large genus of flowering plants in the family Violaceae. Many species of Viola 265 

have a dual reproductive strategy, which involves two distinct flower types: the early-266 

stage floral bud is predetermined to develop into either a chasmogamous (open and 267 

outcrossing) or cleistogamous (closed, and self-pollinating) flower (55). Among the 73 268 

species of Viola in the US north of Mexico, 60 are reported to have cleistogamous flowers 269 

(https://beta.floranorthamerica.org/Viola). 270 

Solitary bees in the families Andrenidae, Anthophoridae, and Megachilidae are among the 271 

most important pollinators of chasmogamous Viola flowers (56). Andrena violae 272 

(Andrenidae) is a genus-level specialist pollinator of Viola in the eastern United States 273 

(https://jarrodfowler.com/specialist_bees.html). The other six bee species we studied are 274 

genus-level generalist pollinators with contrasting natural histories (solitary ground 275 

nesting Andrena spp. [Andrenidae] and solitary above-ground cavity nesting Osmia spp. 276 

[Megachilidae]; SI Appendix, Table S2). These generalist bee species are reported to 277 

pollinate plants belonging to genera other than Viola. For example, Andrena carlini is 278 

known to visit flowers from genera such as Taraxacum, Rubus, and Vaccinium. We follow 279 

the coding by Bartomeus et al. (7) of pollination relationships between Viola and these 280 

generalist bees. These bee species are known to emerge in early spring, which is a 281 

particularly important time period in terms of organismal response to climate change (57) 282 

and can be compared with early-flowering plants such as Viola spp. 283 

Viola occurrence data 284 

We derived occurrence and phenology data for Viola spp. from herbarium specimens 285 

digitized by the Consortium of Northeastern Herbaria (CNH; 286 



12 

 

https://portal.neherbaria.org/portal/) and the Southeast Regional Network of Expertise 287 

and Collections (SERNEC; https://sernecportal.org/portal/index.php). The 23 Viola 288 

species we used for our study (SI Appendix, Table S1) met the following criteria: 1) there 289 

were at least 50 unique specimens per species across the eastern United States; 2) the 290 

specimens had both an exact collection date (which we expressed as day of year [DOY] 291 

ranging from 1–365) and either exact or county-level location information (the latter were 292 

georeferenced to the geographic centroid of the county); and 3) the specimens included 293 

reproductive structures that were easily identifiable and countable (i.e., buds, flowers, and 294 

fruits).  295 

For species distribution modeling, we augmented the occurrence data of the 23 Viola 296 

species from CNH and SERNEC with county-level distribution data (i.e., presence/absence 297 

data) from the Biota of North America Program’s (BONAP; http://www.bonap.org/) North 298 

America Plant Atlas (NAPA) (58) and from the Global Biodiversity Information Facility 299 

(GBIF; https://gbif.org/). County-level occurrence data were then overlaid onto 40×40-km 300 

grid cells (Mercator projection EPSG 3857) covering the eastern United States. As some 301 

grid cells were located on the borders and along the coasts of the eastern United States, we 302 

removed incomplete grid cells (i.e., those with an area smaller than 800 km2). If more than 303 

half of a grid cell was covered by one or several counties with the occurrence of a species, 304 

it was considered to be present in that grid cell (59). 305 

Viola phenology 306 

We hired crowdsourcers through Amazon’s Mechanical Turk service (MTURK; 307 

https://www.mturk.com/) to count the number of buds, flowers, and fruits of each 308 

digitized herbarium specimen from CNH and SERNEC using the CROWDCURIO platform 309 

(53) following well established protocols (54, 60, 61). Each specimen was independently 310 

evaluated by three individuals (on average), and we used a reliability score to assess the 311 

reliability of each individual and their data (54, 59). Specifically, each 10-image set, in 312 

random order and scored by one person, included nine unique images and one duplicate 313 

image. This duplicate image was randomly selected from the remaining nine images. The 314 

https://portal.neherbaria.org/portal/
https://sernecportal.org/portal/index.php
http://www.bonap.org/
https://gbif.org/
https://www.mturk.com/
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reliability scores were calculated as the absolute difference in counts of buds, flowers, and 315 

fruits between the two duplicate specimens, divided by the total counts for each 316 

phenological state separately, and then subtracted from 1 (62). Specimen observations 317 

scored by crowdsourcers with a reliability score of zero were excluded from our analyses 318 

following Park et al. (54). If an individual received a reliability score of zero for one organ, 319 

all organs would be assigned a score of zero and thus excluded from our analyses.  320 

In total, the crowdsourcers provided reliable data on Viola flowering phenology from 321 

8,200 specimens spanning 124 years (i.e., 1895–2018). Of these, ≈50% (4,075 specimens) 322 

were considered to represent the main flowering period following (61) of the Viola spp. 323 

and were used in subsequent analyses. That is, each of these 4,075 specimens: i) contained 324 

at least one open flower; ii) contained more open flowers than the combined number of 325 

buds and fruits; iii) contained a number of flowers representing at least 5% of the 326 

maximum number of flowers observed on a given species; and iv) had collection dates 327 

between the 5% and 95% quantile of observed flowering dates (DOYs).  328 

Bee occurrence data 329 

Approximately 80% of the occurrence records of the seven bee pollinator species 330 

(henceforth “bees”) were gathered from the online Symbiota Collections of Arthropods 331 

Network (SCAN) (63); additional collection records of preserved specimens were obtained 332 

from GBIF. Only SCAN and GBIF records that included an exact date and location (i.e., 333 

latitude and longitude or county information that could be assigned to its centroid) were 334 

included in our analysis. To prevent bias introduced by different collection efforts, only 335 

one record representing a certain collection event was retained; occurrence records were 336 

considered to be from the same collection event if they had both the same date and 337 

coordinates of collection (16). The 6,714 bee occurrence records that met the above 338 

criteria were collected in the eastern United States between 1900 and 2022. Bee 339 

occurrence data were mapped onto the same 40×40-km grid cells covering the eastern 340 

United States that we used to map the Viola occurrence data. 341 

Bee phenology 342 
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We used DOY of the collection date of each unique bee occurrence record as a proxy for a 343 

day on which it was actively foraging. To estimate the main occurrence time of each bee 344 

species, we used MaxLike, a formal likelihood model that explicitly estimates the 345 

probability of species occurrence given presence-only data and a set of environmental 346 

covariates (64). Here, we assume that specimen records with a high probability of 347 

occurrence, generated by MaxLike, represent those periods when the focal bee species is 348 

most likely active. This is because MaxLike models are trained on presence-only data and 349 

can capture the temporal and environmental preferences associated with species’ activity 350 

patterns. Although this approach ignores finer-scale behavioral variations, it provides a 351 

relatively reliable proxy for the main activity periods in MaxLike. We initially chose six 352 

bioclimatic variables relevant to bee distributions to build the models: temperature 353 

seasonality, mean temperature of the warmest quarter, mean temperature of the coldest 354 

quarter, precipitation seasonality, precipitation of the wettest quarter and precipitation of 355 

the driest quarter. We excluded mean temperature of the coldest quarter due to its high 356 

correlation with other variables (r > 0.7). Climatic data for each year-locality combination 357 

were obtained from PRISM database (see the detailed description in Environmental data, 358 

below).  359 

For each bee species, we randomly selected 80% of the occurrence data as the training 360 

dataset, and this process was replicated 100 times. To evaluate the predictive accuracy of 361 

each model, we first identified the minimum predicted area (MPA) (65), which is the 362 

proportion of the study area predicted as present based on the probability threshold that 363 

ensures a user-defined percentage of the test data is correctly classified as present. Here, 364 

we set this proportion to 90%. Models yielding a low MPA are considered superior and 365 

models with an MPA larger than 0.7 were excluded, following Engler et al. (65). We 366 

calculated the median probability of occurrence value from the remaining models for each 367 

species and extracted the 95% confidence interval to present their main activity periods. 368 

However, it is worth noting that these data points do not fully represent the complete grid-369 

cell level distributions of bee species when we overlap data points with 40km grid cells. 370 

Therefore, we did not construct SDMs for bee species and assumed that all bee species 371 
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occurred over the entire eastern United States when calculating the secondary extinction 372 

risk of plant species.     373 

Environmental data 374 

Climatic and geographic data of specimen localities for plants and bees 375 

We used estimates of historic (1895–2022) average monthly air temperature and 376 

precipitation data at a 4-km resolution from PRISM (product AN81m; 377 

https://prism.oregonstate.edu/). For each specimen with a specific location and year 378 

combination, we estimated the mean annual temperature (MAT) and annual precipitation 379 

and assigned these values to the corresponding specimens for both plants and bees. For 380 

each collection site, we first calculated the long-term mean temperature and precipitation 381 

conditions separately for plants and for bees. We then calculated the temperature and 382 

precipitation anomalies, which we defined as the difference in climatic conditions between 383 

the year of collection and the long-term mean for the entire collection range (i.e., 1895-384 

2018 for plants and 1900-2022 for bees), for each record location, following Munson and 385 

Long (66) and Pearson et al. (67). Climatic anomalies have been shown to be associated 386 

with plant flowering time and are used widely in modeling phenology-climate 387 

relationships (30, 66). 388 

Environmental data used for modeling plant distributions 389 

Recent (1970–2000) and future forecasted (2061–2080; henceforth referred to as 390 

“2070s”) climatic data at a resolution of 2.5-arc-minute were obtained from WorldClim 391 

(https://www.worldclim.org/, ver. 2.1; all 19 climatic variables, bio1–bio19) and climate 392 

values assigned to each grid cell were the means of all data points within it. We also 393 

included five soil variables (i.e., sand content, clay content, silt content, bulk density, and 394 

coarse fragments) in the SDMs for plants (68). We assumed these soil variables were 395 

constant through time, and calculated their within-grid-cell mean values at two soil depths 396 

(0–5 cm and 5–15 cm) using data from the SoilGrid250m database 397 

(https://www.soilgrids.org/). 398 

https://prism.oregonstate.edu/
https://www.worldclim.org/
https://www.soilgrids.org/
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We reduced the number of environmental and climatic variables using principal 399 

component analysis (PCA) on 24 soil and climatic variables. The eigenvectors were used to 400 

calculate the scores of the first seven derived principal components, which represent 401 

97.3% of the total variance and were used as new predictors for creating the SDMs for all 402 

Viola species. The same eigenvectors were used to calculate the scores of the principal 403 

components for future environmental scenarios.   404 

Future climatic projections were derived from three General Circulation Models (GCMs)— 405 

GISS-E2-1-G, HadGEM3, and INM-CM4-8—run for the most extreme Shared Socio-406 

economic Pathways (SSPs)—SSP5-8.5 (69). 407 

Statistical modeling 408 

Relationships between climate and phenology 409 

We applied linear mixed-effect models (LMMs) to examine the phenological sensitivities of 410 

plants and occurrence of bees to current and future climates across the eastern United 411 

States. This model framework allowed us to hierarchically incorporate the variation in 412 

phenological responses to climate across multiple species (70). The same structure and 413 

predictor variables were used for separate models fitted for Viola, the six generalist bees, 414 

and the specialist bee. All predictor variables were centered and scaled to a mean value of 415 

0 and a SD of 1 to avoid introducing bias. Correlation coefficients among all selected 416 

predictor variables were < 0.1, limiting the effects of collinearity. 417 

For the full Viola model, the response variable was the DOY for each specimen (as 418 

representing its mean flowering time). Predictor variables included as fixed effects the 419 

long-term average (1895-2018) and inter-annual anomalies of mean temperature and 420 

total precipitation, the interaction between temperature and precipitation anomalies. The 421 

full model also included a random-intercept term for species and random slopes for 422 

species responses to temperature and precipitation anomalies. The random slopes are 423 

interpreted as species-specific phenological sensitivities to inter-annual climate change.  424 

For the full model for generalist bees, the response variable was the DOY for each 425 

collection record (as representing its mean activity time). Fixed predictor variables 426 
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included long-term average (1900-2022) and inter-annual anomalies of mean temperature 427 

and total precipitation, the interaction between temperature and precipitation anomalies. 428 

The full model also included a random-intercept term for generalist bee species and 429 

random slopes for the responses of generalist bee species to temperature and 430 

precipitation anomalies. Since the dataset included only one specialist bee, the model for 431 

the specialist bee did not incorporate any random components.  432 

All models were fitted using the “lmer” function in the “lmerTest” package (ver. 3.1-2) (71) 433 

of the R software system (ver. 4.2.1). The significance of the effects of the predictor 434 

variables was evaluated using the z-distribution to obtain p-values from the Wald t-values 435 

provided by the model output (72). We also applied the “fitme” function in the “spaMM” 436 

package to check whether our results were affected by spatial autocorrelation of response 437 

variables (ver. 4.5.0) (73). We found no substantial differences in the results of the LMMs 438 

that either included or excluded potential autocorrelation structures for both plants and 439 

bees, so we report only the results of the models without spatial autocorrelation included.  440 

To predict the mean flowering time for each plant species in each grid cell and mean 441 

activity time for each bee species in each grid cell under recent (i.e., 1970–2000) and 442 

future (2070s) conditions, we applied the “predict” function in the “stats” package (ver. 443 

4.0.0) to the fits of the LMMs. Recent and future temperature anomalies for each grid cell 444 

were estimated as differences from its long-term mean temperature, whereas 445 

precipitation anomalies were calculated as a proportion of its long-term mean 446 

precipitation.   447 

Species distribution models to estimate the primary extinction risk of Viola species 448 

As our Viola dataset lacked true absences, we generated random pseudo-absences (i.e., 449 

randomly selected grid cells that were considered as species absences) (74). For each 450 

species, twice as many pseudo-absences as real presences were generated; the entire 451 

procedure was repeated 10 times, each time with a new set of pseudo-absences. SDMs 452 

were calibrated for each species using three algorithms: generalized linear models (GLMs), 453 

generalized additive models (GAMs) and MaxEnt. We used a repeated data-splitting 454 
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procedure to evaluate the predictive power of each individual model. Each model was 455 

trained on 80% of the distribution data of each species before being assessed against the 456 

remaining 20% using the true skill statistic (TSS) (75). This data-splitting procedure was 457 

also repeated 10 times (resulting in a total of 100 individual models for each algorithm and 458 

species). Those models with TSS > 0.5 were adopted to project the probability of 459 

occurrence of each plant species per grid cell under both current and future conditions. 460 

Model projections were carried out over the entire eastern United States and all models 461 

were projected at the same spatial resolution as the distribution data (i.e., 40-km). We 462 

used the median value of all model predictions as the final forecast of occurrence 463 

probability for each Viola species. In the context of extinction, the primary extinction risk 464 

(Pe) of plant species within each grid cell was simply calculated as 1−the probability of 465 

occurrence (76).    466 

Calculation of secondary extinction risk of Viola species 467 

We inferred the secondary extinction risk of Viola spp. based on their predicted 468 

probability of occurrence from SDMs and their predicted phenological mismatch with 469 

bees. The temporal gap (i.e., phenological mismatch) between the mean flowering DOY and 470 

the mean activity DOY of bees for each plant-bee species pair was calculated at each grid 471 

cell under both recent (1970–200) and future (2070s) climatic conditions. Since 472 

phenological events are cyclical and repeat annually, the entire year can be represented as 473 

a 360-degree circle. We first converted DOY to angles to directly compare the mean 474 

flowering time of plants and the activities of bees on a standardized circular scale (Eqns. 1 475 

and 2). We then calculated the absolute value of the difference between 𝐴𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑛𝑡 and 476 

𝐴𝑛𝑔𝑙𝑒𝑏𝑒𝑒 of each plant-bee pair (Eqn. 3). To ensure the difference accounted for the 477 

cyclical nature of angles, we adjusted the difference so it would not exceed 180° (Eqn. 4). 478 

                                  𝐴𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑛𝑡 = (
𝐷𝑂𝑌𝑝𝑙𝑎𝑛𝑡

365
) ∗ 360°               (Eqn. 1)                     479 

                 𝐴𝑛𝑔𝑙𝑒𝑏𝑒𝑒 = (
𝐷𝑂𝑌𝑏𝑒𝑒

365
) ∗ 360°                    (Eqn. 2) 480 

                 𝑑𝑖𝑓𝑓 =  |𝐴𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑛𝑡 −  𝐴𝑛𝑔𝑙𝑒𝑏𝑒𝑒|                              (Eqn. 3) 481 
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             𝑃ℎ𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = min  (𝑑𝑖𝑓𝑓 , 360° − 𝑑𝑖𝑓𝑓)                 (Eqn. 4) 482 

We assumed that the phenological mismatch between plants and bees would lead to a 483 

proportional decrease in probability of occurrence of plant species (as in Fig. 1A). 484 

Therefore, the secondary extinction risk of each plant species at each grid cell could be 485 

estimated approximately as follows (Equations 5 and 6): 486 

 𝑃(mismatch) = 𝑃(occurrence) ∗ (1 −
𝑃ℎ𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

180°
  )             (Eqn. 5) 487 

                    𝑆𝑒 = 𝑃(occurrence) −  𝑃(mismatch)                   (Eqn. 6) 488 

where 𝑃(mismatch) represents the adjusted probability of occurrence of each Viola 489 

species in each grid cell after accounting for the phenological mismatch with each bee 490 

species; 𝑃(occurrence) was the original probability of occurrence of each Viola species in 491 

each grid cell inferred from the SDMs; and 𝑆𝑒 was the estimated secondary extinction risk 492 

(i.e., decreases in probability of occurrence) of each Viola species at each grid cell. As the 493 

phenological mismatch increases, the adjusted probability of occurrence decreases, 494 

leading to a greater increase in potential secondary extinction risk. 495 

Because estimated phenological mismatches between Viola and the bees usually spanned 496 

at most a few dozen days, dividing them by 180° resulted in relatively small values. 497 

Consequently, the final value of 𝑆𝑒  may be predominantly influenced by the 498 

𝑃(occurrence). To more intuitively describe the relationship between the 𝑆𝑒 of each Viola 499 

species and its phenological mismatch with the bees, we fitted 𝑆𝑒 to the phenological 500 

mismatch estimated under current conditions using a power function (Fig. 1A). We used 501 

three different R-squared thresholds (i.e., R2 = 0.2, 0.3, 0.5) to exclude plant-bee pairs with 502 

poor model fit.  503 

The phenological mismatch for the 2070s of each plant-bee pair with a high model fit was 504 

then substituted into the power function to obtain future 𝑆𝑒 of each Viola species. Since 505 

we used the median value of the species’ probability of occurrence at each grid cell across 506 

three GCMs, we extracted the median phenological mismatch across these GCMs to 507 
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minimize the impact of extreme climate values on the mismatch and used it to estimate the 508 

future 𝑆𝑒 . This approach allowed for a more robust representation of climate conditions 509 

by mitigating the influences of outliers that may skew the phenological mismatch 510 

estimates. We also reported the results from each GCM for the subsequent analysis (SI 511 

Appendix, Figs. S1-S2).    512 

Finally, we compared the geographical patterns in Pe and 𝑆𝑒 of each plant species. We then 513 

compared 𝑆𝑒 of plant species resulting from its phenological mismatch with generalists 514 

and specialist bee species across latitudes. We used mixed-effects beta regression for this 515 

comparison; latitude, pollinator type (generalists vs. specialist), and their interactions 516 

were considered to be fixed factors, and individual plant and bee species were treated as 517 

separate random factors. To further examine how plant  𝑆𝑒 changed with latitude under 518 

equivalent phenological mismatches and how this relationship varied between plants 519 

pollinated by generalists and aa specialist, we fitted two additional models: the first was a 520 

mixed-effects beta-regression model with  𝑆𝑒 as the response variable, latitude and 521 

phenological mismatch of each plant-generalist pair as fixed factors, and plant and bee 522 

species as separate random factors. For the second one, we did not include a random 523 

component for bees because we only had a single specialist species. Since beta regression 524 

is designed for continuous outcomes strictly within the (0, 1) interval, it is not suitable 525 

when the response variable includes exact zero values. Therefore, we used alternative 526 

zero-inflated beta regression models to account for the presence of zeros in the  𝑆𝑒 data. 527 

All these analyses were carried out using the “glmmTMB” function in the “glmmTMB” 528 

package (ver. 1.1.9) (77).  529 

Because plant species depend on multiple generalist pollinators, they may still be able to 530 

rely on the most temporally aligned pollinator even in the presence of significant 531 

phenological mismatches with other generalist bees. To account for this buffering effect, 532 

we extracted the minimum phenological mismatch value across all generalist bees for each 533 

plant species at each grid cell and built two beta-regression models to separately explore 534 

the latitudinal patterns in  𝑆𝑒 of plant species and the sensitivity of plant  𝑆𝑒 to 535 
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phenological mismatch across latitude. The beta-regression model structure is the same as 536 

the model described above, which included all generalist bee species within each grid cell 537 

(SI Appendix, Tables S14-S15).   538 

Data availability 539 

All codes and data used in the analyses are currently deposited on Github 540 

(https://github.com/Shijia818/Plant-bee-interactions) and will be available on Zenodo 541 

once accepted.  542 
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Fig. 1. Conceptual diagram showing hypothesized effects of the impacts of phenological 

mismatch between plants and pollinator bees on plants’ secondary extinction risk. 

Standard models of how secondary extinction risk of plants is related monotonically to 

phenological mismatch with pollinator bees (A). The relationship can be fit with a general 

exponential model (y ~ axb; dashed purple line: 0 < b < 1; orange line: b > 1). If the plants 

located in low-latitude regions are more dependent on specialist bees for pollination due 

to high specialization at low-latitudes whereas plants at high latitudes rely more on 

generalist bees, the sensitivity of secondary extinction risk to phenological mismatch could 

either decrease from low to high latitudes for plants interacting with specialist pollinators 

(dashed red line) or increase for plants interacting with generalist pollinators (dark blue 

line) (B). 

 

 

 

 

 

 

 

 

 



 

 

Fig. 2. Occurrence records and herbarium specimens separately collected for seven 

pollinator bee species (A) for the Viola genus and 23 Viola plant species (B) used in our 

study across the eastern United States. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Fig. 3. The relationship between the primary extinction risk directly caused by climate 

change and the secondary extinction risk indirectly resulting from phenological mismatch 

with pollinator bees for Viola spp. Pearson’s correlation coefficients (r) are shown for each 

panel, with each panel representing one of the seven bee species (generalists, A-F; 

specialist, G) in interaction with all Viola species across all grid cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 4. The relationship between latitude and (A) primary extinction risk of plants; (B), 

phenological mismatch (separately for interactions with generalist and specialist 

pollinator bees); and (C) secondary extinction risks of plants (separately due to 

phenological mismatch with generalist and specialist pollinator bees) in the 2070s. The 

risk of secondary extinction for plants is calculated based on both species’ probability of 

occurrence and phenological mismatch with pollinator bees. The median values of species’ 

probability of occurrence and phenological mismatch at each grid cell are calculated across 

three General Circulation Models (GCMs, GISS-E2-1-G, HadGEM3, INM-CM4-8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5. Sensitivity of secondary extinction risk for Viola spp. to phenological mismatch with 

(A) generalist bees and (B) a specialist bee across latitudes in the 2070s. The median 

values of species’ probability of occurrence and phenological mismatch at each grid cell are 

calculated across three GCMs (as in Fig. 4). 

 

 



Table 1 Summary of mixed-effects beta regression for secondary extinction risk of Viola 

associated with phenological mismatch with six generalist and a specialist pollinator bee 

across latitudes. We included 47 plant-bee pairs with a model fit greater than 0.5 for the 

regression of secondary extinction risk on phenological mismatch. The median 

phenological mismatch value derived from three GCM climate scenarios was used to 

calculate the secondary extinction risk of plants for each grid cell. 

 

 

 

 

 

 

 

 

*P < 0.05; **P < 0.01; ***P < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Estimate ± SE Z-value P-value 

Intercept −3.028 ± 0.183 −16.58 < 0.001*** 

Scale(latitude) 0.413 ± 0.003 131.61 < 0.001*** 

Specialist −1.027 ± 0.398 −2.58 0.009** 

Scale(latitude): Specialist −0.044 ± 0.011 3.91 < 0.001*** 



Table 2 Summary of mixed-effects beta regression for the sensitivity of secondary 

extinction risk of Viola to phenological mismatch across latitudes. Beta regressions were 

constructed separately for plants pollinated by generalist bees and those pollinated by a 

specialist bee. We included 47 plant-bee pairs with a model fit greater than 0.5 for the 

regression of secondary extinction risk on phenological mismatch. The median 

phenological mismatch value derived from three GCM climate scenarios was used to 

calculate the secondary extinction risk of plants for each grid cell. 

 

 Variable Estimate ± SE Z-value P-value 

 

Generalists 

Intercept −3.007 ± 0.122 −24.7 < 0.001*** 

Phenological mismatch 0.761 ± 0.002 382.4 < 0.001*** 

Latitude 0.174 ± 0.002 95.8 < 0.001*** 

Phenological mismatch: Latitude −0.051 ± 0.002 −34.1 < 0.001*** 

 

Specialist 

Intercept −4.149 ± 0.137 −30.33 < 0.001*** 

Phenological mismatch 1.073 ± 0.006 179.64 < 0.001*** 

Latitude 0.155 ± 0.006 25.63 < 0.001*** 

Phenological mismatch: Latitude −0.205 ± 0.006  −36.22 < 0.001*** 

*P < 0.05; **P < 0.01; ***P < 0.001 
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