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Abstract: (1) Species distribution modeling requires to handle varied types of data, and

benefits from an integrated approach to programming. (2) We introduce

SpeciesDistributionToolkit, a Julia package aiming to facilitate the production of species

distribution models. It covers various steps of the data collection and analysis process,

extending to the development of interfaces for integration of additional functionalities. (3)

By relying on semantic versioning and strong design choices on modularity, we expect that

this package will lead to improved reproducibility and long-term maintainability. (4) We

illustrate the functionalities of the package through several case studies, accompanied by

reproducible code.
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Introduction

Species Distribution Models [SDMs; Elith and Leathwick (2009)], in addition to being key tools

to further our knowledge of biodiversity, are key components of effective conservation deci-

sions (Guisan et al. 2013), planning (McShea 2014), and ecological impact assesment (Baker

et al. 2021). The training and evaluation of a SDM is a complex process, with key decisions

to make on design and reporting (Zurell et al. 2020). The ability to link data to these steps is

central to support the correct interpretation of these models (Araújo et al. 2019). In the recent

years, there has been an increase in the number of software packages and tools to assist ecol-

ogists with various steps of the development of species distribution models.

As Kass et al. (2024) point out, this increase in the diversity of software tools (most of them

in the R language) is a good thing. Because the SDMs are a general-purpose methodology, a

varied software offers increases the chances that specific decisions can be chained together in

the way that best support a specific use case. By making code available for all users, package

developers reduce the need for custom implementation of analytical steps, and contribute to

the adoption of good practices in the field. However, because building, validating, and apply-

ing SDMs requires a diversity of data types, from different sources, many existing packages

have been designed independentl. Therefore, they may suffer from low interoperability, which

can create friction when using multiple tools together. As an illustration, Kellner et al. (2025)

highlight that about 20% of publications for abundance or distribution models are not repro-

ducible because of issues in package dependencies.

To promote interoperability and improve reproductibility, tools that provide an integrated

environment are important. In this manuscript, we present SpeciesDistributionToolkit

(abbreviated as SDT), a meta-package for the Julia programming language, offering an inte-

grated environment for the retrieval, formatting, and interpretation of data relevant to the

modeling of species distributions. SDT was in part designed to work within the BON-in-a-

Box project (Gonzalez et al. 2023, Griffith et al. 2024), a GEO BON initiative to facilitate the

calculation and reporting of biodiversity indicators supporting the Kunming-Montréal Global

Biodiversity Framework. A leading design consideration for SDT was therefore to maximize

interoperability between components and functionalities from the ground up. This is achieved

through three mechanisms. First, by relying on strict semantic versioning: package releases

provide information about the compatibility of existing code. Second, through the use of in-

terfaces: separate software components (including ones external to the package) can interact
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without prior knowledge of either implementation, and without dependencies between the

components of SDT. Finally, through the use of Julia’s extension mechanism. These are de-

tailed in Box 1.

In this manuscript, we describe provide a high-level overview of the functionalities of the

package(s) forming SDT. We then discuss design principles that facilitate long-term mainte-

nance, development, and integration. We finish by presenting four illustrative case studies:

extraction of data at known species occurrences, manipulation of multiple geospatial layers,

training and explanation of a SDM, and creation of virtual communities to simulate the spatial

distribution of ecological uniqueness. This later case study is intended to provide an impres-

sion of what using SDT as a support for the development of novel analyses feels like. All of

the case studies are available as supplementary material, in the form of fully reproducible,

self-contained Jupyter notebooks.

Application description

SpeciesDistributionToolkit is released as a package for the Julia programming language

(Bezanson et al. 2017). It is licensed under the open-source initiative approved MIT license. It

has evolved from a previous collection of packages to handle GBIF and raster data (Dansereau

and Poisot 2021), and now provides extended functionalities as well as improved performance.

The package is registered in the Julia package repository and can be downloaded and installed

anonymously. It is compatible with the current long-term support (LTS) release of Julia. The

full source code, complete commit history, plans for future development, and a forum, are

available at https://github.com/PoisotLab/SpeciesDistributionToolkit.jl. This page additionally

has a link to the documentation, containing a full reference for the package functions, a series

of briefs how-to examples, and longer vignettes showcasing more integrative tutorials.

An overview of the SDT package is given in Figure 1. The project is organized as a “monorepo”,

in which separate but interoperable packages reside. This allows expanding the scope of the

package by moving functionalities into new component packages, without requiring inter-

ventions from users. As SDT is registered in the Julia package repository, it can be installed

by using add SpeciesDistributionToolkit when in package mode at the Julia prompt. When

loading the SDT package with using SpeciesDistributionToolkit, all component packages are

automatically and transparently loaded. Therefore, users do not need to know where a specific

method or function resides to use it.
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Figure 1:  Overview of the packages included in SpeciesDistributionToolkit. The packages are color-coded
by intended use (acquisition, representation, and analysis of data). The specific content of each package is
presented in the main text. Note that because the package relies on interfaces to facilitate code interoperability,
there are only three dependency relationships (black arrows). Some packages can interact with data sources,
represented on the left side of the figure. When loading SpeciesDistributionToolkit, all public methods from
the package are accessible to the user. Packages that are supported through extensions are in dashed boxes.

SDT uses the built-in Julia package manager to keep all dependencies up to date. Further-

more, we use strict semantic versioning: major versions correspond to changes that would

break user-developped code; minor versions represent additional functionalities; patch re-

leases cover minor bug fixes or documentation changes. All component packages are ver-

sioned independently, and have their own CHANGELOG file documenting each release. This

strict reliance on semantic versioning removes the issues of maintaining compatibility when

new functionalities are added: all releases in the v1.x.x branch of SDT depend on component

packages in their respective v1.x.x branch, and users can benefit from new functionalities

without needing to adapt existing code. This behavior is extensively tested, both through unit

tests and through integration testing generated as part of the online documentation. Follow-

ing a constructive cost model analysis (Kemerer 1987) of the version described in this publi-

cation, the package represents approx. 11k lines of active code (no blank lines, no comments),

for an estimated development cost of approx. 325k USD.

Component packages

The SDT package primarily provides integration between the other packages via method

overloading (reusing method names for intuitive and concise code), allowing to efficiently

join packages together (Roesch et al. 2023). Additional functionalities that reside in the top-

level package are the generation of pseudo-absences (Barbet-Massin et al. 2012), access to the

gadm.org database, handling of polygon data and zonal statistics, and various quality of life
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methods. Because of the modular nature of the code, any of these functions can be transpar-

ently moved to their own packages without affecting reproducibility. Note that all packages

can still be installed (and would be fully functional) independently.

The SimpleSDMLayers package offers a series of types to represent raster data in arbitrary

projections defined by a proj string (Evenden et al. 2024). This package provides the main

data representation for most spatial functionalities that SDT supports, and handles saving

and loading data. It also contains utility functions to deal with raster data, including inter-

polation to different spatial grids and CRS, rescaling and quantization of data, masking, and

most mathematical operations that can be applied to rasters.

OccurrencesInterface is a light-weight package to provide a common interface for occur-

rence data. It implements abstract and concrete types to define a single occurrence and a col-

lection thereof, and a series of methods allowing any occurrence data provider (e.g. GBIF) or

data representation to become fully interoperable with the rest of SDT. All SDT methods that

handle occurrence data do so through the interface provided by the OccurrencesInterface

package, allowing future data sources to be integrated without the need for new code.

The GBIF package offers access to the gbif.org streaming API (GBIF: The Global Biodiversity

Information Facility 2025), including the ability to retrieve, filter, and restart downloads. Al-

though this package provides a rich data representation for occurrence data when access to

the full GBIF data schema is required, all the objects it returns adhere to the OccurrencesIn-

terface interface.

SimpleSDMDatasets implements an interface to retrieve and locally store raster data, which

can be extended by users to support additional data sources. Tt offers access to a series of

common data sources for spatial biodiversity modeling, including the biodiversity mapping

project (Jenkins et al. 2013), the EarthEnv collection for land cover (Tuanmu and Jetz 2014) and

habitat heterogeneity (Tuanmu and Jetz 2015), Copernicus land cover 100m data (Buchhorn

et al. 2020), PaleoClim (Brown et al. 2018) data, WorldClim 1 and 2 (Fick and Hijmans 2017)

and CHELSA 1 and 2 (Karger et al. 2017) and their projections under various RCPs and SSPs.

Phylopic offers a wrapper around the phylopic.org API to download silhouettes for taxonomic

entities. It also provides utilities for citation of the downloaded images. Its functionalities are

similar to the rphylopic package (Gearty and Jones 2023).

Fauxcurrences is inspired by the work of Osborne et al. (2022), and allows generating a se-

ries of simulated occurrence data that have the same statistical structure as observed ones.
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The package supports multi-species data, with user-specified weights for conserving intra and

inter-specific occurrence distances.

Finally, SDeMo provides tools for training and education on species distribution modeling. By

providing a series of data transformation (PCA, Whitening, z-score) and classifiers (currently

BIOCLIM, Naive Bayes, logistic regression, and decision trees), it offers the basic elements to

demonstrate training and evaluation of SDMs, as well as techniques related to heterogeneous

ensembles and bagging with support for arbitrary consensus (Marmion et al. 2009) and voting

(Drake 2014) functions. SDeMo promotes the use of interpretable techniques: the package

supports regular (Elith et al. 2005) and inflated (Zurell et al. 2012) partial responses, as well

as the calculation and mapping of Shapley values (Mesgaran et al. 2014, Wadoux et al. 2023)

using the standard Monte-Carlo approach (Mitchell et al. 2021). Counterfactuals (Karimi et al.

2019, Van Looveren and Klaise 2019), representing perturbation of the input data leading to

the opposite prediction (i.e. “what environmental conditions would lead to the species being

absent”) can also be generated.

Case studies

In this section, we provide a series of case studies to illustrate the use of the package. The on-

line manual offers longer tutorials, as well as a series of how-to vignettes to illustrate the full

scope of what the package allows. As the notebooks accompanying this article cover the full

code required to run these case studies, we do not present code snippets in the main text (as

they are presented with detailed explanations in the Supp. Mat.), but rather focus on explain-

ing how the component packages work together in each example.

Landcover consensus map

In this case study (Supp. Mat. 1), we retrieve the land cover data from Tuanmu and Jetz (2014),

clip them to a GeoJSON polygon describing the country of Paraguay (SDT can download data

directly from gadm.org), and apply the mosaic operation to figure out which class is the most

locally abundant. This case study uses the SimpleSDMDatasets package to download (and

locally cache) the raster data, as well as the SimpleSDMLayers package to provide basic

utility functions on raster data. The results are presented in Figure 2.
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Figure 2:  Land cover consensus (defined as the class with the strongest local representation) in the country of
Paraguay. Only the classes that were most abundant in at least one pixel are represented. The code to produce
this figure is available as Supp. Mat. 2.
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SimpleSDMDatasets uses local storage of raster data for future use, to avoid re-downloading

data upon repeated use. The location of the data is (i) standardized by the package itself, mak-

ing the file findable to humans, and (ii) changeable by the user to, e.g., store the data within

the project folder rather than in a central location. As much as possible, SDT will only read

the part of the raster data that is required given the region of interest to the user. This is done

by providing additional context in the form of a bounding box (in WGS84, regardless of the

underlying raster data projection, in line with the GeoJSON specification). SDT has methods

to calculate the bounding box for all the objects it supports.

Using data from GBIF

SDT provides strong integration between data on species occurrences and source of geospa-

tial information. To illustrate this, we will collect data on the distribution of Akodon montensis

(Rodentia, family Cricetidae), a known host of orthohantaviruses (Owen et al. 2010, Burgos et

al. 2021), in Paraguay. In Supp. Mat. 2 we (i) request occurrence data using the GBIF package,

(ii) download the silhouette of the species through Phylopic, and (iii) extract temperature

and precipitation data at the points of occurrence based on bioclimatic data layers. The results

are presented in Figure 3. The full notebook includes information about basic operations on

raster data, as well as extraction of data based on occurrence records.
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Figure 3:  Relationship between temperature and precipitation (BIO1 and BIO12) at each georeferenced
occurrence known to GBIF for Akodon montensis. The code to produce this figure is available as Supp. Mat. 1.

In practice, although the data are retrieved using the GBIF package, they are used internally

by SDT through the OccurrencesInterface package. This package defines a small conven-

tion to handle georeferenced occurrence data, and allows to transparently integrate additional

occurrence sources. By defining a handful of methods for a custom data type, or by using the

convertes built into the package, users can plug-in any occurrence data source or csv file, and

enjoy full compatibility with the entire SDT functionalities.

Training a species distribution model

In this case study, we illustrate the integration of SDeMo and SimpleSDMLayers to train

a species distribution model. Specifically, we re-use the data from Figure 3, with additional

layers of bioclimatic variables. We train a rotation forest (Bagnall et al. 2018), an homogeneous

ensemble of PCA followed by decision trees where each model has a subset of features and

training data. The results are presented in Figure 4. The model is built by selecting an optimal

suite of BioClim variables, then predicted in space, and the resulting predicted species range

is finally clipped by the elevational range observed in the occurrence data. The data transfor-

mations in SDeMo are always applied in a way that prevents the possibility of data leakage

(Stock et al. 2023).

9 of 18



Figure 4:  Predicted range of Akodon montensis in Paraguay based on a rotation forest trained on GBIF
occurrences and the BioClim variables. The predicted range is clipped to the elevational range of the species.
The code to produce this figure is available as Supp. Mat. 3.

The full notebook (Supp. Mat. 3) has additional information on routines for variable selection,

stratified cross-validation, as well as the construction of the ensemble from a single PCA and

decision tree. In addition, we report in Figure 5 the partial and inflated partial responses to the

most important variable (highlighting an interpretable effect of the variable in the model), as

well as the (Monte-Carlo) Shapley values (Mitchell, Cooper, Frank, and Holmes 2021, Wadoux,

Saby, and Martin 2023) for each prediction in the training set. Because SDeMo works through

generic functions, these methods can be applied to any model specified by the user. In prac-

tice, flexible (and more performant) ML frameworks exist for Julia, notably MLJ (Blaom et al.

2020), which should be used for real-world applications.
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Figure 5:  Partial responses (red) and inflated partial responses (grey) to the most important variable. In
addition, the Shapley values for all training data are presented in the same figure; green points are presences,
and pale points are pseudo-absences. Shapley values were added to the average model prediction to be
comparable to partial responses. The code to produce this figure is available as Supp. Mat. 3.

Species and location contribution to beta diversity

In the final case study (Supp. Mat. 4), we simulate the distribution of virtual species (Hirzel

et al. 2001) with a logistic response to two environmental covariate (Leroy et al. 2016). We

then use this simulated sample to perform the decomposition of 𝛽-diversity introduced by

Legendre and De Cáceres (2013) and applied by Dansereau et al. (2022) to spatially continuous

data. This simulates the potential distribution of hotspots and coldspots of ecological unique-

ness. The results are presented in Figure 6.
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Figure 6:  Virtual distribution of normalized (mean of 0 and unit variance) locality contribution to beta-
diversity (Legendre and De Cáceres 2013), based on a pool of 100 virtual species. The inset histogram
represents the standardized species contribution to beta-diversity. Red areas represent comparatively more
unique areas in terms of simulated species composition. The code to produce this figure is available as Supp.
Mat. 4.

Because the layers used by SDT are broadcastable, we can rapidly apply a function (here, the

logistic response to the environmental covariate) to each layer, and then multiply the suit-

abilities together. The last step is facilitated by the fact that most basic arithmetic operations

are defined for layers, allowing for example to add, multiply, substract, and divide them by

one another.
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Conclusion

We have presented SpeciesDistributionToolkit, a package for the Julia programming lan-

guage aiming to facilitate the collection, curation, analysis, and visualisation of data com-

monly used in species distribution modeling. Through the use of interfaces and a modular

design, we have made this package robust to changes, easy to add functionalities to, and well

integrated to the rest of the Julia ecosystem. All code for the case studies can be found in

Supp. Mat. 1-4.

Plans for active development of the package are focused on (i) additional techniques for

pseudo-absence generations, likely leading to their separate component package, (ii) full com-

patibility with the MultivariateStatistics for transformation, and (iii) additional SDeMo

functionalities to allow cross-validation techniques with biologically relevant structure

(Roberts et al. 2017).
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 Box 1 - integration with other Julia packages

The SDT package benefits from close integration with other packages in the Julia uni-

verse. Notably, this includes Makie [including GeoMakie; Danisch and Krumbiegel

(2021)] for plotting and interactive data visualisation: all relevant plot types are overloaded

for layer and occurrence data. Most data handled by SDT can be exported using the Ta-

bles interface, which allows data to be consumed by other packages like DataFrames

(Bouchet-Valat and Kamiński 2023) and MLJ (Blaom, Kiraly, Lienart, Simillides, Arenas,

and Vollmer 2020), or directly saved as csv files. Interfaces to internal Julia methods are

implemented whenever they are pertinent. SimpleSDMLayers and OccurrencesInter-

face objects behave like arrays, are iterable, and broadcastable. The SDeMo package relies

in part on the StatsAPI interface, allowing to easily define new data transformation and

classifier types to support additional features. Achieving integration with other packages

through method overloading and the adherence to well-established interfaces is impor-

tant, as it increases the chances that additional functionalities external to SDT can be used

directly or fully supported with minimal addition of code. For situations where interfaces

are not sufficient to link with other packages, we rely on Julia’s extension mechanism.

For instance, SimpleSDMLayers objects can be used with Clustering, as well as Spa-

tialBoundaries (Strydom and Poisot 2023), with strict version bounds, ensuring that this

integration will remain usable regardless of possible changes in external packages.
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