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Abstract  26 
Ecosystem maps support a vast array of applications in conservation, land management 27 
and policy. The capacity of an ecosystem map to support these applications is determined 28 
by its ability to accurately represent ecosystem distributions, which is heavily influenced 29 
by the model used to produce them. Here, we evaluated the influence of key modelling 30 
decisions made whilst developing a new and comprehensive ecosystem map using a 31 
recently developed ecosystem typology for the remote Tiwi Islands, Australia. We collated 32 
a reference set of training points from diverse datasets and employed a pixel-based, 33 
random forest model to classify and predict ecosystem distributions. We tested decisions 34 
at three stages of the model formulation. First, we tested the number of classes by 35 
aggregating ecosystem types (finest scale, n = 11) into functional groups (n = 10) and 36 
biomes (coarsest, n = 8) according to the Global Ecosystem Typology. Second, we 37 
compared data acquired from the Sentinel-2 satellite using the MSI sensor and Landsat-9 38 
with the OLI-2 sensor. Finally, we tested covariates from satellite image bands only or 39 
satellite imagery combined with additional covariates describing other ecological 40 
characteristics. We evaluated these decisions using a range of model performance 41 
metrics, including overall, by-class and spatially explicit estimates. Our study found that 42 
using covariates additional to those from satellite images improved all evaluation metrics 43 
for all model decisions. Acquisitions from Landsat-9 tended to improve model 44 
performance over Sentinel-2, although the effect was variable. Developing maps at the 45 
biome scale (coarsest resolution) slightly improved overall performance but hinders 46 
applications that need to differentiate between ecosystem types. Including additional 47 
relevant covariates or considering alternative satellites are better options for improving 48 
map performance than simplifying the classes. Producing spatially explicit evaluation of 49 
ecosystem maps is a rapid and achievable method to communicate limitations and 50 
support users to make informed decisions. 51 
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1. Introduction 57 
Ecosystem distribution maps form a crucial foundation to understand, monitor, and make 58 
decisions about the environment. Applications of ecosystem maps span conservation 59 
assessments (Murray et al., 2017; Keith, Ferrer-Paris, et al., 2024), spatial planning 60 
(Watson et al., 2023; Keith, Ghoraba, et al., 2024), valuing services (Hein et al., 2020; Xiao 61 
et al., 2024) and reporting (Watson et al., 2020; Nicholson et al., 2024). The usefulness of 62 
an ecosystem map in these contexts is determined by its ability to accurately model and 63 
represent the distributions of ecosystem classes in geographic space. 64 
 65 
As ecosystem maps are models of the natural world, decisions made during the modelling 66 
process can strongly impact outcomes (Gould et al., 2023). Variations due to modelling 67 
decisions, model uncertainty, and errors (henceforth, ‘map reliability’) propagate through 68 
to applications (Burgman, Lindenmayer and Elith, 2005; Jansen et al., 2022), and influence 69 
area estimates (Olofsson et al., 2020; Naas et al., 2023), ecosystem accounting (Venter et 70 
al., 2024), and assessments (De la Cruz et al., 2017). Therefore, it is important to assess 71 
the main decisions influencing reliability and communicate the remaining error and 72 
uncertainty to users. 73 
 74 
Evaluating modelling decisions is common in other spatial modelling applications, 75 
including for landcover which typically focus on structural elements of the landscape, 76 
land-use mapping, and species distribution models (Khatami, Mountrakis and Stehman, 77 
2016; Grimmett, Whitsed and Horta, 2020). Fewer studies have examined the impacts of 78 
model formulation in ecosystem mapping which presents a unique and challenging case 79 
study (Rocchini et al., 2013). Ecosystems are defined by a unique biotic community, the 80 
abiotic environment, and driving ecological processes (CBD, 1992). Thus, ecosystem 81 
classes can be difficult to visibly distinguish using remotely sensed data. For instance, 82 
forest ecosystem types delineated by distinct understories but displaying similar canopy 83 
composition and physical structure are indistinguishable with multispectral imagery 84 
(Trouvé et al., 2023). Ecosystems also exhibit complex spatiotemporal dynamics because 85 
of ecological processes, natural variation, and disturbance (Dryflor et al., 2016; Dorrough 86 
et al., 2021; Keith et al., 2022). Finally, the number of ecosystem types are typically higher 87 
than in landcover classification. For instance, 98 ecosystem types are described for Italy 88 
compared to 66 landcover classes (Capotorti et al., 2023). 89 
 90 
Key factors of model formulation known to influence ecosystem maps include the 91 
comprehensiveness of the typology (Foody, 2021), the reference data and classification of 92 
location into the ecosystem classes (Rocchini et al., 2013; Dorrough et al., 2021; Naas et 93 
al., 2023), covariates (Simensen et al., 2020; Trouvé et al., 2023; Naas et al., 2024), and 94 
output post-processing (Horvath et al., 2021). Since ecosystem mapping stems from a 95 
long history of landcover mapping, the effects of some decisions can be inferred, such as 96 
the benefit of covariates, the challenge of many classes, and model types (Yu et al., 2014; 97 
Khatami, Mountrakis and Stehman, 2016). Understanding the key factors and the 98 
interaction of these factors specific to ecosystems would provide crucial guidance for 99 
ecosystem map development, especially important given the given growing focus on 100 
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developing ecosystem maps at global, national, and regional scales (Galaz García et al., 101 
2023). 102 
 103 
In addition to understanding sources of uncertainty in the model formulation, there is a 104 
long and growing interest in spatially explicit evaluation metrics to communicate map 105 
reliability. Such approaches have emerged in response to current limitations of evaluation 106 
assessments (Stehman and Foody, 2019; Foody, 2021) and as a result of modelling 107 
advances (Loosvelt et al., 2012; Mitchell, Downie and Diesing, 2018). Spatially explicit 108 
evaluation metrics complement confusion matrix-based evaluation by emphasising spatial 109 
patterns and facilitate uncertainty propagation into downstream products (Foody, 2002; 110 
Jansen et al., 2022). Here, we refer to these spatially explicit evaluation metrics as 111 
‘prediction confidence’ due to their focus on the probability of class membership (McIver 112 
and Friedl, 2001; Mitchell, Downie and Diesing, 2018), and acknowledge that high 113 
confidence is not synonymous with high accuracy (Stehman and Foody, 2019). Spatially 114 
explicit metrics are yet to become standard practice and require further demonstrations in 115 
new applications.  116 
 117 
In this paper, we sought to evaluate the effects of modelling decisions on ecosystem 118 
maps, using the case study of the Tiwi Islands, Australia. On the Indigenous-owned and 119 
managed Tiwi Islands, ecosystem maps inform development decisions and management 120 
actions (e.g. Richards et al., 2012). We tested the sensitivity of the map reliability to three 121 
modelling decisions. Firstly, to represent decisions related to the classification scheme, 122 
we used a hierarchical ecosystem typology (Young et al., 2024) that is aligned with the 123 
Global Ecosystem Typology (GET, global-ecosystems.org), an internationally accepted 124 
classification of ecosystems (UNSD, 2021; Keith et al., 2022). Different levels of a 125 
classification hierarchy are ideal for systematically testing the number of classes which 126 
change in relation to the thematic resolution (also called thematic scale or class 127 
resolution). Secondly, to examine the impact of the choice of satellite, we compared 128 
model covariates retrieved from the Landsat-9 satellite with the Operational Land Imager 129 
(OLI-2) sensor against the Sentinel-2 satellite with the Multispectral imager (MSI) sensor. 130 
The Landsat and Sentinel missions represent two flagship programs providing open-131 
access satellite images (Wulder et al., 2012) and vary in spatial and spectral resolution, 132 
length of time series and processing. Thirdly, to assess the implications of model 133 
covariates on map reliability, we investigated the use of only satellite image covariates and 134 
compared these to models that also include other ecologically meaningful covariates 135 
(hereafter named “additional” covariates). Covariates such as elevation and those 136 
representing vegetation structure (e.g. canopy height) often improve ecosystems and 137 
landcover models (Khatami, Mountrakis and Stehman, 2016; Simensen et al., 2020; Trouvé 138 
et al., 2023). We demonstrate three spatially explicit maps of prediction confidences to 139 
accompany the ecosystem map which can inform managers of map reliability and improve 140 
conservation outcomes. 141 
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2. Materials and methods 142 

2.1 Case study location 143 
The Tiwi Islands, including Melville Island (5,788 km2), Bathurst Island (1,693 km2) and 144 
numerous small islands, are located off the northern coast of the Northern Territory, 145 
Australia. The Tiwi Islands are in the Australian “Tiwi-Coburg” bioregion (DCCEEW, 2021) 146 
and the global “Arnhem Land tropical savanna” ecoregion (Olson et al., 2001). The lands 147 
and waters of the Tiwi Islands are managed by the Indigenous Tiwi peoples. Much of the 148 
Islands are remote and challenging to access (Figure 1).  149 

2.2 Classification scheme 150 
To investigate the impact of the number of classes in the classification scheme which 151 
change in relation to the thematic resolution, we employed a recent typology of Tiwi Island 152 
ecosystem types (Young et al., 2024). This ecosystem typology was developed using the 153 
GET and has a known relationship to each GET level. We tested classification schemes for 154 
mapping at three levels of the GET hierarchy: the finest thematic resolution level 6 155 
‘subglobal ecosystem types’ with 11 classes, level 3 ‘ecosystem functional groups’ (EFGs) 156 
with 10 classes, and level 2 ‘biome’ as the coarsest resolution with eight classes (Table 1). 157 
Here we use the term ‘biome’ as defined by the GET; biomes represent the subdivision of 158 
realms (e.g. fresh water) by similar broad features of ecosystem structure and function 159 
(Keith et al., 2022), although recognise other popular definitions (Mucina, 2019). 160 

2.3 Reference points 161 
Reference points (or ‘training points’) are confirmed occurrences of each ecosystem class 162 
in the classification scheme. We employed the reference point collection developed in 163 
(Young et al., 2024) but describe the methods in more detail here. 164 

2.3.1 Data collation 165 
We developed reference points from diverse spatial datasets available in a database 166 
owned by the Tiwi Land Council, and field visits with Tiwi knowledge authorities (Table 1). 167 
The spatial datasets incorporated data collected by numerous academic and industry 168 
professionals over 35 years, and included various types of data, such as aerial 169 
photographs, high-quality industry maps, and ecological surveys (Figure 1). For the aerial 170 
photographs, we labelled each photograph with the ecosystems that were visible and 171 
removed uncertain images. Aerial photographs provided essential information in remote 172 
areas. We used GPS tracks and PDF maps from Tiwi Plantation Corporation to locate 173 
rainforests and removed misclassifications identified in the field notes. These datasets 174 
resulted in numerous reference points due to their high spatial accuracy. Consultancy 175 
reports and development proposals contained vegetation maps and photographs, and 176 
information regarding ecosystem processes (EcOz Environmental Services, 2012; EcOz 177 
Environmental Consultants, 2021). Multiple academic datasets were available collected 178 
by government and university academics and students. Rainforests were identified using 179 
fauna, flora, and threatened species surveys (Russell-Smith, 1991; Menkhorst and 180 
Woinarski, 1992; Gambold and Woinarski, 1993; Liddle and Elliott, 2008). Eucalypt 181 
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savannas have been surveyed for mammals and threatened fauna (Davies et al., 2018, 182 
2019, 2021; Neave et al., 2024). Vegetation communities of the treeless plains ecosystem 183 
(Wilson and Fensham, 1994) and Melaleuca savanna (Brocklehurst and Lynch, 2001, 2009) 184 
have been the focus of previous mapping efforts. However, developing reference points for 185 
the treeless plains maps was challenged by the low spatial detail in the line drawn maps 186 
and land use change since this time. From 2021 to 2023, we undertook on-ground visits 187 
with Tiwi knowledge authorities to locations and ecosystem types chosen by the Tiwi 188 
knowledge authorities. 189 

2.3.2 Reference point placement 190 
We placed initial reference points on a 30 m x 30 m grid at or near to the locations 191 
identified in the collated datasets through visual interpretation with recent Sentinel-2 and 192 
Landsat-9 imagery (described in section 2.4) in QGIS (QGIS Development Team, 2018). 193 
From the initial reference points, we removed all points closer than 100 m to minimise 194 
spatial autocorrelation and inflated evaluation metrics (Stehman, 2009; Stehman and 195 
Foody, 2019) using the ‘enmSdmX’ package with R in R-studio (R Core Team, 2018; RStudio 196 
Team, 2020; Smith et al., 2023). This process yielded 5,887 reference points for the 197 
remainder of the analysis (Table 1, Figure 1). We obtained too few reference points to map 198 
rocky shorelines as this ecosystem was only identified from visits with Tiwi knowledge 199 
authorities. None of the collated datasets distinguished marine and freshwater 200 
ecosystems, and hence have been modelled together as water in this research. For all 201 
software details, see the Supporting Information. 202 

 203 
Figure 1. The types of data sources used to develop the reference points and the final 204 
reference point locations.  205 
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Table 1. Details of how the ecosystem types were grouped into the ecosystem functional 206 
group and biome classification schemes according to the Global Ecosystem Typology, and 207 
the data sources employed for each class to develop the reference points. 208 

Classification schemes  Data sources for each ecosystem 

Biome (Level 2) 
Ecosystem Functional 
Group (Level 3) 

Tiwi Island mapped 
ecosystem types 
(Level 6) 

Tiwi Island ecosystem 
typology (Level 6)  W
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T1 Tropical-
subtropical 
forests biome 
(n = 1575) 

T1.1 
Tropical/Subtropical 
lowland rainforests 
(n = 433) 

Wet rainforest 
(n = 433) 

Wet rainforest 
 

 X X X X X     

T1.2 
Tropical/Subtropical 
dry forests and 
thickets 
(n = 1142) 

Dry rainforest 
(n = 1142) 

Dry rainforest 
 

 X X X   X    

T3 Shrublands 
and shrubby 
woodlands 
(n = 214) 

T3.1 Seasonally dry 
tropical shrublands  
(n = 214) 

Treeless plains 
(n = 214) 

Treeless plains 
 

 X X    X X X  

T4 Savannas and 
grasslands 
(n = 1023) 

T4.2 Pyric tussock 
savannas 
(n = 1023) 

Eucalypt savanna 
(n = 927) 

Eucalypt open forest 
savanna 

 X X  X   X   

Eucalypt and mixed-
species savanna 

 

Melaleuca savanna 
(n = 96) 

Melaleuca savanna 
 

 X      X X  

TF1 Palustrine 
wetlands biome 
(n = 704) 

TF1.4 Seasonal 
floodplain marshes 
(n = 704) 

Grasslands and 
sedgelands 
(n = 704) 

Grasslands and 
sedgelands 

 X         

MFT1 Brackish 
tidal 
(n = 998) 

MFT1.2 Intertidal 
forests and 
shrublands 
(n = 698) 

Mangroves 
(n = 698) 

Mangroves 
 

 X X     X   

MFT1.3 Coastal 
saltmarshes and 
reedbeds 
(n = 300) 

Coastal saltmarsh 
(n = 300) 

Coastal saltmarsh 
 

 X X        

MT1 Shorelines 
biome 
(n = 428) 

MT1.3 Sandy 
shorelines 
(n = 428) 

Shorelines 
(n = 428) 

Sandy beaches  X X    X   X 

Rocky shorelines   X        

MT2 Supralittoral 
coastal biome 
(n = 531) 

MT2.1 Coastal 
shrublands and 
grasslands (n = 531) 

Sand dunes 
(n = 531) 

Sand dunes 
 

  X    X   X 

Water 
(n = 414) 

Water 
(n = 414) 

Water 
(n = 414) 

Ocean  X X       X 
Freshwater      

2.4 Satellite image processing 209 
To test the impact of the choice in sensor and satellite image, we retrieved images 210 
acquired by the OLI-2 sensor onboard the Landsat-9 satellite (level 2, collection 2, tier 1), 211 
courtesy of the United States Geological Survey, and the MSI sensor on the Sentinel-2 212 
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satellite from the surface reflectance harmonised collection (level-2A) with atmospheric 213 
correction, courtesy of the European Space Agency. In this paper, we refer to these two 214 
data sources as ‘Landsat-9’ and ‘Sentinel-2’ for succinctness, recognising that each 215 
satellite also represents different sensors, wavelengths measured, return times, and other 216 
attributes. We obtained and processed the images using Google Earth Engine via the ‘rgee’ 217 
and ‘rgeeExtra’ packages in R (Gorelick et al., 2017; Aybar et al., 2020). For more details, 218 
see the Supporting Information. 219 
 220 
Clouds and smoke are common above the Tiwi islands. We tested multiple approaches for 221 
developing cloud-free images suitable for modelling. We compiled image sets based on 222 
the starting date (January, February, or March) and ending date (April or May) to capture 223 
images prior to prescribed burning, from one year (2023), two years (2022 and 2023), or 224 
three years (2021 to 2023). During the 2021 to 2023 period when the images were acquired, 225 
there were no known changes in the extent of natural ecosystems and targeted 226 
investigations supplementary to this research showed only localised changes in 227 
mangroves which is not discussed further in this paper. We filtered the image sets by four 228 
cloud cover limits (20%, 30%, 40% and 50%), masked the remaining clouds (see 229 
Supporting Information for methods) and then reduced the image sets to a single image by 230 
the median value of each pixel. We inspected the resultant 120 images for residual clouds. 231 
We selected the method that minimised 1) the residual cloud, 2) the number of years, and 232 
3) the cloud cover limit to include the most images. 233 
 234 
The final Landsat-9 composite image was developed as the median of pixels from images 235 
acquired over January to May in 2023 with less than 30% cloud cover. The final Sentinel-2 236 
image was a three-year composite (2021 to 2023) of images acquired from January to May 237 
each year with less than 20% cloud cover.  238 

2.5 Environmental covariates  239 
To develop covariates for testing, we extracted four bands for the red, green, blue, and 240 
near-infrared wavelengths from the two satellite images and calculated the normalised 241 
difference vegetation index (NDVI). For the additional covariates we obtained soil 242 
composition layers from the Soil and Landscape Grid of Australia (Viscarra Rossel et al., 243 
2015) and calculated a mean for each layer in the top 30 cm and 2 m of soil. We obtained 244 
elevation data from the Shuttle Radar Topography Mission (SRTM) 5-m Smoothed Digital 245 
Elevation Model (DEM-S) (Gallant et al., 2009) and created the Topographic Roughness 246 
Index and slope (in degrees) using the ‘terra’ package (Hijmans, 2023). We also 247 
investigated the height above which 50%, 75% and 95% of the vegetation biomass exists 248 
(Scarth et al., 2023). Data sources and detailed descriptions are available in the Supporting 249 
Information. 250 
 251 
To predict the ecosystem distribution across an area with the model, the covariate rasters 252 
for each predictor must be available spatially, in the same resolution, and same 253 
projection. We resampled the covariates using bilinear interpolation to the resolution of 254 
the visible bands of each satellite (~30 m for OLI-2 sensor on the Landsat-9 satellite and 255 
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~10 m for MSI sensor on the Sentinel-2 satellite) and the GDA2020 MGA52S coordinate 256 
reference system (EPSG: 7852).  257 
 258 
Correlations among predictor covariates are known to bias inference and affect parameter 259 
estimates (Dormann et al., 2013). We tested collinearity using Pearson’s correlation 260 
coefficient, retaining covariates with pairwise correlations of less than 0.7 (Supporting 261 
Information). For the satellite image covariate set, we retained red, near-infrared, and 262 
NDVI. For the satellite image and additional covariate set, we retained red, near-infrared, 263 
NDVI, elevation, slope, height of 50% of the vegetation biomass, and the organic carbon, 264 
silt and clay in the top 30 cm of soil.  265 

2.6 Model formulation and fitting  266 
We tested 12 model formulations consisting of combinations of three modelling decisions. 267 
For the three classification schemes, two satellites, and two covariate sets (total of 12 268 
formulations), we fitted supervised, pixel-based random forest classification models 269 
weighting each class by the number of reference points using the ‘ranger’ package (Wright 270 
and Ziegler, 2017). We parameterised the models by testing the number of trees from 10 to 271 
200 in intervals of 10, the number of covariates options to split the nodes from one to five, 272 
and a tree depth of the even numbers from two to 10 as well as one. The optimal 273 
parameters were 110 trees, two splitting covariates, and six node depth, and we employed 274 
these parameter settings across all models for consistency. After parameterisation, we 275 
fitted models for the 12 formulations using a cross-validation procedure. We randomly 276 
assigned the reference points to one of five partitions, built the cross-validated models on 277 
four of the five partitions and tested on the held-out partition for a total of 60 models. 278 

2.7 Model evaluation 279 
From the cross-validated models, we extracted the variable importance by the 280 
permutation and summed the predicted classes for the held-out partition to produce a 281 
confusion matrix. From the confusion matrices, we calculated the overall evaluation 282 
metrics of the accuracy and kappa, and obtained the out-of-bag error from the model 283 
output. We report on kappa because it remains prevalent in the literature (Morales-284 
Barquero et al., 2019), despite known problems (Pontius Jr and Millones, 2011; Foody, 285 
2020). We used the by-class evaluation metrics of sensitivity, specificity, precision, F1, 286 
and negative predicted value. All evaluation metrics were calculated using the ‘caret’ 287 
package (Kuhn, 2008) using the equations in the Supporting Information. We tested the 288 
sensitivity of the overall model evaluation metrics to the cross-validation procedure by 289 
running 10,000 models for each formulation on a random 80% of the data and predicting to 290 
the remaining 20%. 291 

2.8 Model prediction 292 
To map the spatial distribution of ecosystems, we predicted the probability of each class 293 
for every pixel using the cross-validated models. The per-pixel probability is the proportion 294 
of random forest trees that assigned the pixel to the class. The class with the highest 295 
probability is the final predicted class for that pixel. We identified the predicted class for 296 
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each model formulation as the mode of the most probable class from the cross-validated 297 
models. When multiple classes were predicted in equal amounts, we selected the class 298 
with the highest mean probability. We then visualised the predicted class to map 299 
ecosystem distribution and overlayed maps of the modified areas. 300 

2.9 Spatially explicit prediction confidence 301 
To communicate the reliability of the mapped spatial distributions, we demonstrate the 302 
use of three spatially explicit evaluation metrics. Across the cross-validated models for 303 
each pixel, we calculated the mean probability of the highest class (henceforth, maximum 304 
probability; McIver and Friedl, 2001; Loosvelt et al., 2012), the mean difference between 305 
the highest and second highest probabilities (henceforth, ‘Margin of Victory’, MoV; McIver 306 
and Friedl, 2001) and the number of unique predicted classes (henceforth, prediction 307 
stability; (Grimmett, Whitsed and Horta, 2020). Both the maximum probability and the MoV 308 
express the strength of the class assignment compared to the other class options. The 309 
prediction stability indicates the repeatability within replicates of the same algorithm. 310 

3. Results 311 
We found that choice of covariates most strongly impacted model output. First, using the 312 
satellite image and additional covariates together improved the overall evaluation metrics 313 
across all model formulations (Figure 2 and Supporting Information). Most classes also 314 
improved in by-class metrics (Figure 3) with few exceptions. The most pronounced 315 
improvements were in the treeless plains, Melaleuca savanna, and the wet and dry 316 
rainforest ecosystems (Figure 3 and Supporting Information). Not all additional covariates 317 
contributed equally. On these relatively flat islands, elevation proved the most important 318 
additional covariate, while the soil covariates and slope added little explanatory power 319 
(Supporting Information).  320 
 321 
The satellite from which the satellite image was acquired was the second most influential 322 
modelling decision. The models that used the Landsat-9 satellite image achieved higher 323 
overall accuracy than those models using the Sentinel-2 image (Figure 2, and Supporting 324 
Information). The effect of the satellite was most pronounced when only the satellite-325 
image covariates were used. With additional covariates, the Landsat-9 satellite image still 326 
improved model performance, although to a lesser degree (Figure 2). Landsat-9 also 327 
produced high by-class accuracies; however, the effect varied (Figure 3). For example, the 328 
dry and wet rainforests showed by-class improvements with images acquired from the 329 
Sentinel-2 satellite (Figure 3, and Supporting Information). 330 
 331 
The classification scheme was the least impactful modelling decision that we tested on 332 
the evaluation metrics. The biome classes (the coarsest grouping) slightly improved the 333 
overall evaluation metrics, compared to the ecosystem and ecosystem functional groups 334 
(Figure 2). This effect was less pronounced with the combined satellite and additional 335 
covariates, and for images acquired from the Sentinel-2 satellite (Figure 2, and Supporting 336 
Information). In general, the biome classification scheme did not change the by-class 337 
evaluation estimates (Figure 3), the exception being the wet and dry rainforest ecosystem 338 
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types which were often misclassified in other classification schemes (Supporting 339 
Information). 340 
 

 341 
Figure 2. The distribution of the overall evaluation metrics using out-of-bag error (left), 342 
accuracy (centre) and kappa statistic (right) from 10,000 random forest models built on 343 
80% of the data, where the model formulations varied by the classification scheme (row), 344 
covariates (fill) and satellite (colour). 345 
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 346 
Figure 3. The by-class sensitivity as an exemplar evaluation metric for each class (panels) 347 
by the classification schemes (shape), satellite (colour), and covariates (fill). Ecosystem 348 
types that were aggregated into ecosystem functional groups (EFGs, data: circle, label: 349 
light grey box) and biomes (data: triangle, label: dark grey box above) are identified by an x. 350 
Sensitivity is the ability of the model to correctly predict the true class from all those known 351 
to be true in the reference points. 352 

The maximum probability and MoV maps imply similar patterns of prediction confidence 353 
(Figure 4.B1 and C1). Areas with high confidence occur in a central band and eastern patch 354 
on Melville Island, and in isolated areas of Bathurst Island. Low confidence areas, 355 
including low stability in the prediction (Figure 4.D1), are scattered across the landscape 356 
with an aggregation on the southern coast and far east area of Melville Island. 357 
Summarising the prediction confidence across the entire area (Figure 4.B2-D2), the 358 
coastal salt marsh (light purple) and mangrove (dark purple) were predicted with highest 359 
confidence (median maximum probability = 75.72% and 64.77%, respectively, and median 360 
Mov = 66.15% and 50.46%), indicated by the distribution of the maximum probability and 361 
MoV skewed to the right (Figure 4.B2-C2). Mangroves were also the most stable ecosystem 362 
type with 94.86% of the cells mapped as mangroves only ever predicted to be mangroves, 363 
followed by eucalypt savanna at 92.57% (Figure 4.D2, light blue boxes). Sand dunes were 364 
predicted with the low maximum probability values (median of 34.82%) indicated by the 365 
distribution skewed to the left (Figure 4.B2, dark yellow), while the MoV distribution is low 366 
(median of 11.89%) but comparable to other classes (Figure 4.C2). Sand dunes and sandy 367 
beaches produced unstable predictions with the highest proportion of cells predicted as 368 
three different classes (4.65% and 4.03%, Figure 4.D2 dark blue bar), followed by 369 
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melaleuca savanna and dry rainforests with the highest proportion of cells with two 370 
classes (31.35% and 30.46%, Figure 4.D2 green bar). 371 

 372 
Figure 4. The predicted ecosystem map (A) and spatially explicit evaluation metrics (B-D) 373 
for an example model using the ecosystem type as the classification scheme, imagery 374 
from the Landsat-9 satellite, and additional covariate alongside those from the satellite 375 
image. 376 

4. Discussion  377 
We found that decisions made during the ecosystem mapping procedure strongly 378 
impacted model outputs (Figure 2 and Figure 3), consistent with previous studies 379 
(Simensen et al., 2020; Trouvé et al., 2023; Naas et al., 2024). The combination of satellite 380 
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image and additional covariates greatly improved the model performance, supporting 381 
previous calls to ensure that ecosystem models capture key attributes of ecosystems and 382 
are developed with ecosystem scientists (Xiao et al., 2024). Since we found that the choice 383 
of satellite and classification scheme were less influential, additional elements can be 384 
considered to guide the decision; Landsat has the advantage of a longer archive, allowing 385 
mapping of change through time, while mapping finer ecosystem units has benefits for 386 
management of biodiversity. 387 
 388 
Ecological theory posits that the distribution of biodiversity is shaped by environmental 389 
gradients. Our results showed that the best predictions came from a model including both 390 
satellite and additional covariates, aligning with previous research (Simensen et al., 2020; 391 
Trouvé et al., 2023; Naas et al., 2024). The elevation covariate added the most explanatory 392 
power (Supporting Information), potentially as a proxy for other ecological gradients and 393 
processes (Whittaker, 1956). Topographic covariates representing water availability are 394 
often valuable to distinguish wet and dry forest types, including rainforests and riparian 395 
forests (Trouvé et al., 2023). While the additional covariates contributed useful 396 
information, we found that the satellite covariates were still highly informative  (Supporting 397 
Information), congruent with other studies that suggest ecological or climate covariates 398 
are best used alongside covariates from other sources, particularly satellite imagery 399 
(Simensen et al., 2020; Trouvé et al., 2023; Naas et al., 2024). Soil covariates were the least 400 
informative in this study (Supporting Information), potentially due to underlying data 401 
inaccuracies in the available dataset, as noted in other global and national soil maps 402 
(Rossiter et al., 2022; Maynard et al., 2023), rather than a lack of ecological importance 403 
(Simensen et al., 2020; Keith et al., 2022). Improving the availability, accessibility, and 404 
spatiotemporal resolution of ecological covariates would improve both the map reliability 405 
and our understanding of the environmental gradients defining their extent. Once such 406 
covariates are available, deep learning models, reproducible workflows, and infrastructure 407 
are critical to interrogate such large datasets and offer novel insights (Galaz García et al., 408 
2023; Pettorelli et al., 2024). 409 
 410 
In addition to the model covariates, the choice of the satellite also influenced model 411 
performance. We found that the Landsat-9 satellite imagery generally provided higher 412 
overall (Figure 2) and by-class evaluation metrics (Figure 3), although the effect lessens 413 
with the inclusion of additional covariates. Exceptions to this were the wet and dry 414 
rainforest ecosystem types, where we detected improvements with the Sentinel-2 satellite 415 
image (Figure 3). The Sentinel-2 satellite imagery with the MSI sensor capture finer spatial 416 
resolution imagery and may better detect the sharp boundaries that delineate rainforests, 417 
reducing the number of pixels containing multiple ecosystem types (i.e. mixed pixels). 418 
Mixed pixels are a high source of uncertainty in landcover mapping (Loosvelt et al., 2012) 419 
and hamper the reliability of global and national maps (Herold et al., 2008; Congalton et 420 
al., 2014). 421 
 422 
Alternatively, high spatial resolution sensors may detect structural variability within 423 
ecosystem classes, leading to high intra-class variability and noise (Nagendra and 424 
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Rocchini, 2008). For instance, savanna ecosystems display highly variable tree occurrence 425 
and canopy cover (Keith et al., 2022). In general, satellite spatial resolution has no 426 
consistent effect on map reliability (Yu et al., 2014; Morales-Barquero et al., 2019). This 427 
suggests that management objectives and ecosystem characteristics should determine 428 
the satellite and sensor used (Horvath et al., 2021; Venter et al., 2022; Naas et al., 2024). 429 
The additional benefit of the Landsat satellites is the rich archive of images (Wulder et al., 430 
2012) and hence the potential to detect historical changes (Murray et al., 2019; Calderón-431 
Loor, Hadjikakou and Bryan, 2021).  432 
 433 
While here we have described the potential effect that spatial resolution may have on 434 
ecosystem mapping, we cannot disentangle this effect from the other differences between 435 
the Landsat-9 and Sentinel-2 missions. Satellite missions vary in many attributes, 436 
including the return time influencing the number of images captured, spectral resolution 437 
such as acquiring hyperspectral imagery, and the presence of other instruments with 438 
unique data captured such as synthetic aperture radar (Pettorelli et al., 2014). These 439 
differences are particularly important in tropical regions where obtaining an image with 440 
limited cloud and smoke cover is challenging, as experienced in this research. As we 441 
compiled cloud-free composite images from images taken over a period of time, there is a 442 
risk of intra- and inter-annual change. In locations with high rates of landscape change, 443 
composite images require careful use and would reduce the map reliability. 444 
 445 
The least influential modelling decision was the classification scheme, where the overall 446 
evaluation metrics were slightly improved with the GET level 2 ‘biome’ scale representing 447 
the fewest classes and coarsest scale of biodiversity. Aggregating classes is a common 448 
method to improve evaluation metrics (Congalton and Green, 1993; Remmel, 2009) but 449 
overall, the benefits are small and variable (Yu et al., 2014). Importantly, modelling biomes 450 
presents a direct trade-off with usefulness for future applications where the finer scale 451 
classification of ecosystems types is fundamental to management, such as with 452 
ecosystem accounting and ecological risk assessments (Hein et al., 2020; Keith, Ferrer-453 
Paris, et al., 2024). The improvements we observed were driven by aggregating specific 454 
classes that were often misclassified, namely the wet and dry rainforest. Such rainforest 455 
ecosystems are both represented by the GET level 2 ‘tropical and subtropical forests 456 
biome’ but globally these ecosystems differ in threat status (Etter et al., 2017; Murray et 457 
al., 2020; Noh et al., 2020) and protection (Wohlfart, Wegmann and Leimgruber, 2014; 458 
Rivas, Guerrero-Casado and Navarro-Cerillo, 2021). Aggregating and mapping these 459 
ecosystems at the biome scale obscures the urgency and practicality of protecting and 460 
managing the world’s tropical forests. 461 
 462 
Thoughtful model formulation can reduce but never remove error and uncertainty in the 463 
model outputs (Rocchini et al., 2013; Foody, 2021). As demonstrated here, spatially 464 
explicit prediction confidences are immediate tools that can be readily implemented to 465 
communicate spatial patterns of reliability in the maps. Our analysis produced generally 466 
low confidence metrics with broadly consistent spatial patterns across the metrics (Figure 467 
4). There are multiple reasons which may lead to the lower confidence predictions (Elith, 468 
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Burgman and Regan, 2002; Regan, Colyvan and Burgman, 2002). The model may poorly 469 
define and predict classes due to a lack of relevant covariates or measurement errors in 470 
these covariate layers (Elith, Burgman and Regan, 2002; Barry and Elith, 2006), such as the 471 
global soil maps described earlier (Rossiter et al., 2022; Maynard et al., 2023). Natural 472 
variation within heterogeneous classes may drive the lower confidence predictions for the 473 
sand dunes and melaleuca savanna which display high variation in grass and tree cover 474 
(Young et al., 2024). Ecotones, mixed pixels, or too few reference points often produce 475 
poor accuracy (Loosvelt et al., 2012; Rocchini et al., 2013; Foody, 2022). The exact metrics 476 
of prediction confidence depend on the model type and warrants research for emerging 477 
machine learning models (Pettorelli et al., 2024). 478 
 479 
Conclusion 480 
Ecosystem maps tend to be presented without a discussion of the decisions made during 481 
the modelling processes nor an evaluation of the implications of these decisions. As new 482 
avenues in broad-scale monitoring and change detection of ecosystems arise (Galaz 483 
García et al., 2023; Pettorelli et al., 2024), the need to carefully examine the impact of 484 
modelling decisions grows. Given the influence of modelling decisions that we identified, 485 
both modellers and users must continue to be aware of the role model formulation plays in 486 
ecosystem mapping and endeavour to account for map reliability in future applications. 487 
Incorporating uncertainty into decision-making is paramount, albeit not always 488 
straightforward (Burgman, Lindenmayer and Elith, 2005). The responsibility lies on both the 489 
producer of any map to communicate reliability in ways transferable to future applications, 490 
and on the user to propagate known uncertainties. 491 
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Supplementary material 922 

Appendix 1 – Modelling methodology 923 

 924 
Figure 5. Flow chart of the methods to test three modelling decisions on mapping the 925 
extent of ecosystems and assess the decisions with three assessment metrics.  926 

Appendix 2 – Software 927 

Software 928 
QGIS (version 3.22.12) 929 
Google Earth Engine (Gorelick et al., 2017)  930 
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R (version 4.3.0) (R Core Team, 2018) 931 
R-studio (version 2023.09.1+949) (RStudio Team, 2020) 932 

R packages 933 
Satellite imagery and environmental covariates: 934 

‘rgee’ (version 1.1.6.9999) (Aybar et al., 2020) 935 
‘rgeeExtra’ (version 0.0.1) (Aybar et al., 2020) 936 

Data cleaning and manipulation: 937 
‘enmSdmX’ package (version 1.1.2) (Smith et al., 2023) 938 
‘dplyr’ (version 1.1.2) (Wickham et al., 2023) 939 
‘tidyr’ (version 1.3.0) (Wickham, Vaughan and Girlich, 2023) 940 
‘stringr’ (version 1.5.0) (Wickham, 2022) 941 

Spatial data handling: 942 
‘sf’ (version 1.0-16) (Pebesma, 2018) 943 
‘terra’ (version 1.7-29) (Hijmans, 2023)  944 

Model fitting, evaluation and prediction: 945 
 ‘ranger’ (version 0.15.1) (Wright and Ziegler, 2017) 946 

‘vip’ (version 0.3.2) (Greenwell and Boehmke, 2020) 947 
‘caret’ (version 6.0-94) (Kuhn, 2008) 948 

Visualisations: 949 
‘tidyterra’ (version 0.4.0) (Hernangomez, 2024) 950 
‘ggplot2’ (version 3.4.3) (Wickham, 2016) 951 
‘ggspatial’ (version 1.1.8) (Dunnington, 2023) 952 
‘ggh4x’ (version 0.2.8) (van den Brand, 2024) 953 
‘ggnewscale’ (version 0.4.9) (Campitelli, 2023) 954 
‘ggstance’ (version 0.3.7) (Henry, Wickham and Chang, 2024) 955 

Appendix 3 – Satellite imager processing 956 
We applied scaling factors to the satellite images obtained from the Landsat-9 satellite 957 
with the OLI-2 sensor and from the Sentinel-2 satellite with the MSI sensor. For the optical 958 
bands (i.e. the name begins with SR) of Landsat-9 OLI images, the band was first multiplied 959 
by 2.75*e-5 then minuses 0.2. For the thermal bands (i.e. the name begins with ST) of 960 
Landsat-9, the band was first multiplied by 3.41802*e-3 then added 149. The Sentinel-2 961 
images were scaled by 0.0001 to reverse the scaling factor applied for efficient data 962 
storage. 963 
 964 
To mask the clouds in the Landsat-9 images, we used the quality assessment bands for the 965 
cloud and cloud shadow (bits 3 and 5). For the Sentinel-2 images, we used the Scene 966 
Classification Layer and removed the pixels classified as no data (SCL = 0), saturated (SCL 967 
= 1), medium or high cloud probability (SCL = 8 and 9), high cirrus cloud (SCL = 10), snow 968 
and ice (SCL = 11). 969 
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Appendix 4 – Environmental covariates 970 
We tested correlation in the variables using the absolute value of the Pearson’s correlation 971 
coefficient with a cut-off of 0.7 (Figure 2). The red, green and blue bands were all highly 972 
correlated. NDVI was least correlated to the red band for both satellites. 973 
Each of the soil variables were correlated between the two depths. We retained the top 30 974 
cm variables to reflect the root zone of more of the plant species. Nitrogen, phosphorus 975 
and soil sand content were highly correlated to near infrared and NDVI for the Landsat-9 976 
variables and hence removed. We retained slope instead of the correlated TRI to represent 977 
rainfall run-off and easier interpretation of the results. Each of the vegetation biomass 978 
height variables were correlated. We retained the height of 50% of the biomass as it was 979 
least correlated to all the other covariates. 980 
  981 
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Table 2. Details of the environmental covariates.  982 

 Layer Description Rational Source 

Satellite image covariates 

 Red  The red, green, 
blue and near 
infrared bands. 
 

Spectral characteristics 
represent physical and 
chemical attributes of the 
ecosystem. 

Landsat-9 satellite atmospherically corrected surface 
reflectance (level 2, collection 2, tier 1) courtesy of the 
United States Geological Survey (USGS). For Landsat-9, 
the red band is B4, green is B3, blue is B2 and near 
infrared is B5.  
Sentinel-2 surface reflectance harmonised collection 
(level-2A) with atmospheric correction from the 
Copernicus Sentinel missions are by the European 
Space Agency (ESA). For Sentinel-2, the red band is B4, 
green is B3, blue is B2 and near infrared is B8. 

 Green 

 Blue 

 NIR 

 NDVI Normalised 
difference 
vegetation index. 

Greenness of the canopy which 
is correlated to primary 
productivity. 

Calculated from the satellite image using the red and 
near infrared bands where: 
NDVI = NIR – Red 
              NIR + Red 

Additional covariates 

 Height_50 The height where 
50, 75 and 95% 
of the plant cover 
has been 
intercepted. 

The height of the vegetation 
biomass relates to the 
vegetation structure. 

Terrestrial Ecosystem Research Network 
https://portal.tern.org.au/metadata/TERN/de1c2fef-
b129-485e-9042-8b22ee616e66 

 Height_75 

 Height_95 

 Elev Elevation in 
meters. 

The elevation is a proxy for 
range of environmental 
relationships including access 
to groundwater, influence of 
floods, exposure to wind on 
hilltops, and exposure to wave 
disturbances on coastal 
ecosystem. The topographic 
measures of the slope, position 
and roughness also relate to 
soil moisture and run off which 
strongly drive ecosystem 
functioning. 

The Smoothed Digital Elevation model (DEM-S) at a 5 m 
resolution from the Shuttle Radar Topography Mission 
(SRTM) by from Geoscience Australia in 2000 
https://developers.google.com/earth-
engine/datasets/catalog/AU_GA_DEM_1SEC_v10_DEM-
S 

 Slp Slope in degrees. Created using the ‘terrain’ function from the ‘terra’ 
package in R on the elevation model. Slope was 
computed with the four neighbouring cells and 
measured in degrees. 

 TRI Topographic 
roughness index.  

 Clay Percentage of 1) 
clay, 2) silt, 3) 
sand, 4) soil 
organic carbon, 
5) nitrogen or 6) 
phosphorus in 
the top 30 cm 
and 2 m of the 
soil. 
 

The soil composition influences 
many aspects of plant growth 
and soil moisture, including 
nutrient availability and 
drainage. 

Soil and Landscape Grid of Australia. Averaged by the 
depth over which the attribute was measured (depth-
weighted average). 
https://dx.doi.org/10.1071/SR14366 
 

 Silt 

 Sand 

 SOC 

 NTO 

 PTO 

 983 

https://portal.tern.org.au/metadata/TERN/de1c2fef-b129-485e-9042-8b22ee616e66
https://portal.tern.org.au/metadata/TERN/de1c2fef-b129-485e-9042-8b22ee616e66
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 984 
Figure 6. Correlation of the environmental predictors at a 30 m resolution with Landsat-9 985 
satellite imagery using the OLI-2 sensor (left) and a 10 m resolution with Sentinel-2 satellite 986 
imagery using the MSI sensor (right). 987 

Appendix 5 – Model evaluation 988 
For the confusion matrix 989 

  Reference 
  1 0 
Predicted 1 a b 

0 c d 
a represents the number of true positive values, b the false positives, c the false negatives 990 
and d the true negatives. This confusion matrix is used to calculate the evaluation metrics 991 
in Table 3.  992 
  993 
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Table 3. Descriptions of the overall and by-class evaluation metrics. 994 

 Evaluation 
metric 

Other names Equation Description 

Overall metrics    

 Accuracy  𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 

A measure of agreement between the predicted 
and true values, such that 1 indicates perfect 
agreements and 0 indicates no agreement. 

 Kappa 
statistic 

Cohen’s kappa 𝑁 =  𝑎 + 𝑏 + 𝑐 + 𝑑 
𝑝0 =   Accuracy 

𝑝𝑒 =  
𝑎 + 𝑐

𝑁
×

𝑎 + 𝑏

𝑁
+

𝑏 + 𝑑

𝑁
×

𝑐 + 𝑑

𝑁
 

𝐾𝑎𝑝𝑝𝑎 =  
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒

 

A measure of agreement between the predicted 
and true values, such that 1 indicates perfect 
agreements and 0 indicates no more 
agreement than expected by chance.  

 Out-of-bag 
error 
(OOB) 

Out-of-bag score  The average error for the random forest trees 
using bootstrap aggregation and calculated on 
the out-of-bag samples. 

By-class metrics   

 Sensitivity Producer’s 
accuracy, recall, 
true positive rate 

𝑎

𝑎 + 𝑐
 The ability of the model to correctly identify all 

the true cases from those known to be true. 

 Specificity True negative rate 𝑑

𝑏 + 𝑑
 

The ability of the model to correctly identify all 
the false cases from those known to be false. 

 Precision User’s accuracy, 
positive predicted 
value 

𝑎

𝑎 + 𝑏
 The ability of the model to correctly identify all 

the true cases from those predicted to the 
class. 

 F1  
2 ×

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

A balance of the models ability to predict the 
true cases from thoses known to be true (i.e. 
sensitivity) and the correctly true from all those 
predicted to be true (i.e. precision). 

 Negative 
predicted 
value 

 𝑑

𝑐 + 𝑑
 

The ability of the model to correctly identify all 
the false cases from those predicted to be 
false. 

Appendix 6 – Additional model results 995 

 996 
Figure 7. The mean accuracy and kappa statistics calculated from the confusion matrix of 997 
12 model formulations varying at three modelling decisions and each run with five cross-998 
validated models. The modelling decisions were the typology (shape), covariates (fill) and 999 
satellite imagery (colours).  1000 
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A) 1001 

 1002 
B) 1003 

  1004 
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C) 1005 

 1006 
D) 1007 

  1008 
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Figure 8. The four by-class evaluation metrics specificity (A), precision (B), F1 (C), and 1009 
negative predicted value (D) measured for three classification schemes (shape), two 1010 
satellite/sensors (colour) and two covariate sets (fill). When multiple ecosystems (shape: 1011 
square, label above: white) were aggregated into an ecosystem functional group (shape: 1012 
circle, label: light grey) or into a biome (shape: triangle, label: dark grey), the class is 1013 
indicated by an x.  1014 

 1015 
Figure 9. Importance of the environmental covariates in the ecosystem classification 1016 
model across three classification schemes (columns), two options for the covariates (row) 1017 
and two satellite (colours). NDVI is for the normalised difference vegetation index and NIR 1018 
is for the near-infrared band from the satellite image.   1019 
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Appendix 7 – confusion matrices 1020 
Table 4. Confusion matrix for the ecosystem classification model using Landsat-9 satellite 1021 
imagery from the OLI-2 sensor as the only covariates.  1022 
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Coastal salt marsh 285 0 0 4 1 0 0 1 13 3 0 307 0.93 0.07 

Dry rainforest 0 754 0 0 2 0 0 0 0 0 50 806 0.94 0.06 

Eucalypt savanna 0 7 745 42 9 9 20 14 0 0 8 854 0.87 0.13 

Grassland and sedgeland 7 0 13 511 43 1 4 2 0 0 15 596 0.86 0.14 

Mangrove 0 3 0 10 461 0 0 0 0 0 17 491 0.94 0.06 

Melaleuca savanna 0 1 111 76 0 74 79 22 0 0 0 363 0.20 0.80 

Treeless plains 0 1 39 26 0 12 106 67 0 0 0 251 0.42 0.58 

Sand dunes 1 0 0 0 0 0 5 321 41 0 0 368 0.87 0.13 

Sandy beach 7 0 0 0 0 0 0 104 373 0 0 484 0.77 0.23 

Water 0 0 0 1 0 0 0 0 1 411 0 413 1.00 0.00 

Wet rainforest 0 376 19 34 182 0 0 0 0 0 343 954 0.36 0.64 

Total 300 1142 927 704 698 96 214 531 428 414 433 5887  

PA 0.95 0.66 0.80 0.73 0.66 0.77 0.50 0.60 0.87 0.99 0.79  

OE 0.05 0.34 0.20 0.27 0.34 0.23 0.50 0.40 0.13 0.01 0.21   

Model formulation 
          Classification scheme: Ecosystem (level 6 of the Global Ecosystem typology) 
          Satellite/sensor: Landsat-9/OLI-2 
          Covariate set: Satellite image covariates only 

    

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1023 
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Table 5. Confusion matrix for the ecosystem classification model using Landsat-9 satellite 1024 
imagery from the OLI-2 sensor and using satellite image and additional covariates. 1025 
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Coastal salt marsh 291 0 0 8 1 0 0 1 7 0 0 308 0.94 0.06 

Dry rainforest 0 919 0 0 6 0 0 0 0 0 24 949 0.97 0.03 

Eucalypt savanna 0 3 837 18 5 1 1 5 0 0 8 878 0.95 0.05 

Grassland and sedgeland 3 0 6 588 36 1 4 5 0 0 6 649 0.91 0.09 

Mangrove 0 45 1 52 643 0 0 1 0 0 7 749 0.86 0.14 

Melaleuca savanna 0 1 37 18 2 77 21 32 0 0 0 188 0.41 0.59 

Treeless plains 0 0 27 19 0 17 188 38 0 0 0 289 0.65 0.35 

Sand dunes 1 1 0 0 0 0 0 428 22 0 0 452 0.95 0.05 

Sandy beach 5 0 0 0 0 0 0 21 398 0 0 424 0.94 0.06 

Water 0 0 0 0 0 0 0 0 1 414 0 415 1.00 0.00 

Wet rainforest 0 173 19 1 5 96 0 0 0 0 388 586 0.66 0.34 

Total 300 1142 927 704 698 96 214 513 428 414 433 5887 

 PA 0.97 0.80 0.90 0.84 0.92 0.80 0.88 0.81 0.93 1.00 0.9 

 OE 0.03 0.20 0.10 0.16 0.08 0.20 0.12 0.19 0.07 0.00 0.1   

Model formulation 
          Classification scheme: Ecosystem (level 6 of the Global Ecosystem typology) 
          Satellite/sensor: Landsat-9/OLI-2 
          Covariate set: Satellite image and additional covariates 

    

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1026 
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Table 6. Confusion matrix for the ecosystem classification model using Sentinel-2 satellite 1027 
imagery from the MSI sensor as the only covariates. 1028 
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Coastal salt marsh 285 0 0 3 1 0 0 1 5 1 0 296 0.96 0.04 

Dry rainforest 0 739 0 2 17 0 0 1 0 0 93 852 0.87 0.13 

Eucalypt savanna 0 2 671 45 16 16 23 12 0 0 22 807 0.83 0.17 

Grassland and sedgeland 3 0 1 368 11 3 3 3 0 0 2 394 0.93 0.07 

Mangrove 0 55 0 61 527 0 0 1 0 0 72 716 0.74 0.26 

Melaleuca savanna 0 0 217 137 3 72 113 33 0 0 1 576 0.13 0.88 

Treeless plains 0 0 19 31 0 5 72 131 4 0 0 262 0.27 0.73 

Sand dunes 2 0 0 0 0 0 3 268 58 0 0 331 0.81 0.19 

Sandy beach 7 0 0 0 0 0 0 79 356 1 0 443 0.80 0.20 

Water 3 0 0 1 0 0 0 0 5 412 0 421 0.98 0.02 

Wet rainforest 0 346 19 56 123 0 0 2 0 0 243 789 0.31 0.69 

Total 300 1142 927 704 698 96 214 531 428 414 433 5887 

 PA 0.95 0.65 0.72 0.52 0.76 0.75 0.34 0.5 0.83 1.00 0.56 

 OE 0.05 0.35 0.28 0.48 0.24 0.25 0.66 0.5 0.17 0.00 0.44   

Model formulation 
          Classification scheme: Ecosystem (level 6 of the Global Ecosystem typology) 
          Satellite/sensor: Sentinel-2/MSI 
          Covariate set: Satellite image covariates only 

    

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1029 
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Table 7 . Confusion matrix for the ecosystem classification model using Sentinel-2 satellite 1030 
imagery from the MSI sensor and using satellite image and additional covariates. 1031 
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Coastal salt marsh 294 0 0 7 1 0 0 5 7 0 0 314 0.94 0.06 

Dry rainforest 0 966 1 1 16 0 0 1 0 0 27 1012 0.95 0.05 

Eucalypt savanna 0 1 846 30 5 0 2 4 0 0 21 909 0.93 0.07 

Grassland and sedgeland 1 1 4 518 26 3 6 19 1 0 2 581 0.89 0.11 

Mangrove 0 51 1 107 644 0 0 3 0 0 8 814 0.79 0.21 

Melaleuca savanna 0 0 34 21 2 76 21 35 0 0 1 190 0.40 0.60 

Treeless plains 0 0 30 17 0 16 183 44 1 0 0 291 0.63 0.37 

Sand dunes 0 0 1 2 0 0 2 385 30 0 0 420 0.92 0.08 

Sandy beach 5 0 0 0 0 0 0 35 388 0 0 428 0.91 0.09 

Water 0 0 0 0 0 0 0 0 1 414 0 415 1.00 0;00 

Wet rainforest 0 123 10 1 4 1 0 0 0 0 374 513 0.73 0.27 

Total 300 1142 927 704 698 96 214 531 428 414 433 5887 

 PA 0.98 0.85 0.91 0.74 0.92 0.79 0.86 0.73 0.91 1.00 0.86 

 OE 0.02 0.15 0.09 0.26 0.08 0.21 0.14 0.27 0.09 0.00 0.14   

Model formulation 
          Classification scheme: Ecosystem (level 6 of the Global Ecosystem typology) 
          Satellite/sensor: Sentinel-2/MSI 
          Covariate set: Satellite image and additional covariates 

    

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1032 
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Table 8. Confusion matrix for the ecosystem functional group classification model using 1033 
Landsat-9 satellite imagery from the OLI-2 sensor as the only covariates. 1034 
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Dry rainforest 758 0 2 0 0 0 0 0 0 45 805 0.94 0.06 

Grassland and sedgeland  1 546 41 7 0 6 22 5 0 14 642 0.85 0.15 

Mangrove 3 10 472 0 0 0 0 0 0 22 507 0.93 0.07 

Coastal salt marsh 0 4 1 285 13 1 0 0 3 0 307 0.93 0.07 

Sandy beach 0 0 0 7 375 106 0 0 0 0 488 0.77 0.23 

Sand dunes 0 0 0 1 39 319 0 4 0 0 363 0.88 0.12 

Savanna 7 60 9 0 0 16 845 40 0 8 985 0.86 0.14 

Treeless plains 0 49 0 0 0 83 137 165 0 0 434 0.38 0.62 

Water 0 1 0 0 1 0 0 0 411 0 413 1.00 0.00 

Wet rainforest 373 34 173 0 0 0 19 0 0 344 943 0.36 0.64 

Total 1142 704 698 300 428 531 1023 214 414 433 5887   

PA 0.66 0.78 0.68 0.95 0.88 0.60 0.83 0.77 0.99 0.79    

OE 0.34 0.22 0.32 0.05 0.12 0.40 0.17 0.23 0.01 0.21    

Model formulation 
          Classification scheme: Ecosystem Functional Group (level 3 of the Global Ecosystem typology) 
          Satellite/sensor: Landsat-9/OLI-2 
          Covariate set: Satellite image covariates only 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1035 
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Table 9. Confusion matrix for the ecosystem functional group classification model using 1036 
Landsat-9 satellite imagery from the OLI-2 sensor and using the satellite image and 1037 
additional covariates. 1038 
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Dry rainforest 909 1 6 0 0 0 0 0 0 25 941 0.97 0.03 

Grassland and sedgeland  0 605 39 2 0 12 13 10 0 6 687 0.88 0.12 

Mangrove 46 50 642 0 0 1 1 0 0 8 748 0.86 0.14 

Coastal salt marsh 0 6 1 292 11 0 0 0 0 0 310 0.94 0.06 

Sandy beach 0 0 0 5 395 20 0 0 0 0 420 0.94 0.06 

Sand dunes 0 0 0 1 21 443 0 0 0 0 465 0.95 0.05 

Savanna 4 22 5 0 0 5 905 8 0 8 957 0.95 0.05 

Treeless plains 0 19 0 0 0 50 85 196 0 0 350 0.56 0.44 

Water 0 0 0 0 1 0 0 0 414 0 415 1 0 

Wet rainforest 183 1 5 0 0 0 19 0 0 386 594 0.65 0.35 

Total 1142 704 698 300 428 531 1023 214 414 433 5887   

PA 0.8 0.86 0.92 0.97 0.92 0.83 0.88 0.92 1 0.89    

OE 0.2 0.14 0.08 0.03 0.08 0.17 0.12 0.08 0 0.11    

Model formulation 
          Classification scheme: Ecosystem Functional Group (level 3 of the Global Ecosystem typology) 
          Satellite/sensor: Landsat-9/OLI-2 
          Covariate set: Satellite image and additional covariates 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1039 
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Table 10. Confusion matrix for the ecosystem functional group classification model using 1040 
Sentinel-2 satellite imagery from the MSI sensor as the only covariates. 1041 
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Dry rainforest 727 2 17 0 0 2 0 0 0 90 838 0.87 0.13 

Grassland and sedgeland  0 419 14 3 0 5 18 8 0 2 469 0.89 0.11 

Mangrove 55 60 522 0 0 1 0 0 0 69 707 0.74 0.26 

Coastal salt marsh 0 3 1 285 5 1 0 0 2 0 297 0.96 0.04 

Sandy beach 0 0 0 7 356 77 0 0 0 0 440 0.81 0.19 

Sand dunes 0 0 0 2 61 286 0 7 0 0 356 0.80 0.20 

Savanna 2 50 15 0 0 13 754 29 0 20 883 0.85 0.15 

Treeless plains 0 111 3 0 2 145 220 170 0 1 652 0.26 0.74 

Water 0 1 0 3 4 0 0 0 412 0 420 0.98 0.02 

Wet rainforest 358 58 126 0 0 1 31 0 0 251 825 0.30 0.70 

Total 1142 704 698 300 428 531 1023 214 414 433 5887   

PA 0.64 0.60 0.75 0.95 0.83 0.54 0.74 0.79 1.00 0.58    

OE 0.36 0.40 0.25 0.05 0.17 0.46 0.26 0.21 0.00 0.42    

Model formulation 
          Classification scheme: Ecosystem Functional Group (level 3 of the Global Ecosystem typology) 
          Satellite/sensor: Sentinel-2/MSI 
          Covariate set: Satellite image covariates only 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 
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Table 11. Confusion matrix for the ecosystem functional group classification model using 1043 
Sentinel-2 satellite imagery from the MSI sensor and using satellite image and additional 1044 
covariates. 1045 
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Dry rainforest 951 1 11 0 0 1 2 0 0 31 997 0.95 0.05 

Grassland and sedgeland  1 532 28 3 0 20 18 9 0 2 613 0.87 0.13 

Mangrove 57 106 648 0 0 3 1 0 0 7 822 0.79 0.21 

Coastal salt marsh 0 6 1 291 6 4 0 0 0 0 308 0.94 0.06 

Sandy beach 0 0 0 5 391 34 0 0 0 0 430 0.91 0.09 

Sand dunes 0 0 0 1 30 402 2 3 0 0 438 0.92 0.08 

Savanna 1 37 5 0 0 7 900 9 0 21 980 0.92 0.08 

Treeless plains 0 20 0 0 0 60 86 193 0 0 359 0.54 0.46 

Water 0 0 0 0 1 0 0 0 414 0 415 1.00 0.00 

Wet rainforest 132 2 5 0 0 0 14 0 0 372 525 0.71 0.29 

Total 1142 704 698 300 428 531 1023 214 414 433 5887   

PA 0.83 0.76 0.93 0.97 0.91 0.76 0.88 0.90 1.00 0.86    

OE 0.17 0.24 0.07 0.03 0.09 0.24 0.12 0.10 0.00 0.14    

Model formulation 
          Classification scheme: Ecosystem Functional Group (level 3 of the Global Ecosystem typology) 
          Satellite/sensor: Sentinel-2/MSI 
          Covariate set: Satellite image and additional covariates 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 

  1046 



 46 

Table 12. Confusion matrix for the biome classification model using Landsat-9 satellite 1047 
imagery from the OLI-2 sensor as the only covariates. 1048 
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Grassland and sedgeland 554 48 16 0 3 22 5 0 648 0.85 0.15 

Mangrove 38 867 130 9 0 3 0 2 1049 0.83 0.17 

Rainforest 10 60 1407 0 0 15 0 0 1492 0.94 0.06 

Sandy beach 0 11 0 375 100 0 0 0 486 0.77 0.23 

Sand dunes 1 2 0 42 319 0 4 0 368 0.87 0.13 

Savanna 49 10 22 0 15 848 39 0 983 0.86 0.14 

Treeless plains 51 0 0 0 94 135 166 0 446 0.37 0.63 

Water 1 0 0 2 0 0 0 412 415 0.99 0.01 

Total 704 998 1575 428 531 1023 214 414 5887   

PA 0.79 0.87 0.89 0.88 0.60 0.83 0.78 1.00    

OE 0.21 0.13 0.11 0.12 0.40 0.17 0.22 0.00    

Model formulation 
          Classification scheme: Biome (level 2 of the Global Ecosystem typology) 
          Satellite/sensor: Landsat-9/OLI-2 
          Covariate set: Satellite image covariates only 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 
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Table 13. Confusion matrix for the biome classification model using Landsat-9 satellite 1050 
imagery from the OLI-2 sensor and using satellite image and additional covariates. 1051 
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Grassland and sedgeland 616 60 17 0 15 14 8 0 730 0.84 0.16 

Mangrove 43 907 31 6 9 1 0 0 997 0.91 0.09 

Rainforest 1 16 1443 0 2 13 0 0 1475 0.98 0.02 

Sandy beach 0 8 0 402 20 0 0 0 430 0.93 0.07 

Sand dunes 0 2 1 19 429 0 0 0 451 0.95 0.05 

Savanna 21 5 83 0 5 911 8 0 1033 0.88 0.12 

Treeless plains 23 0 0 0 51 84 198 0 356 0.56 0.44 

Water 0 0 0 1 0 0 0 414 415 1.00 0.00 

Total 704 998 1575 428 531 1023 214 414 5887   

PA 0.88 0.91 0.92 0.94 0.81 0.89 0.93 1.00    

OE 0.12 0.09 0.08 0.06 0.19 0.11 0.07 0.00    

Model formulation 
          Classification scheme: Biome (level 2 of the Global Ecosystem typology) 
          Satellite/sensor: Landsat-9/OLI-2 
          Covariate set: Satellite image and additional covariates 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 
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Table 14. Confusion matrix for the biome classification model using Sentinel-2 satellite 1053 
imagery from the MSI sensor as the only covariates. 1054 
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Grassland and sedgeland 449 58 24 0 6 20 9 0 566 0.79 0.21 

Mangrove 64 809 143 4 2 0 0 0 1022 0.79 0.21 

Rainforest 23 92 1358 0 3 5 0 0 1481 0.92 0.08 

Sandy beach 0 8 0 357 74 0 0 4 443 0.81 0.19 

Sand dunes 0 2 0 60 290 0 6 0 358 0.81 0.19 

Savanna 59 22 50 0 14 786 30 0 961 0.82 0.18 

Treeless plains 107 4 0 3 142 212 169 0 637 0.27 0.73 

Water 2 3 0 4 0 0 0 410 419 0.98 0.02 

Total 704 998 1575 428 531 1023 214 414 5887   

PA 0.64 0.81 0.86 0.83 0.55 0.77 0.79 0.99    

OE 0.36 0.19 0.14 0.17 0.45 0.23 0.21 0.01    

Model formulation 
          Classification scheme: Biome (level 2 of the Global Ecosystem typology) 
          Satellite/sensor: Sentinel-2/MSI 
          Covariate set: Satellite image covariates only 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 
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Table 15. Confusion matrix for the biome classification model using Sentinel-2 satellite 1056 
imagery from the MSI sensor and using satellite image and additional covariates. 1057 
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Grassland and sedgeland 580 80 20 1 32 14 9 0 736 0.79 0.21 

Mangrove 65 880 33 4 19 0 0 0 1001 0.88 0.12 

Rainforest 0 27 1482 0 1 8 0 0 1518 0.98 0.02 

Sandy beach 0 7 0 396 33 0 0 0 436 0.91 0.09 

Sand dunes 1 1 0 26 378 1 1 0 408 0.93 0.07 

Savanna 36 3 40 0 6 911 8 0 1004 0.91 0.09 

Treeless plains 22 0 0 0 62 89 196 0 369 0.53 0.47 

Water 0 0 0 1 0 0 0 414 415 1.00 0.00 

Total 704 998 1575 428 531 1023 214 414 5887   

PA 0.82 0.88 0.94 0.93 0.71 0.89 0.92 1.00    

OE 0.18 0.12 0.06 0.07 0.29 0.11 0.08 0.00    

Model formulation 
          Classification scheme: Biome (level 2 of the Global Ecosystem typology) 
          Satellite/sensor: Sentinel-2/MSI 
          Covariate set: Satellite image and additional covariates 

   

PA: Producer’s accuracy 
UA: User’s accuracy 
OE: Omission error 
CE: Commission error 
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