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Abstract 14 

The applications of epigenetic clocks, statistical models that predict an individual's age based on 15 
DNA methylation patterns, are expanding in wildlife conservation and management. This 16 
growing interest highlights the need for field-specific design best practices. Here, we provide 17 
recommendations for two main applications of wildlife epigenetic clocks: estimating the 18 
unknown ages of individuals and assessing their biological aging rates. Epigenetic clocks were 19 
originally developed to measure biological aging rates of human tissues, which presents 20 
challenges for their adoption in wildlife research. Most notably, the estimated chronological ages 21 
of sampled wildlife can be unreliable, and sampling restrictions limit the number and variety of 22 
tissues with which epigenetic clocks can be constructed, reducing their accuracy. To address 23 
these challenges, we present a detailed workflow for designing, validating, and applying accurate 24 
wildlife epigenetic clocks. Using simulations and analyses applied to an extensive polar bear 25 
dataset from across the Canadian Arctic, we demonstrate that accurate epigenetic clocks for 26 
wildlife can be constructed and validated using a limited number of samples, accommodating 27 
projects with small budgets and sampling constraints. The concerns we address are critical for 28 
clock design, whether researchers or third-party service providers perform the bioinformatics. 29 
With our workflow and examples, we hope to support the accessible and widespread use of 30 
epigenetic clocks in wildlife conservation and management.  31 
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Introduction 36 

Over the past decade, epigenetic clocks—statistical models that predict age based on DNA 37 
methylation patterns—have transformed human biomedicine by revealing how stressful life 38 
experiences accelerate biological aging, which is associated with disease (Lu et al., 2019) and 39 
early mortality (Chen et al., 2016; Marioni et al., 2015). Now, epigenetic clocks are poised for 40 
similar impacts in wildlife management and conservation biology. Biological age, estimated by 41 
epigenetic clocks, provides a non-lethal means to estimate key metrics for conservation and 42 
management, including age structure and cumulative lifetime stress, which underlie individual 43 
survival and population declines. Although other biological aging methods have provided some 44 
of these insights, the superior precision and accuracy of epigenetic clocks set them apart as a 45 
uniquely promising tool (Le Clercq et al., 2023). 46 

While a universal clock was recently published for all mammals (Lu et al., 2023), the 47 
most accurate epigenetic clocks are species-specific. Custom clocks present a new design 48 
challenge. Relative to sample collection from humans and model organisms, which happens in 49 
highly controlled settings, wildlife sampling is logistically challenging, often underfunded, and 50 
time-intensive, making it difficult to choose who and what is sampled. The small sample sizes 51 
typical of wildlife studies can be biased toward specific tissue types, sexes, and ages—all 52 
variables associated with distinct DNA methylation patterns (McEwen et al., 2020; Simpkin et 53 
al., 2016; Yusipov et al., 2020). The chronological ages of individuals used to train epigenetic 54 
clocks are often estimated and thus imprecise, contributing error that makes clock predictions 55 
less accurate. Several species-specific epigenetic clocks have already been developed (Bors et 56 
al., 2021; Czajka et al., 2024; Newediuk et al., 2024; Parsons et al., 2023); however, there has 57 
been limited discussion on best practices for sampling wildlife DNA and designing epigenetic 58 
clocks to deal with biases and aging error. Few species-specific clocks have been independently 59 
validated for accuracy across studies, making it difficult to detect when biases are present. 60 
Critically, third-party services now enable researchers with minimal bioinformatic and epigenetic 61 
clock experience to outsource the development of epigenetic clocks. An understanding of the 62 
clock-building process and sources of sampling bias is essential for those building or using 63 
wildlife epigenetic clocks whether the work is done in-house or by a third-party service. 64 

This paper offers practical recommendations for designing species-specific epigenetic 65 
clocks for wildlife, with a focus on minimizing the effects of sampling bias on their accuracy. 66 
We begin with an overview of epigenetic clock models, covering what they measure and their 67 
potential applications in wildlife conservation and management. Then, we discuss the key design 68 
considerations important for minimizing bias in wildlife epigenetic clocks, including 69 
representative sampling, feature selection, and validation methods sensitive to small sample 70 
sizes. We frame our discussion around comparisons of epigenetic clock design approaches using 71 
simulations and an extensive DNA methylation dataset from several wild polar bear (Ursus 72 
maritimus) populations (Box 1). Accompanying the discussion, we provide a comprehensive 73 
workflow that guides the reader through each major step and decision in developing a species-74 
specific epigenetic clock (Figure 1). 75 

Overview of epigenetic clocks 76 

Epigenetic clocks are regression models that estimate an individual’s chronological age based on 77 
predictable changes to DNA methylation that occur over a lifetime. DNA methylation (DNAm) 78 
is an important regulator of gene expression and cellular identity. While many DNA sites and 79 
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sequences can be methylated, the most frequent and commonly studied form of methylation is 80 
the addition of methyl groups on cytosine-guanine sequences (CpG sites; Bestor et al., 2015). 81 
Although biologically vital, DNAm is not static, and its maintenance declines with age, resulting 82 
in increased variability and higher rates of errors across a lifetime. Most mammalian genomes 83 
are highly methylated, so accumulating variability and error result in the average loss of DNAm 84 
with age (Jones et al., 2015; Jung & Pfeifer, 2015). However, specific CpG sites—conserved 85 
across mammals—undergo highly predictable changes with chronological age (Horvath, 2013; 86 
Lu et al., 2023). Epigenetic clocks leverage these predictable, age-associated changes to estimate 87 
chronological age (Hannum et al., 2013; Horvath, 2013; Lu et al., 2023). 88 

Epigenetic clock accuracy is typically assessed using the median absolute error (MAE) of 89 
the absolute differences between observed chronological and predicted epigenetic ages from a 90 
regression model, and either the coefficient of determination (R-squared) of the linear 91 
relationship between epigenetic age and chronological age or Pearson’s correlation coefficient 92 
(the “age correlation” — Horvath & Raj, 2018). A low MAE indicates the clock estimates 93 
chronological age with high precision, and a R-squared or age correlation indicates the strength 94 
of the linear relationship between epigenetic age and chronological age. Together, a low MAE 95 
and high R-squared or age correlation are characteristics of an accurate clock (Figure 2). When 96 
chronological age estimates are reasonably accurate and precise, the residual difference between 97 
the chronological and epigenetic ages of an animal, as predicted by the clock, reflects its 98 
epigenetic age acceleration (Horvath & Raj, 2018), a measure of biological age acceleration 99 
associated with mortality (Chen et al., 2016; Marioni et al., 2015), disease (Lu et al., 2019), and 100 
lifetime stress (Zannas, 2019). 101 

Most epigenetic clocks are constructed using elastic net regression (Zou & Hastie, 2005). 102 
This penalized regression method identifies a small subset of CpG sites—sometimes as few as a 103 
dozen—out of many thousands that accurately predict chronological age across a set of DNA 104 
samples. Because age-DNAm relationships are highly correlated among CpG sites, and elastic 105 
net regression arbitrarily selects only one of the correlated predictors, the specific CpG sites 106 
selected often vary each time the elastic net regression model is fit to the same set of samples 107 
(Engebretsen & Bohlin, 2019). This means caution should be used in causal interpretations of 108 
DNAm  related to gene function at specific epigenetic clock sites (Moqri et al., 2023). Still, the 109 
resulting age predictions on new samples are generally stable and accurate (Haftorn et al., 2023; 110 
Hannum et al., 2013; Horvath, 2013). 111 

Wildlife applications of epigenetic clocks 112 

Reasons for estimating wildlife epigenetic age 113 

There are currently two main applications of epigenetic aging in wildlife studies: accurately 114 
estimating the unknown ages of animals to improve information about population age structure 115 
and age-specific vital rates, and assessing epigenetic age acceleration. While age acceleration is 116 
the primary focus of biomedical epigenetic clock research due to its implications for human 117 
health, both applications are valuable for wildlife conservation and management. 118 

Other methods for estimating the ages of wildlife are often limited in precision or require 119 
invasive sampling (Calvert & Ramsay, 1998; Y. Zhang et al., 2024). Morphological biomarkers, 120 
such as counts of tooth cementum annuli or aspartic acid racemization in eye lenses, measure 121 
age-related changes but typically require post-mortem samples. Additionally, the accuracy of 122 
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some of these methods varies with age, often providing imprecise age estimates for younger 123 
individuals (Garde et al., 2018). Telomere length is another age-associated molecular marker and 124 
a less invasive alternative to morphological approaches, as it can be assessed using tissue 125 
samples collected from live animals. However, using telomere lengths to estimate age is less 126 
accurate than epigenetic aging (Le Clercq et al., 2023). Epigenetic clocks currently provide the 127 
best and least invasive information about age, provided that clocks are trained with accurate 128 
chronological ages.  129 

Recent research has identified connections between ecologically relevant environmental 130 
stressors and epigenetic age acceleration (Anderson et al., 2021; Newediuk et al., 2024), 131 
suggesting that age acceleration can serve as a measure of lifetime stress in wildlife, as it does 132 
for humans and lab animals in biomedical research. However, it should be noted that epigenetic 133 
clocks can only estimate age acceleration when applied to known-age samples. Challenges 134 
associated with accurately aging wildlife using morphological or other methods, as well as small 135 
sample sizes and biased sample collection, will limit the accuracy and thus the usefulness of 136 
epigenetic clocks for assessing lifetime stress. We discuss these challenges in Section A. 137 

Applying epigenetic age estimates in wildlife conservation and management 138 

The applications of accurate age predictions from tissue samples for wildlife management and 139 
conservation are two-fold. First, increased access to accurate age estimates for larger numbers of 140 
individuals whose ages may otherwise be unknown should improve estimates of population 141 
growth and survival rates, which often coincide with shifts in population age structures (Jackson 142 
et al., 2020). Age-structured population models rely on age data, which is often imprecisely 143 
measured or unavailable, to track population dynamics (Holmes et al., 2007; Hostetter et al., 144 
2021). Epigenetic age acceleration provides a standard means to assess the severity of 145 
environmental stressors and their consequences for population health when the chronological age 146 
of the sampled individual is known. Unlike traditional wildlife stress biomarkers, such as 147 
glucocorticoid hormone levels, which are highly variable and lack a clear reference point for an 148 
“unstressed” animal (Romero & Beattie, 2022), epigenetic age acceleration is relatively stable 149 
and has been consistently associated with stress and health across lifetimes (Lu et al., 2019; 150 
Perna et al., 2016; Zannas, 2019). 151 

Importantly, epigenetic acceleration could detect populations experiencing environmental 152 
stressors before population declines occur, thereby facilitating timely conservation and 153 
management interventions. Current metrics for assessing the consequences of stress for 154 
populations, such as changes in population dynamics and genetic diversity, are lagging indicators 155 
of population health that reflect the cumulative effects of stress following several generations of 156 
poor survival and reproductive success. In contrast, epigenetic aging rates accelerate in response 157 
to stress experienced within the lifespan of individual animals, positioning it as a leading 158 
indicator to identify populations at risk of future declines. 159 

Recommended workflow for designing accurate wildlife epigenetic clocks 160 

We begin with a discussion of sample collection (Figure 1A), as key decisions made at this stage 161 
significantly influence epigenetic clock accuracy. Clock accuracy improves with sample size (Q. 162 
Zhang et al., 2019), so clocks should be built with as many samples as possible. Variations in 163 
DNAm due to tissue, sex, and genetic ancestry can be addressed during quality control (Figure 164 
1B), pre-processing (Figure 1C), and validation (Figure 1D). However, highly accurate clocks 165 
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cannot detect residual differences between chronological and epigenetic age, making them 166 
unsuitable for measuring epigenetic age acceleration (Q. Zhang et al., 2019). Measures of 167 
epigenetic age acceleration will also be biased when the chronological ages of samples used to 168 
train the clock are inaccurate. Moreover, even after pre-processing and quality control, clocks 169 
designed for narrow applications, such as those using samples from and for a single population, 170 
may perform poorly when applied to new populations and sample types. 171 

In the following sections, we explore these considerations in more detail, outlining 172 
epigenetic clock design decisions related to sample collection, data quality control checks, pre-173 
processing, and clock validation. We provide tailored recommendations for applications of 174 
wildlife epigenetic clocks used for estimating the unknown age of individuals and for assessing 175 
epigenetic age acceleration.  176 



 7 

 177 

 178 
Figure 1 Our recommended workflow (solid lines) for developing epigenetic clocks includes (A) 179 
deciding on the sample size and characteristics required to train an accurate clock, extracting the 180 
DNA, and quantifying DNA methylation; (B) performing optional quality-control tests and 181 
normalizing the DNA methylation data; (C) performing pre-processing steps to limit the number 182 
of features used to fit the clock; and (D) validating the clock. Dotted lines indicate optional or 183 
alternative steps.  184 
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185 
Figure 1 Simulated examples of epigenetic clocks with varying accuracy. The accuracy of 186 
epigenetic age estimates can be checked by comparing them to known chronological ages. Black 187 
points are observed chronological and predicted epigenetic ages, blue lines are regression lines 188 
through the points, and the dotted lines are guides for a 1:1 relationship between chronological 189 
and epigenetic age. (A) illustrates a clock with high accuracy. The regression line closely follows 190 
the 1:1 line, resulting in low median absolute error (MAE) and high R-squared and correlation 191 
between epigenetic and chronological age. Clock (B) is less accurate, with a higher MAE. 192 
Clocks (C) and (D) have a similar correlation and R-squared, but (D) has a lower MAE, as it 193 
better tracks a 1:1 relationship between epigenetic and chronological age.  194 
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Section A—Design considerations: sample selection and bias 195 

Sampling challenges in wildlife epigenetic clocks 196 

This section addresses considerations for sample selection when training wildlife epigenetic 197 
clocks. In human studies, epigenetic clocks can vary in accuracy when the training set is biased 198 
toward one or a few classes of age, sex, tissue, or other factors that influence DNAm (Hannum et 199 
al., 2013; McEwen et al., 2020). To mitigate these class biases (Box 2 – Class bias simulation), 200 
human epigenetic clocks are typically trained on large samples that fully represent the classes to 201 
which the clocks will later be applied. 202 

In contrast, wildlife sampling is often opportunistic and limited to specific age or sex 203 
groups, with genetic relationships among the sampled individuals unknown and constraints on 204 
the types of tissues that can be collected. Wildlife studies also contend with age biases, which 205 
arise when sampling is restricted to one or a few age classes. This causes issues when the clock 206 
is used on samples collected from individuals whose ages were not represented in the training 207 
data (Box 3 – Age bias simulation), exacerbated by non-linear changes in DNAm with age 208 
(Horvath & Raj, 2018). For wildlife, non-linear changes with age also occur during periodic life 209 
history stages like hibernation (Pinho et al., 2022). Additional inaccuracies in wildlife clocks 210 
stem from sometimes having to estimate rather than directly measure the chronological ages of 211 
sampled individuals (e.g., Mayne et al., 2023; Thompson et al., 2017; Box 3 – Age error 212 
simulation) using aging techniques that perform better for some age classes than others (Garde et 213 
al., 2018; Hinton et al., 2023), a challenge less important in human studies where chronological 214 
ages are usually known. 215 

Therefore, wildlife studies must recognize the potential limitations of epigenetic clocks 216 
trained on class-biased samples, avoid critical biases related to age, sex, tissue, and genetic 217 
differences, and anticipate the future applications of clocks when collecting samples to build a 218 
clock. In the following subsections, we discuss potential causes of reduced clock accuracy due to 219 
class and age biases. We then assess variation in accuracy of clocks fit using biased training 220 
samples from simulated DNAm data and real DNAm data where we introduce biases by 221 
resampling training and testing data from our polar bear dataset (Box 1). Our analyses 222 
demonstrate how age and class biases might affect clock accuracy in wildlife. 223 

Class biases—Genetic population differences in aging 224 

One of the major class biases in biomedical research is population differences in DNAm patterns 225 
associated with aging. Human population differences arise due to a combination of 226 
environmental factors, which account for some between-population variation in the relationship 227 
between DNAm and age, and genetic differences, which also contribute significantly (Carja et 228 
al., 2017; Fraser et al., 2012). For example, studies on human twins have shown that genetic 229 
differences between individuals can explain up to half of the variation in their epigenetic aging 230 
rates (Jylhävä et al., 2019). 231 

Whether population differences represent an equally important class bias for wildlife 232 
epigenetic clocks is uncertain. The Horvath Mammalian Array, the most popular tool used to 233 
measure DNAm in non-human mammals, differs from the analogous human array in that it 234 
includes sequences conserved across most mammalian species. This design should minimize bias 235 
caused by genetic variation among populations of the same species (Arneson et al., 2022). 236 
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However, substantial genomic alignment differences to the mammalian methylation array still 237 
exist between species (Lu et al., 2023; Zoller & Horvath, 2024), suggesting that genetic variation 238 
at some sites on the array could also subtly affect clock accuracy between populations. 239 

We tested whether population genetic structure affects epigenetic clock performance in 240 
polar bears and found minimal evidence of bias (Figure 3A). This suggests age-related DNAm 241 
patterns in this species are largely consistent across populations, despite genetic differences. 242 
However, genetic influences on DNAm might vary across species, and many recent species-243 
specific clocks trained using samples from a single population have not yet been tested on other 244 
populations. Cross-population validations are particularly important because genetic structure 245 
often correlates with spatial variation, which could confound relationships between epigenetic 246 
aging rates and environmental variation. Indeed, recent work has already shown different aging 247 
rates between geographically isolated wildlife populations (Cossette et al., 2023). 248 



 11 

 249 
Figure 3 Predictive accuracy of polar bear epigenetic clocks trained with varying levels of class 250 
overlap with the testing data, measured by median absolute error (MAE, blue) of epigenetic age 251 
relative to chronological age and the R-squared (orange) of the linear relationship between 252 
epigenetic and chronological age. Brighter orange and blue boxes indicate more accurate clocks 253 
and darker-shaded boxes are less accurate. For each overlap proportion, we fit 100 clocks with 254 
new training and testing samples, and the resulting accuracy metrics are displayed as boxplots 255 
showing the median, interquartile range, and outliers. (A) predicts epigenetic age in 30 samples 256 
from two western-Arctic subpopulations (Southern and Northern Beaufort) using 75 samples from 257 
the same populations and a genetically distinct central-Arctic subpopulation (Western Hudson 258 
Bay), with overlap proportions ranging from genetically identical (0) to entirely distinct (1). (B) 259 
predicts epigenetic age in 30 male samples using 60 samples ranging from entirely female (overlap 260 
= 0) to entirely male (overlap = 1), with equal numbers from each subpopulation. (C) predicts 261 
epigenetic age in 75 muscle samples from seven subpopulations across the Canadian Arctic, using 262 
100 samples ranging from only muscle (overlap = 1) to blood and skin (overlap = 0). (D) predicts 263 
epigenetic age in 30 mature bears (> 5 years) using 45 samples ranging from entirely mature 264 
(overlap = 1) to entirely immature (< 5 years, overlap = 0), with equal representation from each 265 
subpopulation. The plots indicate that clock performance is most affected by biased tissue types 266 
and age groups in the training data and that these biases have a greater impact on the deviation of 267 
epigenetic age from chronological age than on the linear relationship between epigenetic and 268 
chronological age. 269 

Class biases—Sex-specific DNA methylation 270 

In mammals, including humans, females tend to live longer than males (Lemaître et al., 2020). 271 
This raises concerns about possible sex-based differences in epigenetic aging that could affect 272 
the accuracy of epigenetic clocks. The majority of sex-specific DNAm patterns occur on the sex 273 
chromosomes, although some autosomes also exhibit sex-related differences (Gatev et al., 2021; 274 
McCartney et al., 2020). Some clues about the mechanisms behind sex-related aging differences 275 
come from comparing DNAm between sterilized and unsterilized animals. In these studies, 276 
androgen-sensitive CpG sites in sterilized animals have lower levels of DNAm (Sugrue et al., 277 
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2021), and sterilized individuals also age faster epigenetically (Stubbs et al., 2017). In human 278 
epigenetic clocks, these biases are well-documented; differences in aging-related phenotypes 279 
between males and females align with distinct DNAm patterns (Grant et al., 2022). To prevent 280 
these differences from impacting accuracy, clocks designed for humans and model organisms 281 
often exclude markers present on the sex chromosomes (Hannum et al., 2013; Stubbs et al., 282 
2017). 283 

We found no evidence that varying sex ratio in the training dataset impacted epigenetic 284 
clock accuracy using our polar bear dataset (Figure 3B). This suggests that few sex-specific sites 285 
were selected by the clock. However, sex-related differences in DNAm could be important in 286 
other species, as they have been documented elsewhere (e.g., Czajka et al., 2024; Prado et al., 287 
2021; Robeck et al., 2021). 288 

Class biases—Tissue-specific DNA methylation 289 

Tissue-specific differences in aging rates present a well-known challenge for building epigenetic 290 
clocks (Horvath & Raj, 2018; Porter et al., 2021). When sampling live animals, we are often 291 
limited to skin, blood, and muscle biopsies; however, biobanks, post-mortem and museum 292 
samples, and non-invasive sampling methods (e.g., feces and hair snags) offer opportunities to 293 
sample other tissue types. While the ability to use multiple tissues in clocks will increase the 294 
utility of epigenetic clocks, multi-tissue clocks are also challenging to build and are often less 295 
accurate than clocks built with fewer tissue types. In humans, epigenetic clocks trained on 296 
specific tissues tend to be highly accurate for that tissue but less effective for predicting age in 297 
other tissues (Porter et al., 2021), as different tissues capture slightly different aspects of aging 298 
(Gibson et al., 2019; McEwen et al., 2020). For example, the human PedBE clock, trained using 299 
buccal epithelial cells from children and adolescents aged 0–20, remains one of the most 300 
accurate human clocks even when applied to older age groups (McEwen et al., 2020). However, 301 
its accuracy falls drastically when used to age non-epithelial tissues (Ibid). In contrast, multi-302 
tissue clocks can be less accurate but more versatile across different tissues, as they tend not to 303 
select tissue-specific sites (Horvath, 2013; Porter et al., 2021).  304 

We found adding tissue bias in the training set of our polar bear epigenetic clocks 305 
significantly reduced clock accuracy (Figure 3C). Clocks designed for other species also 306 
demonstrate tissue-specific differences in DNAm (Robeck et al., 2021; Stubbs et al., 2017). At 307 
least in some species, these biases appear to be driven by the elastic net regression algorithm 308 
favouring DNAm patterns exclusive to the dominant tissue type in the sample (Robeck et al., 309 
2021). 310 

Age bias and age estimation bias 311 

Many human clocks are less accurate for aging young individuals because DNAm changes occur 312 
several times faster during this period (Alisch et al., 2012). Rapid changes in DNAm during early 313 
life and adolescence are associated with genes related to growth and development that become 314 
less active in adulthood (McEwen et al., 2020). Additionally, changes in the cell composition of 315 
tissues with age can also influence DNAm, as DNAm differs across cell types (Chen et al., 2016; 316 
Shireby et al., 2020). When trained on samples with a narrow age range, particularly those from 317 
older individuals, clock accuracy declines (Simpkin et al., 2016). For example, the Hannum 318 
clock, one of the earliest human clocks, was trained on samples from adults 19 years and older, 319 
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making it less accurate for adolescents compared to the Horvath clock, which was trained on 320 
samples from newborns to older adults (Simpkin et al., 2016). Accounting for non-linear changes 321 
in DNA methylation with age improves the accuracy of epigenetic clocks (Bernabeu et al., 2023; 322 
Haftorn et al., 2023). 323 

Age bias is a critical consideration in designing wildlife epigenetic clocks, where 324 
sampling methods often favour some age classes over others (Bisi et al., 2011; Camacho et al., 325 
2017; Smith et al., 1995). Thus, some age groups are likely to be underrepresented or absent in 326 
many wildlife epigenetic clocks. Using our polar bear data, we found that the MAE increased 327 
when we trained clocks with samples from immature individuals and then used those clocks to 328 
predict sample ages of mature individuals (Figure 3D). This suggests that rapid epigenetic aging 329 
rates in young polar bears fail to predict slower rates in adults, a pattern also observed in humans 330 
(Alisch et al., 2012). However, clocks trained exclusively on slower-aging adults were even less 331 
accurate. When we simulated the non-linear DNAm patterns that typically occur over a lifetime, 332 
we found that training clocks with samples from mature individuals and using those clocks to 333 
predict the ages of younger samples resulted in the highest MAE (Box 3). 334 

Moreover, unlike in human studies where chronological ages are typically known, 335 
wildlife researchers must often estimate the ages of their samples (e.g., Thompson et al., 2017), 336 
introducing further error (Mayne et al., 2023). Methods for estimating wildlife age often rely on 337 
body size or changes in the chemical and structural composition of teeth, eyes, baleen, ear plugs, 338 
and other features as animals age (reviewed in Morris, 1972). However, these methods can be 339 
inaccurate, leading to either over- or underestimation of epigenetic age (Box 3). For example, the 340 
accumulation of abnormal proteins in eye lenses is a standard aging method for bowhead whales 341 
(Balaena mysticetus). This method’s low accuracy, in addition to the long lifespan of this 342 
species, may explain the poor accuracy of the pan-mammalian clock in this species (Lu et al., 343 
2023).  344 

Sampling recommendations for wildlife epigenetic clocks 345 

Based on our simulations, analyses, and review of existing epigenetic clocks, their accuracy and 346 
reliability will be maximized by addressing key sources of bias and sampling either broadly or 347 
narrowly, depending on the clock’s intended use. We recommend the following approaches to 348 
sampling. 349 

Minimize tissue and age biases. Training clocks with accurately aged samples is critical; even 350 
large training samples could not compensate for accuracy lost due to aging error (Box 3). To 351 
ensure accuracy, we recommend even sampling across ages—particularly “prime” aged 352 
individuals that are neither very young nor very old—and either focusing on a single tissue type 353 
for clocks designed for use on single tissues or sampling evenly across multiple tissues for 354 
broader applications. Our polar bear analysis found tissue and age biases influence clock 355 
performance (Figure 3), which is consistent with human studies (Porter et al., 2021). The most 356 
accuracy is lost when training samples are skewed toward individuals older than the clock’s 357 
target population (Box 3). Clock accuracy improves significantly when training samples are 358 
skewed toward younger ages, even if the youngest and oldest individuals in a population are not 359 
included (Box 3). 360 
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Despite being less important than tissue and age biases for polar bears, other class biases, 361 
such as population structure and sex differences in DNAm, can also influence clock performance 362 
and thus should be considered (Fraser et al., 2012; Grant et al., 2022). If unavoidable, some of 363 
these factors can be mitigated using the quality control and pre-processing methods discussed in 364 
sections B and C. Differences in epigenetic aging rates due to genetic ancestry are particularly 365 
relevant for clocks designed to assess epigenetic age acceleration across environments, which 366 
could be confounded with genetic variation across environments. 367 

Tailor sampling to intended clock applications. Clocks trained on a single class (i.e., a single 368 
tissue type, sex, or age range) are likely to be most accurate when applied to age samples from 369 
the same age classes, as broader sampling can identify both class-specific DNAm patterns and 370 
those generally related to aging. Our analyses indicate that the most accurate clocks are trained 371 
on samples closely matching the class characteristics of the test samples (Figure 3; Boxes 2 & 3). 372 
We recommend sampling from narrow age and class ranges matched to the test population for 373 
estimating unknown ages, where a high degree of accuracy is critical. 374 

Conversely, sampling breadth is important for assessing epigenetic age acceleration, as 375 
class differences in aging rates, particularly between populations, could be mistaken for the 376 
effects of environmental stressors on epigenetic aging rates. For example, a clock trained with 377 
samples from a single population might predict faster aging in a different population, either due 378 
to genetic differences in age-associated sites or exposure to distinct stressors. Drawing training 379 
samples from both populations should control for the genetic differences. Our simulations 380 
suggest that even a small proportion of samples from each class represented in the training 381 
sample can improve the clock’s predictions across classes (Box 2). 382 

Anticipate population dynamics and sampling constraints. If future samples will always come 383 
from the same tissues, age ranges, populations, and sexes, we recommend training the clock with 384 
the samples from those classes for maximum accuracy. All our analyses indicated that narrowly 385 
focused clocks were the most accurate, and other wildlife clock studies have made similar 386 
observations (Robeck et al., 2023). However, training on a broader sample range will better 387 
capture general age-related changes in DNA methylation and mitigate future biases from age- 388 
and class-specific sites should population demography or sampling methods change. Using data 389 
from long-term research projects to examine past population dynamics will help anticipate these 390 
changes to ensure that clocks remain robust to future demographic and genetic shifts. 391 

Section B—Quality checks and data organization 392 

Following sample collection, DNAm levels are measured from tissue DNA extractions. The 393 
DNA is often bisulfite treated to convert non-methylated cytosines to uracil, which enables their 394 
differentiation from methylated nucleotides. Methylation levels at target CpG sites in the 395 
bisulfite-converted DNA are then measured.  396 

The Horvath Mammalian Array is the most widely used platform for measuring DNAm 397 
in non-human mammals. Adapted from earlier microarrays designed for human DNA, the array 398 
includes just over 37,000 50-bp target sites, including conserved CpG sites and their flanking 399 
sequences (Arneson et al., 2022). The sites were selected from an alignment of 62 mammal 400 
species with the human genome. While not all sites are expected to align to the genome of every 401 
mammal species, most genomes tested align to at least half of the sites on the array, and DNAm 402 
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at a subset of those is expected to change predictably with age (See Section C; Arneson et al., 403 
2022).  404 

In our workflow, we assume readers measured methylation in bisulfite-converted DNA 405 
using the Horvath Mammalian Array. However, alternative approaches are also possible, such as 406 
quantifying DNAm in bisulfite-converted DNA through targeted or whole-genome next-407 
generation sequencing (Kurdyukov & Bullock, 2016). Regardless of how DNAm is quantified, 408 
the considerations we discuss regarding clock design are common to wildlife epigenetic clocks 409 
and remain relevant across different sequencing approaches.  410 

In the microarray approach, DNA is extracted from tissue samples and hybridized to the 411 
array, stained, and imaged. The raw image data are processed to generate individual beta values, 412 
quantifying the proportion of methylation at each CpG site. These beta values are then 413 
normalized to correct for background fluorescence, a component of the technical variation in 414 
staining (Triche et al., 2013). The normalized beta values become the input for the elastic net 415 
regression model that constitutes the epigenetic clock. R packages, such as SeSAMe (Zhou et al., 416 
2018) and minfi (Aryee et al., 2014), provide functions for converting the images to raw DNA 417 
methylation data and normalizing them into beta values. Newediuk et al. (2024) is linked to a 418 
well-structured GitHub project with detailed R code covering the entire epigenetic clock 419 
workflow using minfi (Figure 1). A tailored R package, MammalMethylClock, also provides 420 
detailed workflows and functions for processing data from the Horvath Mammalian Array into 421 
normalized betas using SeSAMe (Zoller & Horvath, 2024).  422 

 We recommend several quality-control checks to avoid technical differences in sample 423 
processing from influencing beta values. A key concern is batch effects, which arise because of 424 
the structure of DNAm microarrays; each mammal microarray batch consists of four chips with 425 
12 positions each, and variation in DNA hybridization or staining can introduce systematic 426 
variation in fluorescence across chips or chip positions. Batch effects can occur across arrays run 427 
on different days, by different staff, or at different facilities. To prevent these artifacts from being 428 
mistaken for biological patterns, samples from the same classes should be randomized across 429 
chips and batches, even if multiple batches of chips are required. In all cases, batch effects can be 430 
assessed and corrected with the sva package (Leek et al., 2012) in R.  431 
 432 
Section C—Design considerations: Data pre-processing methods 433 

Overview of pre-processing methods and wildlife clock considerations 434 

After preparing the raw data with normalization, optional batch correction, and other quality 435 
control steps, clock performance can still be improved with additional pre-processing steps 436 
before building the epigenetic clock. In this section, we discuss pre-processing methods that 437 
improve performance by reducing the dimensionality of the data used to train the clock. The 438 
examples we provide are specific to beta values obtained from the Horvath Mammalian Array, 439 
but the same principles of dimensionality reduction are germane to any high-dimensional DNAm 440 
data. 441 

Pre-processing improves accuracy because DNAm and other high-throughput data are 442 
high-dimensional, meaning they include many more features (CpG sites) than individuals 443 
sampled. This high feature-to-sample ratio increases the risk that CpG sites unassociated with 444 
age will end up in the epigenetic clock model, introducing unnecessary complexity and reducing 445 
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clock accuracy. Although the regularization algorithms used to fit epigenetic clocks mitigate this 446 
complexity by penalizing the inclusion of uninformative predictors, they do not always eliminate 447 
the problem, especially when sample sizes are small. In elastic net regression, the strength of 448 
regularization is controlled by the hyperparameters alpha and lambda, which shrink 449 
uninformative sites to zero and may remove them entirely from the model (Kuhn & Johnson, 450 
2013). However, high-dimensional data can still retain correlated features even with 451 
regularization, leading to overfitting. To avoid this problem, many machine learning workflows 452 
include feature selection, which involves streamlining the number of features before model 453 
fitting. By filtering out uninformative predictors early, feature selection helps prevent overfitting 454 
and improves predictive accuracy in new data (Theng & Bhoyar, 2024). 455 

Feature selection is likely most beneficial for wildlife epigenetic clocks with small 456 
sample sizes. Unlike human epigenetic clocks, often designed using hundreds or even thousands 457 
of samples (Fransquet et al., 2019), wildlife clocks often rely on datasets with no more than a 458 
few dozen samples (e.g., Czajka et al., 2024; Thompson et al., 2017). This creates an inflated 459 
feature-to-sample ratio, making dimensionality reduction even more critical. The issue will be 460 
compounded for studies quantifying DNAm with whole-genome sequencing, which results in a 461 
feature dataset that is orders of magnitude larger than the Horvath Mammalian Array. 462 

However, a key consideration when incorporating feature selection into epigenetic clock 463 
workflows is balancing model simplification with the preservation of predictive information. 464 
While feature selection helps to reduce overfitting, it also decreases the number of CpG sites 465 
available for epigenetic clock development, potentially excluding important predictive sites if the 466 
feature selection is too strict. The importance of retaining predictive sites is evident from studies 467 
showing that epigenetic clocks trained with progressively fewer CpG sites can still predict age 468 
but with substantially lower accuracy compared to clocks using dozens or hundreds of sites 469 
(Haftorn et al., 2023; Li et al., 2022). To find the best balance between minimizing the exclusion 470 
of important predictive sites and reducing bias from uninformative ones, we applied two pre-471 
processing approaches, genomic alignment and feature selection, to the polar bear data and 472 
assessed their impact on epigenetic clock performance. 473 

Pre-processing methods—Genomic alignment 474 

An initial approach to reducing the number of features is to align the Horvath Mammalian Array 475 
to the genome of the study species before fitting a clock. The array was designed for all eutherian 476 
mammals, and while at least half of the sites included on the array are conserved among the 115 477 
species on which it was tested (Arneson et al., 2022), differences in alignments are possible. 478 
Genomic alignment, standard practice when using and designing epigenetic clocks (Parsons et 479 
al., 2023; Raj et al., 2021; Thompson et al., 2017; Wilkinson et al., 2021; Zoller & Horvath, 480 
2024), reduces feature complexity by retaining only CpG sites that align with the genome of the 481 
species of interest. 482 

Genomic alignment could exclude as many as 20,000 sites in some species (Arneson et 483 
al., 2022), making it an effective method for reducing dimensionality. The use of this approach 484 
depends on the availability of a reference genome for the species of interest. Fortunately, many 485 
species reference genome alignments are available on the Mammalian Methylation Consortium’s 486 
GitHub page at https://github.com/ shorvath/MammalianMethylationConsortium/. 487 
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Pre-processing methods—Feature selection 488 

Feature selection methods reduce complexity based on relationships among CpG sites. 489 
When sample class characteristics such as sex and genetic population are unknown, features can 490 
be retained or excluded from the model using unsupervised methods (Kuhn & Johnson, 2013). In 491 
variance filtering, for example, CpG sites with the most variation in methylation are retained 492 
because sites with low variation are less likely to discriminate among ages (Higgins-Chen et al., 493 
2022; Sarac et al., 2017; Zhuang et al., 2012). Sites with signals that cluster with other sites are 494 
also targets for unsupervised filtering. These sites tend to be more reliable predictors, and 495 
retaining them results in accurate and stable clocks (Higgins-Chen et al., 2022). Related sites can 496 
be identified and retained using approaches such as k-means clustering (Sarac et al., 2017), or 497 
clocks can be trained directly on the principal components of multicollinear CpG sites identified 498 
with principal components analysis (Higgins-Chen et al., 2022). 499 

Supervised or semi-supervised filtering methods select features according to their 500 
relationships with explicitly selected class characteristics (Kuhn & Johnson, 2013). In epigenetic 501 
clocks, the target of supervised feature selection is often age; CpG sites are retained for 502 
significant relationships with age (e.g., Li et al., 2022; Zhuang et al., 2012). It is also possible to 503 
select features using other target variables. For example, CpG sites can also be excluded for class 504 
biases in their DNA methylation-age relationships (e.g., sex—Newediuk et al., 2024). Class bias 505 
can be detected with linear models that predict DNA methylation using age and common class-506 
biased variables such as sex and tissue type (Box 4). 507 

We found that removing biased CpG sites from our polar bear clocks through supervised 508 
feature selection—retaining those features related to age but not dependent on sex or tissue 509 
type—improved accuracy relative to genomic alignment alone (Figure 4). This is likely because 510 
feature selection eliminated at least 94% of sites on the array, substantially more than the 10% 511 
(3,818 sites) eliminated because they did not align to the polar bear genome. 512 

However, excluding too many sites with feature selection compromised accuracy. For 513 
example, removing 35,387 sex-specific sites and those without a strong relationship with age left 514 
2,105 sites to create the clock, which reduced the MAE compared to clocks without feature 515 
selection (Figure 4B). Additionally, removing tissue-biased sites and those that did not align with 516 
the polar bear genome resulted in the elimination of 37,448 sites, leaving only 44 sites to create 517 
the clock, which caused a sharp decline in R-squared (Figure 4A).  518 

Our feature selection scenarios highlight a fundamental consideration in building 519 
epigenetic clocks. Reducing feature complexity improves accuracy only up to a point. Our 520 
feature selection simulations showed that removing class-biased sites reduced clock MAE and 521 
maintained a high R-squared until the number of removed sites reached a threshold, beyond 522 
which accuracy declined sharply (Box 4). For our polar bear clocks, this threshold occurred 523 
somewhere between the removal of 35,387 and 37,442 CpG sites, representing 94.4% and 99.9% 524 
of sites on the Horvath Mammalian Array. Feature selection is important for wildlife epigenetic 525 
clocks, particularly those using whole-genome bisulfite sequencing, where small sample sizes 526 
and large genomes inflate the feature-to-sample ratio and reduce accuracy. Site removal can also 527 
be fine-tuned during model fitting by setting the regularization hyperparameters alpha and 528 
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lambda closer to their maximum values, which will result in stricter removal of uninformative 529 
sites. 530 

 531 

 532 

 533 
Figure 4. Accuracy, evaluated by R-squared (A) and median absolute error (B), compared between 534 
clocks fit with different feature selection approaches using polar bear methylation data. Each box 535 
and whisker represents a different feature selection approach. From left to right, these approaches 536 
include no feature selection (No F.S.), sites removed if they did not align to the polar bear genome 537 
(Align.), sites removed if they lacked a significant relationship with age in both sexes (Age, sex), 538 
sites removed if they lacked a relationship with age in blood, skin, and muscle tissues (Age, tiss.), 539 
sites removed if they lacked a significant relationship with age in all tissues and both sexes (Age, 540 
tiss., sex), and sites removed if they lacked a relationship with age in all tissues and both sexes and 541 
did not align to the polar bear genome (Full F.S.). In each approach, we fit 500 clocks by selecting 542 
319 individuals for training sampled evenly across subpopulations, ages 0–30, sexes, and all tissue 543 
types, then applied to predict the ages of the remaining 250 individuals. Numbers above the boxes 544 
and whiskers denote the number of initial sites retained for fitting the clock. 545 

Section D—Design considerations: Validation approaches 546 

Evaluating epigenetic clock accuracy is a critical step in their development because it ensures 547 
accuracy when applied to new samples. The gold standard involves validating the clock on a 548 
hold-out dataset not used for clock training. This method, widely used in human epigenetic clock 549 
studies with large sample sizes (e.g., Hannum et al., 2013; Horvath, 2013; McEwen et al., 2020), 550 
leaves enough samples to create an accurate clock while avoiding inflated accuracy estimates 551 
caused by overfitting the training dataset (Hastie et al., 2009). However, in wildlife studies, small 552 
sample sizes make it difficult to reserve a substantial hold-out set for validation without severely 553 
limiting the data available for clock training. Validation strategies for wildlife studies must, 554 
therefore, maximize true accuracy while avoiding its overestimation. This section discusses the 555 
benefits of different validation approaches, comparing them using our polar bear data. 556 
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There are three primary approaches for selecting a validation set to estimate the accuracy 557 
of predictive models, including epigenetic clocks. In addition to setting aside a distinct hold-out 558 
set or using the same dataset for both training and validation, validation can be performed on a 559 
series of smaller subsets of the training data, with errors averaged across subsets sampled from 560 
the training data—a method known as cross-validation. 561 

 Cross-validation approaches differ by the size of equally sized subsets or folds, k. In k-562 
fold cross-validation, a fold of size k is used for testing, while the remaining k-1 folds are used 563 
for testing. Leave-one-out (LOO) cross-validation is a special case of k-fold cross-validation, 564 
where each fold contains only a single observation. In the context of epigenetic clock models, the 565 
single observation can also be a single grouping of individuals. For example, the universal clock 566 
for mammals was validated using leave-one-species-out cross-validation, where the clock, 567 
trained on all but a single species, was tested on each excluded species in turn (Lu et al., 2023). 568 
In species-specific clocks, the group could be population, sex, or tissue, with the remaining 569 
groups used for testing. 570 

The small sample sizes typical of wildlife studies often make cross-validation the only 571 
practical option for epigenetic clock validation. Indeed, most wildlife clocks published since the 572 
release of the Horvath Mammalian Array—including the universal clock for mammals—were 573 
validated using LOO cross-validation (e.g., Parsons et al., 2023; Prado et al., 2021; Raj et al., 574 
2021; Robeck et al., 2021). LOO cross-validation estimates true test error well because it uses 575 
nearly all the data (n – 1) for training while iterating systematically through the testing data 576 
(James et al., 2013). 577 

Using our polar bear dataset, we evaluated the accuracy of epigenetic clocks validated 578 
through LOO cross-validation and compared it to validation on an independent hold-out set. 579 
First, we randomly selected 400 polar bear samples. Within this subset, we sampled 250 for 580 
training the clock. We retained the remaining 150 samples as a hold-out set and also validated 581 
the clock by performing LOO cross-validation on all 400 subsetted samples. We repeated this 582 
process 100 times. 583 

Our results suggest LOO cross-validation, known to approximate the accuracy of hold-584 
out clocks in other machine learning applications (Hastie et al., 2009), also does so for epigenetic 585 
clocks. We found no difference in either the R-squared (Figure 5A) or MAE (Figure 5B) 586 
between clocks validated with hold-out data and LOO cross-validation (Figure 5B), indicating 587 
both approaches capture true accuracy equally well. Importantly, this suggests that wildlife clock 588 
developers may be justified in using their full set of available samples to maximize clock 589 
accuracy while still reliably assessing the clock’s predictive performance when applied to new 590 
samples. 591 
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 592 

Figure 5 Accuracy, evaluated by R-squared (A) and median absolute error (B), compared 593 
between polar bear clocks validated using leave-one-out cross-validation (LOO) versus an 594 
independent hold-out set (HO). Bright orange and blue boxes represent higher accuracy, while 595 
darker colours represent lower accuracy. 596 

Conclusions 597 

Epigenetic clocks have the potential to fill critical data gaps in wildlife conservation and 598 
management. However, challenges associated with collecting wildlife DNA samples that can 599 
negatively affect the accuracy of epigenetic clocks have been largely unexplored. The absence of 600 
a standardized workflow for developing wildlife epigenetic clocks also hampers their widespread 601 
use. To address these issues and encourage their development, we provided a detailed workflow 602 
for developing epigenetic clocks geared toward wildlife research (Figure 1), encompassing 603 
sample selection, quality control, feature pre-selection, and validation. We demonstrated our 604 
recommended workflow using simulations and data from polar bears across the Canadian Arctic, 605 
equipping practitioners with the tools and knowledge needed to design and develop accurate 606 
epigenetic clocks. 607 

Through our polar bear analyses and simulations, we showed that thoughtful sampling, 608 
feature selection, and validation can produce accurate epigenetic clocks for wildlife, even with 609 
small sample sizes. Among our most important recommendations is to plan ahead of clock 610 
development, as identifying target populations, tissues, age ranges, and sexes in advance enables 611 
the design of wildlife clocks tailored to specific applications. Narrowly focused clocks are often 612 
the most accurate, except when applied to a broader range of samples than those on which they 613 
were trained. Clock accuracy can also be enhanced by reserving fewer sites for testing or using 614 
all available samples for training. While maximizing accuracy is particularly important for 615 
clocks used to estimate unknown ages, perfectly accurate clocks cannot measure epigenetic 616 
aging rates, emphasizing the need to clarify the clock’s intended purpose from the outset.  617 

Finally, we note that identifying and remedying the sources of error and bias we explore 618 
requires detailed knowledge of the study system (e.g., genetic structure, age structure). These 619 
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issues should be considered at the earliest planning stages, particularly when bioinformatics 620 
work is outsourced to service providers without knowledge of study systems and potential 621 
sample biases. With planning, epigenetic clocks can provide highly accurate age data for wildlife 622 
conservation and management. 623 
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Box 1—Polar bear data from across the Canadian Arctic 633 

We compiled an extensive DNA methylation dataset from polar bears sampled across the 634 
Canadian Arctic to assess whether sampling biases, data pre-processing, and validation influence 635 
wildlife clock performance. Our dataset is comprised of polar bear DNA sampled from 10 636 
distinct subpopulations, each with different proportions of blood, skin and muscle tissue. 637 
Samples are from male and female bears and represent ages across the typical lifespan of a wild 638 
polar bear from age 0 to 30 (Table B1). 639 

Table B1 Overview of polar bear DNA methylation samples from 10 genetically distinct 640 
subpopulations across the Canadian Arctic. DNA was extracted from three tissue types: blood (B), 641 
skin (S), and muscle, and male (M) and female (F) bears. 642 

Subpopulation 

Number of 

samples Location 

Age 

range 

Tissue 

proportions Sex proportions 

Southern 

Beaufort 
76 

Western 

Arctic 
0–20 B: 0.20; S: 0.80 F: 0.54; M: 0.46 

Northern 

Beaufort 
62 

Western 

Arctic 
0–24 B: 0.11; S: 0.89 F: 0.55; M: 0.45 

Gulf of 

Boothia 
36 

Western 

Arctic 
0–20 M: 1.0 F: 0.53; M: 0.47 

Lancaster 

Sound 
41 

Western 

Arctic 
0–21 M: 1.0 F: 0.46; M: 0.54 

Mc’Clintock 

Channel 
35 

Western 

Arctic 
0–17 M: 1.0 F: 0.66; M: 0.34 

Foxe Basin 40 
Central 

Arctic 
0–21 M: 1.0 F: 0.50; M: 0.50 

Western 

Hudson Bay 
235 

Central 

Arctic 
0–30 B: 0.43; S: 0.57 F: 0.60; M: 0.50 

Southern 

Hudson Bay 
47 

Central 

Arctic 
0–22 M: 1.0 F: 0.51; M: 0.49 

Davis Strait 41 
Eastern 

Arctic 
0–20 M: 1.0 F: 0.46; M: 0.54 

Baffin Bay 40 
Eastern 

Arctic 
0–23 M: 1.0 F: 0.50; M: 0.50 

We used the age, tissue, sex, and population structure of the data to evaluate the effects of 643 
class bias, age bias, and feature selection on clock performance. We trained clocks using varying 644 
degrees of overlap (0-100%) between the age ranges, tissues, sexes, and populations in the 645 
training and testing sets. We fit these clocks using elastic net regression with the glmnet package 646 
(Friedman et al., 2010) in R v4.3.1 (R Core Team, 2023) and evaluated their performance based 647 
on median age error and R-squared. 648 
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For feature selection, we identified which classes (age, tissue, sex, and genetic 649 
population) showed significant differences in DNA methylation patterns. We fit multivariate 650 
linear models with the DNA methylation matrix as the response variable and tissue, sex, and 651 
population as predictors using the limma package (Ritchie et al., 2015). We excluded any CpG 652 
sites where DNA methylation differed significantly by class with p < 0.001.  653 
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Box 2—Class bias 654 

Class biases where certain categories, such as age, sex, or tissue type, are overrepresented in the 655 
data used to train an epigenetic clock can lower its performance.  656 

Simulation 657 

To test the importance of class bias for epigenetic clock performance, we simulated DNA 658 
methylation data with a class bias. First, we simulated 500 ß values representing 500 age-659 
associated CpG sites, where 𝛽𝑖 = 𝑥𝑦𝑖 + 𝜀. In our simulated data, 𝑦𝑖 is a vector of chronological 660 
ages from 0 to 30, 𝛽𝑖 represents the proportion of methylation at CpG site 𝑖, 𝑥 is the slope of the 661 
relationship between 𝑦𝑖 and 𝛽𝑖, and 𝜀 is normally distributed error (mean = 0, standard deviation 662 
= 0.5). We simulated 𝑥 values for each 𝛽𝑖 from a uniform distribution ranging from -0.1 to 0.1. 663 

We then assigned the simulated samples to one of two types: biased and unbiased. We 664 
simulated a weaker association between age and DNA methylation in the biased data by 665 
introducing additional error into 𝜀 in 5% up to 100% of the CpG sites. We trained two clocks: 666 
one using a random sample of 150 each from the biased and unbiased data and another using 667 
only samples from the biased data. The second clock represents the case where a sampling bias 668 
might result in a clock designed for one class being applied to predict age in another. We 669 
compared the performance of the two clocks using an independent test set of 150 samples from 670 
the unbiased class. We fit the clocks using elastic net regression with the glmnet package 671 
(Friedman et al., 2010) in R v4.3.1 (R Core Team, 2023). 672 

Conclusion 673 

To ensure accuracy, epigenetic clocks should be trained with all classes of interest. Our results 674 
show that class bias does not affect the linear relationship between chronological and epigenetic 675 
age (Figure B1.1 A), but it increases the median absolute error (Figure B1.1 B), which grows as 676 
the proportion of biased CpG sites increases, suggesting chronological age is either over- or 677 
underestimated (Figure 2). The median absolute error is minimized when the training set 678 
includes samples from both the biased and unbiased classes, as the procedure can select enough 679 
age-related sites to predict age accurately. 680 
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 681 
Figure B1.1 Accuracy of epigenetic clocks trained with two simulated sample types: one without 682 
class bias and the other including varying proportions of biased CpG sites (ranging from 0 to 1). 683 
The mixed training sample (blue) includes an equal number of samples from both the biased and 684 
unbiased classes, while the biased training sample (orange) contains only samples from the biased 685 
class. The points and ribbons indicate each accuracy metric’s mean and 95% confidence intervals 686 
in 100 bootstrapped samples of CpG sites at each proportion. 687 

  688 
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Box 3—Age bias and aging error 689 

Training a clock on a narrow chronological age range introduces bias that limits the clock’s 690 
performance when applied to individuals outside of that chronological age range (Simpkin et al., 691 
2016). The problem is thought to stem from more rapid changes in DNA methylation in some 692 
periods of life than others (Alisch et al., 2012), which can be corrected by accounting for the 693 
non-linear relationship between DNA methylation and age (Bernabeu et al., 2023; Haftorn et al., 694 
2023). Another form of age bias arises when the true chronological ages of samples are 695 
unknown, introducing aging error into the chronological ages used for clock training. 696 

Simulation 697 

We simulated non-linear relationships between DNA methylation and chronological age to test 698 
the influence of sampling bias on epigenetic clock performance. We simulated 500 ß values, 699 
where 𝛽𝑖 = 𝑦𝑖

𝑥 + 𝜀. In our simulated data, 𝑦𝑖 is a vector of chronological ages from 0 to 30, 𝛽𝑖 is 700 
the proportion of methylation at CpG site 𝑖, 𝑥 is sampled from a normal distribution N(2, 0.35), 701 
and 𝜀 is normally distributed error N(0, 0.8). 702 

Using our simulated data, we trained three clocks using 150 age-biased samples and 703 
tested them on different age groups. First, we trained a clock on 150 individuals aged 0–15 and 704 
tested it on 150 samples aged 16–30 to assess how well clocks trained on younger samples 705 
performed on older test sets. We then reversed this by training a clock on individuals aged 16–30 706 
and testing it on younger samples aged 0–15. Finally, we trained a clock on samples aged 5–20 707 
and tested it on a broader range of ages (0–30), simulating a common scenario in wildlife 708 
research where “prime-age” individuals are oversampled (Camacho et al., 2017; Smith et al., 709 
1995).  710 

In a second set of simulations, we explored the impact of error in chronological age 711 
measurement on clock accuracy. We incrementally introduced aging error by adjusting the 712 
chronological ages of the simulated samples with an error drawn from a random normal 713 
distribution with a mean of 0 and a standard deviation ranging from 1 to 5 years. Predicting that 714 
a larger training sample might help offset inaccuracy due to aging error, we fit a series of clocks 715 
with aging error ranging from 1 to 5 years and total sample sizes (i.e., combined training and 716 
testing data) ranging from 50 to 1,000. We fit the clocks using elastic net regression with the 717 
glmnet package (Friedman et al., 2010) in R v4.3.1 (R Core Team, 2023). 718 

We found that any form of chronological age inaccuracy reduced clock accuracy. Median 719 
absolute error increased when clocks trained on samples of either older or younger individuals 720 
were applied to the opposite age class (Figure B2.1). Both biased clocks also had a lower R-721 
squared for correlations between chronological and epigenetic ages. Interestingly, the clock 722 
trained on prime-age individuals performed similarly to the unbiased clock, with a slightly lower 723 
median absolute error but worse R-squared. Aging error also reduced clock accuracy. As we 724 
introduced error into sample ages, the median absolute error increased steadily, and the R-725 
squared decreased. Increasing the sample size had little impact on accuracy when aging error 726 
was high (Figure B2.2). 727 

Conclusion 728 

To increase epigenetic clock accuracy, we recommend avoiding a bias toward exclusively older 729 
or younger individuals. Our simulations suggest that accurate clocks can be constructed using 730 
samples from prime-aged individuals, even if sampling regimes cannot capture individuals of 731 
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very old or very young ages. However, we recommend avoiding under-sampling young 732 
individuals if age bias cannot be avoided. Training clocks with samples from older individuals 733 
yielded far worse predictions for young individuals than the reverse, with almost triple the 734 
median absolute error of the unbiased clock and an R-squared lower than 0.5 (Figure B2.1). This 735 
pattern is strikingly similar to findings from many human clocks (Simpkin et al., 2016), 736 
suggesting wildlife studies should be particularly cautious of training epigenetic clocks with 737 
samples skewed toward older age classes. 738 

Most importantly, aging error substantially lowered clock accuracy, and the loss of 739 
accuracy could not be compensated for by increasing the sample size. When chronological ages 740 
were accurate, increasing sample size improved clock accuracy, with the improvement most 741 
dramatic between 50 and 500 samples. However, as aging error increased, increasing the sample 742 
size from 50 to 500 had little impact on accuracy (Figure B2.2). Thus, while large sample sizes 743 
of known age individuals can theoretically yield perfectly accurate clocks (Q. Zhang et al., 744 
2019), clock accuracy ultimately depends on training with accurate chronological age data. 745 

 746 

 747 
Figure B2.1 Accuracy of epigenetic clocks, evaluated by R-squared (A) and median absolute error 748 
(B), trained on simulated age-biased samples and tested on different age groups. From left to right, 749 
the clocks are unbiased: trained with the same ages it predicts; young-biased: trained on samples 750 
aged 15 years or younger and tested on individuals aged 16–30; old-biased: trained on samples 751 
aged 16–30 and tested on individuals under 15 years; and prime-aged: trained on samples aged 5–752 
20 and tested on individuals aged 0–30. The colour gradient indicates accuracy. Brighter orange 753 
and blue boxes indicate more accurate clocks, and darker-shaded boxes are less accurate. 754 

 755 
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 756 
Figure B2.2 Accuracy of epigenetic clocks with age error and varying sample sizes in predicting 757 
chronological age, evaluated by R-squared (A) and median absolute error (B). The clocks were 758 
trained on simulated data with progressively increasing error (standard deviation) in the training 759 
sample ages relative to their true ages and total sample size (training and testing data) ranging from 760 
50 to 1,000 samples. The points and ribbons indicate each accuracy metric’s mean and 95% 761 
confidence intervals in 100 bootstrapped samples of CpG sites at each proportion and sample size, 762 
with point size reflecting sample size. 763 

  764 
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Box 4—Feature selection 765 

Feature selection enhances predictive model performance by removing features that lack strong 766 
associations with the response variable (Theng & Bhoyar, 2024). For epigenetic clocks, 767 
supervised feature selection improves accuracy by removing CpG sites with class-specific 768 
relationships between DNA methylation and age. However, excessively reducing the initial pool 769 
of CpG sites also limits the features available to model relationships with age, which can reduce 770 
model performance (Li et al., 2022).  771 

Simulation 772 

We used our simulated class-biased DNA methylation data, described in Box 2, to test the trade-773 
off between feature selection and retaining biased features. We assessed the performance impact 774 
of retaining versus excluding CpG sites with class-specific relationships. In the feature selection 775 
scenario, we simulated supervised feature selection by sequentially removing the class-specific 776 
CpG sites—from 5% to 95% of the total CpG sites—before fitting the clock. We compared the 777 
accuracy of these clocks with those trained using the full set of class-biased CpG sites.  778 

Conclusion 779 

Our simulation demonstrates that feature selection for accurate epigenetic clocks requires 780 
removing sites that lack any relationship with age while retaining sites important for predicting 781 
the age-DNA methylation relationship. Excluding the class-biased CpG sites with feature 782 
selection kept the median absolute error consistently low relative to clocks where the class-783 
biased sites were retained. However, as we removed more CpG sites, the R-squared declined, 784 
and the median absolute error increased, indicating that excessively shrinking the initial CpG 785 
pool could compromise some aspects of accuracy while improving overall performance (Figure 786 
2). In contrast, while class bias slightly reduced the R-squared, the removal of class-biased CpG 787 
sites caused an even sharper decline, suggesting excessive feature selection might negatively 788 
impact epigenetic clock performance (Figure B3.1). 789 
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 790 
Figure B3.1 The accuracy of clocks fit using simulated data as the proportion of biased CpG sites 791 
increases in a set of 500 CpG sites. For each proportion, we fit a clock where we retained the 792 
biased CpG sites for training and another where we performed feature selection, removing all 793 
biased CpG sites before training. The points and ribbons indicate each accuracy metric’s mean and 794 
95% confidence intervals in 100 bootstrapped samples of CpG sites at each proportion.795 
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