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Abstract
Comprehensive monitoring of biodiversity to direct conservation action is foundational to
addressing the ongoing biodiversity crisis. As integrative monitoring programs increasingly
come online in response to multilateral biodiversity agreements, establishing best practices
for optimal design is critical. Selecting the appropriate algorithm for identifying sample
sites is both necessary for robust inference from biodiversity data and largely neglected
from broader monitoring network discussions. Here, we benchmark the performance of four
common selection algorithms, outline the characteristics of the suite of algorithms suitable
for ecological monitoring design, and offer recommendations for their best use. While all
algorithms outperformed simple random samples, performance differences were negligible
between algorithms. We recommend instead that practitioners choose algorithms based on
feature availability, which varies greatly between algorithms.

Keywords spatially balanced sampling · monitoring network · biodiversity monitoring · generalized random
tessellation stratified

0.1 Intro

Monitoring changes in biodiversity through time and across space is fundamental for identifying areas of
high conservation value amidst the ongoing sixth mass extinction. Historically, biodiversity data has been
dominated by heterogeneous non-probability samples, often collected for snapshots of time using bespoke
protocols with low replication (Boyd, Powney, and Pescott 2023). Synthesis of this data for broad-scale
assessment of biodiversity suffers from low power, severe data biases (Chapman et al. 2024), and an inability
to detect existing trends (Boënnec, Dakos, and Devictor 2024; Johnson et al. 2024; White 2019). With
this context, establishment of standardized monitoring protocols across the globe has been a major focus of
multilateral biodiversity agreements (Gonzalez and Londoño 2022; Griffith et al. 2024).
Monitoring networks that produce robust data for statistical inference are designed under a pre-established
statistical framework (Benedetti, Piersimoni, and Postiglione 2017; Dumelle et al. 2022; Williams and Brown
2019). At its most basic this process involves i) defining a sample frame, ii) identifying potential sampling sites,
and iii) applying a site selection algorithm that follows random sampling principles to identify the final sample
points. Many algorithms support additional features, including incorporation of site level characteristics,
systematic over-samples, and stratification to further tailor the network design. Regardless of the specifics of
each algorithm, sets of sampling points recommended in this way should offer a fair representation of the
statistical structure of the data used to select them, and therefore adequate information about the status and
trends of biodiversity in the region.
Despite significant recent investment in tools for designing and implementing monitoring programs, discussions
around choosing the appropriate site selection algorithm have been largely restricted to theoretical differences
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Table 1: Available features and implementation for spatial sampling design algorithms.

algorithm stratification auxillary variables legacy sites master sample R package
GRTS yes no yes yes spsurvey, Sdraw
Cube yes yes no no BalancedSampling, sampling
LPM no yes no no BalancedSampling
SCPS no yes no no BalancedSampling
BAS yes no yes yes Sdraw, spbal
HIP no no no yes Sdraw, spbal
DAS no yes no yes

between algorithms or benchmarking of performance using a limited set metrics rather than practical
considerations (Benedetti 2015; Benedetti, Piersimoni, and Postiglione 2017; Kermorvant et al. 2019). This
is despite significant differences in computational performance, available features, and ongoing development
of better-performing algorithms. Previous evaluations largely focus on spatial balance alone rather than a
network’s ability to meet the goals of a monitoring project (e.g. Di Biase, Marcheselli, and Pisani (2024)). In
biodiversity monitoring this may include for example how completely the full species richness of the region is
sampled, how well the network captures landscape heterogeneity, or the ability of a network to detect trends
through time. There is therefore a critical need for review of site selection algorithms, the features they
provide, and how they perform for ecologically relevant metrics.
Here, we outline the feature and performance considerations for site selection algorithms using the Canadian
province of Québec as a case study. We describe a typical process for designing a monitoring network,
outline the characteristics of common and more recently developed site selection algorithms for biodiversity
monitoring applications, and simulate that process for common algorithms to evaluate performance for multiple
management-relevant goals. Based on this simulation study, we offer some specific guidance regarding the
selection and use of site selection algorithms for integrative biodiversity monitoring.

0.2 Methods

0.2.1 Algorithm Descriptions

Algorithms vary widely in their approach to balancing samples across space and site characteristics. Below we
describe the site selection process for algorithms, their features, and how they might be implemented in the
R programming language. We discuss stratification, incorporation of site-level data in the form of auxiliary
variables, and inclusion of legacy sites to support iterative network development. We also discuss whether or
not the algorithm supports master sampling defined as systematic oversampling to support dynamic sample
sizes.
The first four algorithms are the most widely accepted and therefore included in our performance benchmarking
simulations (Generalized Random Tessellation Stratified, Cube Sampling, Spatially Correlated Poisson
Sampling, Local Pivotal Method), with three additional algorithms that hold promise but were not included
in benchmarking. Algorithm characteristics are also summarized in Table 1.
Generalized Random Tessellation Stratified (GRTS): Generalized Random Tessellation Stratified (GRTS) was
developed by the U.S. Environmental Protection Agency for use in the National Environmental Monitoring
and Assessment Program (Stevens and Olsen 2004). It uses a hierarchical sampling approach whereby the
study extent is hierarchically subdivided by grids until each cell contains only one sample unit. Cells are
then ordered on a line by their hierarchical “address”, the line is split into a number of equally sized units
equal to the sample size and a sample point is randomly selected from each unit (Benedetti, Piersimoni, and
Postiglione 2017). Rather than incorporating auxiliary data directly into the site selection process, they can
be qualitatively assessed by the user to differentially weight site selection or to define stratification. As this is
a more subjective process and not directly comparable to auxiliary inclusion for other algorithms, we did not
included GRTS in our auxiliary data simulation scenarios. GRTS is one of two algorithms we discuss that
supports legacy site inclusion (Foster et al. 2017). We implemented this algorithm using the grts function in
the R package spsurvey.
Cube Sampling: The cube methods seeks to select a sample that balances across auxiliary variables while
maintaining the inclusion probabilities of constituent sites (Chauvet and Tillé 2006; Tillé 2011). It conceptu-
alizes each potential site as a vertex of a hypercube in an N -dimensional space, RN . The vector of inclusion
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probabilities is a vector inside the unit cube, and an affine subspace (hyperplane) defines the set of possible
solutions balancing across auxiliary variables. The algorithm therefore seeks to find a point on the linear
subspace that satisfies the inclusion probabilities. Inclusion of auxiliary data is fundamental to this approach
and it can also handle stratification by selecting samples with an exact sample size within stratum while still
maintaining balance for the network of sites as a whole (Chauvet 2009). We implemented this algorithm with
the R functions cube and cubestratified in the R package BalancedSampling.
Spatially Correlated Poisson Sampling: Spatially correlated poisson sampling (SCPS) uses a sampler that
visits sites one by one, with visit probability initially given by inclusion probability of sites (Grafström
2012). Subsequent sites are visited after calculating a penalization based on distance to previously visited
sites. Auxiliary variable information can be incorporated alongside spatial distance to target optimal spread
across variables (Zhao and Grafström 2020). Since SCPS is designed to account for differences between site
characteristics without stratification we use two different stratification approaches for benchmarking. First,
the naive approach which simply treats stratification levels as independent samples, and second, an unequal
probability sample which enforces within-strata sample size by setting the total inclusion probability for
candidate sites in a strata to the desired sample size for that strata (Benedetti 2015). In benchmarking
results below we present the second implementation alongside other algorithms (refereed to simply by SCPS),
and discuss the comparison between the two implementations separately. We implemented SCPS using the R
function SCPS in the R package BalancedSampling.
Local Pivotal Method: The local pivotal method (LPM) selects sites based on their euclidean distance
in the auxiliary sample space. Sites are selected to maximize the distance between points and therefore
coverage of the sample space (Grafström 2012). We implemented LPM using two different algorithms: LPM1,
which creates the optimally balanced sample, and LPM2 which selects a sample more efficiently (Benedetti,
Piersimoni, and Postiglione 2017). Algorithms performed almost identically, so we report results for only
LPM2 here. LPM follows the same philosophy of SCPS in balancing across characteristics without strata, so
we also simulated naive and unequal probability stratification scenarios for LPM1 and LPM2. As with SCPS,
we include the unequal probability implementation when comparing to other algorithms, and discuss the
comparison between naive and unequal implementations separately. These algorithms were implemented
using functions lpm1 and lpm2 from the R package Balanced Sampling.
Balanced Acceptance Sampling: Balanced Acceptance Sampling (BAS) selects points based on a random-start
Halton sequence, which gives a quasi-random number sequence (B. L. Robertson et al. 2013). The multi-
dimensional study space, which could be for example a two-dimensional space defining latitude and longitude,
is scaled and enclosed by a unit box of the same dimensions as the study space. Points are then assigned an
element of the Halton sequence based on their location in the multi-dimensional box and selected for the final
sample set based on the ordering of the sequence. This algorithm does not allow for the inclusion of auxiliary
data beyond the ad hoc modification of inclusion probabilities based on site characteristics however it does
support the inclusion of legacy sites.
Halton Iterative Partitioning: Halton Iterative Partitioning (HIP) builds on the concepts of BAS, but rather
than selecting points from the space of the multi-dimensional box it iteratively partitions the box and selects
points from the nested boxes based of the halton sequence ordering (B. Robertson et al. 2018). It has been
recently expanded from it’s original implementation to facilitate master sampling (B. Robertson, Dam-Bates,
and Gansell 2022). It does not incorporate stratification or the inclusion of auxiliary variables.
Dynamic Assignment Sampling: Dynamic Assignment Sampling (DAS) was designed to facilitate the inclusion
of auxiliary variables and master sampling in a single algorithm (B. Robertson, Price, and Reale 2024). It
draws a balanced sample from the auxiliary sample space sequentially as units are iteratively assigned to a
candidate set. A candidate set is then chosen as the core set of seed sites before a sufficient number of sites
are assigned to reach the desired sample size. DAS has not yet been implemented in open source software at
the time of writing.

0.2.2 Design Process

Here we give a general outline for the steps in the simulated network design, with details of data and
simulation methods to follow.
Candidate Points: We identified a set of candidate points using a hexagonal sampling algorithm implemented
by the R function st_sample from the R package sf. This algorithm establishes a grid of evenly spaced
sample points across the sampling extent while accounting for irregularity in sample extent boundaries. The
initial grid had 10000 candidate points evenly spaced across the province of Quebec, with a euclidean distance
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between points of ~13 km. We excluded points on water or ice as identified by the landcover data described
below. The final candidate set had 9992 potential sites. For simulations stratified by ecoregion, we excluded
ecoregions with an insignificant area in Québec, defined by 10 or fewer candidate points in the ecoregion.
Auxiliary Variables: For each potential sample site in the candidate set we assembled a suite of auxiliary
variables describing the site characteristics from existing open source environmental data. Data included
landcover, climatic variables, and site topography. To account for covariation in variables, we performed
whitening on the matrix of auxiliary variables using the function whiten from the R package whitening.
Whitening transforms the sample matrix to a matrix of orthogonal, and therefore independent, variables with
unit variance and zero covariance (Kessy, Lewin, and Strimmer 2018).
Identifying Sample Points: For each algorithm of interest we simulated a suite of design scenarios by sampling
from the set of candidate points under different conditions. We included a simple random sample as a baseline
for performance and evaluated the following algorithms: Generalized Random Tessellation Stratified (GRTS),
Cube sampling, Spatial Correlated Poisson Sampling (SCPS), and two implementations of the Local Pivotal
Method (LPM1, LPM2). For each algorithm we sampled 100 replicates for each sample size sample size
ranging from 10 to 545 on an approximate log scale (10, 15, 22, 33, 49, 74, 110, 164, 245, 365, 545). This
process was executed for each algorithm for four different sampling scenarios: unstratified (equal probability)
and stratified by ecoregion, with and without auxiliary environmental data. For stratified samples, the
complete monitoring network sample size was allocated across ecoregion strata proportional to the ecoregion’s
area in the study extent.
Evaluation of Algorithm Performance: Algorithm performance was evaluated based on three complementary
metrics representing different goals for monitoring programs. Spatial balance, or the variance in site inclusion
probabilities across space; species coverage, or how comprehensively the network samples existing species on
the landscape; and environmental coverage, or how balanced sampling is across combinations of environmental
variables. Species and environmental coverage were averaged across simulation replicates and spatial balance
was measured as the variance across all simulation metrics. See the Algorithm Evaluation Metrics section
below for details on how metrics were calculated.

0.2.3 Data

Landcover data for candidate point exclusion and auxiliary variables was obtained from the ESA WorldCover
dataset for 2020 (Zanaga et al. 2021). Additional auxiliary variables included slope and elevation from the
Earthenv topography data (Amatulli et al. 2018), and all 19 CHELSA-BIOCLIM+ variables (Brun et al.
2022). Ecoregions for stratification simulations were taken from the WWF defined ecoregions (Olson et al.
2001). We used IUCN range maps for mammals to evaluate biodiversity coverage of the simulated network
and included all mammals whose range intersects with Québec.

0.2.4 Algorithm Evaluation Metrics

We evaluated algorithm performance using three metrics that represent key goals of biodiversity monitoring
networks: spatial balance, species coverage, and environmental coverage. Spatial balance was assessed
following Benedetti (2015) and Stevens and Olsen (2004), as the variance in total inclusion probability
of points contained in each Voronoi polygon. Environmental coverage was measured by calculating the
Jensen-Shannon divergence (JSD) for the environmental values represented by a sample network using the
function JSD in the R package philentropy (Drost 2018). Jensen-Shannon distance was calculated for each
environmental variable, with the JSD for a potential sampling design calculated as the square root of the
mean distance of all environmental variables. JSD therefore measures how completely the sample distribution
covers the environmental space of the sample landscape. We assessed species coverage using the IUCN range
maps to compile species checklists for each sample point and the sample extent as a whole. Coverage was
quantified as the percent of species in the landscape not sampled by a given sample monitoring network.

0.3 Results

Algorithms generally showed very similar performance across metrics, despite having visually different
samples (Fig. 1), and showed saturating performance with increasing sample size, particularly for species
and environmental coverage (Fig. 2). Across all metrics and simulation scenarios algorithms performed
better than the simple random sample. For species and environmental coverage performance differences were
negligible, though LPM, and SCPS consistently performed better for all metrics. Cube sampling alone showed
marked difference after adding stratification. Surprisingly, including environmental variables did not change
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Figure 1: Example designs for unstratified (A-C) and stratified (D-F) monitoring network designs for Cube
(column 1), LPM (column 2), and SCPS (column 3) algorithms, all with a sample size of 110. Unstratified
designs are show with NDVI, stratifeid designs are shown with ecoregion boundaries.

algorithm performance significantly for the majority of algorithms, with the exception of cube sampling (Fig.
3).
We found that the naive implementation of LPM and SCPS, where strata were each treated as independent
samples, gave significantly worse performance than the unequal probability approach to stratification (Fig.
4). Rather than reaching a saturation point, spatial balance for the naive implementations increased with
increasing samples, indicating worse balance with larger sample size. This also manifested in species and
environmental coverage, where naive implementations saturated at worse performance than the unequal
probability implementations.

0.4 Discussion

Appropriately selecting sample locations is critical for generating robust inference from biodiversity monitoring
data. Despite a variety of existing algorithms for designing a sampling network, and on going development
of available features, discussions around the most appropriate algorithm for ecological sampling has been
limited.
We found the performance differences between most of the best-performing algorithms to be negligible; this
was particularly true for species and environmental coverage, and robust across study design. This may simply
reflect the fact that ecological processes tend to be correlated to one another in addition to being spatially
auto-correlated (Legendre 1993). Whereas auto-correlation can be a source of bias by masking actual trends
in biodiversity (Diniz-Filho, Bini, and Hawkins 2003), it can be a net positive for the design of biodiversity
monitoring networks by artificially driving algorithms to suggest designs with similar performances. In some
sense, these results suggest that site selection algorithms can fall victim to the Rashomon effect (Paes et al.
2023): potentially different designs may be equally effective at biodiversity monitoring. The performance of
biodiversity monitoring may be limited more by the environmental and biogeographic characteristics of the
region to monitor than by the choice of algorithm (we moderate this statement for specific cases further on).
Coherently to the previous discussion about equivalency of different selection methods, we found that even
when spatial balance indicated relatively poor performance (different runs of the algorithm suggested markedly
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Figure 2: Three evaluation metrics for each of the algorithms for all of Quebec and stratified by ecoregion. Y
axis is scaled between zero and one, with lower values indicating better performance for all metrics.
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Figure 3: Three evaluation metrics for each of the algorithms for all of Quebec and stratified by ecoregion,
including only algorithms that can take environmental data as auxiliary variables. The Y axis is scaled
between zero and one, with lower values indicating better performance for all metrics.
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Figure 4: Three evaluation metrics for naive (stratum treated completely independently) and unequal
probability (enforcing strata sample size by modifying inclusion probabilities) implementations of LPM and
SCPS algorithms. Unequal implementations are the same show in benchmarking in Fig 2 and Fig 3.
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different locations to survey), ecological performance metrics were mostly determined by sample size. Notably,
the saturation of performance for ecological performance metrics was similar across algorithms. This, again,
reinforces the idea that the “best” designs generated by each algorithm may be equivalent, and that the
difficulty in monitoring a region is determined by ecological processes. Although the monitoring networks got
progressively better with more samples, we observed a clear saturation, suggesting that past this saturation
point adding additional sites does not result in more informative monitoring.
There are two important algorithm-specific recommendations we can formulate based on our results. First,
the naive implementation of stratification for SCPS and LPM performed far worse than other algorithms in
all metrics. In particular, spatial balance metrics increased (poorer performance) when sample size increased,
meaning that more investment in monitoring would yield worse outcomes. For applications where stratification
concepts are important, users should enforce differing sample sizes by unequal probability sampling for these
algorithms rather than treating strata independently. Second, the performance of cube sampling is increased
when auxiliary data are used; this makes this algorithm unsuitable when there are no readily available
information about non-ecological data at the candidate locations. Although this is a limitation, the wealth
of publicly available high-resolution geospatial data means that this limitation is unlikely to ever affect the
viability of cube sampling as a site selection algorithm. Beyond those specific use cases, algorithm selection is
largely dependent on the features needed by the user and implementation availability (Table 1), even more so
since no algorithm was able to generate a monitoring network that saturated with fewer sampled locations.
We benchmarked algorithms for a single case study landscape, defined by its large extent and strong latitudinal
gradient in species richness, composition, and environmental features. The performance of some algorithms
may respond to changes in the landscape of interest. For example, highly heterogeneous landscapes may be
more comprehensively sampled by algorithms that take into account site-level information; this is particularly
likely since fine-scale heterogeneity can over-rule the effect of auto-correlation (Tardanico and Hovestadt
2023), which can reveal additional differences between algorithms. Similarly, ecosystems in which species
distributions are not tightly tracking the environmental gradient may lead to some algorithms achieving better
performance; we specifically expect that in these cases, algorithms with good spatial balance may be more apt
at capturing ecological variables. In all cases, because the computational requirements of these algorithms
remain fairly low, it is not unrealistic to proceed with a location-specific benchmark in a systematic way.
The option to produce a master sample is a key distinguish feature of algorithms with particular relevance to
ecological sampling (B. Robertson, Price, and Reale 2024) . Master sampling creates a systematic oversample
that allows you to increase or decrease the sample size dynamically while maintaining the probabilistic
sampling frame (Dam-Bates, Gansell, and Robertson 2018). This approach facilitates modifications to the
complete set of sampling locations due to common logistical constraints such as site inaccessibility, changing
landownership, or budgetary constraints. Of the algorithms we benchmarked only GRTS can create a master
sample, however it is increasingly recognized as a critical feature for robust implementation of monitoring
designs. This is reflected in recent algorithm development with BAS, HIP, and DAS all supporting master
sampling (Table 1).
In adopting a practical approach to benchmarking, we suggest that the different algorithms are able to achieve
similar best performances. In more concrete terms, this allows users to give more importance to the capabilities
of each algorithm when selecting a subset to benchmark against a specific region of interest. All the algorithms
we benchmarked were able to outperform simple random sampling, suggesting their use in the monitoring
design process will result in more robust biodiversity monitoring networks than naive or expert-informed
sampling alternatives. Although all but one of these algorithms had available implementations, they used
very different interfaces and programming conventions. The development of a unified interface for sampling is
a natural next step in ensuring sampling algorithm uptake for future monitoring design.
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