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Summary: 16 

● Reflectance spectroscopy is a rapid method for estimating traits and discriminating species. 17 

Spectral libraries from herbarium specimens represent an untapped resource for generating broad 18 

phenomic datasets across space, time, and taxa. 19 

● We conducted a proof-of-concept study using trait data and spectra from herbarium specimens up 20 

to 179 years old alongside data from recently dried, pressed leaves. We validated model accuracy 21 

and transferability for trait prediction and taxonomic discrimination. 22 

● Trait models from herbarium spectra predicted leaf mass per area (LMA) with R2 = 0.94 and 23 

%RMSE = 4.86%, and discriminated 25 species with 74% accuracy. Models for LMA prediction 24 

were transferable between herbarium and pressed spectra, achieving R2 = 0.88, %RMSE = 8.76% 25 

for herbarium to pressed spectra, and R2 = 0.76, %RMSE = 10.5% for the reverse transfer. We 26 

also found correlations among classification probabilities with several herbarium specimen 27 

quality predictor variables. 28 

● The results validate herbarium spectral data for trait prediction and taxonomic discrimination, and 29 

demonstrate trait modeling can benefit from the complementary use of pressed-leaf and 30 

herbarium-leaf spectral datasets. These promising methodological advancements help to justify 31 

the spectral digitization of plant biodiversity collections and support their application in broad 32 

ecological and evolutionary investigations. 33 

 34 
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Plain language summary: Reflectance spectroscopy applied to herbarium collections offers a 35 

transformative method to generate phenomic data across the plant tree of life. Despite specimen 36 

preservation challenges, we demonstrate spectra from herbarium specimens can reliably predict traits and 37 

distinguish species across specimens up to 179 years old. These findings justify the integration of spectral 38 

data into the Global Metaherbarium.  39 



 

3 

Introduction 40 

The urgency of global biodiversity assessment is driving the application of reflectance spectroscopy as a 41 

broadly informative technology for advancing systematic knowledge of plant diversity at scales ranging 42 

from molecules to continents (Serbin et al., 2014; Cavender-Bares et al., 2017; Meireles et al., 2020a; 43 

Cavender-Bares et al., 2025). This powerful approach offers a rapid method for characterizing leaf traits 44 

and discriminating taxa by capturing spectral signals that integrate structural, chemical, and physiological 45 

information from plants studied in laboratory, herbarium, and field settings(Costa et al., 2018; Serbin & 46 

Townsend, 2020; Kothari & Schweiger, 2022). 47 

Despite its potential, the spectral-based taxonomic and phenotypic characterization of plant 48 

diversity faces significant challenges. Limited access to material from remote geographic regions and 49 

uncommon taxa results in spectral datasets that are both biased and highly sparse (Meireles et al., 2020a) 50 

(Meireles et al., 2020), even more so than global plant trait databases (Jetz et al., 2016). Addressing this 51 

limitation requires extensive, costly, and time-intensive fieldwork. Additionally, the lack of linkage 52 

between leaf spectral data and voucher specimens complicates spatiotemporal precision and reliability as 53 

inevitable taxonomic and nomenclatural changes occur. 54 

A promising path forward for bridging this impasse across the plant tree of life lies in leveraging 55 

the approximately 400 million dried plant specimens stored in over 3,500 herbaria worldwide (Thiers, 56 

2020; Heberling, 2022; Kothari et al., 2023b). This wealth of plant specimens has long been a key 57 

resource for researchers studying plant diversity and ecological and evolutionary processes across spatial 58 

and temporal scales (Davis, 2023). Indeed, herbarium collections anchor every species definition and are 59 

the physical foundation of our taxonomic understanding of plant and fungal diversity. They also include 60 

specimens that are rare, extinct, or regionally extirpated.  61 

Several studies have now demonstrated the utility of pressed leaves (i.e. collected, dried, pressed, 62 

and stored in newsprint) for spectra-based trait prediction and taxonomic discrimination, offering a 63 

positive outlook for extending these applications to the more variable conditions of herbarium specimens 64 

(Durgante et al., 2013; Costa et al., 2018; Kothari et al., 2023b; Hernández-Leal et al., 2025). In contrast 65 

to pressed leaves, herbarium specimens typically reflect a much broader array of collection and 66 

preservation protocols—many of which are minimally documented—and are stored for considerably 67 

longer periods (Box 1). As such, herbarium specimens represent a much wider range of tissue variability 68 

with respect to their biological factors as well as processing and degradation. Modern spectroradiometers 69 

(350–2,500 nm) are highly sensitive to the physical and chemical characteristics of scanned tissues, 70 

requiring careful standardization to ensure data quality and interoperability (Meireles et al., 2020a). As 71 

such, the differences in collection and processing protocols among herbarium specimens, plus mounting 72 

https://www.zotero.org/google-docs/?pkQseb
https://www.zotero.org/google-docs/?pkQseb
https://www.zotero.org/google-docs/?pkQseb
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techniques, chemical treatments, long-term storage conditions, and age are expected to introduce spectral 73 

noise and reduce comparability across datasets (Kühn et al., 2024). Herbarium specimens thus present 74 

unique challenges for reflectance spectroscopy, as they carry multiple layers of variation beyond natural 75 

biological differences—complicating both data interpretation and model transferability. 76 

Within the new and rapidly evolving field of spectral biology, the application of reflectance 77 

spectroscopy to herbarium specimens is still in its early stages. For example, Kühn et al. (2025) 78 

demonstrated that herbarium spectra could be used to detect historical changes in leaf nitrogen, 79 

phosphorus, and carbon concentrations associated with shifts in agricultural management practices. In this 80 

issue, Neto-Bradley et al. have assessed taxonomic discrimination in Lithocarpus, a taxonomically 81 

challenging clade with largely homogeneous leaf and vegetative morphology, providing insights into 82 

methodologies and classification limits. Building on these efforts, the present study aims to evaluate the 83 

extent to which herbarium specimens can be used for estimating leaf traits and species classification using 84 

reflectance spectra. 85 

Here, we extend the experimental framework established by Kothari et al. (2023) for pressed 86 

leaves to investigate the utility of herbarium specimens for leaf trait prediction and species discrimination. 87 

We targeted 25 of the most well-sampled species from the Kothari et al. dataset for spectral measurement 88 

at the Harvard University Herbaria, enabling direct comparison between pressed and herbarium spectra. 89 

We focused on predicting leaf mass per area (LMA) because it was the best-performing trait in pressed-90 

leaf models and is minimally invasive. LMA can be directly measured without altering specimens if 91 

detached leaves are available in specimen packets (see herbarium specimen image in Table 1). We also 92 

used this framework to evaluate the transferability and ‘generalizability’ of trait prediction models from 93 

pressed leaves to herbarium spectra and vice versa, as a proxy to understand how herbarium variation and 94 

degradation affect spectral information and models. Finally, we investigated whether herbarium specimen 95 

qualities—including age, greenness, and the presence of glue—were correlated with the probability of 96 

correct taxonomic classification. 97 

Our validation approach highlights practical considerations—such as trait range, model 98 

transferability, and specimen quality—that influence the reliability of spectral inferences from herbarium 99 

specimens. These findings inform future efforts to develop and apply spectral models across diverse 100 

herbarium collections.  101 

 102 
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Box 1: Pressed versus herbarium specimens 
 
Fig. 1: Spectral 
measurements of pressed 
(A) and herbarium (B) leaf 
specimens. Pressed leaves 
are unmounted and easily 
scanned, while herbarium 
specimens are mounted 
and more variable in 
preservation. In B, a 
detached leaf fragment 
from packet is measured on 
a black background to 
avoid spectral interference. 
 
Table 1: Summary of differences in storage, age, collection and preservation methods, contamination 
risk, and spectral integrity between pressed and herbarium specimens. 

 
 
Recent advances have shown that reflectance spectra from recently dried leaves can produce accurate 
predictive models for taxonomic discrimination and leaf traits – comparable to those based on fresh 
tissue (Durgante et al., 2013; Costa et al., 2018; Kothari et al., 2023b). These results support 
extending spectral analyses to herbarium specimens, which span a broad range of ages and 
preservation conditions. While pressed and herbarium specimens share many features, key differences 
in storage, processing, and preservation justify their comparison as distinct sample types (Table 1). 
 
Pressed specimens are typically prepared using standard herbarium protocols—collected, pressed in 
newsprint, and dried—and are usually associated with ongoing research projects. These specimens are 
relatively young (from months to a few decades), stored loosely in paper, and easily accessible for 
measurement on both leaf surfaces (Fig 1A). They often serve as taxonomic vouchers and are often 
intended for future herbarium accessioning. 
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Herbarium specimens, in contrast, represent decades to centuries of collecting history. Their 
preservation is more variable, influenced by differences in field and processing techniques, storage 
environments, (Forman & Bridson, 1989), and the use of chemicals such as glues, pest treatments, or 
chemical preservatives (Bieker et al., 2020), all of which can influence spectral signals. Many 
specimens have also been transferred between institutions, adding further variability. 

A major distinction is that herbarium specimens are generally mounted on archival paper (Fig. 1B)—
often glued—which can complicate spectral measurement due to interference from adhesives and 
backing materials (Neto-Bradley et al., In Review). Measuring such specimens often requires selecting 
loose tissues from packets or inserting non-reflective black backgrounds when mounting allows. 
Some herbaria store specimens unmounted in newsprint, more similar to pressed collections. 

Pressed leaves thus represent a more uniform and accessible subset of the broader variability found in 
herbarium collections. They are a valuable resource for spectral model development and offer a 
critical intermediate between fresh tissues and historical collections. Their consistency and 
accessibility make them ideal for establishing transferable models that bridge in vivo trait 
measurements with the preserved diversity in global herbarium collections. 
 

  103 
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Methods 104 

Sampling design 105 

We reanalyzed the pressed-leaf spectral dataset from Kothari et al. (2023), which includes 618 leaf 106 

samples representing 67 species of North American trees, shrubs, and herbs, plus one Australian species 107 

included as a complementary pressed-leaf spectral and trait dataset. This dataset includes the values for 22 108 

leaf traits assayed for each sample. The Kothari et al. (2023) spectral data were collected from the pressed 109 

voucher specimens using a PSR+ spectroradiometer with a leaf clip optical probe (Spectral Evolution 110 

Inc.) after six months to three years of storage. We accessed these data from the EcoSIS server 111 

(https://ecosis.org/; Kothari et al., 2022). 112 

To enable a comparison with the pressed-leaf dataset, we generated a corresponding herbarium 113 

dataset from specimens housed at the Harvard University Herbaria (HUH) for 25 of the 68 species 114 

analyzed by Kothari et al. (2023). A comparison of individuals and numbers of spectral measurements 115 

from each dataset is provided in Table 2.  Specimen metadata were obtained from the Global Biodiversity 116 

Information Facility (GBIF.org) database using the R package rgbif v.3.8.0 (R Core Team, 2023; 117 

Chamberlain et al., 2024). We targeted collections from New England (Connecticut, Maine, 118 

Massachusetts, New Hampshire, Rhode Island, and Vermont), contrasting somewhat with the geographic 119 

focus on Ontario and Quebec in Kothari et al. (2023). 120 

To select herbarium specimens for measurement, we first inspected all specimens per species and 121 

selected those holding loose leaves in packets. If we were not able to get a minimum of 15 specimens 122 

with loose leaves, we obtained permission from Lisa Standley, curator of the New England Botanical 123 

Club Herbarium and Michaela Schmull, Director of Collections for the HUH, to detach one leaf for 124 

measuring spectra and LMA. If multiple leaves were available, we selected leaves without any sign of 125 

glue, but otherwise sampled specimens randomly with respect to the visual quality and degree of 126 

degradation. 127 

 128 

  129 

https://ecosis.org/
https://www.zotero.org/google-docs/?8fUYNO
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Table 2: Sampling design for herbarium and pressed datasets. For the pressed dataset, species with 11 or 130 
fewer individuals were excluded from the taxonomic classification analysis; following the approach of 131 
Kothari et al. (2023). 132 
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 Herbarium Pressed 

Species Family N individuals N spectra 
N 

individuals N spectra 

Acer rubrum Sapindaceae 20 72 72 302 

Acer saccharinum Sapindaceae 20 69 21 93 

Acer saccharum Sapindaceae 22 81 41 195 

Acer spicatum Sapindaceae 20 75 1 3 

Agonis flexuosa Myrtaceae 15 86 67 351 

Betula papyrifera Betulaceae 16 63 21 98 

Betula populifolia Betulaceae 21 96 86 403 

Claytosmunda 
claytoniana Osmundaceae 18 56 1 7 

Fagus grandifolia Fagaceae 21 63 26 119 

Helianthus divaricatus Asteraceae 16 54 1 3 

Myrica gale Myricaceae 19 57 1 2 

Osmunda regalis Osmundaceae 20 72 1 2 

Ostrya virginiana Betulaceae 20 60 1 4 

Phalaris arundinacea Poaceae 18 57 6 21 

Phragmites australis Poaceae 18 57 11 34 

Populus grandidentata Salicaceae 19 63 21 104 

Populus tremuloides Salicaceae 17 83 102 512 

Prunus pensylvanica Rosaceae 21 69 2 5 

Prunus serotina Rosaceae 20 63 1 5 

Quercus rubra Fagaceae 19 67 26 125 

Rubus idaeus Rosaceae 22 72 9 46 
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Rubus odoratus Rosaceae 16 54 1 3 

Solidago altissima Asteraceae 19 57 6 29 

Solidago gigantea Asteraceae 21 63 7 35 

Spiraea latifolia Rosaceae 22 81 2 4 

Spectral Measurement Protocol 133 

Specimens were measured using a Spectra Vista Corporation HR 1024i spectroradiometer (350–2,500 nm 134 

spectral range) with a fiber optic cable connected to the LC-RP Pro Leaf Clip/Reflectance Probe with a 135 

narrow-angle lens, which reduced the target area to a 6 mm x 4 mm ellipse. Throughout this manuscript, 136 

we refer to spectral “measurements” as the method of reflectance data acquisition obtained using a 137 

contact probe with a fixed field of view. Prior to spectral measurements the instrument was turned on for 138 

a minimum of 15 minutes with the reflectance probe lamp set to low to allow the light source to warm and 139 

the sensors to cool. At the beginning of each session, the lamp was switched to high and a white reference 140 

measurement on a white Spectralon® reference panel was taken,  followed by three spectral 141 

measurements of the white Spectralon® reference panel, followed by three measurements of our black 142 

background material: black cardstock sprayed with three coats of Krylon® Camouflage Black Matte 143 

spray paint (acrylic alkyd, water-based paint; product #K04290777).  All measurements were made with 144 

an integration time of two seconds. 145 

For one to two leaves per specimen, one leaf at a time was placed on top of the black background 146 

and three measurements were made of the middle of the leaf lamina on the adaxial surface. The 147 

reflectance probe was rotated slightly and moved a few millimeters between each measurement to capture 148 

variability within each leaf across a small leaf area. Following Kothari et al. (2023), we targeted leaf 149 

regions that avoided the midvein, prominent secondary veins, or regions with disease, fungus, or other 150 

damage. To further avoid possible contamination of light reflected from the bench, the leaves on top of 151 

the cardstock were placed on top of a 5 mm felt pad coated with the matte black spray paint (visible in 152 

Fig. 1B). After each specimen's measurements a second white reflectance measurement was taken; all 153 

white and black target measurements were recorded for future monitoring of instrument and optics quality 154 

control (not described here). 155 
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Trait Measurements 156 

Leaf weight, area, and thickness were recorded for each measured leaf to validate leaf mass per area 157 

(LMA) predictions from spectra. After spectral measurements were made, petioles were removed at the 158 

point of contact with the leaf lamina or at the midpoint of acuminate leaf bases. Leaf blade weight was 159 

measured in milligrams using a Sartorius Practum64-1S Analytical Balance. Petioles were stored in 160 

glassine envelopes and labeled with leaf numbers. Leaf area was measured using the LeafByte® app on 161 

an iPhone 15 with five or 10 cm² calibration dots. LMA was calculated in kilograms per square meter 162 

(kg·m-2). 163 

Spectra Preprocessing 164 

We used the SpectroLab v. 0.0.18 R package (Meireles et al., 2017) to combine herbarium 165 

spectra files with their associated metadata and to smooth sensor overlap regions at 991.3 nm and 1902.5 166 

nm with a 5 nm interpolation region. To ensure compatibility with downstream analyses and 167 

comparability of results across datasets, we reprocessed and reanalyzed the pressed leaf spectra of Kothari 168 

et al. (2023; Kothari et al. 2022), which were in 1 nm resolution instead of the ~1.5 nm resolution of the 169 

herbarium dataset. We resampled reflectance spectra of both datasets to 5 nm intervals using the Full-170 

Width Half-Maximum (FWHM) method in the CWT R package (Guzmán, 2024). The FWHM method 171 

was chosen as it is the standard function applied to down sampling spectra. 172 

With the goal of optimizing the transferability of models across spectral datasets, the resampled 173 

reflectance spectra in each dataset were then transformed using two methods: vector normalization and 174 

continuous wavelet transformation (CWT). Vector normalization of the spectra was implemented as a 175 

method to reduce the impact of differences in illumination geometry between spectrometers, which can 176 

impact the magnitude of reflectance. This method was applied using the ‘normalize’ function of 177 

SpectroLab. Continuous wavelet transformation (CWT) was implemented as a method to isolate scales 178 

that capture spectral features, potentially enhancing the prediction of leaf traits and the transferability of 179 

models (Guzmán & Sanchez-Azofeifa, 2021). This method is based on the premise that the leaf 180 

reflectance spectra can be expressed as a combination of wave-like functions (wavelets) of varying scales 181 

(widths), enhancing fine spectral features at lower scales and broader spectral patterns at large scales 182 

(Rivard et al., 2008). We applied this transformation on the resampled leaf reflectance from both datasets 183 

using a second-order Gaussian derivative wavelet function with a variance of 1. The selection of the 184 

wavelet function and its variance was done assuming that individual spectral features follow ideal 185 

Gaussian distributions (Rivard et al., 2008). The choice of wavelet scales can impact the predictive 186 

performance of predicting models (Guzmán & Sanchez-Azofeifa, 2021). Based on exploratory analysis, 187 
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scales 22, 23, and 24 were computed and summed to form the summed-wavelet spectra used for predicting 188 

leaf traits. The CWT transformation was implemented using the ‘cwt’ function from the CWT package in 189 

R (Guzmán, 2024). 190 

The resulting reflectance spectra (e.g., reflectance, vector-normalized, and summed-wavelet) 191 

were trimmed to a range of 450–2,400 to remove noisy regions at the spectrum's edges (Fig S1), as has 192 

been done in other studies (Guzmán & Sanchez-Azofeifa, 2021; Ji et al., 2024). We also subdivided the 193 

data into different spectral regions: 450–1,300nm as the visible and near-infrared (VNIR+) region (“+” 194 

because 1,100–1,300 nm is in the short-wave infrared) that could be noisier due to pigment degradation 195 

(Fourty et al., 1996), and the 1,350–2,400 nm short-wave infrared region (SWIR). 196 

Prediction of leaf traits 197 

Using the processed spectra and the measured leaf mass per area (LMA; kg·m-²) from each of the 198 

pressed and herbarium datasets across the VNIR+ (450-1,300 nm), SWIR, and full-range spectral regions, 199 

we built predictive models using partial least squares (PLS) regression implemented with the pls and 200 

caret R packages (Liland et al., 2024b; Kuhn et al., 2024). Metadata and spectral data were split into 201 

training (75%) and validation (25%) datasets using a stratified sampling approach based on growth form, 202 

mirroring Kothari et al. (2023). We generated 1,000 model segments by randomly selecting individual 203 

measurements for each specimen using a custom data segmentation function. This procedure ensured that 204 

measurements from each specimen were never split among both the training and validation datasets while 205 

capturing the variability within specimens and any rare spectral features that might be removed by the 206 

averaging of spectra. 207 

Model optimization was performed using a custom tuning function that used cross validation with 208 

the ‘oscorepls’ method. The predictive residual sum of squares (PRESS) metric was used to evaluate the 209 

models during cross-validation and the optimal number of components for the PLS regression models was 210 

selected as the smallest value whose PRESS value was within one standard deviation of the minimum 211 

PRESS value.  212 

Final models were constructed using the optimal number of components and validated on the 213 

independent test datasets. We evaluated our predictions using the full ensemble of model segments, 214 

averaged to each individual, and predictions of LMA were compared to observed values to calculate 215 

residuals and evaluate performance. The model performance was evaluated by estimating the coefficient 216 

of determination (R2), the bias, the root mean squared error (RMSE), and the percentage RMSE (%RMSE 217 

= RMSE/ range of 0.99 and 0.01 quantiles). We calculated variable importance in projection (VIP) values 218 

to estimate the most informative spectral regions and extracted model coefficients use in external 219 

predictions and tests of model transferability between pressed and herbarium specimens 220 
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To directly evaluate transferability, we applied model coefficients derived from one 221 

(herbarium/pressed) LMA dataset to the spectra of the other. We then assessed transfer prediction 222 

accuracy by calculating residuals and comparing predicted versus observed values. This approach allowed 223 

us to test the generalizability of LMA models and the compatibility between herbarium and pressed-leaf 224 

spectral data. 225 

Lastly, we used the trait values beyond LMA from Kothari et al. (2023), including carbon, 226 

calcium, carotenoids, cellulose, chlorophyll A, nitrogen, and solubles, to generate PLSR models in the 227 

same manner. We generated model coefficients and predicted trait values from the herbarium leaf spectra 228 

for these traits. To assess the generalizability and trait value consistency of model transfers for the traits 229 

for which we had no observed herbarium trait values, we compared the distributions of predicted 230 

herbarium trait values against the observed values from Kothari et al. (2023). 231 

Taxonomic Classification 232 

To test the viability of models classifying herbarium leaf spectral measurements into taxa, we applied 233 

partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) to the 234 

reflectance spectra of the full-range herbarium spectral dataset. We tested both the PLS-DA and LDA 235 

algorithms because they are both commonly applied classification algorithms. PLS-DA uses partial least 236 

squares regression to reduce dimensionality and optimize feature selection, making it suitable for spectral 237 

datasets, especially in scenarios with few samples compared to many predictors (high-dimensional low-238 

sample-size problems; Geladi & Kowalski, 1986; Carrascal et al., 2009; Serbin & Townsend, 2020). This 239 

method requires researchers to specify the number of components used by the model,  to balance between 240 

improving accuracy and avoiding overfitting to the training dataset. LDA, in contrast, assumes normally 241 

distributed data and separates classes by maximizing variance between groups, offering robust 242 

classification in well-distributed datasets without the need to specify a number of components.  243 

Classification models were built using the caret, pls, and plsVarSel packages in R (Liland et al., 244 

2024a,b; Kuhn et al., 2024). First, spectral data were preprocessed by splitting the dataset into ten 245 

individuals per species selected for training and the rest for validation, ensuring balanced representation 246 

across species. The same segmentation process as above was employed to generate 1,000 data segments 247 

for iterative training and testing across spectral measurements. 248 

For PLS-DA, model tuning was performed with the PLS method and optimized by the 249 

classification accuracy metric. We generated final models across our 1,000 data segments by selecting the 250 

number of components returning the highest classification accuracy. LDA models were generated with 251 

the ‘LDA’ method optimized by the accuracy metric. 252 
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Model performance was assessed using the independent test datasets by generating confusion 253 

matrices to calculate accuracy, sensitivity, and specificity metrics. We also generated variable importance 254 

in projection (VIP) scores from the models to identify the most influential spectral regions for 255 

distinguishing taxa and extracted and saved coefficients from the PLS-DA models for generating class 256 

predictions and prediction probabilities from all specimens for an analysis of factors that influence 257 

classification success. 258 

Analysis of specimen predictors on classification 259 

To evaluate the biotic and herborization factors influencing the success of PLS-DA classification, we 260 

utilized the full ensemble of 1,000 optimized PLS-DA models trained on the full-spectrum herbarium 261 

dataset of 25 species. To evaluate classification performance, we used two related but distinct metrics: 262 

classification probability and classification accuracy (also referred to as probability of correct 263 

classification). Classification probability refers to the value calculated by the PLS-DA model for each 264 

reflectance spectrum to each predicted class. This continuous value (ranging from 0 to 1) is calculated 265 

from the coefficients of the PLS-DA model and reflects the model’s internal confidence in its 266 

classification; enabling probabilistic analysis of how specimen characteristics influence prediction 267 

strength. In contrast, classification accuracy describes the overall probability that measurements from a 268 

given class—or from all classes collectively—are correctly classified. It summarizes the model’s 269 

performance at the group or dataset level.  270 

Using custom R scripts, we computed classification probabilities for all classes for all 1,690 271 

herbarium leaf measurements across the ensemble of models and used these values to examine the effect 272 

of specimen predictors, specimen characteristics believed to affect spectra and model performance, on 273 

model confidence at the measurement level. Specifically, we conducted a series of comparisons and 274 

independent regressions of classification probabilities against four categorical variables (specimen 275 

quality, glue presence, observed damage, and leaf developmental stage) and five numerical variables (age, 276 

Julian day of collection, nearest taxon distance, LMA, and greenness index). All specimens were scored 277 

by JMR with initial input from DMW. Descriptions of predictor variables are provided in Table 3.  278 

To estimate nearest taxon distance, a phylogram was made using Time Tree 5 (timetree.org; 279 

(Kumar et al., 2022) with modifications following results from V.PhyloMaker2 (Jin & Qian, 2022) to add 280 

Phragmites australis as sister to Phalaris arundinacea at 39.8 My and add Betula populifolia as sister to 281 

Betula papyrifera at 39.7 My. Greenness index, which measures the relative difference in reflectance 282 

between green light (550 nm) and red light (690 nm; see equation in Table 3), was selected over other 283 

commonly used vegetation indices, such as normalized difference vegetation index, green normalized 284 
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difference vegetation index, and chlorophyll/carotenoid index, due to its significant correlation with the 285 

independent estimate of specimen quality (Fig. S2).  286 

Relationships and regressions were visualized using the ggplot2 package in R (Wickham et al., 287 

2024), and significant differences in classification probabilities between correct and incorrect classes 288 

were assessed using t-tests as implemented in the ‘ggsignif’ function in ggplot2. 289 

To evaluate predictors of classification accuracy, we performed logistic regression and random 290 

forest analyses. Classification probabilities were averaged across all models, and the class with the 291 

highest average probability was assigned as the predicted class. The binary measure of correct or incorrect 292 

classification was used as the response variable in both analyses. The logistic regression model was 293 

implemented with the ‘glm’ function in the stats R package and using a binomial error structure. Random 294 

forest analysis, performed using the randomForest R package (Breiman et al., 2024), quantified predictor 295 

importance based on mean decrease in accuracy and Gini impurity metrics. 296 

  297 
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Table 3: Metadata predictors from herbarium specimens recorded for each leaf and used to evaluate model 298 
utility. 299 

Metadata predictor Class Description 

Leaf Developmental 
Stage Young 

Thin leaves with under-developed venation, prone to bruising, may 
appear darker; measurements usually have lower reflectance. Collection 
date is informative. 

 Mature 
Typically thick leaves, with potential color differences between adaxial 
and abaxial surfaces. 

 

Senescent 
(Not 
observed) 

Discolored leaves, often associated with aging. Collection date may help 
confirm senescence. 

Leaf Damage None 

No visible damage to any leaves on herbarium sheet. Damage includes 
factors like herbivory, burning during specimen drying, or any physical 
damage before or after collection. 

 Minor 
Physical damage visible on some leaves on the specimen but no damage 
on the measured leaf. 

 Medium 
Damage visible on measured leaves, but no damage is present in the  
measured target area. 

 Major Damage is visible in the measured target area.. 

Specimen Quality Good 
 A well-pressed and dried specimen with leaves that are flat as they would 
appear in vivo. Specimen presents minimal discoloration. 

 Medium 
Leaves show some discoloration and/or curling that may indicate wilting 
caused by a delay in specimen pressing and drying. 

 Poor 

Highly degraded specimen, with discoloration, mold, or curling/rugosity 
from wilting. These factors were likely caused by delayed or inadequate 
specimen pressing and preservation in the field prior to drying. 

Glue Present Glue expected in the measured target area. 

 Absent No glue expected in the measured target area. 

Green Index (Numerical) 
Green Index= Reflectance550nm - Reflectance690nm / Reflectance550nm + 
Reflectance690nm 

Age (Numerical) Years since specimen was collected (median = 91) 

Day of Year (Numerical) Julian day of collection 

Leaf Mass per Area (Numerical) kg·m-2 

Nearest Taxon 
Distance (Numerical) 

Estimated age (in millions of years) of most recent common ancestor 
shared between predicted taxon and nearest sampled species. 
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Results 300 

Trait prediction and model transferability 301 

 Spectral profiles of 25 species from the Harvard University Herbaria have similar shape but lower 302 

magnitudes compared to pressed leaves (Fig. 2A). Within herbarium spectra, we also observe notable 303 

variation in the coefficient of variation of reflectance within the visible (450-700 nm) and SWIR regions 304 

(specifically ~1,900-2,400); Fig. S3). Models trained on herbarium spectra using all combinations of 305 

spectral transformations (untransformed, vector-normalized, and CWT) and wavelength ranges (full, 306 

VNIR+, and SWIR) had performance Pearson’s correlation coefficient values (R2) between 0.91 and 0.94, 307 

as compared to the pressed models with R2 values between 0.93 and 0.95 (validation tests in Table 4; full 308 

statistics in Table S1). 309 

Overall, the best herbarium validation models according to R2 and %RMSE were the full-range, 310 

vector-normalized models, but the models using untransformed reflectance values were only slightly less 311 

accurate. For the non-transformed reflectance dataset, pressed LMA models performed similar to the 312 

herbarium LMA models (pressed R2 = 0.94, %RMSE = 6.29%; herbarium R2 = 0.93, %RMSE = 5.18%, 313 

Fig. 3A and B). After full-range models, SWIR models generally performed slightly better than VNIR+ in 314 

the herbarium models, but the reverse was true with the pressed models (Table S1). 315 

As expected, the performance of models was reduced when they were transferred and validated 316 

with the other (herbarium or pressed) LMA dataset, but the CWT and non-transformed reflectance models 317 

could still accurately predict observed LMA (Table 4; Table S1; Fig. 3B and C). The best transfer model 318 

was for the full-range CWT dataset (herbarium to pressed R2 = 0.88, %RMSE = 8.76%; pressed to 319 

herbarium R2 = 0.76, %RMSE = 10.53%). The shifted slope of an ordinary least squares regression of 320 

predicted values highlights a systematic difference in models between datasets (0.91 in Fig. 3C and 1.25 321 

in Fig. 3D; transfer tests in Table 4). Models based on the VNIR+ spectra also performed well for 322 

untransformed reflectance and CWT datasets, but SWIR-based models showed reduced performance 323 

(Table S1). Contrasting with their improved performance in internal validation tests, the models based on 324 

vector-normalized spectra performed less well than the other two datasets, yet showed best performance 325 

for models in the SWIR range (Table 4; Table S1). 326 

  327 
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Table 4: Performance metrics for LMA models (full range) averaged across 1,000 model segments. 328 

test model spectra transform N N components R2 %RMSE 
RMSE 

(kg·m-2) BIAS slope intercept 

validation herbarium herbarium CWT 220 10 0.93 ± 
0.01 

5.31 ± 
0.15 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.97 ± 
0.02 

0.00 ± 
0.00 

validation herbarium herbarium reflectance 220 14 0.93 ± 
0.01 

5.18 ± 
0.15 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.98 ± 
0.02 

0.00 ± 
0.00 

validation herbarium herbarium normalized 220 14 0.94 ± 
0.01 

4.86 ± 
0.20 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.01 ± 
0.01 

0.00 ± 
0.00 

validation Pressed Pressed CWT 212 8 0.94 ± 
0.00 

6.34 ± 
0.10 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.03 ± 
0.02 

0.00 ± 
0.00 

validation Pressed Pressed reflectance 212 16 0.94 ± 
0.00 

6.29 ± 
0.12 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.02 ± 
0.02 

0.00 ± 
0.00 

validation Pressed Pressed normalized 212 13 0.95 ± 
0.00 

6.01 ± 
0.12 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.00 ± 
0.02 

0.00 ± 
0.00 

transfer herbarium pressed CWT 609 14 0.88 ± 
0.03 

8.76 ± 
0.02 

0.02 ± 
0.00 

0.00 ± 
0.01 

0.91 ± 
0.06 

0.00 ± 
0.01 

transfer herbarium pressed reflectance 609 14 0.91 ± 
0.01 

10.99 ± 
0.02 

0.02 ± 
0.00 

-0.01 ± 
0.01 

0.82 ± 
0.02 

0.00 ± 
0.01 

transfer herbarium pressed normalized 609 14 0.91 ± 
0.01 

78.48 ± 
50.44 

0.14 ± 
0.09 

0.12 ± 
0.11 

1.47 ± 
0.05 

0.13 ± 
0.16 

transfer pressed herbarium CWT 479 8 0.76 ± 
0.05 

10.53 ± 
0.01 

0.02 ± 
0.00 

0.00 ± 
0.00 

1.25 ± 
0.06 

-0.02 ± 
0.01 

transfer pressed herbarium reflectance 479 16 0.66 ± 
0.07 

13.13 ± 
0.02 

0.02 ± 
0.00 

0.01 ± 
0.01 

1.13 ± 
0.1 

0.01 ± 
0.00 

transfer pressed herbarium normalized 479 13 0.51 ± 
0.09 

781.00 
± 

242.86 

1.18 ± 
0.37 

-1.18 ± 
0.37 

0.41 ± 
0.09 

-0.41 ± 
0.06 

 329 
   330 
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 331 
Fig. 2: Plots of reflectance and CWT values for herbarium and pressed leaf datasets, associated variable 332 
importance in projection (VIP) metrics, and model coefficients for LMA models. Black lines represent 333 
mean herbarium data and red lines represent mean pressed leaf data, with 90% quantiles plotted in gray 334 
bands. Panels show the data for (A) untransformed reflectance across all samples, (B) CWT transformed 335 
reflectance across all samples, (C) VIP values for reflectance data across 1,000 model iterations, (D) VIP 336 
values for CWT data across 1,000 model iterations, (E) Reflectance model coefficients across 1,000 337 
iterations, and (F) CWT model coefficients across 1,000 iterations. 338 

   339 
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 340 
Fig. 3: Validation and model transfer results for leaf mass per area (LMA) per individual across 25 341 
species. Error bars represent the standard deviation in predictions across 1,000 model iterations. Linear 342 
regressions of observed versus predicted values averaged across iterations are shown in red lines for 343 
comparison with the gray 1:1 dashed lines. Individual plots show the results for full-range spectra (450-344 
2,500 nm) of (A) pressed models from untransformed reflectance values, (B) herbarium models from 345 
untransformed reflectance values, (C) transfer of CWT herbarium models to CWT pressed leaf spectra, 346 
and (D) transfer of CWT pressed models to CWT herbarium leaf spectra.  347 
 348 
  349 
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The compatibility of the models is further illustrated by the similarity of variable importance in 350 

projection (VIP) values for reflectance spectra (Fig. 2C). The VIP plots reveal considerable differences 351 

between herbarium and pressed models in the visible and (less-so) NIR regions, but the relative values 352 

across wavelengths in the SWIR region are similar. This same pattern applies to the model coefficients 353 

(Fig. 2C). The CWT models show a similar pattern across the visible, NIR, and SWIR regions with higher 354 

similarity among the peaks and overall closer magnitudes (Fig. 2D and F). The CWT models have the 355 

most clearly defined peaks and highlight informative spectral regions throughout the spectral range (Fig. 356 

2D peaks = VIS: 500 nm, 545 nm, 590 nm, 640 nm, 670 nm, 695 nm; NIR: 730 nm; SWIR: 1,200 nm, 357 

1,400 nm, 1,440 nm, 1,655 nm, 1,705 nm, 1,875 nm, 1,920 nm, 2,225 nm, 2,295 nm). 358 

To extend the inference of the utility of transferring trait models, we applied seven additional 359 

pressed-leaf trait models to predict traits from the herbarium spectra for 25 species (Fig. 4; validation 360 

results in Table S2). The predicted trait distributions from herbarium spectra closely align with observed 361 

distributions from the pressed dataset, highlighting the potential of these models for cross-dataset 362 

applications. Predicted values for key traits, including leaf mass per area (LMA), carbon fractions, and 363 

carotenoids, generally showed contiguous distributions with substantial overlap between datasets. This 364 

overlap demonstrates the general utility of the spectral models in maintaining rank-order consistency 365 

across species. However, notable discrepancies were observed for some traits and taxa. For example, 366 

carbon predictions showed differing distributions for many species, and several traits differed 367 

substantially for Agonis flexuosa and the two grasses (Phalaris arundinacea and Phragmites australis) 368 

species, reflecting the limits of model generalizability in these cases (Fig. 4). Discrepancies were 369 

especially pronounced where pressed datasets included only a single individual per species. Nonetheless, 370 

the lack of unrealistic trait values and the general correspondence of trait distributions across datasets is a 371 

positive result for the generalizability of pressed and herbarium models. 372 

These results taken together provide robust support for the utility of herbarium spectra for trait 373 

estimation both for models built from herbarium-derived trait datasets as well as for the transfer of 374 

pressed leaf models built from trait values measured in living plants. 375 

   376 
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 377 

Fig. 4: Comparison of observed trait distributions from pressed leaves with predicted values obtained by 378 
applying continuous wavelet transformation (CWT) pressed models to spectra from herbarium leaves. 379 
Panels display the distributions for eight traits across 25 species. Mean values are indicated with black 380 
dots.  381 
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Taxonomic Classification 382 

To evaluate the utility of reflectance spectra for taxonomic discrimination, we applied linear 383 

discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA) models across 384 

datasets at two taxonomic levels: species and genus. To ensure direct comparability of results, we also 385 

analyzed the pressed-leaf dataset for the ten species for which 20 or more individuals were sampled. 386 

Performance metrics, including accuracy, precision, and balanced accuracy, were compared to assess the 387 

classification capabilities of each approach. 388 

Pressed datasets outperformed herbarium datasets in classification accuracy, precision, and 389 

balanced accuracy, yet herbarium spectra still provided reliable classification models (Table 5). In the 10-390 

species dataset, pressed specimens achieved accuracies of 91.7 ± 2% (LDA) and 81.1 ± 2% (PLS-DA), 391 

while herbarium specimens achieved 71.9 ± 2% (LDA) and 58.0 ± 2% (PLS-DA).  392 

For the 25-species dataset, herbarium spectra achieved 74.3 ± 1% accuracy with PLS-DA, 393 

outperforming LDA's 64.4 ± 2%. The confusion matrix (Fig. 5) shows that most classification errors 394 

occurred between congeneric species, highlighting challenges in distinguishing closely related taxa. Some 395 

species, such as Osmunda regalis and Quercus rubra, were frequently misclassified as Betula species. 396 

Notably, Solidago gigantea had a correct classification rate of only 39%, with 51% of its measurements 397 

misclassified as Solidago altissima. The variable importance in projection (VIP) plots are consistent 398 

across species and emphasize key spectral regions in the visible, near-infrared, and shortwave infrared 399 

(SWIR) ranges (Fig. S4). 400 

At the genus level, pressed specimens achieved near-perfect accuracy in the six-genera dataset, 401 

with 96.9 ± 1% (LDA) and 89.8 ± 1% (PLS-DA), while herbarium specimens achieved 89.3 ± 2% (LDA) 402 

and 82.1 ± 1% (PLS-DA). In the more complex 17-genus dataset, herbarium spectra performed better 403 

with PLS-DA (84.9 ± 1%) compared to LDA (75.3 ± 2%). Similarly, PLS-DA outperformed LDA in the 404 

17-genus dataset, with herbarium models achieving 84.9 ± 1% for PLS-DA compared to 75.3 ± 2% for 405 

LDA. 406 

The VIP plots comparing herbarium and pressed datasets reveal consistent peaks across the 407 

visible, near-infrared, and shortwave infrared (SWIR) regions, reflecting the spectral regions most 408 

important for PLS-DA classification (Fig. S5).  409 

  410 
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Table 5: Performance metrics of classification analyses 411 

Dataset Rank Model Classes N components 
Accuracy ± 
SD (%) 

Precision ± 
SD (%) 

Balanced Accuracy 
± SD (%) 

Herbarium species LDA 10 spp N/A 71.9 ± 2 72.1 ± 20 84.2 ± 10 

Herbarium species PLSDA 10 spp 15 58 ± 2 58.5 ± 23 76.5 ± 13 

Pressed species LDA 10 spp N/A 91.7 ± 2 86.6 ± 20 96.3 ± 3 

Pressed species PLSDA 10 spp 15 81.1 ± 2 73.2 ± 22 91.7 ± 6 

Herbarium genus LDA 6 genera N/A 89.3 ± 2 87.8 ± 14 92.8 ± 7 

Herbarium genus PLSDA 6 genera 13 82.1 ± 1 79.5 ± 21 86.8 ± 12 

Pressed genus LDA 6 genera N/A 96.9 ± 1 94.6 ± 10 98.3 ± 2 

Pressed genus PLSDA 6 genera 13 89.8 ± 1 85.2 ± 13 93.9 ± 5 

Herbarium species LDA 25 spp N/A 64.4 ± 2 67.2 ± 19 82 ± 9 

Herbarium species PLSDA 25 spp 24 74.3 ± 1 75.3 ± 15 87.3 ± 8 

Herbarium genus LDA 17 genera N/A 75.3 ± 2 76.5 ± 18 86.4 ± 8 

Herbarium genus PLSDA 17 genera 27 84.9 ± 1 87 ± 8 90.9 ± 9 

 412 
  413 
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 414 

Fig. 5: Phylogram and confusion matrix summarizing the validation of herbarium specimen classification 415 
using Partial Least Squares Discriminant Analysis (PLS-DA). The left panel shows a phylogram 416 
representing the evolutionary relationships among species scaled by millions of years. The right panel 417 
displays a confusion matrix where rows represent true species identities and columns represent predicted 418 
species identities. Tile colors indicate the percentage of observations of each pair of true and predicted 419 
identities, with darker shades representing higher percentages. Numbers within tiles show rounded 420 
percentages. Mean accuracy for the validation is 74.3%. 421 
  422 
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Assessing herborization factors on classification 423 

To evaluate the influence of specimen factors on PLS-DA classification performance, we analyzed the 424 

classification probabilities across all 1,690 herbarium spectral measurements using the full-spectrum 25-425 

species dataset (Fig. S6). Logistic regression and independent t-tests revealed significant relationships 426 

between classification probabilities and several categorical and numerical predictor variables. 427 

The probabilities of correct classifications varied significantly with specimen quality, glue 428 

presence, leaf damage, and leaf phenological development (Fig. 6). Leaves with good (p < 0.001) or 429 

medium quality (p < 0.01) had higher probabilities for correct classifications compared to those with poor 430 

quality, but there was not a significant difference between good and medium quality specimens. 431 

Following expectations, specimens without mounting glue had significantly higher probabilities than 432 

those with glue (p < 0.001). Mature leaves exhibited higher classification probabilities compared to young 433 

leaves (p < 0.001). Probabilities of correct classifications for specimens with no damage were 434 

significantly higher than those with minor damage (p < 0.001) and medium damage (p < 0.05). 435 

Classification probabilities also differed between minor (with lowest mean probability) and major damage 436 

(with highest mean probability; p < 0.05). This is because, contrary to expectations, the two specimens 437 

(six measurements) scored with major damage were correctly predicted, and with high classification 438 

probabilities. These were Populus tremuloides spectra, and this species had a low classification accuracy 439 

of 63%. The probabilities of incorrect classifications – which represent false-positive classifications with 440 

higher probabilities than true-positives – did not significantly differ across damage classes (Fig. 6).  441 

Numerical predictors also had significant relationships with classification probabilities (Fig. 7). 442 

Specimen age was negatively correlated with classification probability, suggesting reduced model 443 

performance for older specimens (Fig. 7A). The age of the sampled specimens ranged from one to 179 444 

years with a median age of 91 years (Fig. S7). The green index was also negatively correlated with 445 

classification probabilities, indicating that greener leaves were associated with lower model performance 446 

(Fig. 7B). The relationship between age and green index revealed that older specimens generally 447 

exhibited lower green index values, consistent with expected tissue degradation over time (Fig. 7C).  448 

Classification probabilities increased with greater phylogenetic distance to the nearest taxon (Fig. 449 

7D), an expected relationship that corroborates the results of the confusion matrix. Conversely, the 450 

probability of a false positive classification decays with phylogenetic distance to the predicted class (Fig. 451 

S8). Leaf mass per area also shows a strong positive correlation with classification probability (Fig. S9) 452 

with the caveat of covariation with species composition. Agonis flexuosa was classified with an overall 453 

accuracy of 97% and LMA values for this species are outstanding within this dataset. 454 

Logistic regression taking into account phylogeny (Table 6) further supported these factors as 455 

important in classification success. As expected, the most influential metric in classification success is 456 
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nearest taxon distance, but the next most significant predictors were age, green index, absence of glue, 457 

and specimen quality. Finally, there is a weak positive relationship between calendar day of specimen 458 

collection and classification success (Table 6) or classification probability (Fig. S10). This relationship 459 

indicates that species collected early in the growing season are somewhat more likely to be misclassified 460 

than those collected at later dates. Random forest models generally corroborated these results, but 461 

optimized LMA, Age, and the green index as more significant factors than nearest taxon distance (Table 462 

S3).  463 

These results highlight the critical influence of specimen metadata on PLS-DA classification 464 

performance. Factors such as tissue quality, as measured by the green index, and phylogenetic 465 

distinctiveness strongly impact classification success. In contrast, older specimens, poor-quality leaves, 466 

and the presence of glue reduce classification probabilities, underscoring the importance of these 467 

metadata for optimizing model performance. 468 

  469 
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Table 6: Logarithmic regression of all predictors. 470 

 Estimate Std. Error z value Pr(>|z|) Sig. 

(Intercept) 1.18E+01 3.60E+02 3.29E-02 9.74E-01  

Nearest Taxon 
Distance 8.15E-03 1.69E-03 4.83E+00 1.35E-06 *** 

Age 1.05E-02 2.32E-03 4.55E+00 5.43E-06 *** 

Glue: present -9.19E-01 2.14E-01 -4.30E+00 1.72E-05 *** 

Green Index 2.29E+00 6.06E-01 3.78E+00 1.54E-04 *** 

Leaf kg·m-2 1.30E+01 4.40E+00 2.97E+00 3.02E-03 *** 

Quality: medium -5.38E-01 1.94E-01 -2.78E+00 5.45E-03 *** 

Quality: poor -7.35E-01 2.93E-01 -2.51E+00 1.21E-02 ** 

Julian Day 4.38E-03 2.50E-03 1.75E+00 7.93E-02 . 

Leaf stage: 
young -2.85E-01 2.68E-01 -1.07E+00 2.87E-01  

Damage: 
medium -1.26E+01 3.60E+02 -3.51E-02 9.72E-01  

Damage: minor -1.25E+01 3.60E+02 -3.47E-02 9.72E-01  

Damage: none -1.24E+01 3.60E+02 -3.44E-02 9.73E-01  

  471 
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 472 

 473 

Fig. 6: Comparison of distributions of probabilities of assignment of each measurement to a specific class 474 
for correctly (true-positive) or incorrectly classified (false-positive) specimens by leaf characteristics (see 475 
Table 3). A) Specimen quality observations primarily reflecting discoloration or tissue degradation. B) 476 
The presence or absence of mounting glue on the leaf. C) Visible biotic contamination, pre- or post-477 
collection damage to leaves. D) Leaf phenological stage. Significant pairwise differences among correct 478 
or incorrect classes were determined using t-tests and indicated with the codes: * (p<0.05), ** (p<0.01), 479 
and *** (p<0.001). Note there were no significant differences among classification probabilities for 480 
incorrect predictions.  481 
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 482 

Fig. 7: Relationships between numeric predictor variables and classification outcomes. (A) Relationship 483 
between age (years) and classification probability, (B) relationship between green index and classification 484 
probability, (C) relationship between specimen age (years) and green index, and (D) relationship between 485 
nearest taxon distance (NTD, M years) and classification probability. Points represent individual 486 
observations colored by correct versus incorrect status. Solid lines represent linear regression fits for each 487 
dataset.  488 
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Discussion 489 

As the largest scientific repositories of plant diversity, herbaria offer exceptional resources for 490 

investigations of plant biology, but their suitability for reflectance spectroscopy-based inferences remains 491 

largely unknown. The wide variety of collection and processing methods, as well as specimen age and 492 

storage, differentiate herbarium plant tissues from freshly collected plant tissues, leading to uncertainties 493 

in their relevance for plant trait prediction and taxonomic classification. A positive outlook has come 494 

from recent investigations of pressed leaves on the order of months to years old (i.e. collected, pressed, 495 

dried, stored in newspaper), which have demonstrated the robust application of spectra for both 496 

applications (Durgante et al., 2013; Lang et al., 2017; Costa et al., 2018; Kothari et al., 2023b; 497 

Hernández-Leal et al., 2025). Our study has extended this discovery, clearly demonstrating that 498 

herbarium specimens retain enough morphological and anatomical integrity to be useful for these same 499 

spectra-based inferences. Here, we outline the insights from this study in the context of promises and 500 

challenges for reflectance spectroscopy of herbarium specimens. 501 

Trait prediction 502 

Leaf mass per area is consistently one of the most accurately modeled traits across studies (SLA of Costa 503 

et al., 2018; Serbin et al., 2019; Kothari et al., 2023), and is a key indicator of plant resource-use 504 

strategies within the leaf economics spectrum (Wright et al., 2004; Díaz et al., 2016). Overall, the 505 

herbarium LMA models performed nearly as well as the pressed leaf models. Among herbarium models, 506 

those based on normalized spectra performed slightly better than those based on untransformed 507 

reflectance (normalized, full-range R² = 0.94; %RMSE = 4.86% vs. reflectance R² = 0.93; %RMSE = 508 

5.18%), suggesting that variation in measured spectral magnitudes may not be useful. Continuous wavelet 509 

transformation (CWT) showed similar performance (R² = 0.93; %RMSE = 5.31%), indicating that 510 

preserving the overall shape and relative magnitudes of reflectance spectra are important for trait 511 

prediction. At the same time, CWT, normalized, and untransformed reflectance spectra showed nearly 512 

identical predictive performance in the pressed dataset. 513 

Improving the generalizability of models is a critical step towards global-scale trait modeling 514 

across temporal scales (Serbin et al., 2019; Kothari et al., 2023a; Ji et al., 2024). While our models 515 

demonstrated promising transferability between pressed and herbarium specimens, their performance 516 

varied depending on spectral preprocessing. The CWT-transformed models showed the best overall 517 

performance statistics, and herbarium models transferred to pressed spectra worked better than the reverse 518 

transfer. This pattern may be a consequence of the broader spectral variability in the herbarium dataset. 519 

Although the herbarium data had lower validation accuracy, they also improved the applicability of 520 
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general models to the external pressed leaf data. Although our experiment focused on comparing model 521 

transferability between pressed and herbarium spectra, future work should explore the benefits of training 522 

models on combined datasets. Traits like LMA appear amenable to general modeling (Serbin et al., 2019; 523 

Kothari et al., 2023a), but other traits may require more tailored, taxon-specific approaches. As our 524 

predictions for additional traits showed (Fig. 4), taxonomic context matters, and herbarium collections 525 

offer a valuable platform for testing model behavior across phylogenetic and geographic gradients.  526 

Our herbarium-derived models are likely to perform well for predicting LMA in both pressed and 527 

herbarium leaves from the same genera and within the temperate broadleaf and mixed forests of North 528 

America. They may also generalize to other taxa with LMA values that fall within the modeled range 529 

(0.025–0.18 kg·m⁻²). However, extending these models to new regions and taxa will require further 530 

validation.  531 

In this context, the inclusion of the Australian species Agonis flexuosa, which exhibits unusually 532 

high LMA values, illustrates the importance of balanced trait sampling for effective PLSR model training. 533 

When Agonis was excluded from the pressed dataset, model performance decreased (R² = 0.69, %RMSE 534 

= 11.92%; Fig. S11A, Table S4).  This can be attributed to the smaller spread of trait values in relation to 535 

residuals in the pressed data, but also due to less training data on LMA values (Fig. S12). This is 536 

evidenced by the reduced performance of the transfer test of the pressed-leaf model to the herbarium 537 

spectra, especially at higher LMA values (R² = 0.60, %RMSE = 20.18%; Fig. S11D, Table S4). However, 538 

when we excluded Agonis from the herbarium dataset, model performance remained similar (R² = 0.90, 539 

%RMSE = 8.83%; Fig. S11B, Table S4). 540 

These findings support a general strategy for herbarium-based trait modeling: build models using 541 

taxonomically and geographically diverse training data with balanced representation of trait values 542 

(Burnett et al., 2021). Following the strategy of Kothari et al. (2023b), we partitioned our data as a 70/30 543 

split into training and validation datasets subset by growth form (Fig. S13), but a trait-stratified 544 

proportional or other method to ensure balanced trait representation in data splitting and cross validation 545 

steps may lead to even better model performance (Joseph & and Vakayil, 2022). 546 

A key challenge in advancing herbarium-based trait modeling is that model construction and 547 

validation will require some amount of destructive sampling. Estimating traits such as nitrogen, carbon, 548 

and carbon fractions can require substantial amounts of material—up to 500 mg of dry leaf tissue 549 

(Schweiger et al., 2018; Kothari et al., 2024). To mitigate specimen loss, researchers should prioritize 550 

sampling from unmounted duplicates or bulk collections, with the goal of maximizing trait variation 551 

while achieving broad, balanced representation across major clades and preservation conditions.  552 

Pressed leaves represent a critical resource in this context. They offer access to relatively well-553 

preserved tissue with known preservation histories, making them ideal for model development and for 554 
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studying trait degradation over time. Our results show that models trained on pressed leaves can be 555 

successfully transferred to herbarium spectra, providing a link to trait values as they may have existed in 556 

vivo. This not only improves our confidence in trait predictions, but also reduces the need for further 557 

destructive sampling of irreplaceable collections. Integrating pressed leaves into trait modeling pipelines 558 

will strengthen the foundation for scaling spectral trait prediction across global herbaria. 559 

Together, these findings highlight both the potential and limitations of herbarium specimens for 560 

trait modeling. While traits like LMA can be predicted with high accuracy, extending this success to other 561 

traits and taxa will require strategic sampling for continued refinement of models. Building generalizable 562 

models across the tree of life will depend on thoughtful integration of specimen conditions with the 563 

phylogenetic and environmental components of phenotypic variability. 564 

Taxonomic Classification 565 

Our results show that herbarium-based taxonomic classification models perform reasonably well, but with 566 

lower accuracy than their pressed-leaf counterparts. Pressed-leaf datasets consistently outperformed 567 

herbarium datasets, likely due to better tissue integrity and fewer preservation artifacts affecting spectral 568 

information. LDA models tended to outperform PLS-DA models in cases with fewer classes, while PLS-569 

DA performed better in the 17-genus and 25-species herbarium datasets. Across both PLS-DA and LDA 570 

analyses, misclassifications occurred most frequently between closely related species, such as Acer, 571 

Betula, and Solidago, reflecting underlying phenotypic and biochemical similarity. Notably, Solidago 572 

altissima was more often classified as its congener, a finding consistent with the positive correlation 573 

between classification probability and nearest taxon distance (Fig. 7). This suggests that spectral 574 

discrimination becomes more difficult among closely related taxa, where spectral features are more 575 

similar, a pattern that has been found in fresh leaf spectra (Schweiger et al., 2018). 576 

A major challenge in spectral classification lies in the relationship between model complexity and 577 

performance. As shown in Table 5, models with fewer species classes achieved higher classification 578 

accuracy, while accuracy generally declined as the number of species included in the model increased—a 579 

well-documented limitation of discriminant analysis approaches (Meireles et al., 2020b). Spectral 580 

resolution is another important consideration, as our method of down sampling and smoothing spectra to 581 

5 nm intervals could have reduced classification accuracy due to the loss of small spectral features. 582 

However, higher spectral resolution would also introduce interpolation issues and complicate cross-583 

instrument data integration. Similarly, increasing the number of replicate measurements per leaf may 584 

enhance model robustness. Prior work (e.g., Durgante et al., 2013) has focused on averaging multiple 585 

spectral measurements, which differs from our iterative approach that retains information at the level of 586 

individual measurements. 587 
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Beyond accuracy and performance, a fundamental limitation of discriminant and supervised 588 

classification models is that they cannot identify unknown taxa outside of the trained species pool. This is 589 

a critical bottleneck for herbarium applications, where many specimens remain unidentified or only 590 

partially identified. Existing ordination approaches based on reflectance data are often too noisy for 591 

reliable clustering or taxonomic inference, but principal components analysis of FT-IR spectra have been 592 

successfully resolved taxa (Damasco et al., 2019). In addition, other methods could be useful for 593 

dimensionality reduction and exploration of taxon clustering (e.g. UMAP, t-SNE). A promising future 594 

direction is the development of probabilistic classification frameworks capable of flagging outlier or 595 

uncertain specimens. Another alternative is to predict traits from individual spectra and explore 596 

phenotypic clustering in multidimensional trait space (Schweiger et al., 2021). This strategy could reveal 597 

natural groupings based on shared ecological function, even when traditional taxonomic resolution is 598 

elusive, and provides a complementary framework for leveraging spectral data to uncover structure within 599 

herbarium collections (Hernández-Leal et al., 2025). 600 

The effects of herborization on spectral inferences 601 

The herborization process encompasses the collection, processing steps, and time-sensitive effects of 602 

storage, and presents a wide range of variables that influence the spectral properties of plant tissues. Our 603 

analyses here indicate that most of the expected effects of herborization and aging of plant tissues 604 

negatively affect the classification probabilities and performance of discriminant models. 605 

We assessed specimen preservation conditions using visual indicators of specimen quality, such as 606 

discoloration, wilting, pathogen presence, and signs of poor initial drying, as well as evidence of physical 607 

damage (e.g., herbivory, tearing, or burning). Specimens categorized as medium or poor quality were 608 

significantly associated with lower classification probabilities (Fig. 6) and reduced classification accuracy 609 

(Table 6; Table S3), confirming that visual degradation correlates with diminished model performance. 610 

Logistic regression analyses further supported this pattern, identifying specimen quality, glue presence, 611 

and low greenness index values as significant predictors of reduced classification success (Table 6). 612 

These findings were reinforced by random forest analyses, which ranked leaf mass per area (LMA), 613 

specimen age, greenness index, and nearest taxon distance as the most important predictors of model 614 

performance. Specimen quality and glue presence were also influential, albeit to a lesser degree. These 615 

results collectively highlight the critical role of both biological traits and preservation history in 616 

classification success using spectral data from herbarium specimens. 617 

While specimen age and greenness are intuitively expected to correlate—since younger 618 

specimens often appear greener—the relationship between these variables and spectral performance is 619 

more complex. Past studies in DNA sequencing suggest that age alone is a poor predictor of preservation 620 
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quality (Erkens et al., 2008; Forrest et al., 2019; Brewer et al., 2019; White et al., 2021), and our findings 621 

echo this. Instead, specimen processing methods during the early stages of preservation–namely how 622 

quickly and efficiently the specimen was dried, as well as the stability of long-term storage conditions—623 

may play a more important role in long-term tissue integrity than age. These will be important factors to 624 

discern in future studies. 625 

Greenness, driven largely by residual chlorophyll, strongly affects spectral signatures in the 626 

visible range. Although green tissues may indicate good preservation, high chlorophyll content can also 627 

obscure informative spectral features. Conversely, its absence—as seen in older or less green leaves—628 

may enhance the visibility of structural and chemical features that are useful for classification or trait 629 

modeling (Kothari et al., 2023b). Thus, while greenness remains a useful preservation indicator, its 630 

influence on spectral quality is objective-dependent and non-linear. 631 

Preservation variables are not fully independent, and their combined effects can be complex. 632 

Differences among herbaria related to specimen treatment, mounting practices, and storage conditions 633 

such as relative humidity, are further expected to generate variation among spectral datasets. Standardized 634 

metadata and mounting practices, such as using herbarium mounting tape instead of glue, are likely to be 635 

important in minimizing these effects. 636 

Finally, the assessment of specimen quality and damage involves some degree of subjectivity. 637 

Even identifying glue residues can be nuanced. As herbarium digitization scales up, training technicians 638 

to score these factors consistently will be vital for ensuring data quality and interoperability across 639 

institutions. 640 

Seeing herbaria in a new light 641 

As herbaria face mounting vulnerabilities—from chronic underfunding to institutional threats of 642 

closure—the need to unlock new scientific value from these collections has never been greater (Thiers, 643 

2024; Davis, 2024). The results of this study underscore the promise of reflectance spectroscopy as a 644 

powerful, scalable tool for extracting functional and taxonomic information from preserved plant 645 

specimens. As part of the growing field of spectral biology (Cavender-Bares et al., 2025), this approach 646 

offers not only a new lens on plant diversity but also the opportunity to better understand how specimen 647 

processing and preservation influence data quality. Given the high sensitivity of spectral instruments to 648 

both biological and technical variation, reflectance spectroscopy is uniquely positioned to help illuminate 649 

the effects of herborization and even inform best practices for specimen care and long-term preservation.  650 

While trait prediction and species classification remain foundational applications, the integration 651 

of spectral data with genomic, morphological, and spatial datasets will enable deeper insights into species 652 
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delimitation, phenotypic evolution, community assembly, and biogeography. These opportunities are 653 

particularly compelling when viewed through the lens of the Global Metaherbarium—a growing digital 654 

infrastructure that connects specimen metadata, images, and extended datasets (Hedrick et al., 2020; 655 

Davis, 2023). As this field advances, reflectance spectroscopy will continue to reveal new dimensions of 656 

plant diversity, transforming how we study, use, and preserve the world’s herbarium collections. 657 

  658 
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Fig. S1 Comparison of raw reflectance spectra across the full spectral range (350–2,500 nm). (A) 
Median and 90% quantile range of reflectance spectra analyzed in this study: herbarium 
specimens measured using a Spectra Vista Corporation (SVC) HR-1024i and pressed leaf 
samples measured using a PSR+ spectroradiometer by Kothari et al. (2023). (B) Median and 90% 
quantile range of reflectance differences for the same samples as in panel A. Vertical black lines 
in all panels indicate 450 nm and 2,400 nm, the thresholds for filtering noisy UV-visible spectral 
regions. The large differences below 450 nm appear to be driven by instrument-specific 
differences in a signal to noise ratio in addition to the nature of the scanned materials. 
 

 
 
  



 

Fig. S2 Green Index compared to specimen quality observation. 
 

  



 

Fig. S3 Spectral reflectance variation by species. 

  



 

Fig. S4 VIP Herbarium PLSDA, 25 species. 
 

  



 

Fig. S5 VIP Pressed vs Herbarium. 

  



 

 
Fig. S6 Confusion matrix from coefficient-based predictions. 

 
 



 

Fig. S7 Age of specimens. 

  



 

 
Fig. S8 Phylogenetic distance of predicted class against probability of classification for 
misclassifications. 

  



 

Fig. S9 Regression of LMA against classification probabilities. 

 
  



 

Fig. S10 Linear and polynomial regressions of collection Julian day against classification 
probabilities. 

 
 
 
  



 

Fig. S11 Herbarium validation results for leaf mass per area (LMA) without Agonis flexuosa. 
Error bars represent the standard deviation in predictions across 1,000 model iterations. Linear 
regressions of observed versus predicted values averaged across iterations are shown in red 
lines for comparison with the gray 1:1 dashed lines. Individual plots show the results for full-
range spectra (450-2,500 nm) of (A) pressed models from untransformed reflectance values, (B) 
herbarium models from untransformed reflectance values, (C) transfer of CWT herbarium 
models to CWT pressed spectra, and (D) transfer of CWT pressed models to CWT herbarium 
spectra. Performance statistics are presented in Table S4. 
 

  



 

Fig. 12 Distribution of leaf mass per area (LMA) values across training and validation datasets 
input in PLSR models. (A) Pressed leaf dataset with all species. (B) Pressed dataset with Agonis 
flexuosa removed. (C) Herbarium dataset with all species. (D) Herbarium dataset with Agonis 
flexuosa removed. Histograms show the number of scans across observed LMA with values for 
each class stacked instead of overlapping (Training in blue, Validation in orange).  
 

 
  



 

Fig. S13 Distribution of leaf mass per area (LMA) values across growth forms in herbarium and 
pressed leaf datasets. Bars indicate the number of spectral scans per growth form, colored by 
growth form and with stacked bin counts for ease of visualization. The tree species Agonis 
flexuosa, is highlighted separately in yellow to illustrate its impact on the overall trait 
distribution. 
 

  



 

 
Table S1 Performance metrics for all LMA trait models (full, VNIR, SWIR). 

Trait Test Model Spectra Transform N 
Nspect

ra 
Range 
(nm) R2 

%RMS
E 

RMSE 
(kg·m-2) 

BIAS 
(kg·m-2) slope intercept 

LMA validation Herbarium Herbarium cwt 220 489 
450-
2400 

0.93 ± 
0.01 

5.31 ± 
0.15 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.97 ± 
0.02 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium cwt 220 489 
450-
1300 

0.91 ± 
0.01 

6.22 ± 
0.20 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.96 ± 
0.03 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium cwt 220 489 
1350-
2400 

0.92 ± 
0.01 

5.54 ± 
0.14 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.97 ± 
0.02 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium reflectance 220 489 
450-
2400 

0.93 ± 
0.01 

5.18 ± 
0.15 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.98 ± 
0.02 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium reflectance 220 489 
450-
1300 

0.91 ± 
0.00 

6.04 ± 
0.19 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.95 ± 
0.03 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium reflectance 220 489 
1350-
2400 

0.93 ± 
0.01 

5.39 ± 
0.21 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.96 ± 
0.03 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium normalized 220 489 
450-
2400 

0.94 ± 
0.01 

4.86 ± 
0.20 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.01 ± 
0.01 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium normalized 220 489 
450-
1300 

0.94 ± 
0.00 

4.86 ± 
0.14 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.00 ± 
0.01 

0.00 ± 
0.00 

LMA validation Herbarium Herbarium normalized 220 489 
1350-
2400 

0.93 ± 
0.01 

5.20 ± 
0.22 

0.01 ± 
0.00 

0.00 ± 
0.00 

0.99 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed cwt 212 869 
450-
2400 

0.94 ± 
0.01 

6.34 ± 
0.10 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.03 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed cwt 212 869 
450-
1300 

0.94 ± 
0.00 

6.45 ± 
0.18 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.01 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed cwt 212 869 
1350-
2400 

0.93 ± 
0.00 

6.70 ± 
0.20 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.01 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed reflectance 212 869 
450-
2400 

0.94 ± 
0.00 

6.29 ± 
0.12 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.02 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed reflectance 212 869 
450-
1300 

0.94 ± 
0.00 

6.58 ± 
0.10 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.03 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed reflectance 212 869 
1350-
2400 

0.93 ± 
0.00 

6.82 ± 
0.17 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.02 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed normalized 212 869 
450-
2400 

0.95 ± 
0.00 

6.01 ± 
0.12 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.00 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed normalized 212 869 
450-
1300 

0.95 ± 
0.00 

6.09 ± 
0.10 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.02 ± 
0.02 

0.00 ± 
0.00 

LMA validation Pressed Pressed normalized 212 869 
1350-
2400 

0.94 ± 
0.00 

6.55 ± 
0.13 

0.01 ± 
0.00 

0.00 ± 
0.00 

1.01 ± 
0.02 

0.00 ± 
0.00 

LMA transfer herbarium pressed cwt 609 2270 
450-
2400 

0.88 ± 
0.03 

8.76 ± 
0.02 

0.02 ± 
0.00 

0.00 ± 
0.00 

0.91 ± 
0.06 

0.00 ± 
0.01 

LMA transfer herbarium pressed cwt 609 2270 
450-
1300 

0.87 ± 
0.03 

9.89 ± 
0.02 

0.02 ± 
0.00 

0.00 ± 
0.00 

0.90 ± 
0.07 

0.01 ± 
0.01 

LMA transfer herbarium pressed cwt 609 2270 
1350-
2400 

0.88 ± 
0.02 

18.20 
± 0.05 

0.03 ± 
0.01 

-0.03 ± 
0.01 

1.00 ± 
0.09 

-0.03 ± 
0.01 



 

LMA transfer herbarium pressed reflectance 609 2270 
450-
2400 

0.91 ± 
0.01 

10.99 
± 0.02 

0.02 ± 
0.00 

-0.01 ± 
0.01 

0.82 ± 
0.02 

0.00 ± 
0.01 

LMA transfer herbarium pressed reflectance 609 2270 
450-
1300 

0.89 ± 
0.01 

9.48 ± 
0.01 

0.02 ± 
0.00 

-0.01 ± 
0.01 

0.81 ± 
0.03 

0.01 ± 
0.01 

LMA transfer herbarium pressed reflectance 609 2270 
1350-
2400 

0.90 ± 
0.01 

13.93 
± 0.05 

0.02 ± 
0.01 

-0.02 ± 
0.01 

0.82 ± 
0.06 

0.00 ± 
0.01 

LMA transfer herbarium pressed normalized 609 2270 
450-
2400 

0.91 ± 
0.01 

78.48 
± 0.5 

0.14 ± 
0.09 

0.12 ± 
0.11 

1.47 ± 
0.05 

0.13 ± 
0.16 

LMA transfer herbarium pressed normalized 609 2270 
450-
1300 

0.90 ± 
0.01 

51.51 
± 0.06 

0.09 ± 
0.01 

0.09 ± 
0.01 

1.47 ± 
0.04 

0.09 ± 
0.02 

LMA transfer herbarium pressed normalized 609 2270 
1350-
2400 

0.90 ± 
0.01 

12.57 
± 0.03 

0.02 ± 
0.01 

-0.01 ± 
0.01 

1.52 ± 
0.09 

-0.06 ± 
0.01 

LMA transfer pressed herbarium cwt 479 1690 
450-
2400 

0.76 ± 
0.05 

10.53 
± 0.01 

0.02 ± 
0.00 

0.00 ± 
0.00 

1.25 ± 
0.06 

-0.02 ± 
0.01 

LMA transfer pressed herbarium cwt 479 1690 
450-
1300 

0.60 ± 
0.11 

13.38 
± 0.02 

0.02 ± 
0.00 

0.00 ± 
0.01 

1.17 ± 
0.15 

-0.01 ± 
0.01 

LMA transfer pressed herbarium cwt 479 1690 
1350-
2400 

0.72 ± 
0.07 

14.36 
± 0.03 

0.02 ± 
0.00 

0.01 ± 
0.01 

1.47 ± 
0.10 

-0.01 ± 
0.01 

LMA transfer pressed herbarium reflectance 479 1690 
450-
2400 

0.66 ± 
0.07 

13.13 
± 0.02 

0.02 ± 
0.00 

0.01± 
0.01 

1.13 ± 
0.10 

0.00 ± 
0.01 

LMA transfer pressed herbarium reflectance 479 1690 
450-
1300 

0.74 ± 
0.06 

10.82 
± 0.01 

0.02 ± 
0.00 

-0.00 ± 
0.01 

1.23 ± 
0.07 

-0.02 ± 
0.01 

LMA transfer pressed herbarium reflectance 479 1690 
1350-
2400 

0.77 ± 
0.04 

11.69 
± 0.02 

0.02 ± 
0.00 

0.01 ± 
0.01 

1.33 ± 
0.11 

-0.01 ± 
0.01 

LMA transfer pressed herbarium normalized 479 1690 
450-
2400 

0.51 ± 
0.09 

781.00 
± 2.43 

1.18 ± 
0.37 

-1.18 ± 
0.37 

0.41 ± 
0.09 

-0.41 ± 
0.06 

LMA transfer pressed herbarium normalized 479 1690 
450-
1300 

0.68 ± 
0.08 

71.20 
± 0.11 

0.11 ± 
0.02 

-0.11 ± 
0.02 

0.62 ± 
0.05 

-0.04 ± 
0.01 

LMA transfer pressed herbarium normalized 479 1690 
1350-
2400 

0.77 ± 
0.07 

35.23 
± 0.21 

0.05 ± 
0.03 

0.04 ± 
0.05 

0.75 ± 
0.05 

0.05 ± 
0.03 

 
  



 

Table S2 Validation results for predicting eight traits across three pressed leaf models (full-
range reflectance spectra, full-range CWT spectra, and 1,350–2,500 nm vector-normalized 
spectra). 

Trait Test Model 
Spectr

a Transform N Nscans 
Range 
(nm) slope intercept %RMSE R2 

BIAS 
(kg·m-

2) 
RMSE 

(kg·m-2) 

C validation pressed pressed cwt 283 891 450-2400 
0.939 ± 

0.02 2.992 ± 0.94 
10.058 ± 

0.18 
0.791 ± 

0.01 
0.046 ± 

0.03 
0.928 ± 

0.02 

C validation pressed pressed reflectance 283 891 450-2400 
0.945 ± 

0.02 2.684 ± 1.02 9.884 ± 0 
0.797 ± 

0.01 
0.031 ± 

0.03 
0.912 ± 

0.02 

C validation pressed pressed normalized 283 891 1350-2400 
0.968 ± 

0.02 1.584 ± 0.95 
10.163 ± 

0 
0.784 ± 

0 
0.052 ± 

0.03 
0.938 ± 

0.01 

Ca validation pressed pressed cwt 283 891 450-2400 
1.086 ± 

0.04 -0.804 ± 0.44 
12.947 ± 

0.25 
0.655 ± 

0.01 
0.198 ± 

0.12 
3.634 ± 

0.07 

Ca validation pressed pressed reflectance 283 891 450-2400 
1.105 ± 

0.04 -1.047 ± 0.47 
13.044 ± 

0 
0.651 ± 

0.01 
0.184 ± 

0.12 
3.661 ± 

0.07 

Ca validation pressed pressed normalized 283 891 1350-2400 
1.096 ± 

0.04 -1.07 ± 0.4 
13.744 ± 

0 
0.61 ± 
0.01 

0.064 ± 
0.12 

3.857 ± 
0.05 

carotenoi
ds validation pressed pressed cwt 269 820 450-2400 

1.026 ± 
0.02 -0.006 ± 0.03 

12.166 ± 
0.19 

0.673 ± 
0.01 

0.026 ± 
0.01 0.269 ± 0 

carotenoi
ds validation pressed pressed reflectance 269 820 450-2400 

1.018 ± 
0.02 0.001 ± 0.03 

12.575 ± 
0 

0.65 ± 
0.01 

0.023 ± 
0.01 0.278 ± 0 

carotenoi
ds validation pressed pressed normalized 269 820 1350-2400 

1.018 ± 
0.02 0.002 ± 0.03 

12.749 ± 
0 

0.64 ± 
0.01 

0.024 ± 
0.01 0.282 ± 0 

cellulose validation pressed pressed cwt 283 854 450-2400 
1.003 ± 

0.04 -0.221 ± 0.37 
8.312 ± 

0.19 
0.738 ± 

0.01 
-0.188 ± 

0.05 
1.452 ± 

0.03 

cellulose validation pressed pressed reflectance 283 854 450-2400 
0.988 ± 

0.03 -0.024 ± 0.35 7.801 ± 0 
0.768 ± 

0.01 
-0.145 ± 

0.06 
1.363 ± 

0.03 

cellulose validation pressed pressed normalized 283 854 1350-2400 
0.996 ± 

0.03 -0.147 ± 0.32 8.011 ± 0 
0.757 ± 

0.01 
-0.191 ± 

0.05 
1.4 ± 
0.02 

chlA validation pressed pressed cwt 269 820 450-2400 
1.065 ± 

0.02 -0.197 ± 0.13 
12.905 ± 

0.23 
0.651 ± 

0.01 
0.182 ± 

0.04 
1.417 ± 

0.03 

chlA validation pressed pressed reflectance 269 820 450-2400 
1.045 ± 

0.02 -0.108 ± 0.13 
13.438 ± 

0 
0.618 ± 

0.01 
0.154 ± 

0.04 
1.476 ± 

0.02 

chlA validation pressed pressed normalized 269 820 1350-2400 
1.048 ± 

0.02 -0.136 ± 0.13 
13.648 ± 

0 
0.606 ± 

0.01 
0.148 ± 

0.04 
1.499 ± 

0.02 

LMA validation pressed pressed cwt 212 869 450-2400 
1.03 ± 
0.02 -0.004 ± 0 6.342 ± 0 

0.941 ± 
0 

-0.001 ± 
0 0.011 ± 0 

LMA validation pressed pressed reflectance 212 869 450-2400 
1.017 ± 

0.02 -0.003 ± 0 6.29 ± 0 
0.942 ± 

0 
-0.002 ± 

0 0.011 ± 0 

LMA validation pressed pressed normalized 212 869 1350-2400 
1.007 ± 

0.02 -0.003 ± 0 6.552 ± 0 
0.937 ± 

0 
-0.002 ± 

0 0.011 ± 0 

N validation pressed pressed cwt 283 891 450-2400 
1.091 ± 

0.02 -0.169 ± 0.05 
9.599 ± 

0.2 
0.79 ± 
0.01 

0.021 ± 
0.01 

0.293 ± 
0.01 

N validation pressed pressed reflectance 283 891 450-2400 
1.075 ± 

0.03 -0.138 ± 0.06 9.484 ± 0 
0.793 ± 

0.01 
0.02 ± 
0.01 

0.289 ± 
0.01 



 

N validation pressed pressed normalized 283 891 1350-2400 
1.111 ± 

0.02 -0.204 ± 0.05 9.367 ± 0 
0.804 ± 

0.01 
0.028 ± 

0.01 
0.286 ± 

0.01 

solubles validation pressed pressed cwt 288 864 450-2400 
0.961 ± 

0.03 2.831 ± 2.03 
12.158 ± 

0.25 
0.647 ± 

0.01 
0.069 ± 

0.15 
4.736 ± 

0.1 

solubles validation pressed pressed reflectance 288 864 450-2400 
0.957 ± 

0.03 3.151 ± 2.08 
11.624 ± 

0 
0.678 ± 

0.01 
0.119 ± 

0.15 
4.528 ± 

0.09 

solubles validation pressed pressed normalized 288 864 1350-2400 
1.014 ± 

0.03 -1.08 ± 2.01 11.65 ± 0 
0.675 ± 

0.01 
-0.092 ± 

0.14 
4.539 ± 

0.08 

 
  



 

Table S3 Random Forest model of variable importance of all predictors. 
 

Variable MeanDecreaseAccuracy MeanDecreaseGini 

leafKg_m2 63.67801541 79.5786106 

Age 61.14995709 68.5892954 

greenIndex 59.47405215 77.0280848 

ntd 58.37912575 40.965078 

herbQuality 42.05154686 17.581294 

glue 39.19497489 9.98589875 

damage 36.88869236 14.2335542 

leafStage 33.19152439 7.92918523 

 

  



 

Table S4 Performance metrics for Herbarium reflectance LMA trait model (450–2,400 nm) built 
without Agonis flexuosa. 
 

Test Model Spectra 
Transfor

m N 
Ncomp- 
onents R2 %RMSE 

RMSE 
(kg·m-2) BIAS slope intercept 

Validation 
(no Agonis) herbarium herb- 

arium reflectance 201 13 0.90±
0.01 

8.83± 
0.25 

0.01± 
0.00 

0.00±
00 

0.98±
0.02 

0.00± 
0.00 

Validation 
(no Agonis) pressed pressed reflectance 201 8 0.69±

0.01 
11.92± 

0.14 
0.01± 
0.00 

0.00±
00 

1.06±
0.03 

-0.01± 
0.00 

Transfer 
(no Agonis) herbarium pressed cwt 201 10 0.86±

0.02 
10.83± 

2.33 
0.02± 
0.00 

-0.01 
±0.01 

1.15±
0.07 

-0.02± 
0.01 

Transfer 
(no Agonis) pressed herb- 

arium cwt 201 8 0.60±
0.06 

20.18± 
1.48 

0.02± 
0.00 

0.01±
0.03 

1.46±
0.10 

-0.01± 
0.01 

 


