
 

1 

Title: Seeing herbaria in a new light: leaf reflectance spectroscopy unlocks 1 
predictive trait and classification modeling in plant biodiversity collections 2 

Authors: Dawson M. White1,2*, Jeannine Cavender-Bares1,2,*, Charles C. Davis1,2, J. Antonio Guzmán 3 
Q.1,2, Shan Kothari3, Jorge M. Robles4, Jose Eduardo Meireles5 4 

Authors for correspondence: Dawson M. White, dawson.white@gmail.com; Jeannine Cavender-Bares, 5 
jcavender@fas.harvard.edu 6 

Affiliations: 7 
1Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138 USA 8 
2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA 9 
3Department of Renewable Resources, University of Alberta, Canada 10 
4Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078 11 
USA  12 
5School of Biology and Ecology and University of Maine Herbarium, University of Maine, 5735 Hitchner 13 
Hall, Orono, ME 04469 USA.  14 
 15 
Summary: 16 

● Reflectance spectroscopy is a non-destructive, rapid, and robust method for estimating functional 17 

traits and distinguishing species. Spectral reflectance libraries generated from herbarium 18 

specimens are an untapped and promising resource for generating broad phenomic datasets across 19 

space, time, and species. 20 

● We conducted a proof-of-concept study using functional trait data and spectra from recently 21 

dried, pressed leaves, alongside data from herbarium specimens up to 179 years old. We assessed 22 

the utility and transferability of these datasets for functional trait prediction and taxonomic 23 

discrimination. 24 

● Herbarium spectra discriminated species with 74% accuracy and predicted leaf mass per area 25 

(LMA) with R2=0.92 and %RMSE=5.8%. Models for LMA prediction were transferable between 26 

herbarium and pressed spectra, achieving R2=0.88, %RMSE=8.76% for herbarium to pressed 27 

spectra, and R2=0.76, %RMSE=10.5% for the reverse transfer. 28 

● The results demonstrate the feasibility of using herbarium spectral data for functional trait 29 

prediction and taxonomic discrimination. This success provides methodological guidance for 30 

advancing the global Metaherbarium and integrating spectral reflectance into next-generation 31 

digitization efforts for plant biodiversity collections. 32 

 33 
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Plain language summary: Reflectance spectroscopy applied to herbarium collections offers a 34 

transformative method to generate phenomic data across the plant tree of life. Despite preservation 35 

challenges, we demonstrate its reliability in predicting functional traits and facilitating taxonomic 36 

discrimination in specimens with a median age of 91 years. We further provide guidelines for researchers 37 

and collections managers to collect and scale spectra effectively.  38 



 

3 

Introduction 39 

The vision of herbarium spectral scanning 40 

The urgency of global biodiversity assessment is driving the application of reflectance spectroscopy as a 41 

broadly informative technology for advancing systematic knowledge of plant diversity at scales ranging 42 

from molecules to continents (Serbin et al., 2014; Cavender-Bares et al., 2017, In Review.; Meireles et 43 

al., 2020). This powerful approach provides a rapid and non-destructive method to characterize leaf 44 

functional traits and identify taxa through spectral signals, integrating structural, chemical, and 45 

physiological information from plants in various contexts, including the lab, herbarium, and field (Box 1; 46 

Costa et al., 2018; Serbin & Townsend, 2020; Kothari & Schweiger, 2022). Despite its potential, the 47 

spectral-based taxonomic and functional characterization of plant diversity faces significant challenges. 48 

Limited access to material from remote geographic regions and uncommon taxa results in spectral 49 

datasets that are both biased and highly sparse (Meireles et al., 2020), even more so than global plant trait 50 

databases (Jetz et al., 2016). Addressing this limitation requires extensive, costly, and time-intensive 51 

fieldwork. Additionally, the lack of linkage between leaf spectral data and voucher specimens undermines 52 

geographic and temporal precision and compromises reliability as inevitable taxonomic and 53 

nomenclatural changes occur. 54 

A promising path forward for filling these gaps across the plant tree of life lies in leveraging the 55 

approximately 400 million dried plant specimens stored in over 3,500 herbaria worldwide (Thiers, 2020; 56 

Heberling, 2022; Kothari et al., 2023). Herbarium collections are the physical foundation of our scientific 57 

understanding of plant and fungal diversity and anchor every species definition. Herbarium collections 58 

also include specimens that are rare, extinct, or regionally extirpated. By grounding plant taxonomy and 59 

spatial data with diverse extended datasets, the wealth of global herbarium specimens have long been a 60 

key resource for researchers studying plant diversity and ecological and evolutionary processes across 61 

spatial and temporal scales (Davis, 2023). 62 

The integration of reflectance spectroscopy into herbarium digitization pipelines, with appropriate 63 

and standardized modifications, would result in the rapid generation of spectral data directly linked to 64 

physical specimens. This would create a new dimension of phenomic data integrated with other extended 65 

specimen datasets and tremendously improve capacities for taxonomic, ecological, and evolutionary 66 

investigations. Integrating spectral data with herbarium specimens would not only expand trait datasets 67 

but also deepen our understanding of plant functional diversity across space and time. 68 

However, until now, the promise of this innovative use of herbarium reflectance spectroscopy is 69 

tempered by the reality that we have yet to empirically prove the utility of herbarium specimens, given the 70 

potential for tissue degradation with mounting, preservation, and storage. Spectral scans with modern 71 
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spectroradiometers (350–2,500 nm) are highly sensitive to all physical aspects of scanned materials and 72 

require rigorous standardized protocols in the field and laboratory to ensure high data quality and 73 

aggregation from different sources and sensors. Herbarium specimens present unique challenges given the 74 

extra variables beyond the normal biological variation that has affected their tissues (Fig. 2). 75 

  76 
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 77 

Box 1: Learning from spectra 
Reflectance spectroscopy measures light reflected from a material — typically from the visible, near-
infrared, and short-wave infrared wavelengths (350–2,500 nm) — across hundreds of specific 
wavelength bands (Fig. 1). These scans reveal absorption features associated with the structural and 
chemical properties of the target material, such as leaf tissue (Curran, 1989). Spectral scans are fast 
(two to three seconds), require minimal digital resources (30–40 KB per file), and enable powerful 
predictive modeling using chemometric and machine-learning approaches such as partial least squares 
regression, discriminant analysis, and neural networks.  

 
 
Fig. 1. Typical fresh leaf spectrum showing the 
percentage of light reflected across the visible (VIS), 
Near-Infrared (NIR) and Short-Wave Infrared light 
regions and highlighting a few absorption features 
associated with leaf chemistry and structure. 
Redrawn from Cavender-Bares et al, in review.  
 
 
 
 

Spectra have been widely used to predict leaf functional traits — such as leaf mass per area (LMA) and 
leaf nitrogen content — that reveal plant resource use strategies and ecological roles, offering insights 
into species interactions, community assembly, and ecosystem functions such as productivity and 
disturbance resistance (Wright et al., 2004; Díaz et al., 2016). Estimating traits is critical for 
understanding biodiversity responses to global change, refining predictive models of ecosystem 
function, and monitoring plant strategies and resource availability across scales efficiently (Díaz et al., 
2016; Funk et al., 2017). 
 
Reflectance spectroscopy also offers a robust, non-destructive method for taxonomic classification by 
capturing the unique spectral profiles of different taxa (Meireles et al., 2020), allowing researchers to 
distinguish species, populations, and even hybrids with accuracies comparable to genetic barcoding 
(72–100%; Abasolo et al., 2013; Lang et al., 2017; Stasinski et al., 2021). 
 
By integrating signals from leaf structural, chemical, and physiological traits, spectra facilitate species 
identification and offer insights into ecological and evolutionary processes (Cavender-Bares et al., 
2016, Cavender-Bares et al., in review.; Cotrozzi et al., 2017; Meireles et al., 2020; Kothari & 
Schweiger, 2022). 
 
Recent advances demonstrate that spectral data taken from both fresh and recently dried leaf samples 
can be effectively used to generate accurate predictive models for taxonomic discrimination and 
functional trait values (Durgante et al., 2013; Costa et al., 2018; Kothari et al., 2023). 
 

  78 
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The plant tissues in herbaria have been altered by dynamic collection, processing, and 79 

preservation techniques with variable storage conditions and durations, ranging from months to centuries. 80 

Variability in preservation methods across institutions globally and over time have inevitably led to subtle 81 

changes in tissue structure and composition that create challenges to aggregating and comparing data. 82 

Preservation and pest removal have in many cases introduced contamination in the form of chemical 83 

residues or post-mortem biological agents (Bieker et al., 2020). There is also the problem that plant 84 

specimens are glued to herbarium paper, and reflectance scans of glued portions of these specimens will 85 

be mixed with the chemical components and structure of these materials (see Neto-Bradley et al.). As 86 

herbaria are just beginning to incorporate spectral scanning into their digitization pipelines, there is 87 

urgency in communicating the unique challenges of herbarium spectral scanning to establish standardized 88 

protocols that ensure data quality and compatibility.  89 

Several studies have now used pressed leaves (i.e. collected, dried, pressed, and stored in 90 

newsprint) for trait prediction and taxonomic classification with remarkable success (Durgante et al., 91 

2013; Costa et al., 2018; Kothari et al., 2023), yet this paper, along with the investigation by Neto-92 

Bradley et al. presented in this special issue, are the first to investigate actual herbarium specimens. As 93 

such, our primary questions are: To what extent can herbarium spectra complement fresh or pressed leaf 94 

spectra in estimating traits and classifications? How do specimen-specific qualities like age or 95 

preservation techniques influence the utility of spectral data? What next steps are necessary to optimize 96 

sampling strategies, scanning protocols, and digital infrastructure for global data integration? 97 

This study addresses whether herbarium specimens can serve as a reliable resource for reflectance 98 

spectroscopy and exploring the biological signal integrity of these samples. We do this by building off of 99 

the trait prediction and taxonomic classification work by Kothari et al. (2023), where 618 leaf samples 100 

representing 67 species of North American trees, shrubs, and herbs plus one Australian species were 101 

assayed for 22 functional traits before being reflectance scanned. The dried and pressed vouchers of these 102 

samples were scanned using a PSR+ spectroradiometer with leaf clip (Spectral Evolution Inc.) after six 103 

months to three years of storage time. Reanalysis of this dataset at 5 nm resampled bands (for 104 

comparability) confirmed that pressed-leaf spectra excelled at predicting LMA (R² = 0.94; %RMSE = 105 

6.29%), carbon (R² = 0.79; %RMSE = 10.10%), and cellulose (R² = 0.77; %RMSE = 7.80%), along with 106 

moderate success for water-related traits, some nutrients, and pigments. Taxonomic classification models 107 

achieved excellent accuracy (91%) for 10 species (N > 20), demonstrating the viability of pressed-leaf 108 

spectra for functional trait estimation and species identification without destructive sampling. 109 

Here, we have targeted 25 of the most well-sampled species in the pressed-leaf dataset for 110 

scanning at the Harvard University Herbaria. This provides a comparative framework to test the utility of 111 

herbarium specimens for predicting leaf mass per area (LMA) and for taxonomic classification. Leaf mass 112 
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per area was the best-predicted trait for the pressed-leaf models and does not require destructive sampling 113 

to measure on herbarium specimens, when detached leaves are available. Additionally, this approach 114 

permitted evaluation of the transferability of the pressed-leaf trait estimation models, which predict the 115 

values of functional traits as they existed in vivo, to our herbarium spectra. Our goal here was to 116 

understand just how different the models generated from pressed or herbarium leaves would be as a proxy 117 

for understanding the changes herbarium leaf tissues undergo during preservation and storage. Finally, we 118 

investigated whether specific herbarium specimen qualities, such as age, greenness, and the presence of 119 

glue, were correlated with the success of taxonomic classification.  120 

Our work seeks to form and refine a vision of herbarium-based spectral scanning as a promising 121 

method for inferring plant traits within and across undersampled clades, and to begin to build spectral 122 

databases that will be used in a variety of biodiversity science applications. This will also clarify the 123 

limitations and opportunities inherent in using herbarium spectra, emphasizing the need to refine 124 

methodologies and outline the scaled use of herbarium spectra in biodiversity science. By leveraging this 125 

powerful technology with the amazing plant diversity collections in herbaria, we can establish a next 126 

generation of digital resources that will be efficiently applied to pressing challenges in ecological and 127 

evolutionary research. 128 
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129 
Fig. 2: The herbarium spectral scanning workflow from specimen collection to global integration, 130 
and challenges. A) The biological variation, specimen collection, and herborization factors affecting leaf 131 
spectra. Herbaria capture natural variation of plant tissues due to ontogeny, phenology, and plastic 132 
responses to abiotic and biotic factors. Along with this natural variation, the range of protocols employed 133 
to collect, preserve, and store specimens in herbaria influence tremendous variation in tissue preservation. 134 
Herbarium users observe a range of green (top) to brown (bottom) to black leaves and other 135 
characteristics reflecting tissue degradation or damage. Specimens have been mounted to different types 136 
of herbarium paper via glue (top), tape (bottom), or sewing. Loose leaf fragments held in envelopes (top) 137 
might be the only source of glue-free tissue for spectral applications. These specimens are to be preserved 138 
in perpetuity, but tissues will continue to change as they are used for research activities and experience 139 
environmental fluctuations as they age within herbaria across the globe. Top specimen from A: 140 
Herbarium of the Arnold Arboretum of Harvard University; bottom specimen from ECON: The 141 
Economic Herbarium of Oakes Ames of Harvard University. B) Scans taken with different instruments 142 
will inevitably be different. Spectroradiometers vary in spectral range, resolution, and signal-to-noise 143 
ratio, and even measurements taken with the same instrument model are affected by the optical 144 
components — e.g., light sources, lenses, and probe geometry — and instrument settings (e.g. integration 145 
time). The background against which leaves are scanned significantly affects the spectral signal and we 146 
currently do not have robust methods to unmix leaf spectral signals from the herbarium paper and glue, so 147 
herbarium leaves should be scanned against a standardized black background. This is done using detached 148 
leaves stored in labeled packets (top) or by carefully sliding a black background under glue-free leaves 149 
taped or sewn onto the herbarium sheet (bottom). Spectral data processing — e.g. scaling, band 150 
resampling, and applying mathematical transformations (e.g., wavelet transformations) — can be useful 151 
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but also introduce unintended biases and variation, so the raw spectra should always be made publicly 152 
available. C) The vision of integrating herbarium spectral data into a global Metaherbarium, enabling 153 
interoperable networks that connect institutions and support transformative scientific applications, such as 154 
functional trait estimation and taxonomic discrimination. Achieving this vision relies on standardized 155 
scanning protocols, optical procedures, and instrumentation, along with robust cyberinfrastructure to 156 
aggregate and harmonize spectral data across herbaria, ensuring compatibility for downstream analyses. 157 
These efforts lay the groundwork for advancing modeling frameworks capable of addressing biological 158 
variation across the plant tree of life, while accounting for spectral changes introduced during 159 
herborization and specimen aging. Such advancements will bridge herbarium collections with ecological 160 
and evolutionary research, ushering in a new era of integrative biodiversity science. Specimen from 161 
NEBC: The New England Botanical Club Herbarium. 162 

  163 
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Methods 164 

Sampling design 165 

Harvard University Herbaria (HUH) collections metadata for 68 species were obtained from the Global 166 

Biodiversity Information Facility (GBIF.org) database using the R package rgbif v.3.8.0 (Chamberlain et 167 

al., 2024). To minimize geographic variation in traits that could affect trait comparisons, we targeted 168 

collections from New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and 169 

Vermont). This contrasts with the geographic scope of Ontario and Quebec in Kothari et al. (2023). The 170 

one exception in both datasets is the species Agonis flexuosa from Australia. We first inspected all 171 

specimens per species and selected specimens holding loose leaves in packets. If we were not able to get a 172 

minimum of 15 specimens with loose leaves, we obtained permission from Lisa Standley, curator of the 173 

New England Botanical Club Herbarium and Michaela Schmull, Director of Collections for the remaining 174 

herbaria, to detach one leaf for scanning against the black background and measuring LMA. If multiple 175 

leaves were available, we selected leaves without any sign of glue, but otherwise tried to randomly 176 

sample with respect to the visual quality and degree of degradation across specimens. 177 

Scanning Protocol 178 

Specimens were scanned using a Spectra Vista Corporation HR 1024i spectroradiometer (350–2,500 nm 179 

spectral range) with a fiber optic cable connected to the LC-RP Pro Leaf Clip/Reflectance Probe with a 180 

narrow-angle lens, which reduced the scanning aperture to a 6 mm x 4 mm ellipse. The instrument was 181 

turned on for a minimum of 10 minutes prior to scanning to allow the light source to warm and the 182 

sensors to cool. At the beginning of each session, black card stock sprayed with three coats of Krylon® 183 

Camouflage Black Matte spray paint was target-scanned three times to record a black background 184 

spectrum for downstream quality control (not applied here) and then we took a reflectance scan on a 185 

white Spectralon® reference panel. For each sample, we placed the leaf on top of the spray-painted black 186 

cardstock and took three two-second scans of the adaxial surface. As an extra precaution against scanning 187 

light reflected from the herbarium bench, the cardstock and leaves were scanned on top of a 5 mm felt pad 188 

coated with the same matte black spray paint. We targeted regions of the leaf that avoided the midvein, 189 

prominent secondary veins, or regions with disease, fungus, or other damage. Up to two leaves per 190 

specimen were scanned. Finally, a second target scan of the white Spectralon® panel was taken for 191 

downstream quality control (not applied here). 192 
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Trait Measurements 193 

Leaf weight, area, and thickness were recorded for each scanned leaf to validate leaf mass per area 194 

(LMA) predictions from spectra. After scanning, petioles were removed at the point of contact with the 195 

leaf lamina or slightly above the midpoint of acuminate leaf bases. Leaf blade weight was measured in 196 

milligrams using a Sartorius Practum64-1S Analytical Balance. Petioles were stored in glassine envelopes 197 

with labeled scan numbers. Leaf area was measured using the LeafByte® app on an iPhone 15 with five 198 

or 10 cm² calibration dots. 199 

Spectra Preprocessing 200 

To ensure compatibility with downstream analyses and comparability of results across datasets, 201 

we reprocessed and reanalyzed the raw pressed leaf spectra of Kothari et al. (2023) in addition to the 202 

herbarium leaf spectra. Raw spectra files were processed using the SpectroLab v. 0.0.18 R package 203 

(Meireles et al., 2017). We resampled reflectance spectra to 5 nm intervals using the Full-Width Half-204 

Maximum (FWHM) method in the CWT R package (Guzmán Q., 2024) to make the spectral resolution 205 

consistent, as the two datasets were generated on different sensors with different resolutions. 206 

With the goal of optimizing the transferability of models across spectral datasets, the resampled 207 

reflectance spectra in each dataset were then transformed using two methods: vector normalization and 208 

continuous wavelet transformation (CWT). Vector normalization of the spectra was implemented as a 209 

method to reduce the impact of differences in illumination geometry between spectrometers, which can 210 

impact the magnitude of reflectance. This method was applied using the ‘normalize’ function of 211 

SpectroLab. Continuous wavelet transformation (CWT) was implemented as a method to isolate scales 212 

that capture spectral features, potentially enhancing the prediction of leaf traits and the transferability of 213 

models (Guzmán Q. & Sanchez-Azofeifa, 2021). This method is based on the premise that the leaf 214 

reflectance spectra can be expressed as a combination of wave-like functions (wavelets) of varying scales 215 

(widths), enhancing fine spectral features at lower scales and broader spectral patterns at large scales 216 

(Rivard et al., 2008). We applied this transformation on the resampled leaf reflectance from both datasets 217 

using a second-order Gaussian derivative wavelet function and applying a variance of 1. The choice of 218 

wavelet scales can impact the predictive performance of predicting models (Guzmán Q. & Sanchez-219 

Azofeifa, 2021). Based on exploratory analysis, scales 22, 23, and 24 were computed and summed to form 220 

the summed-wavelet spectra used for predicting leaf traits. The CWT transformation was implemented 221 

using the ‘cwt’ function from the CWT package in R (Guzmán Q., 2024). 222 

The resulting reflectance spectra (e.g., reflectance, vector normalized, and summed-wavelet) were 223 

trimmed to a range of 450–2,400 to remove noisy regions at the spectrum's edges. The 400–450 nm range 224 
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was removed because reflectance values in this region differed substantially between the herbarium and 225 

pressed leaf datasets. We also subdivided the data into different spectral regions: 450–1,300nm as the 226 

visible and near-infrared (VNIR+) region (“+” because 1,100–1,300 nm is in the short-wave infrared) that 227 

could be noisier due to pigment degradation (Fourty et al., 1996), and the 1,350–2,400 nm short-wave 228 

infrared region. 229 

Prediction of LMA 230 

Using the processed spectra and the measured leaf mass per area (LMA; kg m-²) from each of the 231 

pressed and herbarium datasets across the VNIR+ (450-1,300 nm), SWIR, and full-range spectral regions, 232 

we built predictive models using partial least squares (PLS) regression implemented with the pls and 233 

caret R packages (Liland et al., 2024b; Kuhn et al., 2024). Metadata and spectral data were split into 234 

training (75%) and validation (25%) datasets using a stratified sampling approach based on growth form, 235 

mirroring Kothari et al. (2023). We generated 1,000 model segments by randomly selecting individual 236 

scans for each specimen using a custom data segmentation function. This procedure ensured that scans 237 

from each specimen were never split among both the training and validation datasets while capturing the 238 

variability within specimens and avoiding bias introduced by the averaging of spectra. 239 

Model optimization was performed using a custom tuning function that used cross validation with 240 

the ‘oscorepls’ method. The predictive residual sum of squares (PRESS) metric was used to evaluate the 241 

models during cross-validation and the optimal number of components for the PLS regression models was 242 

selected as the smallest value whose PRESS value was within one standard deviation of the minimum 243 

PRESS value.  244 

Final models were constructed using the optimal number of components and validated on the 245 

independent test datasets. We evaluated our predictions using the full ensemble of model segments, 246 

averaged to each individual, and predictions of LMA were compared to observed values to calculate 247 

residuals and evaluate performance. The model performance was evaluated by estimating the coefficient 248 

of determination (R2), the bias, the root mean squared error (RMSE), and the percentage RMSE (%RMSE 249 

= RMSE/ range of 0.99 and 0.01 quantiles). Finally, we calculated variable importance in projection 250 

(VIP) values to estimate the most informative spectral regions, and extracted model coefficients for 251 

making predictions across external datasets – permitting our tests of model transfer between the pressed 252 

models to herbarium spectra and vice versa. Lastly, we used the trait data presented in Kothari et al. 253 

(2023) to generate PLSR models in the same manner as for LMA in order to use the model coefficients 254 

and intercept to predict trait values from the herbarium leaf spectra for carbon, calcium, carotenoids, 255 

cellulose, chlorophyll A, LMA, nitrogen, and solubles. To assess the accuracy of model transfers for these 256 
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other traits for which we have no observed herbarium trait values, we compared the distributions of 257 

predicted herbarium trait values against the observed values from Kothari et al. (2023). 258 

To further evaluate transferability, we applied model coefficients derived from one dataset to 259 

spectra from the other. Using the transformed reflectance data, predictions were generated, and their 260 

accuracy was assessed by calculating residuals and comparing predicted vs. observed values. This step 261 

validated the applicability of standardized coefficients across datasets and quantified the degree of 262 

compatibility between herbarium and pressed leaf spectra. 263 

Taxonomic Classification 264 

To test the viability of models classifying herbarium leaf scans into taxa, we applied partial least squares 265 

discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) to the reflectance spectra of the 266 

full-range herbarium spectral dataset, without any vector normalization or continuous wavelet 267 

transformations. We tested both the PLS-DA and LDA algorithms because, although they are both 268 

implemented by different research groups, we are not aware of any studies that have directly compared 269 

their results. PLS-DA uses partial least squares regression to reduce dimensionality and optimize feature 270 

selection, making it suitable for high-dimensional datasets like spectra, especially in scenarios with few 271 

samples compared to many predictors (high-dimensional low-sample-size problems). This method 272 

requires researchers to specify the number of components used by the model, demanding a careful 273 

balance between improving accuracy and avoiding overfitting to the training dataset. LDA, in contrast, 274 

assumes normally distributed data and separates classes by maximizing variance between groups, offering 275 

robust classification in well-distributed datasets without the need to specify a number of components. 276 

LDA is also computationally much lighter than PLS-DA. 277 

Classification models were built using the caret, pls, and plsVarSel packages in R (Liland et al., 278 

2024a,b; Kuhn et al., 2024). First, spectral data were preprocessed by splitting the dataset into ten 279 

individuals per species selected for training and the rest for validation, ensuring balanced representation 280 

across species. The same segmentation process as above was employed to generate 1,000 data segments 281 

for iterative training and testing across spectral scans. 282 

For PLS-DA, model tuning was performed with the PLS method and optimized by the 283 

classification accuracy metric. We generated final models across our 1,000 data segments by selecting the 284 

number of components returning the highest classification accuracy. LDA models were generated with 285 

the ‘LDA’ method optimized by the accuracy metric. 286 

Model performance was assessed using the independent test datasets by generating confusion 287 

matrices to calculate accuracy, sensitivity, and specificity metrics. We also generated variable importance 288 

in projection (VIP) scores from the models to identify the most influential spectral regions for 289 

https://www.zotero.org/google-docs/?FikV0t
https://www.zotero.org/google-docs/?FikV0t
https://www.zotero.org/google-docs/?FikV0t
https://www.zotero.org/google-docs/?FikV0t
https://www.zotero.org/google-docs/?FikV0t
https://www.zotero.org/google-docs/?FikV0t
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distinguishing taxa, and extracted and saved coefficients from the PLS-DA models for generating class 290 

predictions and prediction probabilities from all specimens for an analysis of factors that influence 291 

classification success. 292 

Analysis of specimen predictors on classification 293 

To evaluate the biotic and herborization factors influencing the success of PLS-DA classification, we 294 

utilized the full ensemble of 1,000 optimized PLS-DA models trained on the full-spectrum herbarium 295 

dataset of 25 species. Using the model coefficients, x-values, and y-values (intercepts), we computed 296 

classification probabilities for all 1,690 herbarium leaf scans across the ensemble of models. Probabilities 297 

were averaged across all models, and the predicted class was determined as the one with the highest 298 

average probability. 299 

These predictions were integrated with specimen metadata to conduct a series of comparisons and 300 

independent regressions of classification probabilities against categorical variables (specimen quality, 301 

glue presence, observed damage, and leaf developmental stage) and numerical variables (age, Julian day 302 

of collection, nearest taxon distance, LMA, and greenness index). Descriptions of predictor variables are 303 

provided in Table 1.  304 

To estimate nearest taxon distance, a phylogram was made using Time Tree 5 (timetree.org; 305 

(Kumar et al., 2022) with modifications following results from V.PhyloMaker2 (Jin & Qian, 2022) to add 306 

Phragmites australis as sister to Phalaris arundinacea at 39.8 My and add Betula populifolia as sister to 307 

Betula papyrifera at 39.7 My. Greenness index, which measures the relative difference in reflectance 308 

between green light (550 nm) and red light (690 nm; see equation in Table 1), was selected over other 309 

commonly used vegetation indices, such as normalized difference vegetation index, green normalized 310 

difference vegetation index, and chlorophyll/carotenoid index, due to its significant correlation with the 311 

independent estimate of specimen quality (Fig. S1). Relationships and regressions were visualized using 312 

the ggplot2 package in R (Wickham et al., 2024), and significant differences in classification probabilities 313 

between correct and incorrect classes were assessed using t-tests as implemented by the ‘ggsignif’ function 314 

in ggplot2. 315 

Logistic regression and random forest analyses were performed to further evaluate significant 316 

relationships between specimen metadata and classification accuracy. The logistic regression model, 317 

implemented with the ‘glm’ function in the stats R package (R Core Team, 2023), employed a binomial 318 

error structure and included all predictors. For the random forest analysis, the randomForest R package 319 

(Breiman et al., 2024) was used to quantify predictor importance based on mean decrease in accuracy and 320 

Gini impurity metrics. 321 

  322 

https://www.zotero.org/google-docs/?y0b2wV
https://www.zotero.org/google-docs/?y0b2wV
https://www.zotero.org/google-docs/?y0b2wV
https://www.zotero.org/google-docs/?3Lt6j5
https://www.zotero.org/google-docs/?6IMz42
https://www.zotero.org/google-docs/?6IMz42
https://www.zotero.org/google-docs/?6IMz42
https://www.zotero.org/google-docs/?PCTenX
https://www.zotero.org/google-docs/?bui60b
https://www.zotero.org/google-docs/?bui60b
https://www.zotero.org/google-docs/?bui60b
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Table 1: Metadata predictors of herbarium specimens and descriptions of classes. 323 

Metadata predictor Class Description 

Leaf Developmental 
Stage Young 

Thin leaves with under-developed venation, prone to bruising, may 
appear darker, scans usually have lower reflectance. Collection date is 
important. 

 Mature 
Typically thick leaves, with potential color differences between adaxial 
and abaxial surfaces. 

 

Senescent 
(Not 
observed) 

Discolored leaves, often associated with aging. Collection date helps 
confirm senescence. 

Leaf Damage None No visible pre- or post-mortem damage to leaves. 

 Minor Damage present on some leaves but not affecting scanned regions. 

 Medium 
Minor damage visible on scanned leaves, but likely not in the scanned 
regions. 

 Major Significant damage is visible in the scanned regions. 

Specimen Quality Good Resembles a freshly pressed specimen. 

 Medium Shows some discoloration but is otherwise intact. 

 Poor 
Highly degraded specimen, with discoloration, mold, or rugosity from 
wilting. 

Glue Present Specimen preparation involved glue application. 

 Absent No glue was used during specimen preparation. 

Green Index (Numerical) 
Green Index= Reflectance550nm - Reflectance690nm / Reflectance550nm + 
Reflectance690nm 

Age (Numerical) Years since specimen was collected (mean = 94) 

Day of Year (Numerical) Julian day of collection 

Leaf Mass per Area (Numerical) Kg m-2 

Nearest Taxon 
Distance (Numerical) 

Estimated age (in millions of years) of most recent common ancestor 
shared between predicted taxon and nearest sampled species. 

 324 

  325 
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Results 326 

Trait prediction & model transferability 327 

 Spectral profiles of 25 species scanned from the Harvard University Herbaria have similar 328 

profiles but lower magnitudes compared to pressed leaves (Fig. 3A). Within herbarium spectra, we also 329 

observe notable variation in the coefficient of variation of reflectance within the visible (450-700 nm) and 330 

SWIR regions (specifically ~1,900-2,400); Fig. S2). Models trained on herbarium spectra using all 331 

combinations of spectral transformations (untransformed, vector-normalized, and CWT) and wavelength 332 

ranges (full, VNIR+, and SWIR) had excellent performance (validation tests in Table 2; full statistics in 333 

Table S1).  334 

Overall, the best validation models according to R2 and %RMSE were the full-range, vector-335 

normalized models, but the models using untransformed reflectance values were only slightly less 336 

accurate. For the non-transformed reflectance values, pressed LMA models performed only slightly better 337 

than the herbarium LMA models (pressed R2 = 0.942, %RMSE = 6.29%; herbarium R2 = 0.891, %RMSE 338 

= 6.62%, Fig. 4A and B). After full-range models, SWIR models performed better than VNIR+ (Table 339 

S1). 340 

As expected, the performance of models was reduced when they were transferred and validated 341 

with the other (herbarium or pressed) LMA dataset, but the CWT and non-transformed reflectance models 342 

could still accurately predict observed LMA (Table 2; Table S1; Fig. 4B and C). The best transfer model 343 

was for the full-range CWT dataset (herbarium to pressed R2 = 0.88, %RMSE = 8.76%; pressed to 344 

herbarium R2 = 0.76, %RMSE = 10.53%). The shifted slope of an ordinary least squares regression of 345 

predicted values highlights a systematic difference in models between datasets (0.91 in Fig. 4C and 1.25 346 

in Fig. 4D; transfer tests in Table 2). Models based on the VNIR+ spectra also performed well for 347 

reflectance and CWT datasets, but SWIR-based models showed reduced performance (Table S1). 348 

Contrasting with their improved performance in internal validation tests, the models based on vector-349 

normalized spectra performed worse than the other two spectral datasets, yet showed best performance for 350 

models in the SWIR range (Table 2; Table S1). 351 

  352 
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Table 2: Performance metrics for LMA models averaged across 1,000 model segments. 353 

test model spectra transform N Ncomponents R2 %RMSE 
RMSE 
(Kg m-2) BIAS slope intercept 

validatio
n 

herbariu
m 

herbariu
m CWT 220 10 0.81 ± 0.01 7.92 ± 0 0.011 ± 0 0 ± 0 1.00 ± 0.02 0 ± 0 

validatio
n 

herbariu
m 

herbariu
m 

reflectanc
e 220 14 0.89 ± 0.01 6.62 ± 0 0.01 ± 0 0 ± 0 0.99 ± 0.02 0 ± 0 

validatio
n 

herbariu
m 

herbariu
m 

normalize
d 220 14 0.92 ± 0.01 5.79 ± 0 0.009 ± 0 0 ± 0 1.01 ± 0.01 0 ± 0 

validatio
n Pressed Pressed CWT 212 8 0.94 ± 0 6.34 ± 0 0.011 ± 0 0 ± 0 1.03 ± 0.02 0 ± 0 

validatio
n Pressed Pressed 

reflectanc
e 212 16 0.94 ± 0 6.29 ± 0 0.011 ± 0 0 ± 0 1.02 ± 0.02 0 ± 0 

validatio
n Pressed Pressed 

normalize
d 212 13 0.95 ± 0 6.01 ± 0 0.011 ± 0 0 ± 0 1.00 ± 0.02 0 ± 0 

transfer 
herbariu
m pressed CWT 609 14 0.88 ± 0.03 

8.76 ± 
0.02 0.015 ± 0 0 ± 0.01 0.91 ± 0.06 

0.00 ± 
0.01 

transfer 
herbariu
m pressed 

reflectanc
e 609 14 0.91 ± 0.01 

10.99 ± 
0.02 0.019 ± 0 

-0.01 ± 
0.01 0.82 ± 0.02 

0.00 ± 
0.01 

transfer 
herbariu
m pressed 

normalize
d 609 14 0.91 ± 0.01 

78.48 ± 
0.5 

0.136 ± 
0.09 

0.12 ± 
0.11 1.47 ± 0.05 

0.13 ± 
0.16 

transfer pressed 
herbariu
m CWT 479 8 0.76 ± 0.05 

10.53 ± 
0.01 0.016 ± 0 0 ± 0 1.25 ± 0.06 

-0.02 ± 
0.01 

transfer pressed 
herbariu
m 

reflectanc
e 479 16 0.66 ± 0.07 

13.13 ± 
0.02 0.02 ± 0 

0.01 ± 
0.01 1.13 ± 0.1 0.01 ± 0 

transfer pressed 
herbariu
m 

normalize
d 479 13 0.51 ± 0.09 

781.00 ± 
2.43 

1.178 ± 
0.37 

-1.18 ± 
0.37 0.41 ± 0.09 

-0.41 ± 
0.06 

 354 
   355 
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 356 
Fig. 3: Plots of reflectance and CWT values for herbarium and pressed datasets, plus associated variable 357 
importance in projection (VIP) metrics and model coefficients for LMA models. Black lines represent 358 
mean herbarium data and red lines represent mean pressed data, with 90% quantiles plotted in gray bands. 359 
Panels show the data for (A) the reflectance data across all samples, (B) the CWT transformed reflectance 360 
data across all samples, (C) VIP values for reflectance data across 1,000 model iterations, (D) VIP values 361 
for CWT data across 1,000 model iterations, (E) Reflectance model coefficients across 1,000 iterations, 362 
(F) CWT model coefficients across 1,000 iterations. 363 

   364 
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 365 
Fig. 4: Validation and model transfer results for leaf mass per area (LMA) per individual across 25 366 
species. Error bars represent the standard deviation in predictions across 1,000 model iterations. Linear 367 
regressions of observed versus predicted values averaged across iterations are shown in red lines for 368 
comparison with the gray 1:1 dashed lines. Individual plots show the results for full-range spectra (450-369 
2,500 nm) of (A) pressed models from untransformed reflectance values, (B) herbarium models from 370 
untransformed reflectance values, (C) transfer of CWT herbarium models to CWT pressed spectra, and 371 
(D) transfer of CWT pressed models to CWT herbarium spectra.  372 
 373 
  374 
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The compatibility of the models is further illustrated by the similarity of variable importance in 375 

projection (VIP) values for reflectance spectra (Fig. 3C). The VIP plots reveal considerable differences 376 

between herbarium and pressed models in the visible and (less-so) NIR regions, but the relative values in 377 

the SWIR region are similar. This same pattern applies to the model coefficients (Fig. 3C). The CWT 378 

models follow a similar pattern across the visible, NIR, and SWIR regions, yet with fewer differences 379 

among peak patterns and overall closer magnitudes (Fig. 3D and F). The CWT models have the most 380 

clearly defined peaks and highlight informative spectral regions throughout the spectral range (Fig. 3D 381 

peaks = VIS: 500 nm, 545 nm, 590 nm, 640 nm, 670 nm, 695 nm; NIR: 730 nm; SWIR: 1,200 nm, 1,400 382 

nm, 1,440 nm, 1,655 nm, 1,705 nm, 1,875 nm, 1,920 nm, 2,225 nm, 2,295 nm). 383 

To extend this inference of the utility of transferring trait models, we applied seven additional 384 

pressed-leaf trait models to predict traits from the herbarium spectra for 25 species (Fig. 5; validation 385 

results in Table S2). The predicted trait distributions from herbarium spectra closely align with observed 386 

distributions from the pressed dataset, highlighting the potential of these models for cross-dataset 387 

applications. Predicted values for key traits, including leaf mass per area (LMA), carbon fractions, and 388 

carotenoids, generally showed contiguous distributions with substantial overlap between datasets. This 389 

overlap shows the robustness of the spectral models in maintaining rank-order consistency across species. 390 

Discrepancies arose, particularly where pressed datasets included only a single individual per species and 391 

model generalizability was limited, but the lack of unrealistic trait values and the general correspondence 392 

of distributions across these additional traits is a surprisingly positive result.  393 

These results taken together provide robust support for the utility of herbarium spectra for trait 394 

estimation both for models built from herbarium-derived trait datasets as well as for the transfer of 395 

pressed leaf models built from trait values measured in living plants. 396 

   397 
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 398 

Fig. 5: Comparison of observed trait distributions from pressed leaves with predicted values obtained by 399 
applying continuous wavelet transformation (CWT) pressed models to herbarium spectra, as shown in 400 
Fig. 2C. Panels display the distributions for eight traits across 25 species. Mean values are indicated with 401 
black dots.  402 
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Taxonomic Classification 403 

To evaluate the utility of reflectance spectra for taxonomic classification, we applied linear 404 

discriminant analysis (LDA) and partial least squares discriminant analysis (PLS-DA) models across 405 

datasets at two taxonomic levels: species and genus. To ensure direct comparability of results, we also 406 

analyzed the pressed leaf dataset for the ten species for which 20 or more individuals were sampled. 407 

Performance metrics, including accuracy, precision, and balanced accuracy, were compared to assess the 408 

classification capabilities of each approach. 409 

Pressed datasets outperformed herbarium datasets in classification accuracy, precision, and 410 

balanced accuracy, yet herbarium spectra still provided reliable classification models (Table 3). In the 10-411 

species dataset, pressed specimens achieved accuracies of 91.7 ± 2% (LDA) and 81.1 ± 2% (PLS-DA), 412 

while herbarium specimens achieved 71.9 ± 2% (LDA) and 58.0 ± 2% (PLS-DA).  413 

For the 25-species dataset, herbarium spectra achieved 74.3 ± 1% accuracy with PLS-DA, 414 

outperforming LDA's 64.4 ± 2%. The confusion matrix (Fig. 5) shows that most classification errors 415 

occurred between congeneric species, highlighting challenges in distinguishing closely related taxa. Some 416 

species, such as Osmunda regalis and Quercus rubra, were frequently misclassified as Betula species. 417 

Notably, Solidago gigantea had a correct classification rate of only 39%, with 51% of its scans 418 

misclassified as Solidago altissima. The variable importance in projection (VIP) plots are consistent 419 

across species and emphasize key spectral regions in the visible, near-infrared, and shortwave infrared 420 

(SWIR) ranges (Fig. S3). 421 

At the genus level, pressed specimens achieved near-perfect accuracy in the six-genera dataset, 422 

with 96.9 ± 1% (LDA) and 89.8 ± 1% (PLS-DA), while herbarium specimens achieved 89.3 ± 2% (LDA) 423 

and 82.1 ± 1% (PLS-DA). In the more complex 17-genus dataset, herbarium spectra performed better 424 

with PLS-DA (84.9 ± 1%) compared to LDA (75.3 ± 2%). Similarly, PLS-DA outperformed LDA in the 425 

17-genus dataset, achieving 84.9 ± 1% for PLS-DA compared to 75.3 ± 2% for LDA. 426 

The VIP plots comparing herbarium and pressed datasets reveal consistent peaks across the 427 

visible, near-infrared, and shortwave infrared (SWIR) regions, reflecting the spectral regions most 428 

important for PLS-DA classification (Fig. S4).  429 

  430 
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Table 3: Performance metrics of classification analyses 431 

Dataset Rank Model Samples Ncomponents 
Accuracy ± 
SD (%) 

Precision ± 
SD (%) 

Balanced Accuracy 
± SD (%) 

Herbarium species LDA 10 spp N/A 71.9 ± 2 72.1 ± 20 84.2 ± 10 

Herbarium species PLSDA 10 spp 15 58 ± 2 58.5 ± 23 76.5 ± 13 

Pressed species LDA 10 spp N/A 91.7 ± 2 86.6 ± 20 96.3 ± 3 

Pressed species PLSDA 10 spp 15 81.1 ± 2 73.2 ± 22 91.7 ± 6 

Herbarium genus LDA 6 genera N/A 89.3 ± 2 87.8 ± 14 92.8 ± 7 

Herbarium genus PLSDA 6 genera 13 82.1 ± 1 79.5 ± 21 86.8 ± 12 

Pressed genus LDA 6 genera N/A 96.9 ± 1 94.6 ± 10 98.3 ± 2 

Pressed genus PLSDA 6 genera 13 89.8 ± 1 85.2 ± 13 93.9 ± 5 

Herbarium species LDA 25 spp N/A 64.4 ± 2 67.2 ± 19 82 ± 9 

Herbarium species PLSDA 25 spp 24 74.3 ± 1 75.3 ± 15 87.3 ± 8 

Herbarium genus LDA 17 genera N/A 75.3 ± 2 76.5 ± 18 86.4 ± 8 

Herbarium genus PLSDA 17 genera 27 84.9 ± 1 87 ± 8 90.9 ± 9 

 432 
  433 
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 434 

Fig. 6: Phylogram and confusion matrix summarizing the validation of herbarium specimen classification 435 
using Partial Least Squares Discriminant Analysis (PLS-DA). The left panel shows a phylogram 436 
representing the evolutionary relationships among species scaled by millions of years. The right panel 437 
displays a confusion matrix where rows represent true species identities and columns represent predicted 438 
species identities. Tile colors indicate the percentage of observations of each pair of true and predicted 439 
identities, with darker shades representing higher percentages. Numbers within tiles show rounded 440 
percentages. Mean accuracy for the validation is 74.3%. 441 
  442 
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Assessing herborization factors on classification 443 

To evaluate the influence of specimen factors on PLS-DA classification performance, we analyzed the 444 

classification probabilities across all 1,690 herbarium scans using the full-spectrum 25-species dataset 445 

(Fig. S5). Logistic regression and independent t-tests revealed significant relationships between 446 

classification probabilities and several categorical and numerical predictor variables. 447 

The probabilities of correct classifications varied significantly with specimen quality, glue 448 

presence, leaf damage, and leaf phenological development (Fig. 7). Leaves with good (p < 0.001) or 449 

medium quality (p < 0.01) had higher predicted probabilities for correct classifications compared to those 450 

with poor quality, but there was not a significant difference between good and medium quality specimens. 451 

Following expectations, specimens without mounting glue had significantly higher predicted probabilities 452 

than those with glue (p < 0.001). Mature leaves exhibited higher predicted probabilities compared to 453 

young leaves (p < 0.001). Probabilities of correct classifications for specimens with no damage were 454 

significantly higher than those with minor damage (p < 0.001) and medium damage (p < 0.05), as well as 455 

between minor and major - but in the opposite direction of expected (p < 0.05). The few specimens with 456 

major damage had curiously high classification probabilities. The probabilities of incorrect classifications 457 

– which represent the individual false-positive classifications that had higher probabilities than true-458 

positives – did not significantly differ across classes within these variables (Fig. 7).  459 

Numerical predictors also had significant relationships with classification probabilities (Fig. 8). 460 

Age negatively correlated with classification probabilities, suggesting reduced model performance for 461 

older specimens (Fig. 8A). The age of the sampled specimens ranged from one to 179 years with a 462 

median age of 91 years (Fig. S6). The green index was also negatively correlated with classification 463 

probabilities, indicating that greener leaves were related to worse model performance (Fig. 8B). The 464 

relationship between age and green index revealed that older specimens generally exhibited lower green 465 

index values, consistent with expected tissue degradation over time (Fig. 8C).  466 

Classification probabilities increased with greater phylogenetic distance to the nearest taxon (Fig. 467 

8D), an expected relationship that corroborates the results of the confusion matrix. Conversely, the 468 

probability of a false positive classification decays with phylogenetic distance to the predicted class (Fig. 469 

S7). Leaf mass per area also shows a strong positive correlation with classification probability (Fig. S8) 470 

with the caveat of covariation with species composition. Agonis flexuosa was classified with an overall 471 

accuracy of 97% and LMA values for this species are outstanding within this dataset. 472 

Logistic regression taking into account phylogeny (Table 4) further supported these factors as 473 

important in classification success. As expected, the most influential metric in classification success is 474 

nearest taxon distance, but the next most significant predictors were age, green index, absence of glue, 475 

and specimen quality. Finally, there is a weak positive relationship with classification success (Table 4) 476 
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and classification probability (Fig. S9) with the calendar day of specimen collection. This provides weak 477 

support that species collected early in the growing season were more likely to be misclassified than those 478 

collected at later dates. Random forest models generally corroborated these results, but optimized LMA, 479 

Age, and the green index as more significant factors than nearest taxon distance (Table S3).  480 

These results highlight the critical influence of specimen metadata on PLS-DA classification 481 

performance. Factors such as tissue integrity, as measured by the green index, and phylogenetic 482 

distinctiveness strongly impact classification success. In contrast, older specimens, poor-quality leaves, 483 

and the presence of glue reduce classification probabilities, underscoring the importance of these 484 

metadata for optimizing model performance. 485 

Table 4: Logarithmic regression of all predictors. 486 
 487 

 Estimate Std. Error z value Pr(>|z|) Sig. 

(Intercept) 1.18E+01 3.60E+02 3.29E-02 9.74E-01  

Nearest Taxon 
Distance 8.15E-03 1.69E-03 4.83E+00 1.35E-06 *** 

Age 1.05E-02 2.32E-03 4.55E+00 5.43E-06 *** 

Glue: present -9.19E-01 2.14E-01 -4.30E+00 1.72E-05 *** 

Green Index 2.29E+00 6.06E-01 3.78E+00 1.54E-04 *** 

Leaf kg m-2 1.30E+01 4.40E+00 2.97E+00 3.02E-03 *** 

Quality: medium -5.38E-01 1.94E-01 -2.78E+00 5.45E-03 *** 

Quality: poor -7.35E-01 2.93E-01 -2.51E+00 1.21E-02 ** 

Julian Day 4.38E-03 2.50E-03 1.75E+00 7.93E-02 . 

Leaf stage: 
young -2.85E-01 2.68E-01 -1.07E+00 2.87E-01  

Damage: 
medium -1.26E+01 3.60E+02 -3.51E-02 9.72E-01  

Damage: minor -1.25E+01 3.60E+02 -3.47E-02 9.72E-01  

Damage: none -1.24E+01 3.60E+02 -3.44E-02 9.73E-01  

  488 
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 489 

 490 

Fig. 7: Comparison of distributions of probabilities of assignment of each scan to a specific class for 491 
correctly (true-positive) or incorrectly classified (false-positive) specimens by leaf characteristics (see 492 
Table 1). A) Specimen quality observations primarily reflecting discoloration or tissue degradation. B) 493 
The presence or absence of mounting glue on the leaf. C) Visible biotic contamination, pre- or post-494 
mortem damage to leaves. D) Leaf phenological development. Significant pairwise differences among 495 
correct or incorrect classes were determined using t-tests and indicated with the codes: * (p<0.05), ** 496 
(p<0.01), and *** (p<0.001). Note there were no significant differences among classification probabilities 497 
for incorrect predictions.  498 
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 499 

Fig. 8: Relationships between numeric predictor variables and classification outcomes. (A) Relationship 500 
between age (years) and classification probability, (B) relationship between green index and classification 501 
probability, (C) relationship between age (years) and green index, and (D) relationship between nearest 502 
taxon distance (NTD, M years) and classification probability. Points represent individual observations 503 
colored by correct versus incorrect status. Solid lines represent linear regression fits for each dataset. 504 

 505 
 506 
 507 

  508 
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Discussion 509 

As the largest scientific repositories of plant diversity, herbaria offer exceptional resources for 510 

investigations of plant biology, but their utility is shaped by the condition of preserved tissues. Recent 511 

advances have proven the utility of spectra from pressed leaves (i.e. collected, pressed, dried, stored in 512 

newspaper) on the order of months to years old for taxonomic classification (Durgante et al., 2013; Lang 513 

et al., 2017; Kothari et al., 2023) and functional trait estimation (Lang et al., 2017; Kothari et al., 2023). 514 

Our study has extended this discovery to clearly demonstrate that herbarium specimens retain enough 515 

morphological and anatomical integrity to be useful for the same spectra-based inferences. 516 

The success of this proof-of-concept highlights the potential of reflectance spectroscopy as a 517 

valuable addition to herbarium digitization pipelines (Hedrick et al., 2020; Davis, 2023). To fully realize 518 

this potential, the collections community must work collaboratively to establish standardized protocols 519 

that ensure the compatibility of spectra collected across institutions (Fig. 2). Advancing standardized 520 

protocols will require clear communication of the fundamental concepts of reflectance spectroscopy and 521 

the myriad yet understudied factors influencing spectra from herbarium specimens. While our study has 522 

identified many of these factors, much remains to be explored. Here, we aim to outline these 523 

considerations and challenges as a foundation for the advancement of herbarium reflectance spectroscopy. 524 

Considerations and challenges for herbarium reflectance spectroscopy 525 

Biological variation 526 

The goal of phenomic assessments is to characterize biological variation, but researchers must recognize 527 

that spectral scans capture the cumulative effects of all factors—both natural and artifactual—that 528 

influence reflected light. Before considering the effects of specimen processing and storage, researchers 529 

should record metadata for developmental, phenological, and ecological factors that might influence leaf 530 

structure and physiology.  531 

For instance, herbarium specimens representing species with asynchronous flowering or fruiting 532 

may disproportionately contain young, developing leaves or reproductive structures, leading to spectra 533 

that do not adequately represent mature leaves (Fig. 2A). This variation introduces potential biases that 534 

researchers should consider when interpreting spectral data. Alternatively, given the considerable changes 535 

in leaf traits caused by phenology, traits will not be accurately estimated by models trained on one 536 

phenological stage if the spectra were sampled from a different phenological stage. However, predictive 537 

models show promise in accommodating such biological variation as long as models are trained to “see” 538 

the full range of variation (Lang et al., 2015). 539 
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In our study, mature leaves and young leaves were classified correctly the same proportion of 540 

times because both of these traits were modeled (see Results). For traits, models should be trained from 541 

datasets that span the range of trait values expected in testing datasets.  542 

Additionally, tissue heterogeneity within a single leaf must be considered. Researchers should 543 

avoid scanning leaf midribs, as their higher proportion of vascular tissue will influence spectra. Sampling 544 

protocols should prioritize mature laminar leaf regions to ensure that spectral measurements accurately 545 

reflect the traits of interest.  546 

Herborization 547 

The herborization process, which encompasses the preservation and storage of collected specimens, 548 

presents a wide range of variables affecting plant tissues (Fig. 2A). During collection, plants are pressed 549 

flat in newspaper shortly after collection, ideally before wilting. If drying cannot be performed within 24–550 

48 hours, specimens are typically soaked in 50–95% ethanol and sealed to prevent fungal growth. 551 

Historically, other preservatives like formaldehyde have also been used. Drying methods vary, ranging 552 

from forced-air systems or industrial ovens (30–70ºC for 15–48 hours) to passive drying in arid 553 

environments (Bridson et al., 1998; Forrest et al., 2019). Other analog methods necessary in more remote 554 

locations, such as drying over hot coals, apply even hotter and more variable temperatures and are the 555 

cause of the occasional encounter with a partially burnt specimen. Improperly dried specimens, on the 556 

other hand, may exhibit discoloration, structural degradation, or fungal growth. 557 

 We assessed the impact of visual cues about the quality of herbarium specimens via our metadata 558 

collection on specimen quality - our general interpretation of degradation as interpreted from 559 

discoloration, wilting, pathogens, or signs of poor initial preservation - and on specimen damage. Medium 560 

and poor herbarium quality classes were inferred to be significantly negatively correlated with correct 561 

predictions (Table 4; Table S3), showing that apparent specimen degradation does indeed translate to 562 

reduced model accuracy. The damage metadata was primarily used to annotate specimens with obvious 563 

tissue alterations such as herbivory or burning that affected part of the specimen but usually not the 564 

scanned leaves. Apart from the curious result of the six scans from two specimens of Populus tremuloides 565 

with major damage having high classification probability yet low species classification accuracy (63%), 566 

the more damaged leaves also followed expectations of reduced model performance. However, this was 567 

not a significant factor in the logistic regression nor the random forest analysis. 568 

After drying, specimens are transported, frozen for one to two weeks to eliminate insects, and 569 

then mounted on herbarium sheets using glue, tape, or sewing. Herbarium sheets are typically made from 570 

acid-free, lignin-free paper or cardboard, designed to prevent chemical reactions that could damage 571 

specimens over time (Drobnic, 2008). Acid-free paper resists yellowing and brittleness, as acidic 572 
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materials in the paper will otherwise degrade both the sheet and the plant material, altering the specimen's 573 

color and structural integrity. However, not all herbaria have access to these archival-quality sheets. In 574 

such cases, locally available paper may be acidic and will accelerate specimen degradation. 575 

While sewing specimens to the herbarium sheets is the most durable and secure method, it is 576 

highly labor-intensive and impractical for most herbaria with limited staff. Consequently, glues are the 577 

most widely used adhesive in the United States. Many institutions rely on water-based glues such as 578 

Elmer’s® Glue-All or Jade 403® because they are easy to apply and generally effective. Glues are either 579 

painted or sprayed onto the specimen’s backside and blotted dry before pressing the specimen against the 580 

sheet for adhesion. However, not all glues are ideal for long-term preservation. Some glues contain acidic 581 

or unstable components that can break down over time, causing discoloration, loss of adhesion, or 582 

chemical reactions that further degrade both the sheet and specimen. It is common to observe old glues or 583 

stains from previous adhesives on older specimens that have been remounted through time. As such, there 584 

are a variety of adhesives that have been used through the decades that need to be accounted for if 585 

scanned, and furthermore, the leaves of some specimens may contain multiple layers of different 586 

adhesives.  587 

Due to their potential for direct contamination of spectra, glue is the most significant 588 

contaminating source for herbarium spectra. Our study demonstrated a clear reduction in the probability 589 

of correct classifications when glue is present on the leaf (Figure 7B) and significant impact of glue on 590 

classification success (Table 4). We have tried and are aware of efforts to ‘unmix’ or ‘subtract’ the glue or 591 

paper spectra from the leaf using different spectral libraries of these contaminants, but thus far we are not 592 

aware of any solutions to isolate the leaf signal from a spectral profile that contains these extra materials. 593 

As detailed below, it is critical to standardize scanning backgrounds to ensure protocol consistency and 594 

data interoperability. 595 

After mounting, labels containing collection data and envelopes or ‘packets’ for loose tissues are 596 

attached to the sheets before specimens are stored in herbarium cabinets. Although large herbaria in the 597 

global north often maintain temperature and humidity controls, daily, seasonal, and annual humidity 598 

fluctuations remain a significant challenge worldwide, potentially accelerating specimen degradation.  599 

Sampling herbarium specimens 600 

When selecting specimens for sampling, researchers must choose among different herbarium specimens 601 

and then among different leaves. The selected leaves should be mature and free from biotic pathogens or 602 

contaminants (unless such factors are within the scope of the investigation), yet otherwise representative 603 

of the normal variation in the specimen (Fig. 2A). 604 
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 Our results on the age and greenness of the specimens might appear counterintuitive since these 605 

two variables are, intuitively, negatively correlated; younger specimens tend to retain more greenness, and 606 

green specimens are often assumed to represent better-preserved tissues. However, the relationship 607 

between age and greenness, and their combined effect on methodological success, is more complex. 608 

While DNA sequencing success – a methodology also reliant on tissue preservation – is frequently 609 

assumed to decline with age, studies frequently show weak or no correlation between specimen age and 610 

sequencing outcomes (Erkens et al., 2008; Forrest et al., 2019; White et al., 2021). Instead, specimen 611 

processing methods during the early stages of preservation appear to play a much more critical role in 612 

tissue preservation. 613 

Greenness, influenced by the presence of chlorophyll, has been shown to significantly affect 614 

optical properties, particularly in the visible spectrum. While green tissues may indicate good 615 

preservation, high chlorophyll concentrations in tissues can also mask other spectral features that might 616 

be more informative for downstream applications like functional trait prediction or classification 617 

modeling. The absence of chlorophyll, as seen in older or less green specimens, could enhance the 618 

detection of structural and biochemical features that are less visible in green leaves (Kothari et al. 2023). 619 

Thus, while greenness remains an important indicator of specimen preservation, its role in spectral data 620 

acquisition and prediction success may depend on the specific objectives of the study. 621 

Light transmitted through scanned leaves may reflect from the background (glue, paper, and even 622 

lab benches), which ‘contaminates’ the spectrum, resulting in erroneously high measurements of leaf 623 

reflectance. The degree of contamination depends on the optical thickness of the leaves, which governs 624 

how much light is transmitted. Our analysis identified a significant positive correlation of LMA with 625 

classification success, suggesting that thicker leaves that scatter more light perform better for prediction. 626 

We believe it is critical that researchers avoid such contamination by scanning leaves against a black 627 

background that absorbs nearly all transmitted light, which is currently being implemented through two 628 

different protocols (Fig. 2B). First, if the specimen has been sewn or taped, it may be possible to slide a 629 

thin black sheet between the attached leaf and the paper. Second, and preferable, herbarium specimens 630 

with loose leaves available in packets may be selected and those leaves checked for glue before being 631 

scanned in a leaf clip or against a black background.  632 

Selection of these black backgrounds is a critical component of standardization that is just now 633 

being evaluated experimentally. Researchers are currently using EVA foam and other black plastic 634 

(Flavia Durgante, pers. comm.), black card stock painted with Krylon® Camouflage Matte Black spray 635 

paint (Aaron Lee, pers. comm.), and SpectralBlack® foil (Samantha Bazan, Thomas Couvreur, pers. 636 

comm), plus the black backgrounds of manufacturer leaf clips for portable spectroradiometers (Malvern 637 
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Panalytical, Spectral Vista Corporation, Spectral Evolution). The identification and adoption of a 638 

universal background standard represents one of the most important objectives of protocol development. 639 

Instrumentation 640 

Beyond the tissues and backgrounds, instrumentation variables play a critical role in shaping spectral 641 

profiles, adding complexity to the use of herbaria for spectral data collection (Fig. 2B). A standard 642 

scanning protocol begins by allowing the instrument's light source to warm up and stabilize. During this 643 

time, researchers should record appropriate metadata, including a standardized filename reflecting the 644 

herbarium accession number. Once the instrument is ready, a white reference calibration standard is 645 

scanned to establish 100% reflectance across wavelengths. Regularly calibrating the instrument with a 646 

clean white reference standard for every specimen scanned ensures accuracy in reflectance calculations 647 

from radiance. With the calibration complete, the instrument is ready to scan the sample leaf tissue placed 648 

on a black background. 649 

Additional factors influencing spectral data quality include the sensitivity of fiber optics, the 650 

duration of scans, the geometry of the optical measurement setup (e.g. the angle of incidence) and the 651 

potential for light sources to heat and alter leaf properties during scanning. These factors can also change 652 

with leaf properties, such as highly rugose leaves or small, round leaves or needles. Variations in 653 

fiberoptic alignment or quality can impact the signal-to-noise ratio, requiring careful handling and regular 654 

replacement. Regular replacement of calibration standards and routine instrument maintenance, such as 655 

cleaning and recalibrating sensors, are essential to sustaining instrument performance. Users select 656 

integration time, during which instruments perform multiple rapid scans. Prolonged scanning times can 657 

improve signal quality but may introduce heat effects on the specimen, which must be avoided. 658 

Researchers may choose to process raw spectra with resampling and normalization or 659 

transformation using derivatives or continuous wavelet transforms (CWT) to standardize datasets from 660 

different instruments. We caution against band resampling at higher resolution than was measured by the 661 

instrument as this could introduce artificial data to the spectrum. In our study, we used 5 nm resampling 662 

for band spacing to harmonize the differences in spectral resolution between sensors (i.e., Spectral 663 

Evolution PSR+ and SVC HR-1024i) and reduce the number of correlated bands for predicting models. 664 

The raw, 1.4 nm bandwidths did return a higher overall accuracy of taxonomic classification. 665 

Researchers will also typically trim the 350–400 nm and 2,400–2,500 nm regions because they 666 

might have a lot of noise. Additionally, we further trimmed our data in later stages of analysis after 667 

noticing reflectance and VIP differences between herbarium datasets between the pressed and in the 400-668 

450 nm range. However, the raw spectral data should be archived so future users can choose and improve 669 

upon data preprocessing steps.  670 
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The success of data aggregation for herbarium spectral scans depends on the adoption of 671 

standardized protocols. To this end, we are actively collaborating with individuals from diverse 672 

institutions to establish robust and universally applicable methodologies for herbarium spectroscopy. 673 

These efforts aim to ensure consistency and reproducibility across studies, paving the way for expanded 674 

applications in plant biology and global ecology. 675 

Data aggregation 676 

The success of herbarium reflectance spectroscopy hinges on robust data aggregation practices that ensure 677 

consistency, interoperability, and accessibility across institutions (Fig. 2C). Metadata standardization is 678 

critical for harmonizing datasets, as it facilitates the integration of phenomic data with associated 679 

specimen metadata, such as taxonomy, collection locality, and ecological context. By adopting common 680 

metadata schemas and persistent identifiers (DOIs), researchers can link spectral data directly to digital 681 

databases, fostering seamless collaboration and data reuse. Experience gained from successful protocol 682 

standardization and data aggregation initiatives (e.g. Darwin Core and iDigBio; Wieczorek et al., 2012; 683 

Soltis, 2017) can be leveraged to implement a strategy for herbarium spectroscopic data.  684 

The development of cyberinfrastructure has been pivotal in enabling large-scale aggregation of 685 

spectral data. Platforms like iDigBio and GBIF provide centralized repositories for biodiversity data, but 686 

dedicated cyberinfrastructure for spectral datasets, integrated with existing platforms, will be essential for 687 

advancing collections-based research. These systems should support real-time synchronization of 688 

available data from herbarium institutions, cross-referencing, and retrieval for global accessibility. Any 689 

dedicated spectral cyberinfrastructure platforms will require Application Programming Interfaces (APIs) 690 

to enable researchers to query, retrieve, and contribute spectral datasets programmatically; facilitating the 691 

large-scale synthesis of data. Existing cyberinfrastructure developed specifically for spectral data and 692 

models, such as EcoSis and EcoSML (Wagner et al., 2019), can be leveraged for herbarium data or used 693 

as models for developing new infrastructure.  694 

Ensuring data quality controls is another foundational aspect of data aggregation. These controls 695 

include rigorous preprocessing of spectral datasets (e.g., noise removal, calibration) and standardization 696 

of scanning protocols to maintain the highest possible consistency across instruments, collections, and 697 

institutions. Routine validation processes will ensure that aggregated data meet the necessary standards 698 

for reproducibility and analysis. Finally, the implementation of analysis engines capable of handling high-699 

dimensional datasets will be transformative. These engines should integrate spectral data with 700 

complementary datasets, such as genomic or spatial data, and provide tools for advanced modeling and 701 

visualization. Open-source analysis platforms with user-friendly interfaces will democratize access to 702 

these tools and foster collaboration across disciplines.  703 
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Scaling herbarium reflectance spectroscopy 704 

As we consider the broader utility of herbarium specimens for estimating traits, the successful transfer of 705 

pressed-leaf models onto herbarium spectra offers a powerful method for reconstructing traits as they 706 

would have existed in vivo. This approach not only enhances the ecological relevance of trait predictions 707 

from herbarium specimens but also circumvents the need for destructive sampling of these invaluable 708 

collections. By preserving specimen integrity, reflectance spectroscopy provides a non-destructive, 709 

scalable, and integrative methodology for linking historical plant traits to modern ecological and 710 

evolutionary studies (Costa et al. 2018; Kothari et al. 2023). 711 

Advancing collections-based spectroscopy for plant biology and global ecology is increasingly 712 

critical, particularly given the current vulnerabilities faced by herbaria and collection facilities. Despite 713 

their pivotal role in biodiversity research, herbaria often face devaluation and threats of closure (Thiers, 714 

2024; Davis, 2024). At the same time, advances in digital technologies and biological data networks are 715 

unlocking unprecedented opportunities for their use (Meineke et al., 2018; Lang et al., 2019; Hedrick et 716 

al., 2020; Bakker et al., 2020; Heberling, 2022; Davis, 2023). Over the past fifteen years, targeted funding 717 

initiatives, such as those supported by the U.S. National Science Foundation, have facilitated the creation 718 

of comprehensive digital databases containing specimen images, metadata, and extended datasets like 719 

DNA sequences (Soltis, 2017). Platforms like iDigBio and GBIF now aggregate these resources into a 720 

global "Metaherbarium"—an integrated digital repository of plant diversity and distributions (Davis, 721 

2023). This Metaherbarium is already driving transformative, global-scale research in biodiversity, 722 

ecology, and evolution, offering fresh insights into how plant life responds to environmental change 723 

(Meineke et al., 2018; Davis, 2023). 724 

As the momentum for leveraging collections continues to grow, the balance between innovative 725 

use and long-term preservation becomes increasingly vital (Davis et al., 2024). The non-destructive 726 

nature of reflectance spectroscopy aligns perfectly with this goal. Spectral data files can be seamlessly 727 

integrated into digital specimen databases through persistent identifiers, linking these phenomic datasets 728 

directly to physical specimens and their associated metadata. By avoiding physical alteration, reflectance 729 

spectroscopy ensures the continued preservation of herbarium specimens for future research. 730 

While functional trait prediction and taxonomic classification remain the most well-established 731 

applications of spectral reflectance, the future promises exciting new integrations with complementary 732 

datasets. In particular, the merging of spectral libraries with genomic, phenotypic, and spatial datasets 733 

offers unprecedented opportunities for addressing ecological and evolutionary questions. For example, 734 

these integrated datasets could facilitate species delimitation or provide novel insights into community 735 

assembly and functional biogeography. The combination of spectral reflectance libraries with "omics" 736 

and other synthetic datasets holds tremendous potential for generating new inferences about plant 737 

https://www.zotero.org/google-docs/?Pdk3ed
https://www.zotero.org/google-docs/?Pdk3ed
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?t9OHp4
https://www.zotero.org/google-docs/?mtUomS
https://www.zotero.org/google-docs/?mcFwSp
https://www.zotero.org/google-docs/?mcFwSp
https://www.zotero.org/google-docs/?xQEsmm
https://www.zotero.org/google-docs/?xQEsmm
https://www.zotero.org/google-docs/?xQEsmm
https://www.zotero.org/google-docs/?WhgSrU
https://www.zotero.org/google-docs/?WhgSrU
https://www.zotero.org/google-docs/?WhgSrU


 

36 

diversity, distributions, and functional traits across temporal and spatial scales (Cavender-Bares et al., 738 

2017; Davis, 2023). Such advancements will continue to transform biodiversity science, bridging 739 

historical collections with cutting-edge methodologies to address the pressing ecological and evolutionary 740 

questions of our time.  741 
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