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Abstract: (1) Species distribution modeling requires to handle varied types of data,
and benefits from an integrated approach to programming. (2) We introduce
SpeciesDistributionToolkit, a Julia package aiming to facilitate the production of
species distribution models. It covers various steps of the data collection and analysis
process, extending to the development of interfaces for integration of additional
functionalities. (3) By relying on semantic versioning and strong design choices on
modularity, we expect that this package will lead to improved reproducibility and
long-term maintainability. (4) We illustrate the functionalities of the package
through several case studies, accompanied by reproducible code.
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Introduction

Species Distribution Models [SDMs; Elith and Leathwick (2009)], in addition to
being key tools to further our knowledge of biodiversity, are key components of
effective conservation decisions (Guisan et al. 2013), planning (McShea 2014), and
ecological impact assesment (Baker et al. 2021). The training and evaluation of a
SDM is a complex process, with key decisions to make on design and reporting
(Zurell et al. 2020). The ability to use the correct data format of representation at of
these steps is central to support the correct interpretation of these models (Araújo et
al. 2019). This is particularly true since the choice of data source can affect the
prediction significantly (Booth 2022, Arenas-Castro et al. 2022, Merkenschlager et al.
2023), suggesting that there is a need for flexible pipelines in which data sources can
be conveniently swapped. In recent years, there has been an increase in the number
of software packages and tools to assist ecologists with various steps of the
development of species distribution models.

As Kass et al. (2024) point out, this increase in the diversity of software tools (most
of them in the R language) is a good thing. Because the SDMs are a general-purpose
methodology, a varied software offers increases the chances that specific decisions
can be chained together in the way that best support a specific use case. By making
code available for all users, package developers reduce the need for custom
implementation of analytical steps, and contribute to the adoption of good practices
in the field. However, because building, validating, and applying SDMs requires a
diversity of data types, from different sources, many existing packages have been
designed independently. Therefore, they may suffer from low interoperability, which
can create friction when using multiple tools together. As an illustration, Kellner et
al. (2025) highlight that, out of publications on abundance or distribution models
that share code and data, about 20% are not reproducible because of issues in
package dependencies.

To promote interoperability and improve reproductibility, tools that provide an
integrated environment are important. In this manuscript, we present
SpeciesDistributionToolkit (abbreviated as SDT), a meta-package for the Julia
programming language, offering an integrated environment for the retrieval,
formatting, and interpretation of data relevant to the modeling of species
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distributions. SDT was in part designed to work within the BON-in-a-Box project
(Gonzalez et al. 2023, Griffith et al. 2024), a GEO BON initiative to facilitate the
calculation and reporting of biodiversity indicators supporting the Kunming-
Montréal Global Biodiversity Framework. A leading design consideration for SDT
was therefore to maximize interoperability between components and functionalities
from the ground up. This is achieved through three mechanisms. First, by relying on
strict semantic versioning: package releases provide information about the
compatibility of existing code. Second, through the use of interfaces: separate
software components (including ones external to the package) can interact without
prior knowledge of either implementation, and without dependencies between the
components of SDT. Finally, through the use of Julia’s extension mechanism. These
are detailed in Box 1.

In this manuscript, we describe provide a high-level overview of the functionalities
of the package(s) forming SDT. We then discuss design principles that facilitate
long-term maintenance, development, and integration. We finish by presenting four
illustrative case studies: extraction of data at known species occurrences,
manipulation of multiple geospatial layers, training and explanation of a SDM, and
creation of virtual communities to simulate the spatial distribution of ecological
uniqueness. This later case study is intended to provide an impression of what using
SDT as a support for the development of novel analyses feels like. All of the case
studies are available as supplementary material, in the form of fully reproducible,
self-contained Jupyter notebooks.

Application description

SpeciesDistributionToolkit is released as a package for the Julia programming
language (Bezanson et al. 2017). It is licensed under the open-source initiative
approved MIT license. It has evolved from a previous collection of packages to
handle GBIF and raster data (Dansereau and Poisot 2021), and now provides
extended functionalities as well as improved performance. The package is registered
in the Julia package repository and can be downloaded and installed anonymously.
It is compatible with the current long-term support (LTS) release of Julia. The full
source code, complete commit history, plans for future development, and a forum,
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are available at https://github.com/PoisotLab/SpeciesDistributionToolkit.jl. This page additionally
has a link to the documentation, containing a full reference for the package functions,
a series of briefs how-to examples, and longer vignettes showcasing more integrative
tutorials.

An overview of the SDT package is given in Figure 1. The project is organized as a
“monorepo”, in which separate but interoperable packages (meaning that they can
be installed independently, but are designed to work cohesively) reside. This allows
expanding the scope of the package by moving functionalities into new component
packages, without requiring interventions from users. As SDT is registered in the
Julia package repository, it can be installed by using add SpeciesDistributionToolkit when in
package mode at the Julia prompt. When loading the SDT package with using

SpeciesDistributionToolkit, all component packages are automatically and transparently
loaded. Therefore, users do not need to know where a specific method or function
resides to use it. The monorepo structure has an important advantage for users: the
code of all component packages can be found in the same location, and it makes
inspecting the internal implementation of any package easier. In addition, users can
open an issue describing a problem or desired feature within the monorepo, without
needing to understand which component package is the right target for this issue.
This both decreases barriers to interact with the software, while also facilitating the
work of contributors who can look at all the issues to address in a centralized way.
Similarly, monorepo lend themselves to integrated documentation, which is the
approach we have chosen with the online SDT manual.
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Figure 1:  Overview of the packages included in SpeciesDistributionToolkit. The packages are color-
coded by intended use (acquisition, representation, and analysis of data). The specific content of each
package is presented in the main text. Note that because the package relies on interfaces to facilitate
code interoperability, there are only three dependency relationships (black arrows). Some packages
can interact with data sources, represented on the left side of the figure. When loading
SpeciesDistributionToolkit, all public methods from the package are accessible to the user.
Packages that are supported through extensions are in dashed boxes.

SDT uses the built-in Julia package manager to keep all dependencies up to date.
Furthermore, we use strict semantic versioning: major versions correspond to
changes that would break user-developped code; minor versions represent
additional functionalities; patch releases cover minor bug fixes or documentation
changes. All component packages are versioned independently, and have their own
CHANGELOG file documenting each release. This strict reliance on semantic
versioning removes the issues of maintaining compatibility when new functionalities
are added: all releases in the v1.x.x branch of SDT depend on component packages in
their respective v1.x.x branch, and users can benefit from new functionalities without
needing to adapt existing code. This behavior is extensively tested, both through unit
tests and through integration testing generated as part of the online documentation.

Component packages
The SDT package primarily provides integration between the other packages via
method overloading (reusing method names for intuitive and concise code),
allowing to efficiently join packages together (Roesch et al. 2023). Additional
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functionalities that reside in the top-level package are the generation of pseudo-
absences (Barbet-Massin et al. 2012), access to the gadm.org database, handling of
polygon data and zonal statistics, and various quality of life methods. Because of the
modular nature of the code, any of these functions can be transparently moved to
their own packages without affecting reproducibility. Note that all packages can still
be installed (and would be fully functional) independently.

The SimpleSDMLayers package offers a series of types to represent raster data in
arbitrary projections defined by a proj string (Evenden et al. 2024). This package
provides the main data representation for most spatial functionalities that SDT
supports, and handles saving and loading data. It also contains utility functions to
deal with raster data, including interpolation to different spatial grids and CRS,
rescaling and quantization of data, masking, and most mathematical operations that
can be applied to rasters.

OccurrencesInterface is a light-weight package to provide a common interface for
occurrence data. It implements abstract and concrete types to define a single
occurrence and a collection thereof, and a series of methods allowing any occurrence
data provider (e.g. GBIF) or data representation to become fully interoperable with
the rest of SDT. All SDT methods that handle occurrence data do so through the
interface provided by the OccurrencesInterface package, allowing future data
sources to be integrated without the need for new code.

The GBIF package offers access to the gbif.org streaming API (GBIF: The Global
Biodiversity Information Facility 2025), including the ability to retrieve, filter, and
restart downloads. Although this package provides a rich data representation for
occurrence data when access to the full GBIF data schema is required, all the objects
it returns adhere to the OccurrencesInterface interface. The package also offers the
functionality to download datasets from GBIF using their DOI.

SimpleSDMDatasets implements an interface to retrieve and locally store raster
data, which can be extended by users to support additional data sources. Tt offers
access to a series of common data sources for spatial biodiversity modeling,
including the biodiversity mapping project (Jenkins et al. 2013), the EarthEnv
collection for land cover (Tuanmu and Jetz 2014) and habitat heterogeneity (Tuanmu
and Jetz 2015), Copernicus land cover 100m data (Buchhorn et al. 2020), PaleoClim
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(Brown et al. 2018) data, WorldClim 1 and 2 (Fick and Hijmans 2017) and CHELSA 1
and 2 (Karger et al. 2017) and their projections under various RCPs and SSPs.

SimpleSDMPolygons uses the interface from SimpleSDMDatasets to offer access to
geospatial polygons, including the GADM database, the OpenStreetMap polygon
API, as well as several providers for georegions, ecoregions, and ecoprovinces (Olson
et al. 2001, Dinerstein et al. 2017).

Phylopic offers a wrapper around the phylopic.org API to download silhouettes for
taxonomic entities. It also provides utilities for citation of the downloaded images. Its
functionalities are similar to the rphylopic package (Gearty and Jones 2023).

Fauxcurrences is inspired by the work of Osborne et al. (2022), and allows
generating a series of simulated occurrence data that have the same statistical
structure as observed ones. The package supports multi-species data, with user-
specified weights for conserving intra and inter-specific occurrence distances.

PseudoAbsences offers functions to place pseudo-absences points on layers, under
various constraint on range and distance to existing observations (Barbet-Massin et
al. 2012).

Finally, SDeMo provides a high-level interface to the training, validation, and
interpretation of species distribution modeling. The package is built around a series
of data transformation steps (PCA, Whitening, z-score, which can be chained
together) and several classifiers, currently including BIOCLIM (Booth et al. 2014),
Naive Bayes, logistic regression, and decision trees. SDeMo offers functions to
demonstrate training and evaluation of SDMs, as well as techniques related to
heterogeneous ensembles and bagging with support for arbitrary consensus
(Marmion et al. 2009) and voting (Drake 2014) functions. SDeMo promotes the use
of interpretable techniques: the package supports regular (Elith et al. 2005) and
inflated (Zurell et al. 2012) partial responses, as well as the calculation and mapping
of Shapley values (Mesgaran et al. 2014, Wadoux et al. 2023) using the standard
Monte-Carlo approach (Mitchell et al. 2021). Counterfactuals (Karimi et al. 2019, Van
Looveren and Klaise 2019), representing perturbation of the input data leading to the
opposite prediction (i.e. “what environmental conditions would lead to the species
being absent”) can also be generated. The API of SDeMo has been designed to (i)
enforce the use of best practices, and (ii) be consistent across analyses, so that the
package can be used for educational material. Despite the focus on education,
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SDeMo has been thoroughly tested and may be used for research. As it implements
a generic interface to any predictive model, users can expand it by adding additional
classifiers or transformers. This can be done either through a contribution to the SDT
repository, or as part of the code written by users for a specific analysis.

Case studies

In this section, we provide a series of case studies to illustrate the use of the package.
The on-line manual offers longer tutorials, as well as a series of how-to vignettes to
illustrate the full scope of what the package allows. As the notebooks accompanying
this article cover the full code required to run these case studies, we do not present
code snippets in the main text (as they are presented with detailed explanations in
the Supp. Mat.), but rather focus on explaining how the component packages work
together in each example.

Landcover consensus map
In this case study (Supp. Mat. 1), we retrieve the land cover data from Tuanmu and
Jetz (2014), clip them to a GeoJSON polygon describing the country of Paraguay
(SDT can download data directly from gadm.org), and apply the mosaic operation to
figure out which class is the most locally abundant. This case study uses the
SimpleSDMDatasets package to download (and locally cache) the raster data, as
well as the SimpleSDMLayers package to provide basic utility functions on raster
data. The results are presented in Figure 2.
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Figure 2:  Land cover consensus (defined as the class with the strongest local representation) in the
country of Paraguay. Only the classes that were most abundant in at least one pixel are represented.
The code to produce this figure is available as Supp. Mat. 2.

194

195

196

197

9 of 22



SimpleSDMDatasets uses local storage of raster data for future use, to avoid re-
downloading data upon repeated use. The location of the data is (i) standardized by
the package itself, making the file findable to humans, and (ii) changeable by the
user to, e.g., store the data within the project folder rather than in a central location.
As much as possible, SDT will only read the part of the raster data that is required
given the region of interest to the user. This is done by providing additional context
in the form of a bounding box (in WGS84, regardless of the underlying raster data
projection, in line with the GeoJSON specification). SDT has methods to calculate
the bounding box for all the objects it supports.

Using data from GBIF
SDT provides strong integration between data on species occurrences and source of
geospatial information. To illustrate this, we will collect data on the distribution of
Akodon montensis (Rodentia, family Cricetidae), a known host of orthohantaviruses
(Owen et al. 2010, Burgos et al. 2021), in Paraguay. In Supp. Mat. 2 we (i) request
occurrence data using the GBIF package, (ii) download the silhouette of the species
through Phylopic, and (iii) extract temperature and precipitation data at the points
of occurrence based on bioclimatic data layers. The results are presented in Figure 3.
The full notebook includes information about basic operations on raster data, as well
as extraction of data based on occurrence records.
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Figure 3:  Relationship between temperature and precipitation (BIO1 and BIO12) at each
georeferenced occurrence known to GBIF for Akodon montensis. The code to produce this figure is
available as Supp. Mat. 1.

In practice, although the data are retrieved using the GBIF package, they are used
internally by SDT through the OccurrencesInterface package. This package defines
a small convention to handle georeferenced occurrence data, and allows to
transparently integrate additional occurrence sources. By defining a handful of
methods for a custom data type, or by using the convertes built into the package,
users can plug-in any occurrence data source or csv file, and enjoy full compatibility
with the entire SDT functionalities.

The GBIF package also supports download of archived GBIF datasets; in the
following example, we have generated a dataset from this query, which can be
accessed online (GBIF.org 2025).

Training a species distribution model
In this case study, we illustrate the integration of SDeMo and SimpleSDMLayers to
train a species distribution model. Specifically, we re-use the data from Figure 3, with
additional layers of bioclimatic variables. We train a rotation forest (Bagnall et al.
2018), an homogeneous ensemble of PCA followed by decision trees where each
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model has a subset of features and training data. The results are presented in
Figure 4. The model is built by selecting an optimal suite of BioClim variables, then
predicted in space, and the resulting predicted species range is finally clipped by the
elevational range observed in the occurrence data. The data transformations in
SDeMo are always applied in a way that prevents the possibility of data leakage
(Stock et al. 2023). Because SDeMo works through generic functions, these methods
can be applied to any model specified by the user. In practice, generic purpose ML
frameworks Julia, notably MLJ (Blaom et al. 2020), can also be used and interfaced
with SDT by using the classifier and transformer interface.

By default, SDeMo will always split data for cross-validation in a way that respect
class balance; in other words, the prevalence of the species is always the same in the
validation and training set (this is also true when bootstrapping observations to
construct homogeneous ensembles). This behavior can be adjusted, or the user may
design their own training and validation sets. In the future, PseudoAbsences will be
extended to introduce stratified cross-validation (Roberts et al. 2017).
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Figure 4:  Predicted range of Akodon montensis in Paraguay based on a rotation forest trained on
GBIF occurrences and the BioClim variables. The predicted range is clipped to the elevational range
of the species. The code to produce this figure is available as Supp. Mat. 3.

The full notebook (Supp. Mat. 3) has additional information on routines for variable
selection, stratified cross-validation, as well as the construction of the ensemble from
a single PCA and decision tree. In addition, we report in Figure 5 the partial and
inflated partial responses to the most important variable (highlighting an
interpretable effect of the variable in the model), as well as the (Monte-Carlo)
Shapley values (Mitchell et al. 2021, Wadoux et al. 2023) for each prediction in the
training set. Checking the partial responses, in particular in space, is an important
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step, as some bioclimatic variables are known to have discontinuities stemming from
their interpolation that can bias the predicted range of a species (Booth 2022).

Figure 5:  Partial responses (red) and inflated partial responses (grey) to the most important variable.
In addition, the Shapley values for all training data are presented in the same figure; green points are
presences, and pale points are pseudo-absences. Shapley values were added to the average model
prediction to be comparable to partial responses. The code to produce this figure is available as Supp.
Mat. 3.

Species and location contribution to beta diversity
In the final case study (Supp. Mat. 4), we simulate the distribution of virtual species
(Hirzel et al. 2001) with a logistic response to two environmental covariate (Leroy et
al. 2016). We then use this simulated sample to perform the decomposition of 𝛽-
diversity introduced by Legendre and De Cáceres (2013) and applied by Dansereau
et al. (2022) to spatially continuous data. This simulates the potential distribution of
hotspots and coldspots of ecological uniqueness. The results are presented in
Figure 6.
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Figure 6:  Virtual distribution of normalized (mean of 0 and unit variance) locality contribution to beta-
diversity (Legendre and De Cáceres 2013), based on a pool of 100 virtual species. The inset
histogram represents the standardized species contribution to beta-diversity. Red areas represent
comparatively more unique areas in terms of simulated species composition. The code to produce this
figure is available as Supp. Mat. 4.

Because the layers used by SDT are broadcastable, we can rapidly apply a function
(here, the logistic response to the environmental covariate) to each layer, and then
multiply the suitabilities together. The last step is facilitated by the fact that most
basic arithmetic operations are defined for layers, allowing for example to add,
multiply, substract, and divide them by one another.
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Conclusion

We have presented SpeciesDistributionToolkit, a package for the Julia
programming language aiming to facilitate the collection, curation, analysis, and
visualisation of data commonly used in species distribution modeling. Through the
use of interfaces and a modular design, we have made this package robust to
changes, easy to add functionalities to, and well integrated to the rest of the Julia
ecosystem. All code for the case studies can be found in Supp. Mat. 1-4. Plans for
active development of the package are focused on (i) additional techniques for
pseudo-absence generations, to be incorporated in the PseudoAbsences package, (ii)
full compatibility with the MultivariateStatistics for transformation, and (iii)
additional SDeMo functionalities to allow cross-validation techniques with
biologically relevant structure (Roberts et al. 2017).

The SDT package benefits from close integration with other packages in the Julia
universe. Notably, this includes Makie [including GeoMakie; Danisch and
Krumbiegel (2021)] for plotting and interactive data visualisation: all relevant plot
types are overloaded for layer and occurrence data. Most data handled by SDT can
be exported using the Tables interface, which allows data to be consumed by other
packages like DataFrames (Bouchet-Valat and Kamiński 2023) and MLJ (Blaom et al.
2020), or directly saved as csv files. Interfaces to internal Julia methods are
implemented whenever they are pertinent. SimpleSDMLayers and
OccurrencesInterface objects behave like arrays, are iterable, and broadcastable. The
SDeMo package relies in part on the StatsAPI interface, allowing to easily define
new data transformation and classifier types to support additional features.
Achieving integration with other packages through method overloading and the
adherence to well-established interfaces is important, as it increases the chances that
additional functionalities external to SDT can be used directly or fully supported
with minimal addition of code. For situations where interfaces are not sufficient to
link with other packages, we rely on Julia’s extension mechanism. For instance,
SimpleSDMLayers objects can be used with Clustering, MultivariateStats, as well
as SpatialBoundaries (Strydom and Poisot 2023), with strict version bounds,
ensuring that this integration will remain usable regardless of possible changes in
external packages.
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A key advantage of Julia for species distribution modeling is its emphasis on
extensibility and composability. In developing SDT, we leveraged these strengths by
ensuring that each component package operates independently, while the top-level
package provides additional methods to integrate their functionalities. Through
method overloading, we minimize the number of unique function names users must
learn—core operations such as arithmetic, dimension queries, and statistical
summaries are consistently available across relevant data types. This unified
approach not only streamlines the user experience but also makes the code more
readable and accessible, which is particularly beneficial in educational settings. SDT
is intentionally structured to promote best practices and long-term sustainability. The
unified interface for occurrence, raster, and polygon data allows new data sources or
representations to be incorporated with minimal changes to existing workflows.
Strict adherence to semantic versioning and interface-based design ensures that
updates do not compromise reproducibility. Advanced model interpretation tools—
including Shapley values and counterfactuals—are built in, which will help with
their adoption, and users can extend the modeling pipeline with custom classifiers or
data transformations via Julia’s multiple dispatch.
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