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Abstract 
 
Parasite diversity is a central component of epidemiological dynamics. Parasite diversity is 
commonly studied across animal populations and species using metrics like parasite species 
richness; although these metrics generally assume no interactions among parasite species 
within a community, such interactions are common and important, and could affect parasite 
diversity estimates in ways that are currently difficult to account for. Nevertheless, the strength 
of these effects are currently unclear due to a relative rarity of community-level parasite 
interaction data. To address this gap, we use theoretical models to explore how interactions 
among pathogen strains might influence estimates of pathogen diversity, using parasite species 
richness as an example. We simulate interactions among co-infecting pathogens and assess 
their impact on strain detectability, informing population-level pathogen richness estimates. We 
find that such interactions introduce bias and uncertainty into richness measurements which is 
as yet unaccounted for, possibly impacting a wide range of studies. The magnitude of this bias 
is dependent on the frequency and the nature (competitive or facilitative) of interactions among 
coinfecting pathogens. Until more is known about the structure of these pathogen communities, 
we cannot fully gauge the extent of this bias. Coinfection studies may benefit from approaches 
developed in microbial ecology to quantify networked interactions among pathogens within 
hosts. 
 
Keywords: coinfection, community ecology, parasite ecology, competition, facilitation, parasite 
diversity  



Introduction 
A broad diversity of different parasites infect wild animals. Understanding this diversity is 
important for identifying the causes and consequences of infection as well as being crucial for 
conservation interventions and understanding spillover into human populations (Albery et al., 
2021; Olival et al., 2017). Parasite species richness (PSR), or the number of distinct parasite 
species infecting a host population or species, is commonly used to understand disease 
dynamics and macroecological patterns of parasite diversity (Poulin, 2004). PSR helps to 
identify potential reservoirs (Albery et al., 2021), biogeographic patterns of parasite diversity 
(Nunn et al., 2005), and effects of host traits such as social behavior, geographic range size, 
and longevity (Bordes et al., 2007; Deere et al., 2021; Lindenfors et al., 2007; Nunn & Altizer, 
2006). However, PSR can be biased substantially by factors like uneven sampling and 
phylogenetic influence (Poulin, 1997). Because these approaches and measures are so 
commonly used in disease ecology and related fields, it is important to understand the potential 
influence of these sources of bias when considering the causes and consequences of parasite 
diversity. 
 
Interactions among parasites are a potentially crucial but unexplored source of bias in parasite 
diversity estimates. Coinfections are commonplace in wildlife, and parasites often interact (Cox, 
2001; Pedersen & Fenton, 2007; Petney & Andrews, 1998). These interactions fall broadly into 
competitive or facilitative interaction types: for example, parasites may compete directly for 
space within their niche in the host (Knowles et al., 2013; Rynkiewicz et al., 2015), compete for 
resources such as red blood cells (Graham, 2008), or interact via immune responses (Fenton et 
al., 2008; Graham, 2008; Pedersen & Fenton, 2007). Empirically, these interactions can result in 
various outcomes for the hosts. In laboratory mice for example, helminths exert competitive and 
facilitative interactions on malaria parasitemia dependent on Plasmodium species (Knowles, 
2011). In wildlife, coinfection interactions have been shown to predict risk and prevalence of 
other circulating pathogens (Clark et al., 2016; Glidden et al., 2021; Johnson & Hoverman, 
2012; Telfer et al., 2010). To date, these investigations have focussed largely on consequences 
for individual hosts. Where the population-level consequences of coinfection have been 
investigated, they have focussed on the impact of individual-level coinfections for transmission 
and health of the population. For example, increased mortality at the individual level due to 
coinfection of brucellosis and bovine tuberculosis (bTB) ultimately reduces the population-level 
prevalence of bTB (Gorsich et al., 2018). Because these processes could determine who is 
observed with a given infection and when, they could magnify to influence our observations of 
parasite diversity (i.e., PSR) through a variety of mechanisms. Nevertheless, the impact of such 
interactions on parasite diversity remains unexplored, particularly in comparison to other 
sampling parameters and processes. 
 
The degree to which parasite community interactions impact observed parasite diversity will 
depend on the degree to which parasites compete with or facilitate one another within their 
hosts. Although there is a rich and expanding literature investigating coinfection within wildlife 
populations (e.g. (Clark et al., 2016; Glidden et al., 2021; Jones et al., 2023; Knowles et al., 
2013; Telfer et al., 2010)), quantifying the specific nature of the interactions and the proportion 
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of parasites that are interacting remains difficult. This is partly due to logistical difficulties in 
sampling and quantifying entire parasite communities, where many parasites are likely to be 
very low prevalence, not quantifiable from non-destructive sampling, as-yet-unknown, or 
expensive to diagnose. There is also a lack of longitudinal datasets that sample pathogen 
community dynamics in the same populations over time (Fenton et al., 2014). Even as our 
ability to identify parasites is advancing, the coinfection experiments necessary to parse 
ecological interactions prioritize tractability, selecting strains that impose the strongest fitness 
costs or those that are most prevalent in the host population (Hammoud et al., 2022). The sheer 
complexity of interactions among parasites, combined with the limitations of imperfect and 
sparse surveillance, makes it challenging to formulate robust hypotheses about expected 
patterns in natural communities. Consequently, we are likely far from accurately understanding 
how these interactions deviate from what we might consider baseline expectations.  
 
While coinfection data are becoming more widely available, monitoring of entire communities 
and demonstration of interactions within the community is still lacking. This is primarily due to 
the difficulty in sampling wild hosts, the high genetic and species diversity of pathogenic 
microbes, and the sensitivity and availability of diagnostic tests. Consequently, while some 
coinfection data do exist, they are selective and incomplete; in particular, they are often missing 
rare or hard-to-detect pathogens  that may nevertheless strongly influence observed patterns at 
the population level. Additionally, they frequently lack the longitudinal resolution to resolve 
interactions. This lack of comprehensive data makes it difficult not only to estimate pathogen 
richness but also to understand how interactions among unobserved parasite species might 
shape community dynamics.  
 
Here, we use epidemiological simulations to understand how parasite interactions could 
influence observed parasite species estimates. Using general models of host and parasite 
populations, we explore how interactions among parasites might bias parasite species richness 
as an estimate of parasite diversity. Our model represents a null hypothesis: a simple model of 
pathogen interactions, mostly centered around an expectation of few to no interactions, with 
conservative deviations from the center. We examine a wide variety of potential community 
interaction strengths among pathogens infecting individual hosts, summarising our findings to 
understand how these interactions impact the detectability of pathogen strains at the population 
level.  
 

Methods 
To explore how ecological interactions among coinfecting pathogens affect their detectability, we 
created a process-explicit model of coinfection and disease surveillance in a 
single-host-multi-pathogen system (https://zenodo.org/records/13840790). The model was 
coded using a mix of C++ and R Version 4.3.3 (R Core Team 2023). We ran 10,000 simulations 
with different parameter settings and analyzed the results with a generalized additive model 
(GAM) and a generalized linear model (GLM). 
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The model 
The process-explicit model is a stochastic SI model with constant host numbers (i.e., no births 
or deaths) and pathogen interactions governed by a P ✕ P matrix, where P is the number of 
pathogens, with a multiplier value in each cell describing facilitation (>1) or competition (<1) 
between unique pathogen pairs. Interactions of pathogens with themselves were not relevant 
because hosts could not be multiply infected with the same pathogen. We tested priority effects 
(asymmetric interaction matrices where interactions could differ depending on which pathogen 
infected the host first) early on and found they did not affect disease dynamics or detectability. 
Therefore, all interaction matrices investigated here are symmetric (though the code repository 
contains options to make them asymmetric for further investigation). 
 
Each simulation featured a population of 1000 identical hosts. The system had anywhere from 5 
to 100 pathogens, and the simulations started with one host infected with each pathogen and no 
coinfection. The pathogens had identical base transmission rates; the only difference was their 
set of interactions in the interaction matrix. 
 
Each simulation ran for 100 timesteps. At each timestep, all individuals were exposed to all 
other individuals. The probability of infection with each strain to which a host was susceptible 
was drawn from a binomial distribution with size equal to the number of hosts infected with the 
strain, and probability equal to the base transmission rate multiplied by all the interaction 
multipliers exerted upon that strain by the strains that already infect the host, if any. Competing 
strains multiplied the transmission rate by a factor less than 1, reducing it, while facilitating 
strains did the opposite. 
 
Once the disease simulations were complete, we simulated a disease surveillance process in 
each population using a subsampling regime. Sampling ranged from 10 - 100% of the host 
population. Assays were error-free and could detect all strains. We sampled independently at all 
timesteps and noted whether each strain was detected or not. 
 

Parameter space 
Across 10,000 simulations, we varied interaction strength (0-0.3), competition-facilitation ratio 
(0.7-1.3), strain number (5-100), and sampling proportion (0.1-1) while keeping host number, 
simulation length, and base transmission rate constant (Figure 1).. We were conservative in our 
range of interaction strengths and competition to facilitation ratio, under the null expectation that 
most interactions would be neutral. We tested more extreme interaction strength values and 
found that they either caused so much suppression that no outbreaks occurred, or so much 
facilitation that the entire outbreak played out in less than 5 time steps. We varied the number of 
strains across a range spanning the number of parasites that have been empirically observed to 
coinfect hosts and much higher numbers postulated to coinfect hosts.  
 



Statistical analysis 
For analysis, we tested whether strain- and population-level factors determined detectability, 
combining all strains from all simulations. First, we analyzed strain detectability (i.e., whether or 
not a given strain was detected) as the outcome variable using a binomial GAM. The 
explanatory variables were number of strains in the simulation, proportion of the population 
sampled, mean competition, and mean facilitation. Mean competition was calculated as the 
mean strength of competitive interactions acting upon the focal strain across the simulation, 
while mean facilitation was the mean strength of facilitative interactions acting upon the focal 
strain. 
 
Contingent upon a lack of significant nonlinearity in the GAM, we used a binomial GLM to 
analyze the impact of model settings on detectability. The GLM included the number of strains in 
the simulation, the proportion of the population sampled, the time step in the simulation, and the 
interactions of time with mean competition and mean facilitation. 

Results 
 
We simulated 523,222 strains across 10,000 simulations. Of these strains, 34.5% never 
reached 50% prevalence at any point in the simulation, indicating that they never reached the 
full saturation expected of a standard SI model with R0 > 1. Of the strains that did reach 50% 
prevalence, the mean timestep of 50% prevalence was 36.33 (95% CI: 36.28 - 36.39).  
 
The GAM (R2 = 0.0289) only explained 8% of the deviance in detectability due to demographic 
stochasticity and randomness in the interaction matrices; however, it identified several strong 
and significant patterns. The largest effect size came from the proportion of the population 
sampled, followed by the tensor interaction between competition and facilitation. We did not 
include time because the GAM was computationally intensive, and the timesteps were precisely 
the same for each simulation and could be safely factored out. As the GAM did not present 
significant nonlinearities in the smooths (Figure 2), we proceeded with a GLM, which did explore 
detectability over time. 
 
In the binomial GLM (R2 = 0.481), as in the GAM, the largest increase in detectability came from 
the proportion of the population sampled (4.7302; 95% CI: 4.7223 - 4.7381), followed by time 
(0.1668; 95% CI: 0.1664 - 0.1672; Figure 3). Mean competition decreased the positive slope of 
detectability over time (-0.2080; 95% CI: -0.2096 - -0.2065), while facilitation increased it 
(0.1072; 95% CI: 0.1051 - 0.1093; Figure 4). For example, in the absence of competition or 
facilitation, the detectability of strains started at 10.47%, and increased by 1.6% with each 
timestep. If the mean facilitation was 0.5 and competition was 0, detectability increased by 
2.26% with each time step. If the mean competition was 0.5 and facilitation was 0, detectability 
increased by 0.6% with each time step. The effect of the number of strains on detectability was 
negative and statistically significant, but the effect size was so small as to be negligible (-0.0007; 
95% CI: -0.0008 - -0.0006). 



 

Discussion 
 
This study demonstrates that coinfection interactions significantly influence population- and 
species-level PSR estimates. Facilitative interactions greatly increased pathogen detectability 
compared to competitive interactions. The magnitude of this effect was surprisingly large (e.g., 
at the highest levels of facilitation, detectability increased by 2.26% per timestep, while at the 
highest levels of competition, detectability decreased  by 0.6% per timestep). This finding is 
important because it influences (for example) how likely we are to discover a specific pathogen 
in a given sample of a host or our conclusions regarding how many pathogens a host species 
maintains in general. Coinfection is the norm in wild animal populations (Cox, 2001; Petney & 
Andrews, 1998), and it is commonly acknowledged that interactions between pairs of pathogens 
can exacerbate or inhibit symptoms at the individual level (Gorsich et al., 2018; Johnson & 
Hoverman, 2012) and cause non-linear “syndemic” dynamics at the population level (Sweeny et 
al., 2021). Building on this bank of coinfection theory, our findings imply that large numbers of 
small interactions between even relatively small communities of pathogens can drive 
surprisingly large fluctuations in PSR across multiple scales. These simulations reveal a 
surprising gap in integrating coinfection into host-level community ecology theory. Coinfection 
studies typically focus on organismal contexts with small datasets, making it challenging to 
extrapolate findings to broader ecological scales. We propose bridging this gap by integrating 
coinfection research with related fields to elevate our understanding of coinfection impacts on 
higher levels of biological organisation. 
 
Although our simulations strongly support the notion that coinfection may be important to 
consider when sampling wildlife populations for pathogens, the literature and available data fall 
far short of being able to test these ideas. A vital next step is empirically identifying coinfection 
interactions in systems with known interactions among parasite species or strains. Most 
pathogen datasets sampled from wild animals focus on a few different species or strains – or, 
more often, higher taxa – in numbers far lower than our simulated data. For example, a 
well-used dataset of 713 individuals spanning 11 rodent species identifies 36 genera of 
pathogenic bacteria (Abbate et al., 2024), but some of the best examples for pathogen 
interactions influencing infection risk focus on only four species (Telfer et al., 2010). Indeed, in 
most of these systems, coinfection interactions are quantified in a maximum of perhaps 3-4 
pairs of strains. Our simulations included 5-100 strains, yet the effect of strain number on 
detectability was exceedingly small. The number of strains produced in our simulations ranged 
from 10 to 4,950 possible interactions. Most systems have orders of magnitude too little data to 
inform or parameterise such models.  
 
 
Fortunately, microbial interactions extend beyond infectious organisms, offering opportunities to 
test and parameterize coinfection models in diverse systems. These include soil or gut microbial 
communities where understanding interaction types and their consequences is a key focus. For 
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example, recent efforts in mammalian microbiome studies have sought to characterise the 
nature of interaction types that comprise the complex gut bacterial communities of wild baboons 
(Roche et al., 2023). Understanding interaction types and their contribution to community 
assembly and stability is an increasing focus for microbial systems across free-living and 
host-associated microbiomes (Coyte et al., 2015; Debray et al., 2022). Expanding microbial 
community datasets and ecological network repositories like Mangal (Poisot et al., 2016) offer 
valuable opportunities to explore how interactions among community members broadly impact 
detectability and richness estimates across diverse ecosystems.  
 
Here, we provide a theoretical demonstration of coinfection interactions influencing the 
interpretation of parasite species richness. These results build on a rich history of coinfection 
investigations demonstrating that such interactions have measurable individual and population 
level effects, highlighting the importance of accounting for their net effects to understand 
parasite community dynamics at macroecological scales. While our simple theoretical approach 
illuminates how coinfection processes influence efforts to quantify parasite diversity, there are 
practical hurdles to scaling up within-host interactions to the population level. Surveillance is 
patchy due to focus on high-risk areas or pathogens, the high costs of monitoring entire parasite 
communities, especially rare or benign members, and the practical and economical challenges 
of conducting long-term fieldwork with sufficient data density. Despite these limitations, empirical 
studies support our theoretical findings. A meta-analysis of human coinfections revealed that 
coinfection affects overall parasite abundance (Griffiths et al., 2011). Similarly, research on wild 
rodents demonstrated that coinfection can substantially alter infection risk and detectability of 
co-circulating parasites (Telfer et al., 2010), and in non-mammalian hosts, experimental 
co-infection inoculations of the flowering plant Plantago lanceolata result in population-level 
impacts of more severe epidemics (Susi et al. 2015). Determining causality between parasites 
remains challenging for wildlife studies dominated by observational, cross-sectional data 
(Fenton et al., 2014). Encouragingly, long-term studies to understand inter-specific parasite 
relationships (e.g., (Ezenwa & Jolles, 2011; Gorsich et al., 2018; Knowles et al., 2013)) provide 
a wealth of a priori hypotheses for how specific groups of parasites may interact (e.g. (Graham, 
2008; Pedersen & Fenton, 2007)). Concurrently, a boom in within-host community data afforded 
by metabarcoding approaches is increasing the resolution of information available on entire 
communities of bacteria and viruses in wildlife (Raghwani et al., 2023). Insights from focused 
parasite interaction studies alongside large-scale microorganism data offer unprecedented 
opportunities to build on the conceptual ideas presented here to better understand and account 
for the impact of within-host parasite community dynamics on disease patterns across broader 
ecological scales. 
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Figure 1: Parameter distribution of simulated strains. In our simulations, we explored the 
parameter space using stratified sampling to simulate many possible interaction patterns for 
infectious strains. Facilitation strength is the sum of all facilitative interactions that act upon a 
strain, while competition strength is the sum of all competitive interactions that act on a strain. 
The number of strains indicates how many other strains are present in the population in a 
strain’s particular simulation. Simulations with low numbers of strains are clustered at low 
competition and facilitation strength because fewer strains means that there can be fewer total 
interactions, limiting the strength of competition and facilitation. 
 



 
Figure 2: Partial effects of coinfection and sampling scheme on strain detectability. We 
analyzed our simulation results using a general additive model with a binomial response (strain 
detected vs. strain not detected). The proportion of the population sampled had the strongest 
effect on strain detectability. The second strongest effect came from a tensor of mean 



competition (average negative effects of other strains on the focal strain) and mean facilitation 
(average positive effects of other strains on the focal strain). Stronger competition reduced 
detectability and stronger facilitation increased detectability. 
 

 
Figure 3: Effect sizes of simulation parameters. We analyzed simulation outputs using a 
generalized linear model with a binomial response (strain detected vs. strain not detected.) 
Proportion of the population sampled had a strong positive effect on strain detectability. Time 
had a weaker positive effect, with strains becoming more detectable as time passed in the 
simulation. Competition decreased the positive slope of detectability over time, while facilitation 
increased it. The number of strains in the simulation had no effect on detectability. 



 



 
Figure 4: Probability of detection surfaces. The heatmaps show the mean probability that a 
strain will be detected when 10% of the host population is sampled. The facets show the 
interactions between time and mean facilitation or competition toward a focal strain. Strains 
always become more detectable over time, but high competition slows the increase in 
detectability (A) while high facilitation speeds it up (B). 
 



Supplementary Information 
 

 
Supplementary Figure 1: Priority effects and accuracy of parasite species richness es:mates. 
We ran 5000 simula.ons of our process-explicit coinfec.on model in which pairwise interac.on 
matrices were symmetric (no priority effects) and 5000 simula.ons in which pairwise 
interac.on matrices were asymmetric (priority effects). We subsampled the resul.ng 
popula.ons for parasites and used these samples as es.mates of parasite species richness. We 
compared these es.mates against the true species richness and calculated percent error. There 
was no difference in the accuracy of species richness es.mates between simula.ons with and 
without priority effects (t = 0.58835, df = 9935.7, p-value = 0.5563). 
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