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Abstract16

Heterogeneity is a defining feature of ecological and evolutionary meta-analyses. While conventional17

metal-analysis and meta-regression methods acknowledge heterogeneity in effect sizes, they typically as-18

sume this heterogeneity is constant across studies and levels of moderators (i.e., homoscedasticity). This19

assumption could mask potentially informative patterns in the data. Here, we introduce and develop a20

location-scale meta-analysis and meta-regression framework that models both the mean (location) and21

variance (scale) of effect sizes. Such a framework explicitly accommodates heteroscedasticity (differences22

in variance), thereby revealing when and why heterogeneity itself changes. This capability, we argue, is23

crucial for understanding responses to global environmental change, where complex, context-dependent24

processes may shape both the average magnitude and the variability of biological responses. For example,25

differences in study design, measurement protocols, environmental factors, or even evolutionary history26

can lead to systematic shifts in variance. By incorporating hierarchical (multilevel) structures and phy-27

logenetic relationships, location-scale models can disentangle the contributions from different levels to28

both location and scale parts. We further attempt to extend the concepts of relative heterogeneity and29

publication bias into the scale part of meta-regression. With these methodological advances, we can30

identify patterns and processes that remain obscured under the constant variance assumption, thereby31

enhancing the biological interpretability and practical relevance of meta-analytic results. Notably, al-32

most all published ecological and evolutionary meta-analytic data can be re-analysed using our proposed33

analytic framework to gain new insights. Altogether, location-scale meta-analysis and meta-regression34

provide a rich and holistic lens through which to view and interpret the intricate tapestry woven with35

ecological and evolutionary data. The proposed approach, thus, ultimately leads to more informed and36

context-specific conclusions about environmental changes and their impacts.37

Keywords— multilevel meta-analysis, phylogenetic meta-analysis, double-hierarchical model, generalized linear38

mixed-effects model, Bayesian statistics39
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Location-scale meta-analysis and regression 1 INTRODUCTION

1 Introduction40

Meta-analysis has become an indispensable tool in ecology and evolutionary biology; it offers a means to synthesize41

results across diverse studies and to detect broad-scale patterns and biases (e.g., publication bias) that may be42

invisible at the level of individual investigations (Gurevitch et al., 2018; Nakagawa et al., 2017; Yang et al., 2022).43

Yet, the process of explaining heterogeneous datasets is fraught with challenges. Studies differ not only in their focal44

taxa, systems, and conditions but also in methodologies, measurement protocols, and analytical approaches. Such45

complexity leads to substantial heterogeneity in effect sizes, which could obscure underlying biological signals and46

hinder our understanding of global ecological change. Indeed, variation not due to sample size differences across47

studies frequently accounts for more than 90% (i.e., I2 > 0.9) in ecological and evolutionary meta-analyses (Senior48

et al., 2016; but see Yang, Noble, et al., 2023; note that in medicine, I2 > 0.75 is considered to be high; Higgins49

et al., 2003).50

Conventional meta-analytic frameworks attempt to accommodate heterogeneity by introducing random effects and51

moderator variables. These approaches recognize that effect sizes are not identical and that moderators – such52

as climate gradients, habitat types, taxonomic groups, or methodological factors – may help explain some of the53

variance (Gurevitch et al., 2018; Nakagawa, Yang, et al., 2023; Nakagawa et al., 2017). However, linear models54

including standard meta-analysis and meta-regressions typically assume homoscedasticity, meaning that the variance55

of effect sizes remains constant across levels of these moderators (Viechtbauer & López-López, 2022). Such an56

assumption can be unrealistic, as both biological processes and methodological variation often influence not only the57

magnitude but also the variability of responses (Cleasby & Nakagawa, 2011). For example, under some environmental58

conditions, species or communities may display highly consistent responses, while in others, responses may be much59

more variable. Similarly, one type of measurement can be more consistent than another type of measurement.60

In environmental sciences, including global change biology, this distinction between average responses and their61

variability is crucial. Understanding how variance patterns shift along environmental gradients or across study62

designs can illuminate processes of adaptation, resilience, or sensitivity (Pecl et al., 2017; Urban, 2015). For instance,63

certain anthropogenic changes, such as climate warming or habitat fragmentation, might not only alter the mean64

response of organisms but also produce more divergent responses among studies due to underlying differences in65

selection regimes, resource availability, or measurement uncertainty (Fig. 1; e.g., Pottier et al. 2022; Mathot et al.66

2024). Without explicitly modelling the variance as a function of moderators, these subtle but important patterns of67

variability remain hidden (Cleasby & Nakagawa, 2011; Nakagawa et al., 2015; Senior et al., 2020).68

Recent advances in statistical modelling offer solutions to this problem. Location-scale (mean-variance) modelling69

frameworks have been long recognized in other areas of statistics and quantitative genetics (Lee & Nelder, 1996, 2006;70

Rönneg̊ard et al., 2010; Sae-Lim et al., 2015) and more recently, they have been adopted in ecology, evolution and71

environmental sciences (Cleasby et al., 2015; Mulder et al., 2016; O’Dea et al., 2022; Pitt et al., 2020). However,72

their application to meta-analysis, a domain inherently characterized by high-level heterogeneity, remains under-73

explored (Viechtbauer & López-López, 2022). We can directly model heteroscedasticity and partition the drivers of74

variability more explicitly, by extending the concept of meta-regression to include both location (mean) and scale75

parts (variance). Moreover, multilevel and phylogenetic extensions of location-scale models allow researchers to76

capture hierarchical structures and evolutionary histories that shape both the average effect sizes and their variation77

(dispersion).78

In this paper, we present location-scale meta-analysis and meta-regression as a flexible, broadly applicable method-79

ology for analysing ecological and evolutionary meta-analytic data (cf., Blowes 2024). We outline the theoretical80

foundation of the approach and illustrate how to incorporate moderators into both the mean and variance com-81

ponents. We then show how the framework can be adopted to accommodate multilevel and phylogenetic models.82

Additionally, we describe how the idea of heterogeneity in meta-analysis can be extended in the scale part and how83

regression-based methods can be expanded to test new types of publication biases in the scale part. We provide84

illustrative examples of model implementations to demonstrate the usefulness and insights that can be gained, with85

three different ecological datasets using statistical software, R (R Core Team 2024; for an online tutorial, see link).86

Finally, we discuss how our proposed methodology improves our understanding of global change biology and poten-87

tially better predicts the future impact of global changes by revealing patterns of variability that mirror complex88

ecological and evolutionary realities.89
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Location-scale meta-analysis and regression 2 THEORY

2 Theory90

Below, we develop location-scale meta-analytic models of increasing complexity in five steps. These steps include91

extending the quantification of heterogeneity and the detection of publication bias from the mean part to the scale92

part (cf., Viechtbauer and López-López 2022).93

2.1 Random-effects meta-analysis and meta-regression94

The starting point of most ecological and evolutionary meta-analyses is the random-effects model (Nakagawa &95

Santos, 2012). Consider a set of studies indexed by i = 1, . . . ,K, each reporting an effect size yi (i.e., one effect size96

per study). The random-effects model can be written as (Hedges, 1983):97

yi = β0 + ei +mi, (1)

where β0 is the overall meta-analytic mean (intercept), ei represents the study effect for i-th study (also, the i-th98

effect-size effect under this example, as the number of effect sizes and studies are the same), and mi is the sampling99

error of the effect size estimate. Typically, we assume:100

ei ∼ N (0, σ2
e), (2)

and101

mi ∼ N (0, σ2
mi

), (3)

where σ2
e is the between-study (between-effect-size) variance, and σ2

mi
is sampling variance for i-th study (effect102

size) assumed to be known (often computed as a plug-in estimator from study-level sample sizes or other data). For103

example, when the effect size is a Fisher’s z-transformed correlation coefficient zr, the sampling variance often takes104

a simple form like 1/(ni − 3), where ni is the sample size of the i-th study.105

Note that the random-effects model assumes different studies have different means (Hedges, 1983); if there is no106

(between-study) heterogeneity or σ2
e = 0, then the random-effects model reduces to the fixed-effect model where the107

overall mean (β0) is the ’true’ mean for all the studies. Also, note that σ2
e is hard to interpret as a general measure108

of heterogeneity because its magnitude depends on what type of effect size one uses. Therefore, the most common109

and relative measure of heterogeneity in meta-analysis (see Yang, Noble, et al. 2023) is:110

I2 =
σ2
e

σ2
e + σ2

m

(4)

with111

σ2
m =

∑
1

σ2
mi

(
K − 1

)
(∑

1
σ2
mi

)2
−
∑(

1
σ2
mi

)2 , (5)

where σ2
m is a typical (average) sampling variance (Higgins & Thompson, 2002; Higgins et al., 2003); note that112

to obtain I2 or related indices, we use estimated parameters, i.e., variance components (e.g., via restricted maxi-113

mum likelihood, REML, estimator or Bayesian estimators using Markov Chain Monte Carlo, MCMC). In this form,114
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Location-scale meta-analysis and regression 2 THEORY

(between-study) heterogeneity is expressed as a ratio in relation to the total variance (i.e., σ2
e + σ2

m; we extend the115

idea of heterogeneity in meta-analysis in Sections 2.3 and 2.4 below).116

When moderators are introduced (e.g., x1i, x2i, . . . , xpi; i.e., having p moderators), the model extends to:117

yi = β0 + β1x1i + · · ·+ βpxpi + ei +mi. (6)

This standard meta-regression framework allows one to examine how moderators (covariates) influence the average118

effect size. However, it still maintains the assumption of a constant heterogeneity variance σ2
e , ignoring potential119

differences in variance structure among different levels or values of the moderators. Note that a moderator (or120

predictor; x) can be a continuous or categorical variable.121

We note that when a categorical moderator has a h levels, we have h − 1 dummy variables (i.e., h − 1 xs) and122

corresponding regression coefficients βs are usually contrasts (differences) between a reference category (level) and123

another category (level). A recent survey shows that almost all ecological and evolutionary meta-regression analyses124

had at least one categorical moderator (97%) while only around 30% of meta-regression analyses included at least125

one continuous moderator (Nakagawa, Lagisz, O’Dea, et al., 2023). This finding indicates dummy variables are very126

common in meta-regression analyses in ecology and evolution.127

Given extremely high heterogeneities in ecological and evolutionary meta-analyses (Gurevitch et al., 2018), it is128

notable that meta-regression models, which include moderators (Equation 6), are the main analytical focus rather129

than meta-analytic models (i.e. intercept-only models; Equation 1). A significant moderator in a meta-regression is a130

piece of ’synthesis-generated evidence’ because such evidence cannot be identified by examining each separate study131

(Cooper, 2015; Nakagawa et al., 2017) .132

2.2 Random-effects location-scale meta-regression133

Location-scale meta-regression explicitly models not only the location (mean) of the effects but also their scale134

(variance), allowing heteroscedasticity to be a function of moderators (cf., Cleasby and Nakagawa 2011). We extend135

the above meta-regression (Equation 6) by decomposing the model into a location part and a scale part (Viechtbauer136

& López-López, 2022):137

yi = β
(l)
0 + β

(l)
1 x1i + · · ·+ β(l)

p xpi + e
(l)
i +m

(l)
i , (7)

with138

e
(l)
i ∼ N (0, σ2

ei). (8)

where β
(l)
p are location parameters (i.e., affecting the mean part), and we allow the residual variance σ2

ei(l)
to vary139

by modelling the logarithm of its squared-root (i.e., standard deviation ln(σei)) as a linear function of moderators:140

ln(σei) = β
(s)
0 + β

(s)
1 x1i + · · ·+ β(s)

p xpi, (9)

where β
(s)
p coefficients indicate how much moderators influence heterogeneity itself.141

In the scale part, any factor xpi influencing the scale part (β
(s)
p ̸= 0) implies that heterogeneity itself changes142

systematically with the moderator (i.e., heteroscedasticity). For example, a binary (categorical) moderator might143

lead to different levels having distinct variances (e.g., aquatic organisms having higher variance than terrestrial144

counterparts as in Example 1 below). Both the logarithm of the variance ln(σ2
ei) or standard deviation ln(σei) can be145

the response variable in the scale part and the choice is a matter of preference; for example, O’Dea et al. (2022) uses146

4



Location-scale meta-analysis and regression 2 THEORY

variance or ln(σ2
ei) while Cleasby et al. (2015) uses standard deviation ln(σei). We use ln(σei) because our choice of147

implementation, the R package brms (Bürkner, 2017), uses standard deviation rather than variance. We should also148

note that a set of moderators does not need to be the same in the location and scale parts. Yet, without any clear149

prior predictions, one could start with the same moderators in both parts.150

2.3 Multilevel meta-analysis and multilevel location-scale meta-regression151

Many meta-analyses contain hierarchical structures, such as multiple effect sizes nested within studies (cf., Rodriguez152

et al. 2023; Williams et al. 2021). Indeed, a survey revealed that such a nested structure was present in 73 out of153

73 meta-analytic studies (100%) in environmental sciences (Nakagawa, Yang, et al., 2023). Before introducing the154

multilevel location-scale meta-regression, we briefly review the standard multilevel meta-analytic model, which can155

be written as:156

yi = β0 + uj[i] + ei +mi, (10)

with157

uj ∼ N (0, σ2
u), (11)

where uj[i] is the between-study effect for the j-th study (or of the i-th effect size) and σu is the between-study158

variance and ei follows Equation 2, but it is notable that σ2
ei is now the within-study variance (effect-size-level159

variance). Notably, mi can be distributed following Equation 3, but it is more likely to take the following form:160

mi ∼ N (0,V), (12)

where V is a block diagonal matrix capturing the sampling covariance structure within and among effect sizes from161

the same study. For example, if we have 20 studies and, then, we have 20 blocks and, say, we can see the first 3162

studies where they have 3, 1, 2 effect sizes, respectively. Let us further assume that the first 2 effect sizes in study163

1 are derived from the same subjects and so are the two effect sizes in study 3 (elsewhere, we called such types of164

dependencies as correlated sampling errors to distinguish this dependence from another type of dependence due to165

belonging to the same studies, controlled by the random effect uj[i]; see Nakagawa, Yang, et al. 2023; Yang, Macleod,166

et al. 2023). We can now write the first three blocks of V as (note that the boxes are drawn to show three blocks,167

which corresponds to three studies):168

V1−3 =



σ2
m1

ρmσm1σm2 0

ρmσm2σm1 σ2
m2

0

0 0 σ2
m3

0 0

0 σ2
m4

0

0 0
σ2
m5

ρmσm5σm6

ρmσm6σm5 σ2
m6


. (13)

where ρm is correlation between sampling variances (e.g., of effect size 1 and 2; σ2
m1

and σ2
m2

); the value of ρm takes169

a value between 0 and 1 yet an exact value is unknown apart from some special conditions (e.g., effect size 1 and 2170

shared a control group or we have access to original data so that we can sometimes obtain ρm directly; see Noble171

et al. 2017). Therefore, we often assume that either ρm = 0.5 or 0.8 (Noble et al., 2017; Pustejovsky & Tipton,172

2022); note the variance-covariance matrix V can be easily constructed by, for example, the function vcalc in the173

R package metafor (Viechtbauer, 2010). Alternatively, robust variance estimators can be employed; this approach174
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Location-scale meta-analysis and regression 2 THEORY

offers flexibility in handling complex dependency structures among sampling errors, as we do not need to define the175

value of ρm. Interestingly, Pustejovsky and Tipton (2022) recommend the combined use of V and robust variance176

estimators (see also Hedges et al. 2010).177

By extending the concept of the relative heterogeneity above (Equation 4), we can now define three types of I2178

(Nakagawa & Santos, 2012; Nakagawa, Yang, et al., 2023; Yang, Noble, et al., 2023):179

I2B =
σ2
u

σ2
u + σ2

e + σ2
m

, (14)

I2W =
σ2
e

σ2
u + σ2

e + σ2
m

, (15)

and180

I2T =
σ2
u + σ2

e

σ2
u + σ2

e + σ2
m

. (16)

As one can see, I2B is the relative heterogeneity of between-study effects (differences), while I2W is that of within-study181

effects, and the sum of these two is I2T (total relative heterogeneity; for details and other types of relative heterogeneity182

measures, see Yang, Noble, et al. 2023).183

Now we can define a multilevel location-scale meta-regression model building upon the multilevel meta-analytic model184

(Equation 10); the location part is:185

yi = β
(l)
0 + β

(l)
1 x1i + · · ·+ β(l)

p xpi + u
(l)

j[i] + e
(l)
i +m

(l)
i , (17)

with186

u
(l)
j ∼ N (0, σ2

u(l)), (18)

where u
(l)

j[i] is the between-study effect for the j-th study that i-th effect size belongs to, σ2
u(l) is the between-study187

variance, and other symbols as above. The scale equation can be the same as Equation 9. Yet, it is important to188

notice that we could add the between-study effect to the scale part:189

ln(σei) = β
(s)
0 + β

(s)
1 x1i + · · ·+ β(s)

p xpi + u
(s)

j[i]. (19)

By including the random effects (between-study effects) in both the location and scale equations and correlating190

them, we can model scenarios where studies with larger (or smaller) mean effects might also tend to exhibit greater191

(or smaller) variance; note that models with random effects in both location and scale parts are known as ”double-192

hierarchical” models (Lee & Nelder, 1996, 2006). Formally, we can define a bivariate normal distribution for the193

between-study effects:194

(
u
(l)
j

u
(s)
j

)
∼ N

((
0
0

)
,

(
σ2
u(l) ρuσu(l)σu(s)

ρuσu(l)σu(s) σ2
u(s)

))
. (20)

Here, the value of σ2
u(s) indicates the magnitude of differences in variance between studies (also a large value indicates195

a likely existence of heteroscedasticity; Fig. 2), and ρu measures the correlation between the location and scale196
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random effects, and unlike ρm in an earlier section, ρu spans between -1 and 1 (not between 0 and 1). Under normal197

circumstances, we do not expect any correlation between u
(l)
j and u

(s)
j because the default assumption is that mean198

and variance are independent in normally (Gaussian) distributed data (Fig. 2 showing different patterns of this199

correlation). Yet in biology, mean and variance may often be positively correlated, which is known as Taylor’s law200

(Taylor 1961; see also Nakagawa et al. 2015). Of relevance, researchers have found that there is a positive correlation201

between sampling variance (σ2
mi

) and heterogeneity (of means), equivalent measures of σ2
u(s) (Fig. 2f); that is, primary202

studies with smaller sample sizes tend to have larger heterogeneity (or larger residual value or ln(σei) (IntHout et al.,203

2015; Stanley et al., 2022). Given small studies often have large effect sizes in magnitudes, this finding indicates204

that we may find that larger effects in magnitude are related to high variance in a meta-analysis (i.e., non-zero ρu205

between effect sizes and heterogeneity), a pattern that may suggest selection bias or other methodological artefacts206

(e.g., smaller studies reporting both inflated means and noisier/variable results; Stanley et al. 2022). Notably, larger207

studies are less likely to be affected by these issues, and thus, large-study divergence is unlikely to occur as mentioned208

earlier.209

Notably, adding the between-study (random) effect in the scale part results in two extra parameters to estimate,210

i.e., σ2
u(s) and ρu; in addition to j between-study effects u

(s)
i , which naturally requires more data. Therefore, such a211

location-scale meta-regression model with the between-study effect in the scale part may require larger meta-analytic212

datasets (for more discussion, see our examples below). Nevertheless, it could be informative to estimate σ2
u(s) and213

ρu regardless of dataset size. Therefore, we suggest before fitting a multilevel location-scale meta-regression, we can214

first fit the following meta-analytic model:215

yi = β
(l)
0 + u

(l)

j[i] + e
(l)
i +m

(l)
i , (21)

and216

ln(σei) = β
(s)
0 + u

(s)

j[i]. (22)

This meta-analysis provides a more accurate error estimate of the overall effect (i.e., β0) when there exists non-217

negligible variation in variance. We propose that this meta-analytic model should be the starting point if one is218

to investigate heteroscedasticity. This is because non-zero σ2
u(s) warrants location-scale meta-regression in the same219

way as heterogeneity in a normal meta-analytic model calls for a (standard) meta-regression analysis (Nakagawa &220

Santos, 2012).221

Additionally, in this location-scale meta-analytic model (Equations 21-22), both σ2
u(s) and ρu can be estimated as222

in Equation 20. Yet, in location-scale models with the between-study effects in both parts (i.e., double-hierarchical223

models), it is possible not to model ρu by assuming ρu = 0 as below, especially, when modelling ρu leads to difficulties224

in model convergence (which could help convergence and mixing in a Bayesian model; see the examples below and225

the online tutorial):226

(
u
(l)
j

u
(s)
j

)
∼ N

((
0
0

)
,

(
σ2
u(l) 0

0 σ2
u(s)

))
. (23)

It is interesting and maybe insightful to compare these two kinds of heterogeneity: 1) heterogeneity in mean and 2)227

heterogeneity in variance. Yet, we cannot compare these two parameters directly because they are on different scales228

(i.e., the latter is on the log-normal scale). In the next section, we resolve this very issue.229

2.4 Extending the idea of heterogeneity to location-scale models230

Earlier, we introduced the relative measure of heterogeneity, I2 (variance-standardized measure). For Equation 21231

(the location part), we can also calculate three types of I2 as with Equations 14-16. For example, I2B can be obtained232

as:233
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Location-scale meta-analysis and regression 2 THEORY

I2B =
σ2
u(l)

σ2
u(l) + σ2

e + σ2
m

, (24)

with234

σ2
e = exp

(
2β

(s)
0 + 2σ2

u(s)

)
(25)

where β
(s)
0 is from Equation 22 and σ2

u(s) is the variance component for the between-study effects u
(s)

j[i] from the same235

equation (O’Dea et al., 2022). Yet, it is not possible to extend I2 to the scale part as the part lacks an equivalent236

of the sampling error variance (i.e., σ2
mi

). Although less used, there is an alternative measurement of relative237

heterogeneity for meta-analysis, which is mean-standardized (Cairns & Prendergast, 2022). Using the random-effects238

model (Equation 1), we can define this measure (CVH) as (Takkouche et al., 1999):239

CVH =
σe

|β0|
, (26)

where CV denotes the coefficient of variation, and |β0| is the absolute values of the overall mean (they match |β0| in240

Equation 1 but not necessarily in meta-regression models).241

For a multi-level meta-analysis (Equation 10), we have (Yang, Noble, et al., 2023):242

CVH(B) =
σu

|β0|
, (27)

CVH(W ) =
σe

|β0|
, (28)

and243

CVH(T ) =

√
σ2
e + σ2

u

|β0|
, (29)

where CVH(B), CVH(W ), and CVH(T ) are between-study, within-study and total relative heterogeneity although244

CVH(B) + CVH(W ) ̸= CVH(T ) (but CV 2
H(B) + CV 2

H(W ) = CV 2
H(T ); Yang, Noble, et al. 2023; cf., Equations 14-16).245

Mentioned earlier, the location-scale meta-analytic model in the previous section (Equations 21-22) has the between-246

study effects in both the location and scale part. We can, therefore, define relative heterogeneity (CVH) for both the247

location and scale parts, using Equations 21-22:248

CV
(l)

H(B) =
σu(l)

|β0|
, (30)

and249

CV
(s)

H(B) =
√

exp(σ2
u(s))− 1, (31)

where CV
(l)

H(B) and CV
(s)

H(B) are between-study relative heterogeneity for the location and scale part, respectively.250

Although Equation 31 does not look like a coefficient of variation, it indeed is (see Cleasby et al. 2015; O’Dea et al.251

8
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2022). These two types of CV can be comparable in theory (yet note that these measures were originally developed252

for ratio scale variables, which have zero as the minimum value). For example, if both CV s are similar values,253

variability in mean and heterogeneity are similar (see Fig. 2). We note that these measures have yet to be used in254

meta-analyses, so it is hard to gauge their usefulness (cf., Yang, Noble, et al. 2023). Yet, the consistency of studies255

in terms of mean and variance should be of importance for many meta-analysts.256

2.5 Modelling four types of publication bias in location-scale models257

Publication biases, such as small-study effects and decline effects, can influence meta-analytic results (Rothstein258

et al., 2005). The small-study effect happens when selective publications of small studies with only significant effects,259

biasing an overall mean. The decline effect occurs when larger and statistically significant effects are published earlier260

than smaller and non-statistically significant effects, resulting in a decline in the magnitude of the overall effect over261

time (also known as time-lag bias; Koricheva and Kulinskaya 2019); while an incline effect may theoretically possible,262

practically, it is rarely, if ever, observed (Yang, Lagisz, & Nakagawa, 2023). Indeed, both types of publication bias263

are common in ecology and evolution (Yang, Sánchez-Tójar, et al., 2023; Yang et al., 2022). One of the notable264

strengths of meta-analysis is its ability to detect such publication biases.265

For example, small-study effects can be examined by regressing yi on the square root of sampling variance (standard266

error, se; Egger et al. 1997; Moreno et al. 2009).267

yi = β0 + β1sei + · · ·+ uj[i] + ei +mi, (32)

where sei is sampling standard deviation for i-th effect size (the square root of sampling variance, also often referred268

to as sampling standard error; for Zr, it 1/(ni−3)). Alternatively, we can use
√

1/ñi, where ñi is an effective sample269

size for i-th effect size and the use of such effective sample size avoids known correlation between effect size point270

estimates and their standard error as in standardized mean difference, SMD (more often referred to as Cohen’s d or271

Hedges’ g; see Nakagawa et al. 2022):272

yi = β0 + β1

√
1/ñi + · · ·+ uj[i] + ei +mi. (33)

Without the presence of a small-study effect (publication bias), there should be no relationship between effect sizes273

and sei (or
√

1/ñi), which form a funnel shape by effect size values converging to an overall value as sei (or
√

1/ñi)274

increases. If β1 ̸= 0, this suggests funnel asymmetry and hence the small-study effect. A funnel asymmetry could275

happen due to other moderators than the effective sample size. Therefore, it is important to model other moderators,276

which account for variation in the data.277

Similarly, the decline effect can be examined by including a centred publication year c(yeari) as a moderator (note278

that centring is not essential yet helps interpretation; see Schielzeth 2010):279

yi = β0 + β1c(yeari) + uj[i] + · · ·+ ei +mi. (34)

By combining these moderators (sei/
√

1/ñi and c(yeari)), we can model both location and scale to detect how280

biases affect not only average effect sizes but also their heterogeneity. The location-scale version might look like (cf.,281

Viechtbauer and López-López 2022):282

yi = β
(l)
0 + β

(l)
1

√
1/ñi + β

(l)
2 c(yeari) + · · ·+ u

(l)

j[i] + e
(l)
i +m

(l)
i , (35)

and283

ln(σei) = β
(s)
0 + β

(s)
1

√
1/ñi + β

(s)
2 c(yeari) + · · · . (36)
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If β
(s)
1 is statistically significant, it implies that heterogeneity increases with decreasing sample size (often linked to284

small-study effects; IntHout et al. 2015; Viechtbauer and López-López 2022), whereas a significant β
(s)
2 might indicate285

a “Proteus” effect, where variance (heterogeneity) in effect sizes decline over time (Trikalinos & Ioannidis, 2005). The286

reason for the Proteus effect is that initially, it is easier to publish papers that contradict the initial findings, which287

leads to high variance initially. Still, over time, variance in effect sizes declines as a consensus emerges (Trikalinos &288

Ioannidis, 2005). However, in ecology and evolution, we predict that heterogeneity can increase over time because an289

initial finding in one population (or one species) is often tested in more populations (and more species), increasing290

variability in effect sizes over time. This is the opposite of what the original Proteus effect meant, expanding what a291

Proteus effect means to any changes in effect sizes over time.292

Therefore, using Equation 35-36, we can quantify: a) a small-study effect (the location part; Fig. 3a), b) a decline293

effect (the location part; Fig. 3b), c) a small-study effect on variance, which we name ’small-study divergence’ (it294

could be ’small-study’ convergence, but it is unlikely see below; the scale part; Fig. 3c), and d) a Proteus effect295

(the scale part; Fig. 3d). Such comprehensive examinations have not been tried but can be valuable for diagnosing296

publication biases in meta-analytic data.297

2.6 Phylogenetic (multilevel) location-scale meta-analysis and meta-regression298

Ecological and evolutionary meta-analyses often deal with species-level data, where evolutionary history can shape299

both the mean and variance of effect sizes (Cinar et al., 2022; Hadfield & Nakagawa, 2010; Nakagawa & Santos,300

2012). By building upon the multilevel model (Equation 10), a phylogenetic multilevel meta-analytic model can be301

written as:302

yi = β0 + ak[i] + sk[i] + uj[i] + ei +mi (37)

with303

a
(l)
k ∼ N (0, σ2

a(l)A), (38)

and304

s
(l)
k ∼ N (0, σ2

s(l)). (39)

where a
(l)

k[i] captures the phylogenetic effect for the k-th species, and s
(l)

k[i] is the non-phylogenetic (species-level random)305

effect for the k-th species, each of them is normally distributed with σ2
a(l)A and σ2

s(l) and A is a correlation matrix306

containing relatedness of k species (Cinar et al., 2022; Hadfield & Nakagawa, 2010; Nakagawa & Santos, 2012). It is307

notable that the ratio between σ2
a(l) and σ2

s(l) can quantify the relative strength of ’phylogenetic signal’ in a dataset.308

It is known either as λ or phylogenetic heritability (H2; Lynch 1991;Cinar et al. 2022; but see Pearse et al. 2023;):309

λ = H2 =
σ2
a

σ2
a + σ2

s

. (40)

Based on the above, a phylogenetic location-scale meta-regression model can be written as:310

yi = β
(l)
0 + β

(l)
1 x1i + · · ·+ β(l)

p xpi + a
(l)

k[i] + s
(l)

k[i] + u
(l)

j[i] + e
(l)
i +m

(l)
i , (41)

and the scale component can similarly incorporate moderators:311
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ln(σei) = β
(s)
0 + β

(s)
1 x1i + · · ·+ β(s)

p xpi + · · · . (42)

By doing so, we can test whether certain clades or evolutionary lineages exhibit inherently different levels of hetero-312

geneity by species-level moderators (e.g., two different species groups according to their taxonomy). This phylogenetic313

extension helps to unravel how evolutionary history, along with environmental or methodological moderators, shapes314

both the magnitude and dispersion of ecological and evolutionary responses. Note that we could add the between-315

study effect (u
(s)
i ) in the scale part. Also, it is possible even to incorporate the phylogenetic and non-phylogenetic316

effects (a
(s)

k[i] and s
(s)

k[i]) in the scale part, but we would not recommend such models unless one has a relatively large317

dataset; the more complex the model, the more data points are required (cf., Cinar et al. 2022). Also, the location318

part of a meta-analytic model can be written as:319

yi = β
(l)
0 + a

(l)

k[i] + s
(l)

k[i] + u
(l)
i + e

(l)
i +m

(l)
i , (43)

with the scale part being Equation 22; such a phylogenetic multilevel location-scale meta-analytic model can be run320

before fitting a meta-regression counterpart.321

3 Worked Examples322

Here, we provide illustrative examples by re-analysing data from three published meta-analyses. Our aim here is to323

show examples of models we described above, and, therefore, we note that our model structure (e.g., the absence of324

phylogenetic relatedness) and the choice of moderators are unlikely to be biologically or methodologically the best325

given these datasets. That is, our examples may present models that could be too simplistic and fail to fully capture326

the complexities of these datasets. For implementation, we primarily use the R package, brms (Bürkner, 2017) but for327

some models, we also use metafor (Viechtbauer, 2010) and blsmeta (Rodriguez et al., 2023; Williams et al., 2021);328

note that results from all three packages brms, metafor and blsmeta are all consistent to each other. The full R329

scripts, along with the datasets, are available on our tutorial page (link), which can also serve as an introduction to330

fitting standard meta-analysis and meta-regression using these packages. Notably, in the online tutorial, we start each331

example fitting a multilevel location-scale meta-analytic model, which we have recommended, above, as a starting332

point of modelling (i.e., Equations 21 and 22). Below,however, we focus on results from location-scale meta-regression333

models, mainly using Equations 17 and 9 rather than Equations 17 and 19; this is because the former mix and converge334

more easily and also multiple R packages can fit this model, although the latter can be a better model in some cases335

(note that it is possible to decide which model is better using Bayesian model selection using, for example, Widely336

Applicable Information Criterion, WAIC or leave-one-out cross-validation, loo-cv; Vehtari et al. 2017; see also Blowes337

2024).338

3.1 Example 1: Biological and Methodological Categorical Moderators339

Pottier et al. (2022) studied the capacity of animals to increase thermal tolerance via heat exposure (increased340

temperature) using a meta-analysis with the ratio of acclimation response between control and heat-exposed groups,341

as effect sizes. Using multilevel (i.e., Equations 17 and 9), we re-analysed their dataset, whether habitat (living342

aquatic [aqu.] vs. terrestrial [ter.] habitat) and ‘method‘ (experiments testing either early/initial exposure [ini.]343

or persistent exposure [per.]) moderate not only the mean effect but also variances. Indeed, not only terrestrial344

organisms had significantly lower heat tolerance overall than aquatic counterparts, overall (β
(l)

[ter.-aqu.]: −0.16, 95%345

CI: −0.23 to −0.29) but also they had significantly lower variability (β
(s)

[ter.-aqu.]: −1.18, 95% CI: −1.33 to −1.02;346

Fig. 4a). Also, persistent exposures, overall, increased heat tolerance yet, significantly less than early (initial) exposure347

(β
(l)

[per.-ini.]: −0.07, 95% CI: −0.10 to −0.03), although persistent exposures generated significantly more variability348

(β
(s)

[per.-ini.]: 0.21, 95% CI: 0.07 to 0.34; Fig. 4b). These reanalyses highlight the often neglected roles of biological349

and methodological moderators in meta-analyses; we expect and predict heteroscedasticity (i.e., significant contrasts350

(slopes) on the scale part (β(s)) are prevalent in ecological and evolutionary meta-analytic data.351
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3.2 Example 2: A Continuous Biological Moderator352

Midolo et al. (2019) examined how plant traits change along a relevant gradient, using log response ratio (lnRR;353

comparing trait differences over differences in elevatoin). Here, we re-analysed one of the traits, nitrogen concentra-354

tion per unit of area (Narea), using a location-scale meta-regression model. As with the original authors, we found355

an increase in elevation difference accompanied by a significant increase in Narea (β
(l)

[elevation]: 0.05, 95% CI: 0.01 to356

0.08)). More importantly, variances among effect sizes (lnRR for Narea) also increased as the elevation increased357

(β
(s)

[elevation]: 0.29, 95% CI: 0.12 to 0.46); Fig. 4c). Although continuous moderators like elevation here are less common358

in meta-analytic data sets (Nakagawa, Lagisz, O’Dea, et al., 2023), heteroscedasticity in such moderators may be359

more common than we assume (i.e., homoscedasticity).360

3.3 Example 3: Modelling Publication Bias in the Location and Scale Part361

Neuschulz et al. (2016) studied the effect of forest disturbance on pollination, seed dispersal, seed predation, re-362

cruitment and herbivory during plant regeneration, using a meta-analysis with standardised means difference (SMD)363

as their effect size. We used their data set to test the four types of publication biases described above by fitting364

sampling standard error (se; note the higher the standard error, usually, the smaller the sample size) and the centred365

publication year (cyear). Although we did not find little statistical evidence for the small-study effect and the decline366

effect (β
(l)

[se]: −0.89, 95% CI: −2.06 to 0.23); β
(l)

[cyear]: −0.04, 95% CI: −0.12 to 0.04)), we found such evidence for367

small-study divergence (β
(s)

[se]: −0.19, 95% CI: 0.31 to −0.09) as well as the Proteus effect with variance going down368

over time (β
(s)

[cyear]: 2.13, 95% CI: 0.74 to 3.41; Fig. 4d). This example points out that the current practice of just369

testing for the small study and the decline effect may miss the complexity of publication bias, missing the important370

insights gained by testing publication bias on the scale part, i.e., the small-study divergence and Proteus effect.371

4 Discussion372

In this paper, we have introduced (phylogenetic) multilevel location-scale meta-analysis and meta-regression as a373

new methodological advance to better capture, understand, and interpret heterogeneity and heteroscedasticity in374

ecological and evolutionary meta-analyses with illustrative examples from global change biology (cf., Viechtbauer375

and López-López 2022; Blowes 2024). By jointly modelling the location (mean) and scale (variance) of effect sizes,376

this approach surpasses conventional frameworks that treat variance as a single, homogeneous quantity. Below, we377

highlight the key advantages and implications of this framework in eight points.378

First, the location-scale framework enhances biological interpretability. Variability in responses is not merely noise;379

it can reflect underlying ecological and evolutionary processes. When variance differs systematically across modera-380

tors, we understand whether certain environments, taxa, or conditions channel responses into restricted or variable381

outcomes. Such insights are highly relevant in a rapidly changing world, where both shifting averages and expand-382

ing or contracting variances across populations may signal adaptive capacity, vulnerability, or underlying ecological383

complexity (Pecl et al., 2017; Urban, 2015). Notably, such changes in variation in response can be easily visualised384

by orchard plots (for categorical variables) or bubble plots (for continuous variables; Nakagawa et al. 2021, 2023; see385

Fig. 4).386

Second, location-scale modelling helps disentangle methodological sources of heterogeneity. Differences in study387

design, measurement techniques, or analytical choices may inflate the variance of reported effect sizes (cf., Dougherty388

and Shuker 2015; Christie et al. 2019; Mathot et al. 2024). Incorporating methodological moderators into the scale389

component allows us to identify when and how systematic sources of variability arise, guiding future research toward390

more consistent protocols and improving the overall reliability and comparability of meta-analytic findings (Blowes,391

2024).392

Third, related to the first two points, we can also inform predictions, for example, under global change scenarios. As393

environmental drivers intensify, understanding not just how mean responses shift but also how variance itself changes394

is critical. Increased variability may indicate an ecological opportunity for some species or impending instability395
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for others. Modelling changes in variance gives us an additional tool to anticipate the directions and magnitudes of396

uncertainty that will accompany shifts in mean responses, ultimately improving our ability to forecast and manage397

biological responses to global change.398

Fourth, integrating hierarchical (multilevel) structures into location-scale models accommodates ecological and evo-399

lutionary meta-analytic datasets with multiple effect sizes per study (cf., Viechtbauer and López-López 2022). This400

approach not only provides a clearer picture of the relative contributions of study-level and effect-level factors but also401

elucidates between-study heterogeneity in the scale part as well as in the location part (Yang, Noble, et al., 2023).402

Indeed, we have proposed a multilevel location-scale meta-analytic model with the between-study effects in both403

parts as the starting point for exploring heterogeneity in mean and variance (e.g., comparing CV
(l)

H(B) and CV
(s)

H(B)).404

Fifth, incorporating phylogenetic structures into location-scale models not only controls for nuisance non-independence405

but also deepens our evolutionary understanding (Cinar et al., 2022; Hadfield & Nakagawa, 2010; Nakagawa & Santos,406

2012). By accounting for shared ancestry, we can determine whether specific clades inherently produce more vari-407

able responses, possibly due to broader genetic diversity, greater plasticity, or more complex ecological interactions.408

Phylogenetic extensions allow us to identify evolutionary patterns in both mean effect sizes and their variability.409

Sixth, the location-scale framework enables more comprehensive investigations of publication biases; we have outlined410

the four types of publication biases (the small-study effect, decline effect, small-study divergence, and Proteus effect).411

Traditional tests focus on detecting biases in mean effect sizes (Koricheva and Kulinskaya 2019; Nakagawa et al. 2022).412

By including moderators in the scale component, we can also examine biases in heterogeneity itself. For instance, we413

may identify when small studies or more recent publications not only inflate mean effects but also increase variance,414

revealing previously undetected dimensions of bias. Such multifaceted examinations of publication biases can improve415

the robustness and trustworthiness of meta-analytical conclusions.416

Seventh, therefore, the multifaceted approach enhances the interpretability of meta-analytic findings for stakeholders417

and policymakers (Koricheva & Kulinskaya, 2019; Yang, Noble, et al., 2023). Rather than presenting a single418

mean effect size with a uniform measure of heterogeneity, we can specify when and where heterogeneity increases or419

decreases. These more detailed insights can guide resource allocation, monitoring efforts, and mitigation strategies420

for conditions associated with the greatest uncertainties or susceptibilities.421

Eighth, more broadly, location-scale meta-analytic models present an opportunity for synthesis and comparability422

across a wide range of ecological and evolutionary contexts. By applying this method to various research questions, we423

can begin to build a general understanding of how heterogeneity responds to both biological and methodological factors424

(cf., Cleasby and Nakagawa 2011). This holistic approach promises to enrich our grasp of biodiversity, ecosystem425

functioning, and evolutionary potential as they unfold under changing environmental conditions. Importantly, given426

reasonable sample sizes (e.g., 40 effect sizes; indicated by simulation in Rodriguez et al. 2023), all published ecological427

and evolutionary meta-analyses can be re-analysed with our proposed models to investigate heteroscedasticity.428

In summary, location-scale meta-analysis and meta-regression models, with multilevel, phylogenetic, and publication-429

bias extensions, provide a versatile and biologically interpretable framework for meta-analysis. They allow researchers430

to understand how moderators influence average effect sizes and reveal the conditions under which heterogeneity is431

amplified or diminished. This yields deeper ecological and evolutionary insights, refines our interpretations of meta-432

analytic results, and ultimately advances our understanding of complex biological responses to global environmental433

change.434
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6 Figure438

Figure 1: Visualizing heteroscedasticity: (a) an example of a continuous moderator (e.g., temperature,
elevation, or sampling effort) with variance in effect sizes increase as moderator values increase. (b) an
example of a categorical moderator (e.g., treatment vs. control groups or females vs. males) with the
treatment group having more variation in effect sizes than the control group.
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Figure 2: Illustration of location-scale models with different combinations of random effects in the location

and scale parts. (a) Depicts a scenario where each study (orange curves) has its mean (i.e., β0 + u
(l)
j ) and

variance (i.e., u
(s)
j ). Between-study variation in the average effect size is represented by σ2

u(l) (light-orange

distribution), and between-study variation in variance is represented by σ2
u(s) (navy distribution), which is

zero (no variation or homoscedasticity). Correlation between these two random effects (ρu) can be zero,
positive, or negative, leading to different patterns (in this case, zero), (b) in this scenario, everything is
the same apart from between-study variance in means are larger than scenario a, (c) in this case, there is
variations in variation, (d) in this case, each study differs in mean and variance with ρu = 0. (e) a positive
correlation, ρu = 1, means that higher mean effects co-occur with greater variance. (f) a negative correlation,
ρu = −1, means that higher mean effects co-occur with lower variance. Each panel on the right shows a

schematic distribution of u
(l)
j (orange) and u

(s)
j (blue), along with their correlation in a scatterplot. These

scenarios highlight how location-scale approaches can capture diverse patterns of heterogeneity.
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Figure 3: Four types of publication bias: (a) Small-study effect (location part): A conventional Egger-type
test regresses observed effect sizes (y) on their standard errors (SE or

√
1/ñ). A significant slope suggests

that smaller (less precise) studies yield systematically different mean effects. (b) Small-study divergence
(scale part): Location-scale models allow testing whether less precise (smaller) studies exhibit not just
different average outcomes but also greater (or lesser) variance. (c) Decline effect (location part): Also called
the time-lag bias, where earlier studies may report inflated effects that gradually decline over publication
years (green slope). (d) Proteus effect (scale part): Over time, variance among effect sizes could increase or
decrease. A decrease might reflect an emerging consensus, whereas an increase may arise if subsequent studies
expand across different conditions, species, or methodologies. By including moderators such as sample size
or publication year in the scale component, location-scale models can detect biases that inflate variance,
revealing more complex patterns of publication distortions beyond mean shifts alone (note all effect sizes are
assumed to be independent so one effect size per study).
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Figure 4: Illustrative location-scale meta-regression examples covering categorical, continuous, and publi-
cation bias moderators using ‘ggplot2‘ (Wickham, 2011), ‘tidybayes‘ (Kay, 2020) and ‘orchaRd‘ packages
(Nakagawa, Lagisz, O’Dea, et al., 2023) :(see the next page)
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(a) Categorical biological moderator: contrasting terrestrial (blue) vs. aquatic (red) organisms (terrestrial - aquatic).439

The left panel shows posterior distributions of four key parameters from the Bayesian location-scale model: the440

intercept (b l intercept), the habitat contrast (b l contrast) in the location part, and the corresponding intercept441

(b s intercept) and habitat contrast (b s contrast) in the scale part. The vertical dashed line indicates zero,442

aiding the interpretation of effect direction with thick lines showing 66% credible intervals and thin whiskers 95%443

credible intervals. The right panel or orchard plot depicts effect sizes by habitat (vertical axis) and their average444

precision (bubble size) or sampling effort (horizontal jitter), illustrating that aquatic organisms showed not only445

larger mean effect sizes but also higher variance with thick lines showing 95% confidence intervals and thin whiskers446

95% prediction intervals. (b) Categorical methodological moderator: initial versus persistent temperature exposures447

(persistent - initial). The left panel similarly displays the posterior distributions for intercept and contrast in both448

location and scale parts, revealing that persistent exposures yield higher variance than initial exposures. The right449

panel shows a orchard plot of effect sizes by the method category, with bubble size again proportional to precision450

(1/SE). (c) Continuous biological moderator (e.g., log-elevation). The left panel highlights how both the location451

(e.g., b l elevation) and scale (b s elevation) slopes differ from zero, indicating that mean effect sizes increase452

with elevation while variance likewise expands. The right panel shows a scatter of effect sizes across the moderator453

axis (ln(elevation)), with bubble sizes proportional to precision, along with the fitted location trend (solid line) and454

its 95% confidence intervals (dashed lines) and 95% prediction intervals (dotted lines) (d) Publication-bias variables:455

sample size (SE) and publication year (cyear). On the left, the location part (b l se, b l cyear) tests for the456

small-study effect and decline effect (no statistical evidence for these effects), while the scale part (b s se, b s cyear)457

examines small-study divergence and the Proteus effect (evidence for these effects). The right panels illustrate partial458

regressions against standard error and centred publication year, each bubble sized by precision, with the fitted lines459

in black and 95% intervals in dashed lines. The bubble plot, based on a standard meta-regression not location-scale460

meta-regression, for se showed a small study effect yet, this effect was not detected in the corresponding location-scale461

model, this indicates the small-study divergence (which was not modelled) has created the small-study effect in the462

normal meta-regression, emphasising the importance of all four publication bases as proposed here.463
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Sae-Lim, P., Kause, A., Janhunen, M., Vehviläinen, H., Koskinen, H., Gjerde, B., Lillehammer, M., & Mulder,568

H. A. (2015). Genetic (co) variance of rainbow trout (oncorhynchus mykiss) body weight and its569

uniformity across production environments. Genetics Selection Evolution, 47, 1–10.570

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in571

Ecology and Evolution, 1 (2), 103–113.572

Senior, A. M., Grueber, C. E., Kamiya, T., Lagisz, M., O’Dwyer, K., Santos, E. S. A., & Nakagawa, S.573

(2016). Heterogeneity in ecological and evolutionary meta-analyses: Its magnitude and implications.574

Ecology, 97 (12), 3293–3299. https://doi.org/https://doi.org/10.1002/ecy.1591575

Senior, A. M., Viechtbauer, W., & Nakagawa, S. (2020). Revisiting and expanding the meta-analysis of576

variation: The log coefficient of variation ratio. Research Synthesis Methods, 11 (4), 553–567.577

Stanley, T., Doucouliagos, H., & Ioannidis, J. P. (2022). Beyond random effects: When small-study find-578

ings are more heterogeneous. Advances in Methods and Practices in Psychological Science, 5 (4),579

25152459221120427.580

Takkouche, B., Cadarso-Suarez, C., & Spiegelman, D. (1999). Evaluation of old and new tests of heterogeneity581

in epidemiologic meta-analysis. American journal of epidemiology, 150 (2), 206–215.582

Taylor, L. R. (1961). Aggregation, variance and the mean. Nature, 189 (4766), 732–735.583

Trikalinos, T. A., & Ioannidis, J. P. (2005). Assessing the evolution of effect sizes over time. Publication bias584

in meta-analysis: Prevention, assessment and adjustments, 241–259.585

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348 (6234), 571–573.586

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-587

validation and waic. Statistics and computing, 27, 1413–1432.588

Viechtbauer, W. (2010). Conducting meta-analyses in r with the metafor package. Journal of statistical589

software, 36 (3), 1–48.590
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