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Abstract

The tick Ixodes ricinus is the main pathogen vector in Europe. Many speculations have 

been made about the effect of past climate change on the potential distribution of this 

ectothermic organism, despite a poor understanding of how climate change has resulted 

in distribution changes to date. 

In this study, we used a public cross-sectional dataset of  I. ricinus  abundance at the 

northern edge of its European distribution for 2016-2017 to identify a thermal limit for I. 

ricinus distributions. 

We  first  modelled  the  nymphal  tick  abundance  as  a  function  of  cumulative  annual 

degree days (DD) > 0°C and biogeographical regions using observations for 2016-2017. 

We then identified the thermal limit for each biogeographical region as the minimum DD 

value  where  the  predicted  nymph abundance  is  greater  than  zero.  Hindcasting  the 

identified thermal limit suggested that I. ricinus has expanded its range by approximately 

400 km in the Boreal biogeographical region between 1979 and 2020. Despite the lack 

of  long-term  data  series  on  tick  presence,  this  finding  helps  explain  numerous 

observations of I. ricinus in areas presumed to be newly colonised.

While multiple other factors affect tick distribution and abundance at the local scale (e.g., 

host  distribution,  microhabitat),  our  approach  appears  promising  for  understanding 

species  distribution  changes  driven  by  recent  climate  change.  Accounting  for 

biogeographic regions helped consider other dimensions of habitat at a broad scale. Our 

results underline the relevance of long-term time series data and the risk associated with 

short-time series for observing changes in distribution.
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1. Introduction

The effect of climate change on arthropod vectors is expected to be significant but has 

been  much  debated  for  decades.  As  ectothermic  organisms,  arthropod  vectors  are 

susceptible to temperature, which affects their development, activity, and survival1. Much 

of the discussion on the impact of climate change has focused on mosquito vectors2, as 

the diseases they transmit continue to pose substantial public health burdens and have 

been extensively studied for a long time. The impact of climate change on ticks has also 

generated many studies (reviewed in Gilbert 20213) and climate change as a driver of 

geographic range expansion of  ticks has drawn attention in  Europe in  particular  4–7. 

Europe's climate has been warming faster than the global mean temperature change 

and is projected to maintain this trend in the coming decades8. This gradual increase in 

temperature  has  already  been  identified  as  an  important  factor  for  the  northward 

expansion of various species9,10, including at northern latitudes, where the role of climate 

change on range shifts  may be particularly  strong11.  Northward range expansion for 

Ixodes spp. ticks in northern latitudes are thus expected. 

Ixodes ricinus is the most important tick vector of pathogens in Europe, transmitting viral, 

protist  and  bacterial  pathogens  to  humans,  livestock  and  companion  animals12.  As 

ectothermic organisms spend most of their life off-host, I. ricinus is sensitive to climate-

driven abiotic factors such as temperature and humidity/saturation deficit13. Temperature 

affects  tick  survival,  interstadial  development  rates,  and  activity,  while  humidity 

influences survival and activity1,3.  Temperature and humidity also indirectly affect tick 

survival  by  affecting  the  availability  of  resources  such  as  suitable  habitat  and  host 

availability14.  In  their  primary  habitat,  forests,  ticks  can  find  shelter  from  weather 

extremes (heat, drought, and cold) that would inhibit host finding and directly kill  the 

ticks1,15.  Because  of  their  capacity  to  shelter  and  diapause  when  the  weather  is 

unfavourable16, ticks may mostly be affected by long-term climate changes rather than 

short-term weather variations17.

Many correlative models have been used to estimate the climatic niche of I. ricinus and 

project  future geographic distributions  under  climate change scenarios (e.g.  18–20), but 

much  fewer  studies  have  used  mechanistic  models21.  In  general,  there  is a  poor 
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understanding of past distribution changes that may or may not have been associated 

with climate change. However, observations of the effects of climate change on various 

arthropod vectors in Europe, including ticks, are accumulating22.  Examining empirical 

evidence of climate-associated changes, it should be noted that data on human disease 

records rather than tick observations is conditional  on human exposure to infectious 

ticks  on  the  one hand and efficient  diagnosis  and reporting  on  the  other.  Both  are 

affected by societal factors generally unrelated to tick ecology. While human cases only 

occur if infectious vectors are present, they represent a more visible, but often partial,  

part of the zoonotic iceberg23. 

Shifts in altitudinal limits, in Eastern Europe  24,25 and then the Alps  26,27, were the first 

evidence of the potential effects of climate change on I. ricinus distribution. Using a 35-

year-long dataset in Russia, Korotkov et al.28 demonstrated an increase in adult I. ricinus 

abundance that could be related to a lengthening of the tick activity season, as host 

abundance was found to be stable in the area. In Norway, substantial changes in an 

altitudinal gradient of tick abundance have been observed29, as well as range spread 

along  a  latitudinal  gradient30,31.  However,  though  distributional  datasets  cannot  fully 

demonstrate geographic range expansion (particularly as the absence of ticks is difficult 

to prove and collection efforts are rarely directed to demonstrating it), a consensus now 

exists that this expansion is noticed and that climate change is likely one factor driving it.

Long-term data series for  I.  ricinus are particularly lacking in areas where the health 

concern they bring is  an emerging one.  In that  context,  drawing conclusions on the 

current (or future) effects of climate change is often qualitative (using an assemblage of 

heterogenous or temporally biased datasets) or indirect (assessing tick-borne pathogen 

data in humans or animals), with the caveat that diagnostic capacity, reporting practices 

and disease knowledge may have changed. Disease records for humans and livestock32 

show  that  reported  incidence  has  increased  during  the  period  1995-2015  and  that 

climate has probably played a role, likely through effects on the vector, although effects 

of changing reservoir host dynamics cannot be ruled out. Monitoring efforts have also 

been reinforced, complexifying interpretations further. Numerous studies that conclude 

there will be changes in distribution or risk do so from largely unvalidated projections into 
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the future drawn from habitat suitability models, correlative associations between field 

observations and mostly  abiotic  variables  obtained from datasets  that  are  limited in 

terms  of  having  small  sample  sizes  or  using  presence-only  data19,33,34.  Mechanistic 

approaches may have more explanatory potential21, but have only been used at small 

spatial scales to explore possible effects of past climate change35 and calibration of life 

cycle parameters remains challenging.

In  this  paper,  instead  of  using  a  habitat  suitability  model,  we  use  cross-sectional 

empirical data to infer a minimum threshold of thermal suitability for I. ricinus, allowing us 

to  draw  a  continent-wide  contour  line  of  thermal  suitability/unsuitability.  Then,  we 

evaluate the changing position of the thermal limit across a period of 40 years since 

1979. We adopt the use of cumulative annual degree-days above 0°C (DD > 0°C) to 

define the thermal  suitability  threshold  for  I.  ricinus,  following the approach used to 

successfully define climatic suitability for Ixodes scapularis in Canada36. 

2. Materials and methods

We assume that tick population survival is primarily influenced by life cycle length, as it 

affects interstadial development rates, with many tick-suitable habitats offering refuges 

that shield ticks from extreme temperatures. For that reason, average daily temperatures 

above 0°C are relevant for tick development and population survival.  We consider a 

threshold on annual DD > 0°C below which the lifecycle is assumed to be so long that 

the population cannot persist37. Using a set of cross-sectional nymph count samples, we 

first assessed the effect of annual DD > 0°C on nymph abundance using a Generalized 

Linear  Mixed  Model  (GLMM).  Having  found  a  significant  and  positive  association 

between annual DD > 0°C and nymph abundance, we determined the minimum annual 

DD >  0°C threshold  at  which  nymph abundance  is  zero.  This  indicates  the  critical 

temperature threshold below which conditions are unfavourable for I. ricinus population 

persistence. This threshold was obtained as the intercept of the relationships between 

annual DD > 0°C and nymph abundance, representing the annual DD > 0°C estimate at 

which nymph abundance is predicted to be zero. We then mapped these thresholds over 

the area of interest and assessed their latitudinal changes over the period 1979-2020. 

An overview of the methods is presented in Figure 1. 
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Figure 1 Summary of the methodology applied to investigate the relationship between 

tick nymph abundance and annual degree days > 0°C (ADD), and the ADD thresholds 

for ticks persistence in each biogeographical region.

2.1 Biological observations and area of interest

We used  I.  ricinus nymph counts  acquired  by dragging  a  white  flannel  cloth  along 

transects as part of a survey conducted by  Kjær et al.  38 across Denmark, southern 

Norway, and south-eastern Sweden. Kjær et al. (2020) gathered data on tick larvae, 

nymph and adult abundance at 159 sites in south Scandinavia during August-September 

2016, with an additional sampling of 30 sites surveyed during the same months in 2017 

among which 18 sites were sampled both years. To address the difference in sampling 

effort between 2016 and 2017, we averaged the tick abundance only for sites visited in 

both  years,  whilst  the  sites  sampled  only  in  2017  were  kept  as  sampled.  Field 

surveillance  by  dragging  is  considered  the  gold-standard  method  for  identifying  the 

presence of reproducing, self-sustaining tick populations39,40. 

Sampling sites span from 5° to 20° East and from 54° to 64° North (Fig. 2). This area is 

characterised by four main biogeographical regions, namely Alpine, Atlantic, Boreal, and 
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Continental (Fig. 2; 41). We limited the geographical area of extrapolation of the model to 

these biogeographical regions only. 

2.2 Environmental covariates

We  calculated  the  annual  DD  above  0°C  (the  daily  average  number  of  degrees 

centigrade above 0°C summed over a year; ADD > 0°C) from 1979 to 2020 using the 

daily average surface temperature estimates at 9 x 9 km spatial resolution from the land 

reanalysis ERA5Land42. Only the years 2016 and 2017, as sampled by Kjær et al., were 

used to inform the GLMM model and the definition of the threshold (next sections).

Figure 2 Biogeographical regions of Europe according to Cervellini et al., (2020) in the 

area of interest and the  locations (brown dots)  sampled in 2016-2017. The sampling 

locations broken down by year are available in Fig. SM1.
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2.3 Modelling

We used Generalised Linear  Mixed Models (GLMMs) to  analyse the dependence of 

nymph abundance sampled in 2016-2017 on temperature, using the interaction between 

ADD > 0°C and biogeographical regions as predictors and country-level random effects 

included as a grouping factor (Eq. 1). 

nymph abundance ~ ADD > 0°C * biogeographical regions + (1|Country) (Eq. 1) 

Starting from a Generalised Linear Model (GLM), model selection was conducted by 

comparing  different  models.  Several  models  were  specifically  tested  by  examining 

overdispersion, zero inflation, random effects, and the quadratic effect of ADD > 0°C. 

The  final  model  was  chosen  based  on  the  Akaike  Information  Criterion  (AIC)  and 

likelihood  ratio  test  between  different  model  formulations.  Following  this  exploratory 

analysis, the final model formulation was a GLMM with a Poisson error family with a Log-

link  and a  negative  binomial  distribution  to  account  for  overdispersion,  and with  the 

country as a random effect. 

Summary statistics of the final model included the coefficient of determination (R²), the 

root mean square error (RMSE), and the mean absolute error (MAE). Additionally, we 

assessed the presence of spatial correlation in model residuals using Moran’s I statistic. 

All the analyses were performed in R 4.4.043 and the codes used are available on GitHub 

at https://github.com/danddr/ticks_DD_Scandinavia.  

2.4 Annual Degree Days > 0°C threshold for I. ricinus population persistence

In  the  absence of  substantial  literature  on the lower  annual  DD > 0°C limit  for  the 

persistence of  I.  ricinus,  we defined the lower thermal limit  for each biogeographical 

region as the intercept of the relationship between ADD > 0°C and nymph abundance as 

measured by  et al. 38 using a linear model (Eq. 2).

ADD > 0°C ~ nymph abundance * biogeographical regions (Eq. 2) 

The intercept of the linear model represents the estimated value of ADD > 0°C when 

nymph abundance is predicted to be zero. This can be interpreted as the critical heat 

threshold needed for tick development and activity to allow the completion of the tick life 
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cycle. Below this threshold, conditions prevent a mated adult female from producing at 

least one surviving mated adult female, thus inhibiting population persistence. 

To  assess  the  estimated  thresholds,  we  used  an  independent  dataset  of  I.  ricinus 

occurrences obtained from the Global  Biodiversity  Information Facility  (GBIF)  for  the 

period 1979-2020 in our area of interest44. The occurrence data were filtered removing 

missing or incorrect coordinates, and occurrences located in the sea or the city centres 

of  major  cities.  We  subsequently  linked  each  occurrence  to  its  corresponding 

biogeographical region and annual DD > 0°C for the sampling year. Each occurrence 

was identified as below or above the threshold identified for that region. We defined 

GBIF occurrences above each threshold as True Positives and GBIF occurrences below 

each  threshold  as  False  Positives  and  computed  sensitivity.  Although  not  a  formal 

significance test, this approach provides a practical measure to evaluate the predictive 

performance of each threshold.

2.5 Spatio-temporal trends in Cumulative Degree Days > 0°C thresholds

We computed the geographic position of the  ADD > 0°C threshold for each of the three 

sampled  biogeographical  regions  for  every  year  spanning  from  1979  to  2020  by 

computing the latitudinal difference between the position of the threshold in each year 

compared to that in 1979 within each biogeographical region. This involved determining 

the contour line of each ADD > 0°C threshold for each year, from which we obtained a 

distribution of latitudinal values belonging to the pixels intersected by the contour line. 

We  then  retrieved  the  yearly  median  latitude  of  each  threshold  and  computed  the 

difference between the median latitude of each year and that of 1979. We then utilised 

linear regression to analyse the relationship between the median latitudinal delta and the 

corresponding year (Eq. 3), aiming to discern any systematic changes in the latitudinal 

range of thermal limits over the study period for different biogeographical regions.

MedianLatitudinalDelta ~ year*biogeographical regions (Eq. 3) 

We mapped the threshold as isolines, connecting points of equal ADD > 0°C value for 

1979 and 2020. 
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3. Results

After the data curation, we utilised 171 unique locations out of the 189 total locations 

from  the  Kjær  et  al.38 dataset.  These  locations  were  distributed  across  three 

biogeographical regions: Atlantic (n = 19), Boreal (n = 114), and Continental (n = 38). 

We obtained 1820 raw  I. ricinus observations from the GBIF database in the area of 

interest,  which were reduced to  836 after  data  cleaning.  Following the exclusion of 

observations located in the alpine biogeographical region, the GBIF dataset was further 

refined to 809 observations, with 135 occurrences in the Atlantic, 547 in the Boreal, and 

127 in the Continental biogeographical regions.

The GLMM identified statistically  significant  associations between nymph abundance 

and both ADD > 0°C and biogeographical regions (Table 1). In the Atlantic region, ADD 

> 0°C showed a positive association with nymph abundance (estimate = 0.001, p = 

0.020), meaning that an increase of 1000 ADD > 0°C corresponds to an increase of 1 

nymph in abundance. A similar positive association was observed in the Boreal region 

(estimate = 0.003, p = 0.006), although overall, the Boreal region was associated with 

lower  nymph abundance than the  reference Atlantic  region  (estimate  =  -5.949,  p  = 

0.020).  In contrast, the Continental region exhibited higher nymph abundance than the 

Atlantic reference (estimate = 8.659, p = 0.007) but showed a negative association with 

ADD > 0°C (estimate = -0.002, p = 0.010).

A graphical representation of the estimated relationship between nymph abundance and 

DD > 0°C is displayed in Fig. SM3 for each biogeographical region. Random effects 

analysis revealed significant variation in nymph abundance across different countries, 

with a variance of 0.058 and a corresponding standard deviation of 0.241.

The  model  performance  metrics  indicate  that  the  conditional  R-squared  value,  the 

proportion of  the variance explained by the fixed and random effects,  is  0.418.  The 

marginal R-squared value, representing the variance explained by fixed effects alone, is 

0.383. Additionally, the RMSE and MAE are 34.99 and 22.78, respectively, expressed in 

the number of individual nymphs. The observed Moran's I value was found to be 0.0224 

(p = 0.2148) indicating that there is no significant global spatial autocorrelation in the 

residuals of the GLMM.
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The  linear  regression  model  designed  to  identify  the  ADD  >  0°C  threshold  values 

achieved an R-squared value of 0.555, with a significant intercept, which we interpret as 

the  ADD  >  0°C  thresholds  below  which  tick  persistence  is  not  possible,  in  each 

biogeographical  region (Tab.  2).  The Continental  biogeographical  region showed the 

highest ADD > 0°C threshold (3387 ADD > 0°C ) followed by the Atlantic (2847 ADD > 

0°C). The Boreal biogeographical region, instead, showed the lowest threshold equal to 

2673 ADD > 0°C.

Table 1 Estimates of the fixed effects of the Generalized Linear Mixed Model showing 

the effects of annual Degree Days above 0°C (ADD > 0°C) and biogeographical regions 

on nymph abundance.

Predictor Estimate (95% CI) Std. Error z value p-value

Intercept (Atlantic) -0.961 (-4.354, 2.431) 1.731 -0.555 0.579

ADD > 0°C 0.001 (0.000, 0.002) 0.001 2.319 0.020

Boreal -4.988 (-9.187, -0.788) 2.143 -2.328 0.020

Continental 9.620 (2.619, 16.620) 3.572 2.693 0.007

ADD > 0°C:Boreal 0.002 (0.001, 0.003) 0.001 2.741 0.006

ADD > 0°C:Continental -0.003 (-0.005, -0.001) 0.001 -2.566 0.010

Table 2 Linear Model identifying the ADD > 0°C threshold values; fixed effect estimates 

the tick nymph abundance and biogeographical  regions on Degree Days above 0°C 

(ADD > 0°C).

Predictor Estimate (95% CI) Std. Error z value p-value

Intercept (Atlantic) 2847.436 (2698.286, 2996.587) 75.540 37.694 p < 0.01

NymphAbundance 6.995 (2.343, 11.647) 2.356 2.969 0.003

Boreal -174.477 (-335.084, -13.871) 81.343 -2.145 0.03

Continental 539.915 (349.986, 729.845) 96.194 5.613 p < 0.01

NymphAbundance:Boreal -3.935 (-8.910, 1.040) 2.520 -1.562 0.12

NymphAbundance:Continen
tal

-6.711 (-11.609, -1.813) 2.481 -2.705 0.008
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The sensitivity  metric based on the  I.  ricinus GBIF observations scored  0.36 for the 

Atlantic region but was higher  for the Boreal and Continental regions (0.83 and 0.60, 

respectively; Tab. 3 and Fig. 3A). 

The model analysing the relationship between the median latitudinal difference between 

a given year and the reference year (1979) for each biogeographical region showed an 

R2 of  0.39, and positive significant interaction terms for both the Atlantic and Boreal 

regions (Tab. 4). We focus only on the Boreal region as the threshold with the highest 

sensitivity values  obtained using the GBIF data. Overall, in the period of interest, the 

Boreal DD > 0°C threshold moved north by 0.082 degrees of latitude/year (~9 km; Fig. 

3B),  corresponding  to  a  northward  shift  of  ~400  km between  1979  and  2020.  The 

threshold isolines for the other regions are presented in Fig. SM4-5. 

Table  3  Cumulative  annual  Degree  Days  >  0°C  (ADD)  thresholds  for  each 

biogeographical region and the sensitivity metrics for GBIF observations above (True 

positive) and below (False positive) the respective threshold.

Biogeographi
cal regions

ADD > 0°C

Threshold (95% 
CI)

GBIF 
observatio

ns

GBIF

ADD > 0°C 
median

True 
positive

s

False 
positive

s

Sensitivity (± 
SE)

Atlantic
2852 (2703, 

3002)
135

2745
49 86 0.363 (± 0.041)

Boreal
2673 (2363, 

2983)
547

2997
455 93 0.832 (± 0.016)

Continental
3387 (3048, 

3726)
127

3460
76 51 0.598 (± 0.044)
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Table 4 Latitudinal differences estimated for Biogeographical Regions with Confidence 

Intervals and Statistical Significance.

Predictor Estimate (95% CI) Std. Error z value p-value

Intercept (Atlantic) -87.885 [-137.066, -37.705] 25.357 -3.466 0.001

year 0.045 [0.02, 0.07] 0.013 3.540 0.001

Boreal -75.317 [-146.282, -4.351] 35.860 -2.100 0.038

Continental -26.909 [-97.875, 44.056] 35.860 -0.750 0.454

year:Boreal 0.038 [0.003, 0.073] 0.018 2.119 0.036

year:Continental 0.014 [-0.022, 0.049] 0.018 0.767 0.445

Figure 3 A) Distribution of GBIF occurrence over annual DD > 0°C (histogram) and ADD 

> 0°C threshold (red line; grey dashed lines represent the confidence interval) in the 

Boreal region and B) Mapped annual DD > 0° isoline threshold of the Boreal region for 

the reference years 1979 (full line) and 2020 (dashed line). Brown dots represent the 

GBIF observations for the Boreal biogeographical region only.
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4. Discussion

In  this  study,  we  investigated  the  northward  expansion  of  I.  ricinus in  relation  to 

temperature changes over 40 years. By analysing the association of tick abundance with 

annual  cumulative temperature (ADD > 0°C),  we aimed to assess the role of  rising 

temperatures  observed  since  1979  in  shaping  tick  distribution.  Our  results  show  a 

northward expansion of the thermal limit for  I. ricinus in Scandinavia over the past 40 

years, corroborating observations of ticks in new areas 30,31,45–48. We believe our estimate 

of  range  expansion  is  conservative  compared  to  previous  studies  that  based  their 

conclusions  on  presence  observations,  which  may  not  differentiate  between 

‘adventitious’ ticks that may represent ticks dispersed by migratory birds rather than the 

established populations from which they came49, even though we did not account for 

other dimensions of habitat such as microclimate, vegetation and hosts50.

We  assessed  whether  temperatures  are  permissive  for  I.  ricinus persistence  using 

annual DD > 0°C, a useful index for understanding the effect of temperature on the tick 

life cycle (Ogden et al. 36; reviewed in Ebi et al.51). Temperatures above 0°C determine 

development rates from one tick instar to the next, and thus the length of the tick life 

cycle, with warmer temperatures accelerating (to a point) development1. With a constant 

per capita daily mortality rate for ticks during non-parasitic phases, when ticks develop 

very slowly, populations cannot persist. A threshold temperature condition thus exists, 

below which the lifecycle is so long that the cumulative mortality means that the basic 

reproduction number of the tick is below unity37. Annual cumulative Degree Days > 0°C 

can thus be used to assess changes in temperature conditions over time that are of 

importance for  I. ricinus population persistence. The focus on nymphs as the primary 

indicator of tick population establishment is supported, as larvae may be more difficult to 

identify and occur in clusters in the environment associated with the egg masses from 

which they hatched, while nymphs are more numerous than adults, and thus generally 

easier to collect. 

Using  a  GLMM,  we  identified  statistically  significant  relationships  between  nymph 

abundance,  ADD  >  0°C,  and  biogeographical  regions,  with  significant  interactions 

between biogeographical  regions and ADD > 0°C.  We thus proceeded to  identify  a 
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temperature threshold for development, by geographical region, using a linear model 

(Fig.  1).  Thresholds  differed  between  regions,  reflecting  the  challenge  to  capture  a 

specific threshold through field-collected data, as well as the importance of factors to 

buffer temperature conditions. This was also found in Canada, where the temperature 

threshold for I. scapularis has been identified as a range, rather than a specific value52. 

This could relate to the genetic diversity of I. ricinus populations if this has an impact on 

temperature-dependent interstadial development rates (i.e. if  life cycles are longer or 

shorter in different populations given the same temperature conditions),  or results in 

differences in daily per-capita mortality rates. If  daily per-capita mortality rates in the 

predominant  habitats  of  biogeographic  region  A  are  higher  than  in  the  habitats  of 

biogeographic region B, the threshold ADD > 0°C value for I. ricinus persistence will be 

higher in region A than in region B. While plasticity has been observed53, what drives 

observed differences  in  host  questing  behaviour  in  ticks  is  not  clear.  Our  threshold 

values  are  comparable  to  values  identified  for  I.  scapularis in  Central  and  Eastern 

Canada36.

Using our biogeographical  region-specific thresholds,  we found that the thermal limit 

identified for  the Boreal  region,  which covers the greatest  extent  of  our  study area, 

progressed northward. In 1979, thermal conditions were unsuitable throughout Norway, 

most of  Sweden, and Finland. In contrast,  conditions are now suitable in the Boreal 

region from the southeastern shore of Norway to the southern and central regions of 

Sweden and the south of Finland, suggesting an overall northward shift of the limiting 

conditions of tick persistence of ~400 km over the 1979-2020 period. Our results are 

corroborated through a comparison with the proportion of GBIF observation recorded 

above this threshold (sensitivity = 0.83) and are coherent with other studies that have 

used  similar  approaches  based  on  seasonal  length6,31 or  climatic  thresholds54. 

Mechanistic approaches assessing changes in the speed of tick development concluded 

that it  increased substantially,  in the Boreal region in particular,  without identifying a 

threshold55.

Further investigation into the Atlantic and Continental  portion of  our study area may 

confirm the validity  of  the estimated thresholds.  Various reports  exist  confirming the 
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recently  observed  presence  of  I.  ricinus along  the  Norwegian  coast30,31,56,  but  the 

ruggedness of  the coastline and the coarseness of  the climate data employed here 

create  challenging  conditions  for  our  methodology  (Fig.  SM5-7).  Similarly,  in  the 

Continental  region,  no  clear  spatial  patterns  were  observed  (Fig.  SM5,  SM7). 

Nonetheless, we detected a positive latitudinal difference between each year and the 

reference year over the period of interest (Fig. SM6). Qualitatively, the areas with annual 

DD > 0 exceeding the respective threshold appeared to expand during the period 1979–

2020 (Fig. SM7). It is important to consider the low sample size for this region, which 

could influence the robustness of observed trends. Furthermore, interannual fluctuations 

likely play a significant role in these patterns. Interestingly, the observed changes in 

threshold  position  over  time,  extending  beyond  our  study  areas,  align  with  field 

observations, suggesting that the thermal limit has shifted mostly along an altitudinal 

gradient rather than a latitudinal one25,57.

Several elements in our results (low effect size and no statistical validation) as well as in 

tick  biology  emphasise  that  while  temperature  is  a  key  factor,  other  environmental 

variables shape the ecological niche of I. ricinus. Our assumptions focus on the role of 

temperature  in  accelerating  development  rates,  but  tick  persistence  relies  on  the 

presence of a diversity of habitat resources provided by vegetation cover and vertebrate 

hosts. In Scandinavia, complex relationships exist with host distribution32, a factor that 

has also changed substantially across the European continent over the past century58. 

While humidity may not be the limiting factor in the Boreal region, precipitation regimes 

may also affect tick habitat suitability59. Complex interactions exist between all habitat 

dimensions  at  various  spatial  and  temporal  scales  that  still  remain  to  be  fully 

established. Understanding the long-term effects of environmental changes will require 

understanding the complex interactions of habitat factors.  

The lack of long-term data series remains a significant challenge for studying the effects 

of  environmental  change such as climate change,  as long-term data are needed to 

better understand the mechanisms driving tick population dynamics. This lack of data 

could  explain  the  limited  validation  observed  in  our  findings  using  GBIF  data.  The 

potential biases associated with passive surveillance and citizen science and science 
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methods also challenge the use of GBIF data for model validation60 as GBIF data may 

include non-established ticks. It is possible that spuriously low ADD > 0°C thresholds (or 

spuriously variable thresholds amongst biogeographic regions) could be obtained from 

GBIF  data  if  numerous  observations  of  adventitious  ticks  are  included.  Such 

observations could be ticks dispersed northwards by migratory birds into locations where 

habitat  allows survival  over  one winter  and moulting  followed by  questing  and host 

finding, but where temperature conditions are too cold for the tick to complete its life 

cycle36.

Our results highlight the importance of standardised abundance and longitudinal data, 

as  demonstrated  by  the  VectorByte  (https://www.vectorbyte.org/)  platform  and  the 

VectAbundance  database61.  While  promoting  open  data,  these  resources  enhance 

modelling reliability  and contribute to  better  public  health preparedness by providing 

standardised,  high-quality  datasets  that  allow  for  more  accurate  analysis  of  vector 

population dynamics. 

5. Conclusion

We found that the northern temperature limit for Ixodes ricinus has moved northward by 

about  400km  in  the  Boreal  region  since  1979,  corroborating  much  circumstantial 

evidence that this pathogen vector has been observed in recently colonised habitat. Like 

other species, there are other features of the European climate that matter for I. ricinus 

ticks, such as extremes in temperature and changes in precipitation distribution across 

the seasons, and other ecological variables, such as host distribution and abundance, 

but here we focus on the effect of gradual temperature increase at the northern limit 

range. Our method made use of nymphal abundance data collected over a large area in 

a robust fashion and climate data reanalysis. While our thresholds were not designed as 

a predictive tool  and should not  be used as such given the low sample size of  the 

dataset employed, they shed striking light on the changes in thermal suitability in the 

north of Europe. 
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Supplementary materials

Figure SM1: Biogeographical regions of Europe according to Cervellini et al., (2020) in the 

area of interest and the location (brown dots) of the locations sampled in 2016 and 2017.

Table  SM2:  Contingency  table  of  the  observations  broken  down  by  country  and 

biogeographical region.

Denmark Norway Sweden

Atlantic 9 10 0

Boreal 0 - 73

Continental 32 0 6



Figure SM3:  Relationships between the Ixodes ricinus nymph abundance and the annual 

degree days > 0°C (ADD) for each biogeographical region as estimated by the generalised 

linear  mixed  model  defined  in  Eq.  1.



Figure SM4:  Distribution of GBIF occurrence over annual DD > 0 °C (histograms) and 

annual DD > 0 °C threshold (red line; dashed grey lines represent the confidence interval). 



Figure SM5 Mapped annual DD > 0 °C isolines thresholds across a larger portion of 

continental and northern Europe for the reference years 1979 and 2020. 



Figure SM6 Variability of the Latitudinal delta between each year and the reference year 

1979 in each biogeographical region. 



Figure SM7 Areas of Europe with annual Degree Days > 0°C values exceeding the 

thresholds  for  the  three  biogeographical  regions  (rows)  and  five  reference  years 

(columns): 1979, 1990, 2000, 2010, and 2020. 


