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1. Abstract 15 

Hundreds of thousands of peer-reviewed articles and grey literature reports are published every 16 

year in ecology and conservation biology. This ever-growing body of knowledge presents new 17 

challenges. Indeed, it is becoming increasingly challenging for researchers to stay current on new 18 

information and to identify knowledge gaps. Here, we argue that Large Language Models (LLMs) 19 

such as OpenAI’s GPT-4o mini offer a powerful yet accessible solution to help overcome this 20 

challenge, as LLMs require only effective prompt engineering rather than specialized AI expertise. 21 

We present a streamlined LLM-driven pipeline for filtering and extracting information from large 22 

volumes of literature, illustrating its potential through two case studies. Our findings show that, by 23 

combining LLMs with short, iterative prompting workflows and targeted manual validation checks, 24 

researchers can rapidly obtain structured outputs—such as study locations, biome types, or 25 

quantitative measures—while minimizing model hallucinations and misinterpretations. We 26 

emphasize that domain experts remain integral for shaping prompts, verifying results, and 27 

ensuring the extracted information aligns with real-world research and conservation needs. 28 

Overall, this pipeline underscores the synergy between human expertise and LLM capabilities, 29 

promising more efficient literature reviews for a broad range of ecological and conservation 30 

applications. 31 

Key-words: large language models, literature review, prompt engineering, information extraction, 32 

evidence synthesis, research gaps and trends  33 



2. Introduction 34 

Ecology and conservation science are data-driven disciplines that rely on synthesizing research 35 

across diverse fields to shape management and policy decisions. Researchers in both disciplines 36 

are very active, producing high volumes of peer-reviewed articles, technical reports, and grey 37 

literature that continue to grow exponentially each year. In the last decade there has been a two-38 

fold increase in the number of peer-reviewed publications per year just in ecology (from Web of 39 

Science). These efforts can allow us to better address challenges caused by habitat loss, 40 

ecosystem degradation, climate change, invasive species and other threats. But there is a dark 41 

side to such high productivity: keeping up with it all. Traditional literature reviews often struggle to 42 

keep pace with the proliferation of studies (Tsertsvadze et al. 2015; Qureshi et al. 2023). As a 43 

result, an inadvertent consequence of such exponential increase is that keeping track of the 44 

scientific advancements and gaps in ecology and conservation science is becoming more 45 

challenging.  46 

Large Language Models (LLMs) such as openAI’s GPT models, Meta’s llama, etc. are 47 

increasingly recognized for their potential to revolutionize the literature review process in ecology 48 

(Gougherty and Clipp 2024; Castro et al. 2024), conservation (Reynolds et al. 2024) and other 49 

research fields. ChatGPT and its use in academia has been at the centre of an active debate 50 

regarding the ethics of its usage since its launch, in 2022. This debate has predominantly focused 51 

on its use in academic writing (Johnson et al. 2024), coding (Cooper et al. 2024), education 52 

(Extance 2023), and its energy and water consumption (Ren et al. 2024). In the meantime, 53 

context-based information retrieval has long been a core pursuit in AI (Coutaz et al. 2005). LLMs 54 

now streamline this process by inferring information that may not be explicitly stated in the text. 55 

Although the medical and clinical sciences have made strides in using LLMs or specialized 56 

Natural Language Processing (NLP) pipelines for systematic reviews and rapid meta-analyses 57 
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(Huang et al. 2024; Sacoransky, Kwan, and Soboleski 2024; Idnay et al. 2021), ecology and 58 

conservation research has only begun to explore these possibilities. Recent publications have 59 

highlighted tools such as ChatGPT (primarily for summarizing) and AI-enabled research assistant 60 

software like Elicit (Whitfield and Hofmann 2023) (for semi-automated data extraction) that could 61 

enable efficient synthesis of existing literature in conservation contexts (Berger-Tal et al. 2024; 62 

Reynolds et al. 2024). Furthermore, while tools like Elicit harness underlying LLM technologies 63 

(including OpenAI’s GPT models), there remains a notable gap in practical, consensus-driven 64 

guidelines for applying LLMs to literature reviews in ecology and conservation. Some recent 65 

ecological studies already report that simple data extraction tasks, such as identifying a study’s 66 

location, can exceed 90% accuracy using LLM-based approaches (Gougherty and Clipp 2024; 67 

Castro et al. 2024). However, these efforts have largely focused on relatively straightforward 68 

extractions. Here, we go beyond location-level extractions to demonstrate how LLMs can also 69 

extract and interpret more complex, context-based information — an area where robust prompting 70 

guidelines and domain-expert oversight become essential. Here, we offer concrete strategies to 71 

help researchers effectively incorporate LLMs into their review workflows. 72 

We introduce a streamlined, LLM-enabled pipeline for efficient literature reviews in ecology and 73 

conservation science. Importantly, our pipeline is complete with practical prompting guidelines 74 

and reusable code that non-AI experts can readily adopt. We demonstrate the pipeline using 75 

OpenAI's GPT-4o mini model, chosen for its popularity and widespread adoption, using two 76 

literature review case studies with different objectives: one on uncovering patterns in autonomous 77 

ecosystem monitoring (e.g., drones, ground or underwater robots) and another on evidence 78 

synthesis for protected-area effectiveness. By setting the model’s temperature parameter to zero, 79 

a feature found in all major LLMs, we ensure more deterministic outputs, minimizing variability 80 

across repeated runs (Peeperkorn et al. 2024). We focus in particular on automating two key time-81 

consuming tasks in any systematic literature review: (1) Filtering relevant publications after they 82 
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have been gathered from conventional or AI-based literature-search tools (e.g., Elicit, Web of 83 

Science), and (2) Extracting both qualitative and quantitative data from location or taxa to specific 84 

effect sizes used in meta-analyses. Through these two detailed case studies, we illustrate how 85 

researchers can apply our pipeline and guidelines to enhance their review workflows without 86 

needing specialized AI expertise. We further discuss common pitfalls, highlighting that careful 87 

design of prompts and domain-expert oversight can overcome many of the known limitations of 88 

LLMs. While specific coding implementations and libraries may change depending on the choice 89 

of the LLM, the pipeline is designed to be adaptable and applicable to any LLM beyond the 90 

demonstrated OpenAI’s GPT-4o mini, such as Meta’s Llama and Google’s gemini, etc. In addition, 91 

we provide all the final prompts and the code used to run the LLM in the supplementary materials 92 

for transparency and reproducibility.  93 

3. Literature review pipeline and LLM integration 94 

A typical literature review pipeline in ecology or conservation often follows these major steps: (1) 95 

Defining the objective or research question. For illustration, here we explore two case studies: 96 

(Case 1) ”What is the state-of-the-art of drones and autonomous robots in monitoring 97 

biodiversity?”, and (Case 2) “Are terrestrial protected areas effective in increasing species 98 

richness or abundance compared to unprotected areas?” (2) Searching/collecting publications – 99 

using databases like Web of Science, Scopus, or Elicit (Whitfield and Hofmann 2023) (3) 100 

Screening and filtering – deciding which studies are relevant for your review’s objectives (4) Data 101 

extraction – gathering key information from each selected study (e.g., location, ecosystem type, 102 

effect sizes, outcomes). The extracted data is then summarised for qualitative literature reviews 103 

or quantitatively analysed when the goal is a meta-analysis, highlighting implications for future 104 

research directions, policy, or management.  105 

https://paperpile.com/c/CZz1dI/b7Wu


While LLMs can play a major role in searching and collecting the relevant publications (Berger-106 

Tal et al. 2024), here we demonstrate how LLMs can also be seamlessly integrated into the 107 

traditional literature review pipeline for filtering (step 3) and extracting data from the literature (step 108 

4) (Figure 1).  109 

● Filtering: After obtaining a corpus of papers, LLMs can help quick determination of whether 110 

each paper meets the inclusion criteria for the literature survey. 111 

● Data extraction: LLMs can enable the automatic extraction of simple metadata (e.g., 112 

region of study) or more complex information (e.g., effect sizes, sampling design)  113 

While LLMs are not a substitute for domain expertise, we argue that LLMs have the potential to 114 

accelerate routine tasks with minimal expert supervision. Domain experts in ecology and 115 

conservation biology remain in charge of crafting the prompts and validating the model responses, 116 

especially when extracting nuanced or specialized data (Reynolds et al. 2024), as we will highlight 117 

below in our case studies. As such, the AI landscape has evolved in a direction where we now do 118 

not need AI experts to use AI; rather, we need domain experts to instruct these systems 119 

effectively. We enlist the following steps to ensure quality control and mitigate potential biases or 120 

inaccuracies when integrating LLMs into the literature review pipeline: 121 

● Random checks: Randomly select a portion of the LLM-generated outputs (e.g., 10%) for 122 

manual verification and calculate the accuracy of your LLM responses on this subset.  123 

● Iterative prompt refinement: Since LLM’s responses rely heavily on the prompts provided, 124 

if your manual validation checks reveal recurring issues or systematic errors such as 125 

misunderstood terms, overlooked taxa, etc., revise your prompt accordingly. Repeat the 126 

random checks and prompt refinement until you arrive at your desired outcome. In our 127 

case, we stopped refining the prompt when subsequent prompt refinements no longer 128 

resulted in significant improvements in accuracy. 129 

https://paperpile.com/c/CZz1dI/JyRb
https://paperpile.com/c/CZz1dI/JyRb
https://paperpile.com/c/CZz1dI/GNc1


 130 

Figure 1: Overview of our Large Language Model (LLM)-powered literature review 131 

pipeline to synthesize knowledge and seek gaps of knowledge in ecology and 132 

conservation biology. After collecting publications via conventional or AI-based 133 

databases (e.g., Web of Science, Elicit), relevant articles are filtered (with or without LLM) 134 

before the LLM extracts key information (e.g., study location, effect sizes). An iterative 135 

feedback loop — with random validation checks and prompt refinements — ensures 136 

accuracy and results in a structured final dataset for further analyses. 137 

4. Case Study 1: Uncovering research trends in autonomous 138 

biodiversity monitoring 139 

As new technologies like drones and other uncrewed robots proliferate, researchers seek to 140 

understand how these tools are used for monitoring ecosystems (Qi et al. 2025). Rather than 141 

manually reading hundreds of abstracts, an LLM can rapidly classify and summarize the focus of 142 

each study, highlighting the gaps and trends in the field of autonomous ecosystem monitoring. 143 

https://paperpile.com/c/CZz1dI/YVY8


Here, our goal was to explore how LLMs can extract categorical data from studies using robots 144 

to monitor ecosystems. To that end, we used traditional keyword-based searches to gather 1154 145 

abstracts on drone or robot usage in ecosystem monitoring. The detailed search string and 146 

publication selection criterion is explained in Qi et. al., (Qi et al. 2025). We then randomly selected 147 

225 abstracts to validate our LLM-based information retrieval pipeline. We specifically tested 148 

OpenAI’s GPT-4o mini model on the abstracts of 225 publications describing novel applications 149 

of autonomous monitoring of ecosystems. Given that all 225 abstracts mention drone or robot-150 

based monitoring, we did not apply LLM-based filtering for this objective. We then designed 151 

prompts asking GPT-4o mini to extract (1) the country of the study (2) the biome in which the 152 

study was conducted (e.g., forests, savannahs), and (3) the taxonomic kingdom monitored by the 153 

autonomous system (e.g., animal, plant). We sorted the target information into three levels of 154 

extraction difficulty—easy, moderate, and complex: 155 

1. Easy – Explicitly stated details, such as the country or region where drones/robots were 156 

deployed. 157 

2. Moderate – Implicit but easily inferred details, such as the biome where drones/robots 158 

were deployed. 159 

3. Complex – Context-based inferences requiring careful prompts, such as distinguishing the 160 

organism of primary interest from the organism actually monitored by drones/robots. 161 

We applied a straightforward prompt design on all 225 abstracts, then evaluated the performance 162 

of the LLM by manually validating the LLM’s outputs for a set of 40 randomly selected abstracts. 163 

We identified a few systematic issues via this validation step, which we then improved by 164 

iteratively refining the prompts. 165 

(1) Inconsistent model outputs complicate analysis: For instance, without explicitly specifying 166 

the expected output format, the model may generate different terms for the same category 167 

https://paperpile.com/c/CZz1dI/YVY8


across abstracts. For countries, explicitly asking to respond with the standardized ISO3 168 

codes in prompts (e.g., "USA" for the United States of America) can prevent 169 

inconsistencies, such as generating "United States" as response for one abstract and 170 

"United States of America" for another.  171 

(2) Lack of granularity causes ambiguity: Another issue related to inconsistent model outputs 172 

is the lack of specification of predefined labels for certain categorical data. For instance, if 173 

the abstracts involve monitoring tropical forests, a lack of clear guidance may result in the 174 

model outputting varying labels such as "forests" or "tropical forests," even though they 175 

refer to the same biome. This ambiguity underscores the importance of domain experts or 176 

researchers defining the level of granularity required for their specific use case. By 177 

providing a predefined list of acceptable labels (Figure 2b), and iteratively refining them if 178 

needed, users can ensure uniformity and reduce ambiguity in the outputs. 179 

(3) Vague prompts lead to wrong inferences: For instance, the initial prompt designed for 180 

identifying the taxonomic kingdom directly monitored by drones/robots was vague, such 181 

that it inadvertently conflated the primary study organism with the organism monitored by 182 

drones/robots. An example of this accidental conflation in our set of 225 publications 183 

occurred for a study (Proudfoot et al. 2023) where the authors examined how fish diversity 184 

is influenced by eelgrass meadows. The authors used drones to monitor eelgrass meadow 185 

structure, not the fish, although the latter was often identified as the monitored taxonomic 186 

group by the LLM. We refined the prompt by adding disclaimers and explicitly instructing 187 

the model to avoid conflating the different organisms (see Fig 2b). Additionally, asking the 188 

model to justify its responses helped us identify the reasoning behind specific outputs, 189 

enabling targeted refinements to the prompt and addressing systematic issues effectively.  190 

Once iterative refinements no longer resulted in additional improvements in the 40 randomly 191 

selected subset of abstracts, we evaluated the accuracy of the final prompt on all 225 abstracts. 192 

https://paperpile.com/c/CZz1dI/F0dp


To extract country of study location from the abstracts, OpenAI’s 4o-mini model performed with a 193 

high accuracy of 97%, which is in agreement with the performance of LLMs as reported by other 194 

recent studies (Castro et al. 2024; Gougherty and Clipp 2024). Traditional Natural Language 195 

Processing (NLP) models are most often used for extracting named entities like country or city 196 

names from unstructured text (Mohit 2014). When compared to LLMs, in our case study, 197 

traditional NLP models like Python's spaCy achieved an accuracy of 63% for the same task. 198 

LLMs, which are recent deep learning-based advanced models in the field of NLP (Farrell et al. 199 

2024), have a significant advantage over traditional NLP models like Python's spaCy for extracting 200 

the names of the study locations i.e. countries. While spaCy relies on country or city names being 201 

explicitly mentioned in the original source, so they can be recognized by named entity recognition 202 

(Vasiliev 2020), LLMs can infer countries from indirect location references (Lin et al. 2024), such 203 

as nature reserves or regional landmarks. For example, in our case study, a paper with the 204 

statement "The occurrence of a peculiar phenomenon called soil balls was observed in Dingbian 205 

County, northern Loess Plateau,(Yang et al. 2023)"  LLM inferred "China," whereas spaCy did 206 

not. Similarly, although the biome was not explicitly stated in a study about blue whale foraging 207 

(Torres et al. 2020), GPT-4o mini successfully inferred the study corresponds to “marine”, based 208 

on contextual clues present in the abstract. In fact, the accuracy achieved for extracting biomes 209 

in our case study by GPT-4o mini was 80%. In the case of complex-context-based inference, we 210 

evaluated GPT-4o mini’s ability to differentiate between the primary study organism and the 211 

organism monitored by the drones/robots. Through creative prompting (Fig 2), our pipeline 212 

achieved an overall accuracy of 81% with the 4o-mini model.  213 

The performance of GPT against our expert-validated data in this case study demonstrates how 214 

LLMs can successfully categorize large sets of abstracts effectively. In turn, this approach could 215 

offer ecological researchers a broad overview of trends, biases and potential knowledge gaps 216 

(e.g., which geographic regions are most and least represented respectively). 217 

https://paperpile.com/c/CZz1dI/KBL2+Pvy0
https://paperpile.com/c/CZz1dI/Te0s
https://paperpile.com/c/CZz1dI/SHaj
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5. Case Study 2: Evidence synthesis for terrestrial protected areas 218 

Terrestrial protected areas are among the most widely used and longstanding conservation 219 

strategies worldwide, designed to safeguard biodiversity, preserve critical habitats, and maintain 220 

ecosystem functions in the face of habitat loss and other anthropogenic threats (McNeely 1994). 221 

As a result, understanding the effectiveness of protected areas in enhancing species richness or 222 

abundance compared to unprotected sites is of crucial importance as it directly informs policy 223 

decisions, resource allocation, and future conservation planning on a global scale. In this case 224 

study, we demonstrate the potential of LLMs to aid various stages of evidence synthesis, including 225 

filtering relevant studies and extracting complex quantitative data for meta-analyses. Building on 226 

the non-quantitative extraction capabilities showcased in Case Study 1, we next examine the 227 

synthetic evidence for how effective terrestrial protected areas are at enhancing species richness 228 

or abundance. 229 

Evidence syntheses and meta-analyses require robust quantitative comparisons (e.g., effect and 230 

sample sizes) across multiple studies. While AI-based tools like Elicit or conventional search 231 

engines like Web of Science can retrieve numerous publications, not all publications meet the 232 

criteria for quantitative synthesis. We used the top ten most relevant open-access articles (as 233 

ranked by Elicit) discussing terrestrial protected areas and biodiversity. We then crafted a prompt 234 

asking GPT-4o mini to determine whether each paper quantitatively compared protected and non-235 

protected areas measuring species richness or abundance. The LLM provided “yes/no” answers 236 

with justification in a structured (JSON) format.  237 

From the subset of relevant articles, we tasked GPT-4o mini with extracting: 238 

1. The effect size metric (e.g., Cohen’s d, log response ratio). 239 

2. The numeric value and confidence interval (or standard error). 240 

3. What the effect size specifically represents (e.g., species abundance, species richness). 241 

https://paperpile.com/c/CZz1dI/SKiG


Eight of the ten top ranked publications by Elicit met the criteria for the quantitative meta-analysis. 242 

Simple presence/absence checks were highly reliable with all relevant publications correctly 243 

identified. However, extracting numeric effect sizes proved challenging due to the diverse ways 244 

they are reported. 245 

Extracting effect sizes from full-text studies posed two consistent issues: (1) misidentifying non-246 

standard metrics (e.g., model interactions) as effect sizes, and (2) overlooking one or more 247 

relevant effect sizes when multiple comparisons were reported in the same document. For 248 

instance, in one study, the LLM incorrectly flagged an interaction term as a standardized effect 249 

size (Lehikoinen et al. 2019), while in another, it missed several effect-size measures altogether 250 

(Cazalis et al. 2020). We addressed these problems by iteratively refining our prompts and 251 

requesting standardized outputs by explicitly specifying the type of acceptable effect size metrics 252 

such as Hedge’s g or log response ratios and by providing few-shot examples, e.g., “Hedge’s g = 253 

0.65, 95% CI [0.45, 0.85]” (see Supplementary Figure S1 for more details on few-shot prompting 254 

style) . This approach significantly reduced errors and inconsistencies, guiding the LLM to ignore 255 

regression interactions and search carefully for real effect sizes within the same text. However, 256 

domain experts play a crucial role in defining the criteria for extracting effect sizes from studies, 257 

as they are best positioned to determine what is relevant for their analysis. For example, experts 258 

need to decide whether percentage differences in effectiveness are acceptable as effect sizes or 259 

if specific standardized metrics are required (Kallogjeri and Piccirillo 2023). In publications where 260 

numerous effect-size metrics are scattered throughout long or complex result sections, occasional 261 

omissions may persist. This reinforces the need for human validation and domain-expert oversight 262 

in large-scale evidence syntheses (Gougherty and Clipp 2024). One suitable way to minimize 263 

these omissions is to split the large results sections of publications into smaller segments of fixed 264 

size (e.g. 500 words) (Arefeen, Debnath, and Chakradhar 2024). Importantly, we found that 265 

asking the LLM to justify its responses helps identify the reasoning behind specific outputs. Once 266 

https://paperpile.com/c/CZz1dI/zDrC
https://paperpile.com/c/CZz1dI/z2Og
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effect size data were validated, we could quickly compile them into a spreadsheet for meta-267 

analytic calculations. This points to a scalable approach for large-scale evidence syntheses in 268 

conservation. 269 

6. Prompting guidelines and best practices 270 

The perfect prompt does not exist. By embracing this reality, domain experts (e.g., ecologists, 271 

conservation biologists, etc.) aiming to use LLMs to extract information from high volumes of 272 

sources can view effective prompting as a continuous, iterative process. Based on our case 273 

studies above, here we summarize a series of prompting guidelines that have consistently proven 274 

useful in achieving highly accurate extractions of data from published literature. These principles 275 

focus on structuring the model instructions, specifying acceptable outputs, and demanding 276 

justification from the model, helping you to build trust in the LLM-assisted workflow. 277 

1. System prompts: Some LLM interfaces let the user set a “system” prompt that defines the 278 

model’s role and constraints. An example system prompt used in our case studies: “You 279 

are an ecological research assistant specifically focused on extracting information from 280 

scientific text. Do not fabricate data.” This system prompt helps maintain consistency and 281 

reduce confusion as you iterate on user prompts. 282 

2. Delimit the prompt: Create clear and structured prompts by using delimiters, breaking 283 

down complex requests into manageable steps. For instance, we provided step-by-step 284 

instructions in our prompts when tasking the model with extracting the data, as can be 285 

seen in Figure 2b. 286 

3. Be explicit: Avoid ambiguity by asking for specific output formats (Entity 1 of Step 2 in 287 

Figure 2b) or predefined labels for categorical data where possible (Entities 2 and 3 of 288 

Step 2 in Figure 2b). Provide explicit instructions. Ask the model to explicitly check for 289 



relevant information before generating a response from a given source (for instance, 290 

scientific content in our case study, Step 3 in Figure 2b).  291 

4. Diversify your prompt: Utilize various prompting styles to explore different outputs, 292 

including: 293 

○ Zero-shot prompting: Pose a question or task without providing examples, allowing 294 

the model to generate a response based solely on its training (Figure 2a).  295 

○ Few-shot prompting: Provide a few examples of desired inputs and outputs to 296 

guide the model toward generating relevant responses (Supplementary Figure 297 

S1). 298 

○ Chain-of-thought prompting: Encourage the model to think through a problem step-299 

by-step, enhancing reasoning and producing more thorough answers (Entity 3 of 300 

Step 2 in Figure 2b). 301 

5. Demand justification: Request justification for the model's responses, including evidence 302 

to support its claims (“Comment” key in Step 4).  303 

6. Request structured output: Whenever possible for easier post-processing of the model’s 304 

responses, ask for structured output in JSON format (Step 4). OpenAI’s recent model 305 

releases (gpt-4o model from 2024-08-06) ensures the output follows JSON schema if 306 

requested. JSON (JavaScript Object Notation) is a lightweight data interchange format 307 

that is commonly used to represent structured data in a key-value pair format.  308 



 309 



 310 



Figure 2. Illustration of incorporating our proposed guidelines in crafting effective prompts 311 

for extracting data from scientific studies (a) Initial prompt for extracting country, biome, and 312 

kingdom information from an abstract. Although straightforward, the prompt lacks explicit 313 

instructions on acceptable outputs (e.g., standardized country codes) and precision in defining 314 

possible biome categories, leading to inconsistent or ambiguous results. (b) Refined prompt 315 

incorporating the guidelines: a clearly defined system role, step-by-step instructions, standardized 316 

outputs (ISO3 for countries, predefined biome list), structured JSON formatting, and justification 317 

requests. This structured approach substantially improves the accuracy and consistency of the 318 

extracted data. 319 

To highlight the effectiveness of iterative prompt refinement, we showcase how various prompting 320 

guidelines—such as the use of delimiters, explicit instructions, step-by-step breakdowns, 321 

justification requests, and structured JSON outputs—achieved the desired outcome compared to 322 

an initial novice prompt when applied to a complex abstract (Fig. 2). Among the prompting styles, 323 

chain-of-thought prompting, where we explicitly guide the model through our thought process, 324 

proved most effective for extracting complex context-based information (e.g., the kingdom of 325 

organisms) from this example, as illustrated in Figure 2b. This approach demonstrates how 326 

guiding the model through reasoning steps enhances its ability to process complex requests. 327 

Nevertheless, the number of iterations required for prompt refinement before reaching the desired 328 

outcome is inherently difficult to quantify, as it depends on the complexity of the problem and the 329 

user’s experience. However, by following the prompting guidelines outlined in this study, 330 

ecologists can begin with a stronger foundation, minimizing the number of iterations needed to 331 

reach their desired results. 332 

 333 



7. Discussion 334 

Large Language Models (LLMs) such as GPT-4o mini offer an accessible way to perform literature 335 

reviews in ecology and conservation with minimal infrastructure, requiring only effective prompt 336 

design. Moreover, these methods are readily adaptable to a wide range of other scientific fields 337 

wherever large volumes of literature need efficient synthesis. The capacity of LLMs to parse 338 

hundreds of thousands of publications has important ramifications for identifying geographical or 339 

taxonomic mismatches in ecological and conservation research. For example, Lin et al. (Lin et al. 340 

2024) recently analyzed over 100,000 published papers using OpenAI’s GPT-3.5 Turbo and found 341 

a significant mismatch between the geographical distribution of wildfire research and actual 342 

satellite-derived wildfire locations. Such disparities between conservation research efforts and 343 

real-world conservation priorities are often difficult to uncover, especially when individual 344 

researchers focus on a limited set of species or study areas (Gaulke et al. 2019). In contrast, 345 

using LLMs to extract categorical data from vast swaths of literature can help pinpoint where 346 

additional research or on-the-ground interventions are most urgently needed. Nevertheless, 347 

extracting more complex quantitative information, such as multiple effect sizes buried in long 348 

results sections, can remain challenging and may require further prompt refinement, splitting the 349 

sections into smaller segments and domain-expert oversight. 350 

LLMs prioritize the expertise of researchers with local domain knowledge over the need for AI 351 

specialists. By enabling researchers anywhere—including in regions with limited computing 352 

resources—to run powerful models on their local computers, these generalist LLMs help lessen 353 

global scientific inequity, wherein data processing traditionally occurs in well-funded Global North 354 

institutions (Reynolds et al. 2024). LLMs also support multilingual workflows, allowing local-355 

language publications and indigenous knowledge to be integrated more seamlessly than ever 356 

before. Although GPT-4o mini is a lightweight (lesser model complexity), cheaper, and faster 357 

https://paperpile.com/c/CZz1dI/kSjR
https://paperpile.com/c/CZz1dI/kSjR
https://paperpile.com/c/CZz1dI/U73R
https://paperpile.com/c/CZz1dI/GNc1


variant of advanced LLMs, its performance and accuracy continue to improve as these models 358 

evolve. Specifically, processing 100,000 abstracts (approximately 500 words each) with the 359 

4omini model only requires $10, thus significantly enhancing cost efficiency for researchers. In 360 

contrast, AI-enabled software Elicit allows data extraction from only 1,200 publications per year 361 

and further restricts users to extracting just 20 different data types, even with its pro model costing 362 

$500 annually (https://support.elicit.com/en/articles/471617). These constraints may limit its utility 363 

for large-scale, cost-effective literature reviews in any domain. 364 

Despite their promise, larger LLMs come with significant computational and environmental costs 365 

(Alzoubi and Mishra 2024). These costs may underscore the value of developing smaller, domain-366 

specific models in tandem with AI specialists (Reynolds et al. 2024). Meanwhile, hallucinations 367 

remain a risk in generalist models, though tasks centred on extracting information from given 368 

sources are inherently less prone to invented data (Mittelstadt, Wachter, and Russell 2023). Our 369 

case studies illustrate how prompts can be fine-tuned to further mitigate these concerns. This 370 

action can be achieved with explicit system messages and carefully structured user instructions 371 

(Figure. 2b). By combining short, iterative prompting workflows with expert oversight, local 372 

researchers can kick-start the use of LLMs responsibly—gaining exposure to AI-driven reviews 373 

while retaining the option to co-create more specialized, eco-friendly models as needs evolve 374 

(Farrell et al. 2024). 375 

8. Conclusion 376 

Large Language Models (LLMs) offer a promising approach to scaling literature reviews in 377 

ecology and conservation. From rapid filtering and classification to extracting structured 378 

quantitative and qualitative data, LLMs can address the bottlenecks posed by vast and ever-379 

expanding scientific literature. Our two case studies highlight the variety of objectives that can 380 

benefit from AI-driven pipelines, including uncovering trends and performing evidence synthesis 381 

https://paperpile.com/c/CZz1dI/yx2f
https://paperpile.com/c/CZz1dI/GNc1
https://paperpile.com/c/CZz1dI/Lk8D
https://paperpile.com/c/CZz1dI/SHaj


for meta-analysis. Thus, rather than replacing human reviewers, we argue that LLMs can 382 

effectively serve as powerful assistants that lighten the burden of large-scale reviews, free up time 383 

for deeper scientific reasoning and synthesis, and expand the scope of evidence considered, 384 

including multiple languages and grey literature (Reynolds et al. 2024). Yet, LLMs are not a 385 

panacea; they must be deployed with robust prompt engineering, strategic checks on accuracy, 386 

and domain-expert oversight. In this way, ecologists and conservation practitioners can embrace 387 

the utility of advanced AI tools without sacrificing rigour or relevance. By following best practices—388 

such as structured output, iterative prompting, and random validation checks—we can harness 389 

the unprecedented scale and speed of LLMs to advance ecological research and conservation 390 

outcomes more efficiently. 391 

  392 
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 520 

1. Different prompting styles with examples 521 

 522 

Figure S1. Illustration of different prompting styles in action for identifying the organisms 523 

monitored by drones in an ecosystem from the abstract of the study (Proudfoot et al. 2023). 524 

https://paperpile.com/c/CZz1dI/F0dp


2. Final prompts 525 

2.1. Case Study 1: Uncovering Research Trends in 526 

Autonomous Biodiversity Monitoring 527 

 528 

System prompt 529 

You are a research assistant specialized in ecology. You carefully read the text you are given, 530 

extract the requested information from the text and you only respond in JSON format as 531 

instructed. You never make up data that is not present in the text. 532 

User prompt 533 

Extract information from the abstract on the application of drones or robots or UAVs to study 534 

any organisms and/or the environment. Your task is to perform the following actions: 535 

1. Read the content of the abstract in its entirety  536 

2. Specifically, extract the structured information on the following entities from the abstract:  537 

   Entity 1 - Country: Identify and return the standardized ISO3 names of the countries where the 538 

study was conducted. Only include countries where the study locations or water bodies studied 539 

are located. Do not include countries mentioned in the text that are not directly related to the 540 

study location.  541 

   Entity 2 - Biomes: Identify the biomes of the study. Check if the biomes belong to the following 542 

categories: Forests, Shrublands, Grasslands, Savannas, Mangroves, Wetlands, Coastal, Coral 543 

reef, Marine. Wetlands refers to all terrestrial water-logged ecosystems including peats, 544 

swamps, lakes, rivers and streams. Arid deserts should be classified as "NA" and semi-arid 545 

desert shrublands should be classified as "Shrublands". Coastal refers to the coastal 546 

ecosystems like delta, intertidal zones, coastal aquaculture, sea grass communities, estuarine, 547 

tidal marshes, lagoons, rocky shores. RETURN "NA" FOR BIOMES OTHER THAN Forests or 548 



Shrublands or Grasslands or Savannas or Mangroves or Wetlands or Coastal or Coral reef or 549 

Marine. 550 

   Entity 3 - Kingdom: Identify the study organisms monitored by drones in the abstract. Return 551 

the kingdoms the organisms belong to. The values for this key should be one of those within the 552 

square brackets: ["Animalia", "Plantae", "Fungi", "Protista", "Archaea", "Bacteria", “NA”]. 553 

RETURN ONLY THE BIOLOGICAL KINGDOM AS VALUES. For instance, consider a study 554 

with the main objective of understanding how the bat population is affected by forest structure, 555 

measured by drones. Since the drone is deployed to measure the forest structure directly and 556 

not the bats, the correct response for this question is Plantae and not Animalia. 557 

3. Do not interpret what the robots could technically measure or monitor. First find the relevant 558 

information in the abstract and then generate the response for a specific entity based on the 559 

information. If the information is not present in the text, use “NA” as the value. 560 

4. Output your response as a JSON object as in the following format. 561 

   Country: List of countries 562 

   Biomes: RETURN ONLY ITEMS FROM THE LIST ["Forests", "Shrublands", "Grasslands", 563 

"Savannas", "Mangroves", "Wetlands", "Coastal", "Coral reef", "Marine", "NA"] 564 

   Kingdom: RETURN ONLY ITEMS FROM THE LIST ["Animalia", "Plantae", "Fungi", "Protista", 565 

"Archaea", "Bacteria", “NA”] 566 

   Comment: Justify your responses for all the entities  567 

   If more than one value is present or identified for an entity, return all the values in a comma-568 

separated form.    569 

Do not return values that are not listed within square brackets. 570 

The abstract text is delimited with triple backticks. 571 

'''{abstract}''' 572 

  573 



2.2. Case Study 2: Evidence Synthesis for Terrestrial 574 

Protected Areas 575 

Filtering relevant literature 576 

 577 
System prompt 578 

You are a research assistant specialized in ecology. You carefully read the text you are given 579 

and compare it to the specified inclusion criteria. You only respond in JSON format as 580 

instructed. You never make up data that is not present in the text. 581 

User prompt 582 

Below is an excerpt from a scientific study regarding protected areas. Determine whether it 583 

meets all of these criteria for inclusion in a meta-analysis: 584 

1. The study focuses on terrestrial protected areas. 585 

2. It provides a quantitative comparison of an ecologically similar non-protected area versus the 586 

protected area(s). 587 

3. The study measures species richness or abundance as an outcome. 588 

Please return one of two possible decisions in the field "overall_inclusion_decision": 589 

"yes" if the study meets all the above criteria. 590 

"no" if the study fails one or more criteria. 591 

Along with the final decision, provide a short explanation for why you made that decision in a 592 

field called "justification". 593 

The text to analyze is delimited with triple backticks. 594 

IMPORTANT: Return your answer in JSON format only, using the structure below. 595 

Example JSON Output: 596 

  "overall_inclusion_decision": "yes or no", 597 

  "justification": "Short explanation of which criteria are met or not met." 598 

'''{abstract}''' 599 



  600 



Extracting effect sizes for meta-analysis 601 

 602 
System prompt 603 

You are a research assistant specialized in ecology. Your task is to carefully read the text you 604 

are given from a study’s Results section and identify: 605 

                1. The effect size value(s) reported. Effect size is a standardized measure that 606 

compares groups or conditions (e.g., difference in species richness) 607 

                2. The effect size metric used (e.g., Cohen’s d, Hedge’s g, log response ratio, etc.). 608 

                3. The reported measure of uncertainty (e.g., standard error, confidence interval) and 609 

its numeric values if available. 610 

                4. Any relevant notes if the effect size or its uncertainty are not clearly stated. 611 

You must output only in JSON format, without additional commentary. You never make up data 612 

that is not present in the text. 613 

User prompt 614 

Below is a segment of text from a study on terrestrial protected areas and biodiversity. 615 

Task: 616 

1. Identify any genuine standardized effect sizes that compares PAs with non PAS (e.g., 617 

Cohen’s d, Hedge’s g, log response ratio, correlation coefficient, etc.) if they are explicitly 618 

reported. 619 

2. Identify which metric is used to represent the effect size. 620 

3. Identify the statistical method used to report the metric 621 

4. Capture the measure of uncertainty (standard deviation, confidence interval, standard error) 622 

and its value(s). 623 

5. State what the effect size specifically represents wih the mention of the taxonomic group if 624 

applicable (e.g., species richness, species abundance, etc.). 625 

6. Summarize if the final outcome of the effects of protected areas to be positive or negative  626 



7. If multiple effect sizes are reported, list them all. 627 

Important: 628 

If the text does not contain any standardized effect size but only mentions interaction terms, 629 

reflect that in the JSON (e.g., an empty effect_sizes array). 630 

Example JSON Output: 631 

      "metric": "e.g., Cohen’s d, Hedge’s g, log response ratio", 632 

      "method": "e.g., Linear mixed modem,", 633 

      "effect-size": "numeric value or 'not reported'", 634 

      "uncertainty_type": "e.g., 95% CI, standard error, standard deviation", 635 

      "uncertainty_values": "numeric range or 'not reported'", 636 

      "represents": "what does the effect size quantify (e.g., bird species richness, overall species 637 

abundance)?", 638 

      "notes": "additional context or 'none'" 639 

The text to analyze is delimited with triple backticks. 640 

'''{abstract}''' 641 

 642 

 643 

 644 

 645 

 646 


