

1 The business case for investing in 2 biodiversity data

3 Fevziye Hasan¹, Jakob Nyström², Per Alström², Carina Andersson³, Louise A. Ashton⁴, David M.
4 Baker^{4,5,6}, Michael J. W. Boyle⁴, André P. da Silva⁷, Mats Eriksson¹, Robert M. Goodsell⁸, Emma
5 Granqvist⁸, Alice C. Hughes⁹, Alice Höglström¹⁰, Veronika A. Johansson^{8,11}, Olga Vinnere
6 Pettersson^{12,13}, Fabian Roger¹⁴, Fredrik Ronquist⁸, and Tomas Roslin^{15,16}

7 Affiliations

8 ¹Museum of Evolution, Uppsala University, Norbyvägen 16, 75236 Uppsala, Sweden

9 ²Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden

10 ³Knowit AB, Stockholm, Sweden

11 ⁴School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China

12 ⁵Swire Institute of Marine Science, University of Hong Kong, Hong Kong SAR, China

13 ⁶Archireef Ltd, InnoCentre, Tat Chee Road, Kowloon Tong, Hong Kong SAR, China

14 ⁷Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

15 ⁸Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-
16 104 05, Stockholm, Sweden

17 ⁹School of Biosciences, University of Melbourne, Victoria, Australia

18 ¹⁰Sveaskog, Wallingatan 2, SE-111 60, Stockholm, Sweden

19 ¹¹Global Biodiversity Information Facility (GBIF) Sweden, Stockholm, Sweden

20 ¹²Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine,
21 Department of Immunology, Genetics and Pathology

22 ¹³Uppsala University, Science for Life Laboratory, SciLifeLab

23 ¹⁴DNAir AG, Zurich, Switzerland

24 ¹⁵Ecosystems and Environment Research Programme, Faculty of Biological and Environmental

25 Sciences, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland
26 ¹⁶Swedish University of Agricultural Sciences (SLU), Department of Ecology, Ulls väg 18B, 75651,
27 Uppsala, Sweden
28 **Corresponding author:** Fevziye Hasan - fevziye.hasan@em.uu.se

29

30 **Acknowledgements**

31 Author contributions: FH conceptualised the paper. FH, JN, CA, APD, ME, AH, VJ, OVP, RMG, FR,
32 FR and TR took part in workshop discussions that further developed the framework and ideas
33 throughout the manuscript. FH created the financial model for private-sector investment towards
34 biodiversity data. FH drafted the manuscript, and all authors contributed critically to writing all
35 drafts. We thank Stiftelsen Oscar och Lili Lamms Minne for funding the “Emerging Methods in
36 Business and Biodiversity: Data is the Shared Language” workshop at Ekenäs Herrgård, Sweden, on
37 December 5-6, 2024.

38

39 **Conflict of Interest**

40 The authors declare no competing interests, financial or otherwise. For transparency, VAJ is
41 employed by GBIF. DMB and F. Roger are affiliated with nature-tech companies (Archireef Ltd and
42 DNAir AG), and EG and F. Ronquist are associated with Mistra FinBio. FH hopes to develop a not-
43 for-profit organisation based on the biodiversity data broker model described in this paper.

44

45 **Key Words**

46 Business and biodiversity, biodiversity data gap, biodiversity finance gap, biodiversity crisis,
47 biodiversity informatics

48 **Highlights**

49 ● The biodiversity crisis is also a business crisis, with global economic losses exceeding \$5
50 trillion annually. Biodiversity loss generates risks, opportunities, and regulatory requirements
51 that businesses cannot address without reliable biodiversity data.

52

53 ● Significant gaps in biodiversity data and taxonomic expertise prevent businesses from fully
54 understanding their biodiversity dependencies, impacts, risks, and opportunities, constraining
55 nature-based solutions and sustainability strategies.

56

57 ● The methods and infrastructure to deliver high-quality open biodiversity data already exist
58 through GBIF; what is urgently needed is sustained financial investment in collection,
59 standardisation, and mobilisation.

60

61 ● We identify solutions for financing biodiversity data at scale: businesses share their own
62 biodiversity data or invest via a trusted biodiversity data broker that facilitates sustained data
63 mobilisation to GBIF.

64

65 **Abstract**

66 Biodiversity loss threatens ecosystems and economic stability, creating an urgent need for
67 biodiversity data. Businesses require these data to understand their impacts and dependencies, assess
68 risks and opportunities, meet regulations, and inform nature-based solutions (NbS). Significant
69 challenges remain: the biodiversity data gap, limited expertise in translating raw data into business
70 use cases, and insufficient financing for consolidating data within a reliable open infrastructure like
71 the Global Biodiversity Information Facility (GBIF). Here, we explore biodiversity data origins and
72 how targeted investment, AI, and automation can address the biodiversity data gap faster, cheaper,
73 and more reliably at scale. We propose a financing model for businesses to invest in biodiversity data,

74 embedded within a broader framework addressing the data gap, with case studies illustrating practical
75 application.

76

77 **Business applications of biodiversity data**

78 The biodiversity crisis is a business crisis [\(1\)](#) with global economic losses already exceeding \$5 trillion
79 annually [\(2\)](#). Biodiversity underpins the **ecosystem services** (see [Glossary](#)) businesses depend on, from
80 pollination to climate regulation to food security and disease control [\(3,4\)](#). As a core component of
81 natural capital [\(5,6\)](#), biodiversity loss creates escalating risks with irreversible consequences as
82 planetary boundaries are transgressed [\(7,8\)](#). These risks have catalysed international action through
83 the **Global Biodiversity Framework (GBF)**, nature's "Paris moment," [\(9\)](#) with 23 targets leading to four
84 broad goals for halting and reversing biodiversity loss by 2050. Yet, none of these targets can be
85 implemented or tracked without **biodiversity data** [\(10\)](#).

86

87 Just as carbon markets emerged under the Paris Agreement, biodiversity markets are now developing
88 as businesses recognise that carbon is only one aspect of nature. The evolving umbrella of nature
89 markets acknowledges that climate and ecosystems are interdependent, creating new opportunities
90 [\(11–13\)](#). For example, businesses investing in **Nature-based Solutions (NbS)**, like biodiversity credits,
91 aim to protect biodiversity, enhance ecosystem services, and mitigate climate risks. But scaling these
92 solutions remains challenging due to difficulties in measuring biodiversity outcomes and securing
93 long-term investment [\(14\)](#). Inadequate baseline biodiversity data, monitoring, and auditable records
94 make validating claims difficult [\(15,16\)](#), and the absence of centralised oversight further risks false
95 claims and greenwashing [\(17\)](#).

96

97 The World Bank estimates that collapsing ecosystem services could cost \$2.7 trillion annually by
98 2030 [\(18\)](#). Without adequate data, businesses cannot anticipate sudden, irreversible ecosystem
99 changes that cause major environmental, social, and financial losses [\(19\)](#), disrupting the **supply chains**
100 on which businesses depend. Target 15 of the GBF encourages businesses to measure biodiversity

101 risks, dependencies, and impacts, and increasing regulatory pressure requires biodiversity data for
102 both mandatory and voluntary reporting. For example, the Environment Act 2021 (UK) was the first
103 to mandate Biodiversity Net Gain (BNG), requiring measurable biodiversity improvements (20),
104 while the EU's Corporate Sustainability Reporting Directive (CSRD) requires disclosure of nature-
105 related impacts and dependencies (21). Despite recent reductions in disclosure requirements (22),
106 companies that take their nature-related financial risks seriously continue to adopt voluntary
107 frameworks like the **Taskforce on Nature-related Financial Disclosures (TNFD)** to maintain
108 transparency and stakeholder trust (23).

109

110 Businesses need biodiversity data to answer three critical questions: what are their impacts and
111 dependencies, and where do risks and opportunities lie? Most companies cannot answer them (24).
112 While biodiversity-related financial risks are acknowledged at macro scales, company-level data
113 remains sparse across industries (25). The challenge extends beyond sectors with obvious
114 dependencies like agriculture, mining, forestry, and fisheries. Agriculture occupies over 50% of
115 Earth's habitable surface, representing both the primary driver of biodiversity loss and greatest
116 opportunity for nature markets. Yet 30% of cultivated lands lack biodiversity data, with many areas
117 having no new data for over a year (26). This data scarcity leaves companies unable to measure supply
118 chain risks, identify impact blind spots, or identify harmful subsidies. European primary sector
119 entrepreneurs underestimate their impacts due to short-term economic incentives and national
120 contexts (27). Companies with complex global supply chains in electronics, automotive, and textiles
121 face even greater difficulty tracking biodiversity relationships, and understanding what to measure
122 and how compounds this challenge.

123

124 Unlike carbon accounting's standardised CO₂-equivalents, biodiversity lacks a unified metric (28).
125 Biodiversity data are highly context-dependent, encompassing genetic, species, and ecosystem
126 diversity (29,30). Businesses are left grappling with nothing less than one of humanity's deepest
127 questions: how to define and quantify biodiversity. This needs guidance. Without appropriate data
128 and expertise, companies may misjudge their economic dependencies on biodiversity. Despite a

129 growing **nature-tech** sector, businesses face a “**nature data gap**” rendering any subsequent “**nature**
130 **intelligence**” unreliable (31), limiting innovation and undermining sustainability strategies. The
131 TNFD has proposed a “Nature Data Public Facility” to provide decision-useful data for corporate
132 reporting (32). However, this risks perpetuating data fragmentation, which produces unreliable
133 models and undermines any science-based understanding of how businesses relate to nature.

134

135 **The biodiversity data gap**

136 The **biodiversity data gap** stems from inadequate understanding of the importance of, and bottlenecks
137 in, collecting, standardising, and mobilising biodiversity data to a reliable central infrastructure. The
138 Global Biodiversity Information Facility (GBIF) was established in 2001 to address global biodiversity
139 information sharing (33). Today, GBIF hosts over 3.5 billion records from 2,574 publishers across 68
140 countries and 42 participant organisations (34). While GBIF represents an extraordinary scientific
141 achievement, chronic underfunding means it cannot meet demands from biodiversity regulation and
142 nature markets. Global biodiversity remains largely terra incognita, with data fragmented and uneven
143 across taxa, ecosystems and regions. Birds dominate with 65.3% of records, despite representing just
144 0.5% of known species. Most data come from high-income countries, leaving biodiversity-rich
145 regions underrepresented. Spatial coverage has improved from 6.2% of Earth’s terrestrial surface in
146 2015 to 15.5% in 2025 at 5 km resolution, but major gaps persist in the world’s most biodiverse
147 regions (35).

148

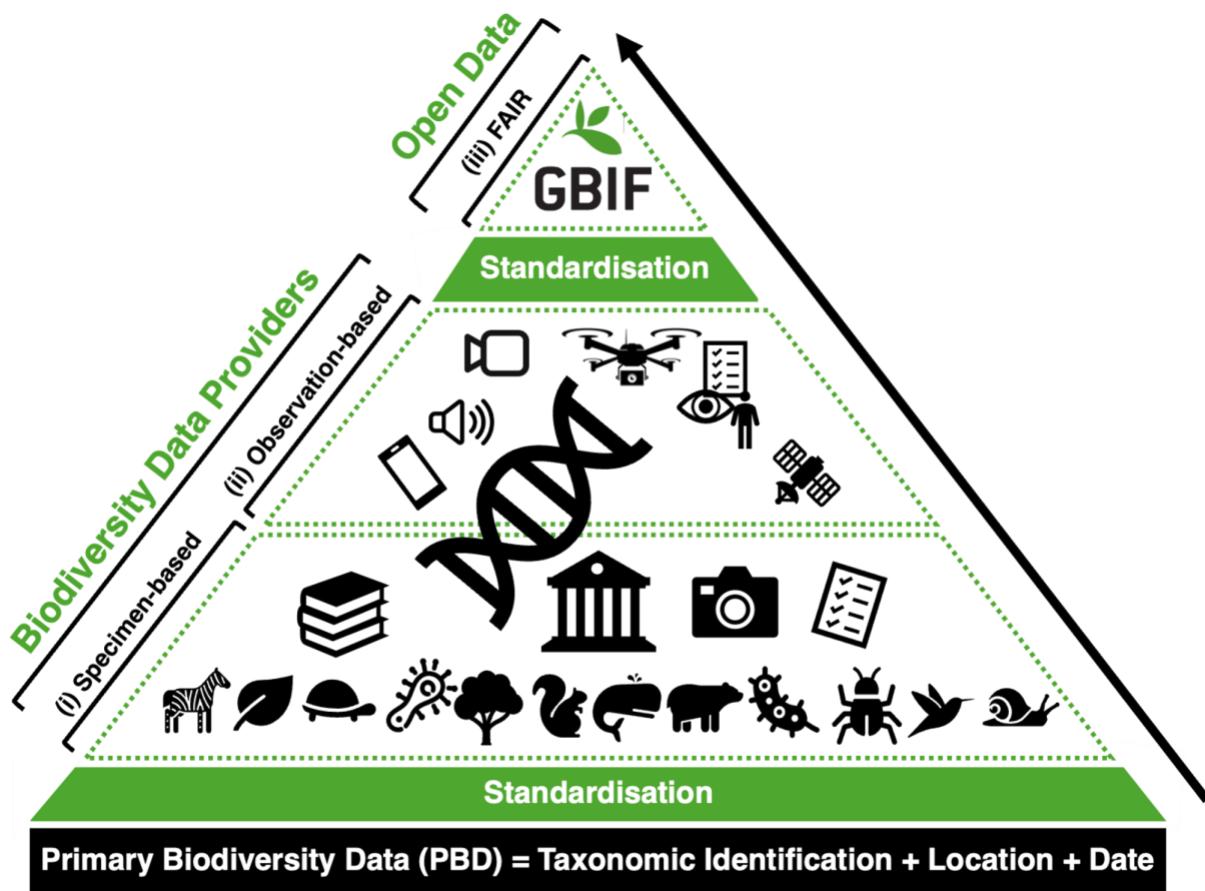
149 Marine and freshwater habitats remain underrepresented, with coverage of merely 3.4-10.7%. Coral
150 reefs have been sampled across only 11% of their extent, and freshwater ecosystems face similar
151 deficits (35). Sampling is biased towards accessible areas: roads, wealthy nations, and established
152 research infrastructure. The U.S. contributes 26% of reptile records but hosts less than 5% of global
153 reptile diversity. Plant data from the Botanical Information and Ecology Network (BIEN) cover
154 around 290,000 species, but gaps remain across Southeast Asia, Central Asia, and North Africa. Of

155 144,239 IUCN-assessed species, 28,713 lack geographic data entirely, and 83% of animals are mapped
156 with coarse polygons [\(35\)](#).

157

158 Data sovereignty further complicates progress. Many biodiversity-rich regions treat biodiversity data
159 as a national resource rather than sharing it openly. This creates problems because these regions often
160 anchor global supply chains. For example, Malaysia produces 26% of the world's palm oil, a USD 16.1
161 billion industry [\(36\)](#), yet Malaysia's Biodiversity Information System (MyBIS) restricts data access. As
162 a result, businesses buying palm oil cannot verify sustainability claims or biodiversity risks.

163 Additionally, biodiversity data are essential to verify the value of NbS projects like tropical rainforest
164 and mangrove restoration or biodiversity credits. Access to such data would unlock better risk
165 management and economic opportunities. Governments recognising this accelerates progress, with
166 South Korea and Japan reaching nearly 100% coverage by 2025 [\(35\)](#).


167

168 The CBD encourages parties to join GBIF [\(37\)](#), with some support for international capacity building
169 programmes in developing regions. For example, Colombia, the world's second most biodiverse
170 country, now leads in businesses publishing biodiversity data, with over 340 datasets and 3.6 million
171 records uploaded through raising awareness via the National Business Association of Colombia
172 (ANDI). This has strengthened Colombia's biodiversity data and increased temporal coverage, giving
173 Colombian businesses transparency and market advantages unavailable in data-poor regions. Without
174 such shared resources, businesses cannot gauge the status quo of biodiversity they depend on or
175 evaluate alternative actions for strategic planning. Yet closing the data gap requires understanding the
176 expertise, infrastructure, and standardisation processes needed to collect quality raw biodiversity data
177 in the first place.

178

179

From raw biodiversity data to data products

192 data are records of species encounters generated through field surveys and sensor technologies:
193 human observations using eyes, binoculars, and field notes, eDNA sequences from environmental
194 samples, acoustic sensor recordings, camera trap imagery, citizen science observations (e.g.,
195 iNaturalist), and drone-based remote sensing data. DNA-based approaches overlap both domains,
196 requiring physical samples for taxonomic verification. (iii) FAIR data standardisation occurs before
197 collection (sampling protocols) and after collection (to adhere to metadata standards like Darwin
198 Core), followed by mobilisation to GBIF's open infrastructure. Sustained investment across all layers,
199 particularly the foundational specimen-based tier, is essential to prevent fragmentation and ensure
200 verifiability for business use cases.

201

202 Data collection, standardisation and mobilisation

203 The **biodiversity data gap** reflects chronic underinvestment in generating and standardising
204 biodiversity data from specimens and observations ([Figure 1](#)). Collecting and mobilising high-quality
205 biodiversity data was once costly and slow, but modern technology and computing power have
206 greatly reduced these barriers. Today, the main challenge is securing investment across the data
207 lifecycle, from standardised collection to metadata formatting and centralised FAIR data mobilisation.

208

209 Natural science collections remedy one of the most fundamental biodiversity data gaps: the
210 **taxonomic impediment** ([38](#)) ([Figure 1](#)). Species names are anchored to type specimens, providing
211 reference points for collating information on what species are and do in nature. Collections also
212 preserve decades of temporal data that establish historical baselines ([39](#)). Yet, billions of specimens in
213 European collections alone remain undigitised ([40](#)). High-speed digitisation systems ([41,42](#)) and
214 automated label transcription ([43](#)) now process tens of thousands of specimens efficiently. Once
215 digitised, specimens enable essential applications: genetic data builds eDNA reference libraries,
216 computer vision extracts trait data for modelling ecosystem services ([44](#)), and type material are
217 references for species verification. Living collections (e.g. botanical gardens) collectively maintain
218 about a third of described plant diversity, including threatened or extinct taxa ([45](#)). Specimen-based

219 data provide the taxonomic reference framework upon which all observation-based technologies
220 depend ([Figure 1](#)).

221

222 Advances in biodiversity science have driven development of scalable observation-based monitoring
223 technologies ([Figure 1](#)). Business demand has accelerated innovation in the nature-tech sector, which
224 attracted over USD 2 billion in investment in 2022, growing at 52% annually since 2018 ([31,46](#)).
225 eDNA and metabarcoding enable rapid species detection, accelerating inventory of cryptic taxa like
226 fungi and invertebrates ([47,48](#)). Passive acoustic monitoring with AI enables continuous monitoring
227 at costs far below traditional surveys ([49,50](#)). Camera traps now extend to plants and insects ([51–53](#))
228 while platforms like iNaturalist leverage smartphones and deep learning to crowdsource observations
229 ([54,55](#)). Drone sensors enable species-level identification and habitat mapping, though applications
230 remain geographically limited ([56–58](#)). These technologies generate big biodiversity data at a fraction
231 of the cost ([59](#)), but volume alone does not ensure utility.

232

233 Without standardisation before and after data collection, most data remain challenging to integrate
234 ([48](#)). Data produced from different methods are difficult to compare, so metadata standards ensure
235 raw data from diverse sources are FAIR ([60,61](#)). First, sampling designs need standardisation and
236 representativeness. Coherent protocols for generating commensurate data are rapidly advancing
237 ([62,63](#)) and to ensure representativeness, data should cover current environmental variation. Second,
238 metadata must be standardised to enable users to retrace where, when and how data were acquired.
239 Sampling unrepresentative subsets risks misinterpreting trends across populations and communities
240 ([64–66](#)). Darwin Core (DwC) vocabulary, maintained by Biodiversity Information Standards (TDWG)
241 ([67](#)) underpins this interoperability. The emerging DwC Data Package format enables publication of
242 DwC-based datasets as Frictionless Data Packages, supporting richer, linked tables and explicit
243 relationships ([68](#)). Domain-specific implementations include the Humboldt Extension for Ecological
244 Inventories ([69](#)), MiXS for sequence data ([70](#)) and Camtrap DP for camera trap data ([71](#)). These align
245 with initiatives like the Distributed System of Scientific Collections (DiSSCo) and Digital Specimen
246 framework, advancing interoperability and supporting cross-scale integration.

247

248 For accessibility and reuse, biodiversity data must be consolidated to a single, reliable open
249 infrastructure: GBIF. Maintaining fragmented data across multiple platforms is untenable, creating
250 data leakage and waste. GBIF represents the clear consolidation point as the world's largest
251 biodiversity data infrastructure. Business dependence on GBIF, including through the proposed
252 TNFD Nature Data Public Facility [\(72\)](#). makes focused investment essential. However, even when
253 standardised and mobilised to GBIF, raw biodiversity data cannot directly answer business questions
254 about dependencies, risks, and opportunities. Translating primary data into decision-ready
255 biodiversity data products is essential.

256

257 **Decision-ready metric, models and tools**

258 Translating biodiversity data into decision-ready products for business use cases requires metrics,
259 models and tools. Yet without collaborative expertise of taxonomists, ecologists, developers and data
260 scientists, data products risk being technically sophisticated but ecologically meaningless [\(73\)](#).
261 Metrics reduce multidimensional biodiversity data to simpler forms. While over 2,000 terrestrial
262 biodiversity metrics exist [\(74\)](#), their validity depends on data quality and interpretation. Even simple
263 metrics such as species richness can mislead without ecological context [\(75\)](#). The IUCN Red List,
264 widely used in private sector reporting, is taxonomically biased towards vertebrates, with most other
265 taxa data deficient and assessments lacking transparency [\(76\)](#). Essential Biodiversity Variables (EBVs)
266 are an example of standardised metrics [\(77\)](#) adopted by businesses. However, EBVs derived from
267 remote sensing data are difficult to interpret and unreliable. Businesses increasingly turn to eDNA-
268 based approaches for ground-truth data that provides direct, actionable biodiversity metrics [\(78\)](#).

269

270 Models predict future species distributions, habitat loss, and ecosystem change. Species distribution
271 models translate primary biodiversity data into spatial forecasts, but only when ecologists guide
272 variable selection and constraint parameterisation. This method currently represents 48% of GBIF-
273 based methodological applications, machine learning 4.43% but growing rapidly [\(34\)](#). Examples used
274 by businesses include the Biodiversity Intactness Index (BII) [\(79,80\)](#), and GLOBIO [\(81\)](#) both proposed

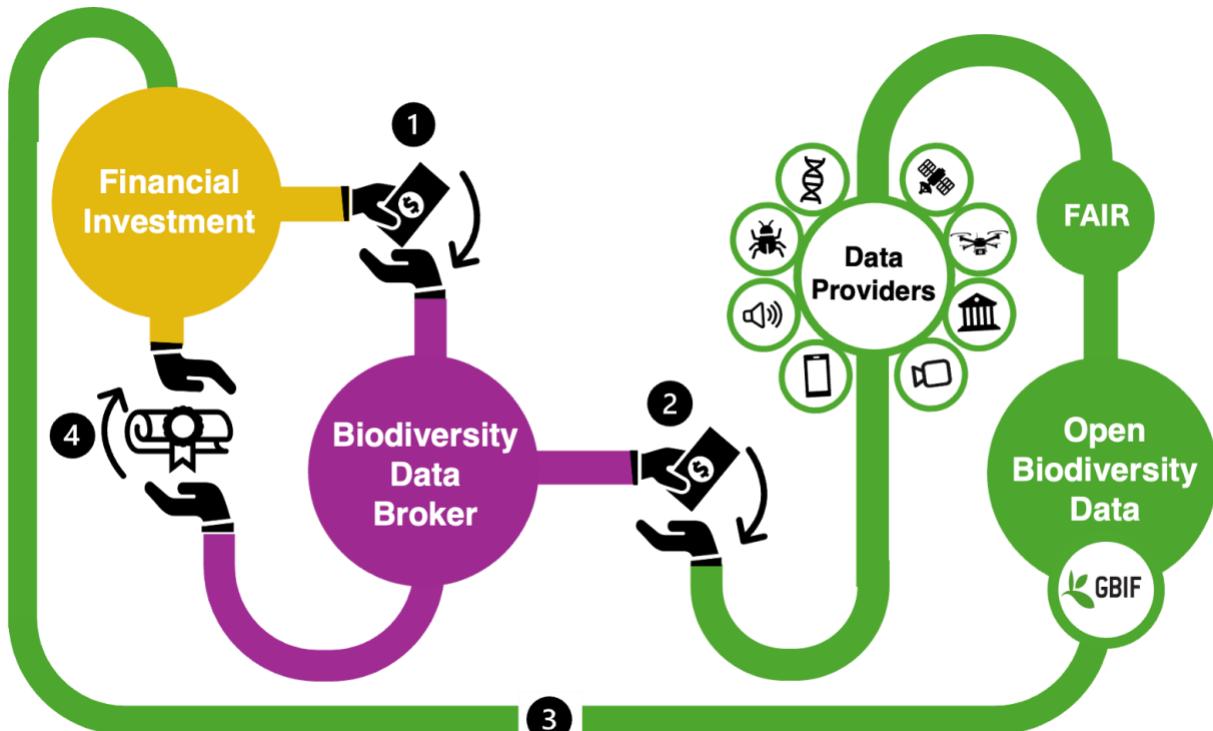
275 as GBF indicators (82). However, many such global heat maps (83) are only weakly linked to
 276 evaluating specific decision impacts. Actionable data products require regional and local data to
 277 ensure high-quality analysis. BII and similar models remain largely untested for predictive
 278 performance (84,85), potentially undermining businesses' nature-related financial risks. Outside
 279 academia, nature-tech business solutions built without ecological expertise and lacking peer review
 280 or quality standards enter the market with shiny promises, making it difficult to distinguish rigorous
 281 tools from AI hype merchants (86). Business decisions based on dodgy biodiversity data products risk
 282 major negative biodiversity impact.

283

284 Tools represent the practical integration of metrics and models into operational decision support.
 285 Pl@ntNet demonstrates the full translation arc, with four million users contributing plant images that
 286 undergo AI-based identification and integration into species distribution models, yielding real-time
 287 intelligence on endangered species and richness patterns (87). Similar end-to-end pipelines are
 288 emerging for acoustic monitoring, where audio recordings from hundreds of thousands of users are
 289 processed through AI-based species identification and digital twinning to generate continuously
 290 updated species distribution maps (88). However scrupulous the methodology, models, metrics, and
 291 tools cannot escape underlying data, raising the question: how can business investment in
 292 biodiversity data be secured and incentivised?

293

294 **Investing in biodiversity data**


295 Biodiversity finance has grown steadily, with public funding unlocking private investment from
 296 US\$0.1 billion in 2016 to US\$1.7 billion in 2023, and US\$23.4 billion flowing to NbS in the same year
 297 (97). Yet flows remain far below the US\$700 billion annual gap needed to meet GBF targets, while
 298 US\$840 billion annually flows to harmful subsidies (97). If just 1% of harmful subsidies were
 299 redirected to biodiversity data collection, standardisation, and mobilisation to GBIF, what could we
 300 achieve? Despite evidence for positive returns, coordinated business investment in data remains
 301 absent.

302

303 The **business case** for investing in biodiversity data has been demonstrated. GBIF delivers €3 in
304 direct user benefits and €12 in societal value (by extension, business value) for every €1 invested
305 ([89](#)). Scotland's biodiversity data infrastructure generates £10 to £24 per £1 invested ([90](#)), UK marine
306 data infrastructure returns 8:1 benefit-cost ratio ([91](#)), and the Natural History Museum's £155.6
307 million digitisation programme is estimated to return £2 billion in economic value ([92](#)). Despite this,
308 business investment remains negligible, widening the **biodiversity finance gap**. Private companies
309 accounted for just 0.3% of GBIF data in 2020, publishing only 7.8 million records ([93](#)). A paradox
310 emerges: demand for biodiversity data is increasing due to risks and regulations, yet supply remains
311 limited because businesses underinvest in data generation. Where investment occurs, data remain
312 siloed ([94](#)), preventing businesses from understanding financial risks at sector level ([25](#)).

313

314 Businesses end up in two categories. Companies with direct natural resource dependencies, such as
315 agriculture, mining, and forestry, conduct mandated environmental impact assessments generating
316 datasets that remain internal. Mobilising these to GBIF would unlock billions of records while
317 providing sector insights at marginal cost ([94](#)). Companies with indirect dependencies in complex
318 supply chains, such as pharmaceutical companies, electronics manufacturers, and fashion brands, lack
319 direct biodiversity data but depend on it for supply chain risk assessment and regulatory compliance
320 under frameworks like TNFD. For these businesses, **blended finance** models offer a solution: investing
321 in biodiversity data providers via a trusted **biodiversity data broker** that ensures scientific legitimacy
322 and provides auditable outcome-based certification of impact ([Figure 2](#)).

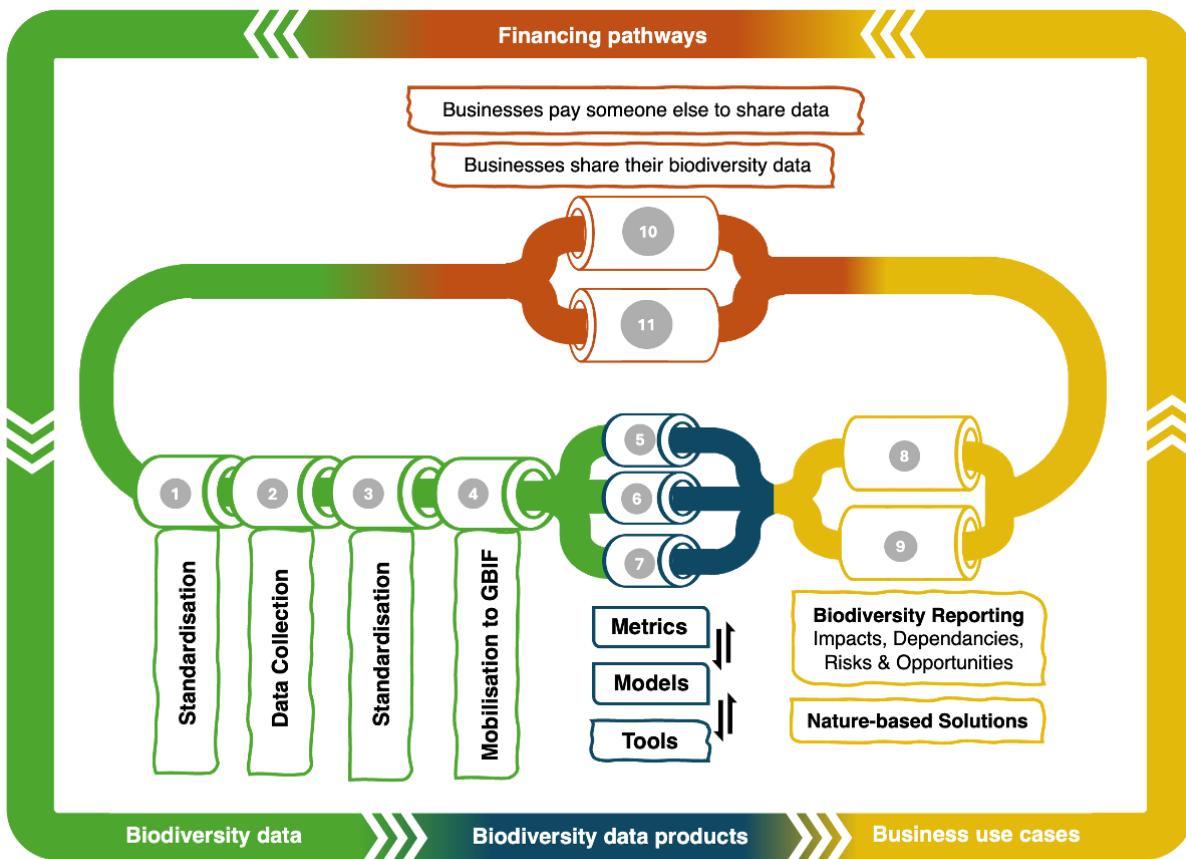
323

324 **Figure 2. A biodiversity data broker model enabling blended finance and collective business**
 325 **investment in biodiversity data** (1) Financial investment from business stakeholders (yellow) flows to
 326 a not-for-profit organisation acting as a trusted biodiversity data broker (purple). (2) The broker
 327 directs funds to biodiversity data providers (green) for primary data collection, standardisation and
 328 mobilisation to GBIF. By pooling resources and expertise, the broker ensures investments support
 329 high-quality data that serve both business and biodiversity needs, maximising return on investment.
 330 (3) Biodiversity data are published on GBIF (green), becoming openly available to all users
 331 worldwide. (4) Investors (yellow) receive outcome-based certification from the broker (purple)
 332 verifying their measurable contribution to open biodiversity data. Certification tracks the volume and
 333 quality of mobilised data, linking impact directly to each investor's financial contribution. This
 334 enables businesses to report biodiversity data contributions as measurable outcomes within
 335 sustainability portfolios, providing transparent and auditable evidence of nature-positive investment.
 336

337 **A framework for business investment in biodiversity**

338 **data**

339 Operationalising these investment pathways requires clarity on how biodiversity data flows from
340 collection to business use cases. [Figure 3](#) presents the necessary steps for generating high-quality
341 biodiversity data that businesses depend on. The framework demonstrates that downstream business
342 needs (models, metrics, tools for reporting and NbS) depend on solving upstream bottlenecks:
343 biodiversity data ([Figure 1](#)) and financing pathways ([Figure 2](#)).


344

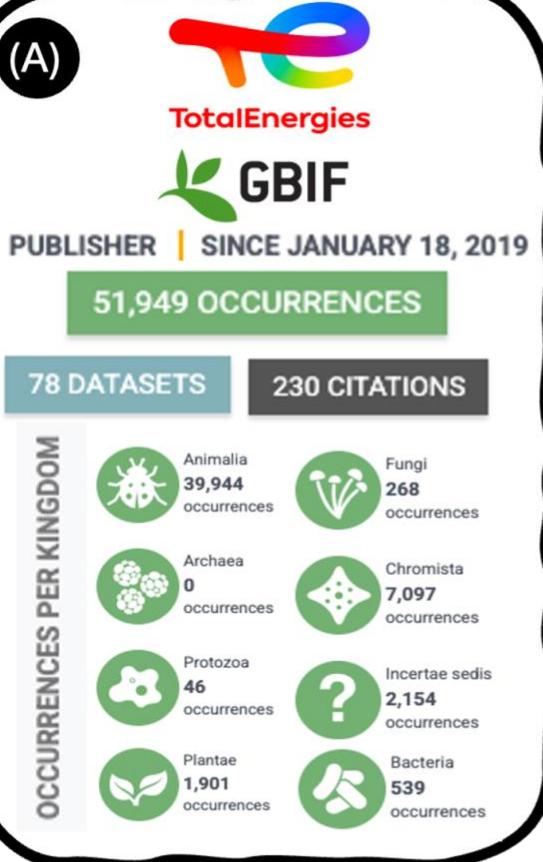
345 The two investment pathways map directly onto this system. Companies with direct natural resource
346 dependencies can share existing data from mandatory environmental assessments. TotalEnergies ([Box](#)
347 [1A](#)) demonstrates how businesses can mobilise assessment data directly to GBIF. MISTRA FinBio
348 ([Box 1C](#)) illustrates how businesses and sectors, such as Swedish agriculture, can standardise sector-
349 specific measurements through academia-finance collaboration, producing standardised eDNA
350 monitoring systems that draw baseline data from GBIF and maintain auditability by mobilising new
351 data back. Alternatively, businesses can use nature-tech monitoring services like NatureMetrics ([Box](#)
352 [1E](#)), which offers clients the option to share data to GBIF while maintaining their own records.

353

354 The second pathway is for businesses, particularly those with indirect biodiversity dependencies, to
355 pool investment through a trusted biodiversity data broker to finance data collection and mobilisation
356 ([Figure 2](#)). This model has major potential for biodiversity hotspots like Sabah, Malaysian Borneo,
357 where decades of ecological research have generated extensive datasets ([Box 1B](#)) that remain
358 unpublished despite the region's economic importance for palm oil production. Certification-based
359 investment can also mobilise temporal data from natural history collections at universities ([Box 1D](#)),
360 where millions of specimens documenting economically important species require digitisation.
361 Nature-tech companies ([Box 1E](#)) complement these efforts by filling critical data gaps through
362 scalable monitoring technologies.

363

364

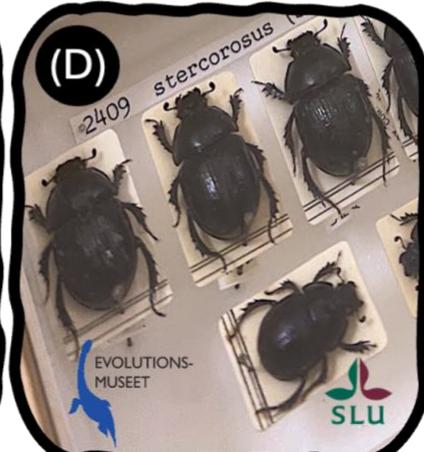

365 **Figure 3. A conceptual framework for business investment in biodiversity data.**

366 Biodiversity data (green) flow through standardisation and mobilisation to generate data products
 367 (blue) that enable business use cases (yellow), supported by financing pathways (orange). The
 368 framework begins with (1) data standardisation protocols established prior to collection, including
 369 sampling design and methodology; (2) data collection from diverse providers including natural
 370 science collections, environmental impact assessments, and biodiversity monitoring programmes; (3)
 371 standardisation following FAIR metadata principles and Biodiversity Information Standards (TDWG)
 372 to ensure data quality and interoperability; (4) mobilisation to GBIF, the world's largest open
 373 biodiversity data infrastructure, consolidating data into a reliable open platform. Biodiversity experts
 374 then generate data products, including (5) metrics such as Essential Biodiversity Variables (EBVs); (6)
 375 models, such as species distribution and forecasting; and (7) tools including software, digital twins

376 and platforms for data processing and analysis, iteratively updated as new data become available.
377 These data products enable (8) business use cases, including biodiversity reporting under mandatory
378 and voluntary frameworks, assessing impacts, dependencies, risks, and opportunities; as well as (9)
379 nature-based solutions (NbS) including biodiversity credits. Two financing pathways offer businesses
380 clear routes to address the biodiversity data gap (10) businesses with direct natural resource
381 dependencies sharing their own biodiversity data directly to GBIF; (11) businesses with complex
382 supply chain dependencies invest in biodiversity data via trusted brokers who partner with data
383 providers, pooling investment to fund data collection and mobilisation to GBIF at scale.

Box 1. Case studies of business investment in biodiversity data

(A)


(B)

(C)

(D)

(E)

(A) Multinational business publishing biodiversity data

Since 2018, TotalEnergies has mobilised biodiversity data from mandated environmental impact assessments to GBIF, publishing over 50,000 records from marine ecosystems. These datasets include primary biodiversity data from experts and tech, such as acoustic recordings, as well as ecological data such as habitat sensitivity metrics. By becoming a GBIF data publisher, they adhere to FAIR principles and Darwin Core standards, and align operational monitoring with sustainability reporting and regulatory compliance, including the GBF and the CSRD. They claim that partnering with GBIF has improved their auditability and stakeholder reputation, despite not publishing all operational data.

(B) Biodiversity hotspots with unmobilised data

In Southeast Asian biodiversity hotspots, decades of ecological research have generated extensive datasets that remain largely inaccessible. In Sabah, Malaysian Borneo, initiatives such as the SAFE (Stability of Altered Forest Ecosystems) experiment, funded by the Sime Darby Foundation and coordinated by Imperial College London, have produced millions of biodiversity records across taxa and land-use gradients (95). However, these remain unmobilised through global infrastructures such as GBIF, and data from other large-scale projects, including the IKEA Sow-a-Seed forest restoration initiative, are not published to GBIF. Mobilising these legacy datasets through targeted financing and governance mechanisms would provide cost-effective baselines for conservation planning, sustainable land management, and compliance monitoring, particularly in biodiversity-rich but under-resourced regions.

(C) Academia–finance partnerships for sector specific standardised biodiversity data

The MISTRA FinBio programme in Sweden shows how collaborations between academia and the financial sector can generate biodiversity data tailored to business and investment needs. FinBio tests and evaluates different methods of standardising biodiversity data collection, including eDNA sampling. One pilot project focuses on Swedish agricultural land and investigates the impact of regenerative farming practices, work that is done in collaboration with the organisation *Svensk kolinlagring*. The project aims to collect data that can be used to inform financial decision-making and support sustainability metrics

based on e.g. EBVs. The project commitment to open methods and data ensures that the biodiversity information is published to GBIF, enhancing transparency and long-term utility.

(D) Natural science collections: the original biodiversity data infrastructure

Nature-tech companies provide business solutions for biodiversity measuring and reporting tailored to reporting frameworks, such as the TNFD, while both using and contributing to GBIF data. Archireef Ltd (Hong Kong), DNAir AG (Switzerland), and NatureMetrics Ltd (UK) were founded by academic experts in biodiversity science. Archireef combines modular coral restoration structures with environmental DNA, photogrammetry, and acoustic surveys to establish baselines and track ecological change in marine systems. DNAir develops airborne eDNA sensors for rapid, non-invasive biodiversity assessments in remote or sensitive terrestrial environments. Both companies draw on existing GBIF data to model baseline biodiversity of ecosystems. NatureMetrics also offers clients the option to mobilise eDNA data back to GBIF. These nature-tech companies bridge gaps in terrestrial and marine ecosystem data while demonstrating how commercial monitoring can strengthen open data available on GBIF.

385 **Concluding remarks**

386 Businesses need biodiversity data to assess risks and comply with regulations. Over 600 companies
387 and financial institutions representing US\$20 trillion in assets now commit to nature-related
388 disclosure with TNFD [\(98\)](#), yet to our knowledge, there is little concerted effort to address this issue
389 head on and find financing solutions to the data gap. How can we ensure businesses' natural-related
390 financial risks are meaningful without auditable biodiversity data? This is not a technical problem.
391 The methods, protocols, and infrastructure exist. The constraint is educating business stakeholders
392 about the upstream bottlenecks in consolidating biodiversity data ([Figure 1](#)), financing pathways for
393 coordinating investment ([Figure 2](#)), and how this impacts them ([Figure 3](#)), enabling meaningful
394 action to activate the system at scale.

395

396 Biodiversity loss is urgent. National security frameworks now recognise biodiversity loss as a serious
397 threat to food security, water availability, public health, and disaster protection [\(100\)](#). In 2018,
398 Barbier et al. [\(96\)](#) asked how to pay for saving biodiversity; the GBF represents progress, but the next
399 question is: how to pay for the biodiversity data needed to save it. Currently, businesses acknowledge
400 the data gap but investment does not follow. Business and biodiversity can achieve mutual
401 profitability through a shift from transactional interactions to genuine partnerships, driven by
402 enlightened self-interest, market forces, and strategic collaboration [\(99\)](#). This is particularly critical as
403 we enter an increasingly data-driven economy with digital twins and AI systems. Biodiversity data
404 investment represents a no-regret strategy that gains value through accumulation and compounds
405 over time. Realising this requires collaborative forums where ecologists and business stakeholders
406 bridge disciplinary divides whilst maintaining scientific rigour. Biodiversity data can establish
407 common ground between these worlds. Questions remain about optimal collaboration mechanisms,
408 standardisation frameworks, and investment incentives (see [Outstanding questions](#)).

409

410 Outstanding questions

411 1. What is the economic value of biodiversity data at company, sector, regional, and global
412 levels, and how does this value change over time? Understanding biodiversity data's economic
413 value could justify investment and demonstrate tangible returns to businesses.

414

415 2. How can scaling biodiversity data collection for business needs simultaneously address the
416 taxonomic impediment by training new taxonomists and developing AI tools? Can strategic
417 investment reverse the “double extinction” by building both taxonomic capacity and
418 biodiversity knowledge?

419

420 3. Can businesses establish collective mobilisation targets, such as 10 billion primary
421 biodiversity records by 2050, with sector-specific milestones that align financial investment
422 with GBF goals? Such targets could guide investment opportunities and priorities across
423 industries with different dependencies and measure progress.

424

425 4. Could policy frameworks mandate that businesses, particularly from primary industries, share
426 biodiversity data with GBIF or demonstrate investment via biodiversity data brokers? This
427 could accelerate data mobilisation at scale and encourage countries to share their data
428 ensuring more economic opportunities for biodiversity-rich regions.

429

430 5. Can the number of primary biodiversity data points collected and mobilised to GBIF serve as
431 a useful complementary positive action and measurable metric for business engagement with
432 biodiversity?

433

434 6. What governance structures ensure biodiversity data brokers and their certification maintain
435 scientific legitimacy, prevent greenwashing, and deliver auditable outcomes that businesses
436 and regulators trust? The credibility and effectiveness of the broker model depends on

437 transparent standards and independent verification.

438

439 7. What forums best facilitate collaboration between biodiversity scientists and businesses? Can
440 biodiversity data serve as a common language bridging ecologists, economists, and business
441 stakeholders toward coordinated action for biodiversity?

442

443 **Glossary**

4441. **Biodiversity data**

445 Primary biodiversity data, also known as occurrence data, includes taxonomic identification,
446 geographical location, and date of observation or collection. This data type is essential for biodiversity
447 data products.

448

4492. **Biodiversity data broker**

450 A not-for-profit organisation that facilitates blended finance and collaboration between businesses,
451 de-risking individual investment towards biodiversity data. It channels financial resources and
452 technical support to verified biodiversity data providers to collect, standardise, and mobilise
453 biodiversity data into GBIF, ensuring data quality, auditability, certification, and equitable access.

454

4553. **Biodiversity data gap**

456 Also referred to as the "nature data gap", the persistent gap in taxonomic, ecosystem, geographic, and
457 temporal biodiversity data available through open infrastructure.

458

4594. **Biodiversity finance gap**

460 The difference between financial resources required to conserve and sustainably manage biodiversity
461 and current investment. Estimated at \$700 billion annually, reflecting chronic underinvestment
462 constraining progress toward global biodiversity targets..

463

4645. Blended finance

465 Investment from multiple sources to reduce risk for individual investors.

466

4676. Business case

468 Justification for proposed action, considering financial, social, and environmental factors, outlining
469 expected benefits, costs, and impact to support decision-making.

470

4717. Ecosystem services

472 Benefits businesses and society derive from healthy ecosystems, including clean water, pollination,
473 carbon sequestration, and soil fertility, that support operations, supply chains, and resilience.

474

4758. FAIR data

476 Findable, Accessible, Interoperable, and Reusable data. FAIR data principles improve transparency,
477 reproducibility, and integration across datasets and sectors.

478

4799. Kunming-Montreal Global Biodiversity Framework (GBF)

480 A 2022 global agreement to halt and reverse biodiversity loss by 2030 and achieve living in harmony
481 with nature by 2050. It sets four goals and 23 targets, including protecting 30% of land and sea,
482 restoring ecosystems, and mobilising USD 200 billion annually, emphasising open, high-quality
483 biodiversity data for monitoring progress.

484

48510. Nature Intelligence

486 Analytic outputs businesses use to understand and report on biodiversity impacts, dependencies,
487 risks, and opportunities, leveraging data products such as metrics, models, and tools to inform
488 decisions while measuring and mitigating impacts.

489

490 **11. Nature-tech**

491 Tech companies delivering solutions for biodiversity data collection and analytics, including
492 hardware (camera traps, drones, acoustic monitoring, eDNA sampling) and software providing
493 metrics, models, and tools for business use.

494

495 **12. Nature-based Solutions (NbS)**

496 Actions that protect, restore, or sustainably manage ecosystems while delivering biodiversity benefits
497 to people, such as green infrastructure, reforestation, and biodiversity credits. NbS achieve multiple
498 co-benefits including protecting biodiversity, enhancing ecosystem services, and mitigating climate
499 risks.

500

501 **13. Supply chain**

502 The network of organisations, activities, and resources involved in producing and delivering goods or
503 services, where biodiversity and ecosystem services underpin materials, influence risks, and shape
504 sustainable strategies. For example, cocoa supply chains depend on pollination and forest services;
505 biodiversity loss can reduce yields, disrupt production, and increase costs.

506

507 **14. Taskforce on Nature-related Financial Disclosures (TNFD)**

508 An international framework helping companies and investors report on nature-related financial risks,
509 opportunities, and dependencies to support sustainable decision-making. Leading a new initiative
510 called “the Nature Data Public Facility”.

511

512 **15. Taxonomic impediment**

513 A CBD term describing knowledge gaps in taxonomic systems, shortage of trained taxonomists, and
514 resulting impacts on our ability to identify, monitor, and value biodiversity. With millions of species
515 undescribed and too few taxonomists, particularly in biodiversity-rich regions where businesses

516 operate, this represents a "double extinction": losing both species and the expertise to describe them,
 517 leaving businesses unable to assess their true biodiversity dependencies and risks.

518

519 **References**

- 520 1. Kurth T, Wübbels G, Portafaix A, zum Felde AM. The biodiversity crisis is a business crisis
 521 [Internet]. Boston Consulting Group; 2021. Available from:
 522 <https://www.bcg.com/publications/2021/biodiversity-loss-business-implications-responses>
- 523 2. Ranger N, Alvarez J, Freeman A, Harwood T, Obersteiner M, Paulus E, et al. The Green
 524 Scorpion: the Macro-Criticality of Nature for Finance Foundations for scenario-based analysis of
 525 complex and cascading physical nature-related financial risks Published as Oxford-NGFS
 526 Occasional Paper 2 Citation the Task force on biodiversity loss and nature-related risks (Task
 527 force Nature) of the Network of Central Banks and Supervisors for Greening the Financial System
 528 (NGFS). We express our sincere thanks to. 2023; Available from: <https://www.ngfs.net/en/the-green-scorpion-macro-criticality-nature-for-finance>
- 529 3. Hanson C, Ranganathan J, Iceland C, Finisdoe J. The Corporate Ecosystem Services Review:
 530 Guidelines for Identifying Business Risks and Opportunities Arising from Ecosystem Change
 531 [Internet]. World Resources Institute; 2012. Report No.: Version 2.0. Available from:
 532 [//www.wri.org/research/corporate-ecosystem-services-review](http://www.wri.org/research/corporate-ecosystem-services-review)
- 533 4. Díaz S, Pascual U, Stenseke M, Martín-López B, Watson RT, Molnár Z, et al. Assessing
 534 nature's contributions to people: Recognizing culture, and diverse sources of knowledge, can
 535 improve assessments. Vol. 359, Science. American Association for the Advancement of Science;
 536 2018. p. 270–2.
- 537 5. Costanza R. Valuing natural capital and ecosystem services toward the goals of efficiency,
 538 fairness, and sustainability. Ecosyst Serv. 2020 June;43:101096.
- 539 6. Dasgupta P. The Economics of Biodiversity: The Dasgupta Review. HM Treasury; 2021.
- 540 7. Richardson K, Steffen W, Lucht W, Bendtsen J, Cornell SE, Donges JF, et al. Earth beyond six
 541 of nine planetary boundaries. Sci Adv. 2023 Sept 15;9(37):eadh2458.

543 8. Sakschewski B, Caesar L, Andersen L, Bechthold M, Bergfeld L, Beusen A, et al. Planetary
544 Health Check 2025: A Scientific Assessment of the State of the Planet [Internet]. Planetary
545 Boundaries Science (PBScience). Potsdam Institute for Climate Impact Research (PIK); 2025 Sept
546 [cited 2025 Dec 10] p. 144 pages, 22 MB. Available from: https://publications.pik-potsdam.de/pubman/item/item_32589

547 9. Mammides C, Campos-Arceiz A. Media coverage of biodiversity falls short compared to
548 climate change and popular culture. *Npj Biodivers*. 2025 Mar 30;4(1):11.

549 10. CBD. Decision adopted by the Conference of the Parties to the Convention on Biological
550 Diversity 15/4. Kunming-Montreal Global Biodiversity Framework. In 2022.

551 11. Bush A, Simpson KH, Hanley N. Systematic nature positive markets. *Conserv Biol*. 2024
552 June;38(3):e14216.

553 12. Zu Ermgassen SOSE, Hawkins I, Lundhede T, Liu Q, Thorsen BJ, Bull JW. The current state,
554 opportunities and challenges for upscaling private investment in biodiversity in Europe. *Nat Ecol
555 Evol*. 2025 Feb 5;9(3):515–24.

556 13. Swinfield T, Shrikanth S, Bull JW, Madhavapeddy A, Ermgassen SOSE zu. Nature-based
557 credit markets at a crossroads. *Nat Sustain* 2024 710. 2024 Aug;7(10):1217–20.

558 14. Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B. Understanding the value
559 and limits of nature-based solutions to climate change and other global challenges. *Philos Trans R
560 Soc B* [Internet]. 2020 Mar;375(1794). Available from:
561 <https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0120>

562 15. Girardin CAJ, Jenkins S, Seddon N, Allen M, Lewis SL, Wheeler CE, et al. Nature-based
563 solutions can help cool the planet — if we act now. *Nat* 2021 5937858. 2021 May;593(7858):191–
564 4.

565 16. Aide TM. The Biodiversity Credit Market needs rigorous baseline, monitoring, and validation
566 practices. *Npj Biodivers* 2024 31. 2024 Oct;3(1):1–4.

567 17. IUCN. IUCN Global Standard for Nature-based Solutions : first edition [Internet]. IUCN; 2020
568 [cited 2025 Dec 13]. Available from: <https://portals.iucn.org/library/node/49070>

570 18. Johnson JA, Ruta G, Baldos U, Cervigni R, Chonabayashi S, Corong E, et al. The Economic
571 Case for Nature: A global Earth-economy model to assess development policy pathways
572 [Internet]. World Bank Group; 2021. Available from:
573 <https://openknowledge.worldbank.org/server/api/core/bitstreams/9f0d9a3a-83ca-5c96-bd59-9b16f4e936d8/content>

575 19. Pinto da Silva A, Knecht N, Thomas R, Lotcheris R, Crona B, Rocha JC. Challenges and
576 opportunities when assessing exposure of financial investments to ecosystem regime shifts. *Curr
577 Opin Environ Sustain.* 2025 June 1;74:101526.

578 20. UK Government. Environment Act 2021 [Internet]. King's Printer of Acts of Parliament;
579 2021. Available from: <https://www.legislation.gov.uk/ukpga/2021/30/contents>

580 21. Wassé E, Crona B, Quahe S. Essential environmental impact variables: A means for
581 transparent corporate sustainability reporting aligned with planetary boundaries. *One Earth.*
582 2024;7:211–25.

583 22. NATCAP. The EU Omnibus: A Refinement, Not a Retreat [Internet]. 2025 [cited 2025 Oct
584 17]. Available from: <https://natcapresearch.com/blog/the-eu-omnibus-a-refinement-not-a-retreat>

585 23. TNFD. Discussion paper on Nature transition plans - Taskforce on Nature-related Financial
586 Disclosures. 2025 Jan.

587 24. Smith T, Beagley L, Bull J, Milner-Gulland EJ, Smith M, Vorhies F, et al. Biodiversity means
588 business: Reframing global biodiversity goals for the private sector. *Conserv Lett.* 2020
589 Jan;13(1):e12690.

590 25. Alvarez J. Evidence review on the financial effects of nature-related risks [Internet].
591 University of Oxford's Environmental Change Institute, TNFD and Global Canopy; 2025 Aug
592 [cited 2025 Oct 19]. Available from: <https://tnfd.global/publication/evidence-financial-effects-of-nature-related-risks/>

594 26. Remelgado R, Levers C, Cord AF. Cultivated lands: blind spots in global biodiversity data.
595 *Trends Ecol Evol.* 2025 Dec 1;40(12):1155–8.

596 27. Hirschmann M, Fisch C, Farny S. Biodiversity loss and entrepreneurship: Empirical evidence
597 on threat perceptions among primary-sector entrepreneurs in 28 European countries. *J Bus
598 Ventur Insights*. 2025 June 1;23:e00529.

599 28. Jones MJ, Solomon JF. Problematising accounting for biodiversity. *Audit Account J*.
600 2013;26(5):668–87.

601 29. CBD. Convention on Biological Diversity : text and annexes / Secretariat of the Convention
602 on Biological Diversity. 2011;

603 30. Exposito-Alonso M, Booker TR, Czech L, Gillespie L, Hateley S, Kyriazis CC, et al. Genetic
604 diversity loss in the Anthropocene. *Science*. 2022 Sept;377(6613):1431–5.

605 31. Goren G. Developing the Nature Tech Taxonomy Framework [Internet]. Nature Tech
606 Collective; 2024. Available from: <https://www.naturetechcollective.org/stories/nature-tech-taxonomy-framework#Download%20Whitepaper>

608 32. TNFD. A roadmap for upgrading market access to decision-useful nature-related data. 2024;
609 Available from: https://tnfd.global/wp-content/uploads/2024/10/Discussion-paper_Roadmap-for-enhancing-market-access-to-nature-data.pdf?v=1730281144

611 33. OECD. Final report of the working group on biological informatics [Internet]. Organisation
612 for Economic Co-operation and Development; 1999 Dec [cited 2025 Dec 13]. Available from:
613 <https://zenodo.org/records/3383187>

614 34. Steinke D, Gemeinholzer B, Martínez-Meyer E, Noesgaard D, Young A, Schigel D. Globally
615 aggregated biodiversity data impact predictive and descriptive research. *Proc Natl Acad Sci*. 2025
616 Dec 16;122(50):e2519119122.

617 35. Hughes AC, Demirel N, Barnes DK, Ahlquist IH, Ondo I, Guralnick R, et al. Understanding
618 the adequacy and representativeness of species distribution data. 2025 Oct 5 [cited 2025 Oct 20];
619 Available from: <https://ecoenvorxiv.org/repository/view/10395/>

620 36. Hassan MA, Farid MAA, Zakaria MR, Ariffin H, Andou Y, Shirai Y. Palm oil expansion in
621 Malaysia and its countermeasures through policy window and biorefinery approach. *Environ Sci
622 Policy*. 2024 Mar 1;153:103671.

623 37. Schomaker A. Invitation to join the Global Biodiversity Information Facility and to make use
624 of its information for monitoring and implementing the Kunming-Montreal Global Biodiversity
625 Framework [Internet]. 2025. Available from: <https://www.cbd.int/doc/notifications/2025/ntf-2025-037-kmgbf-en.pdf>

626 38. Engel MS, Ceríaco LMP, Daniel GM, Dellapé PM, Löbl I, Marinov M, et al. The taxonomic
627 impediment: a shortage of taxonomists, not the lack of technical approaches. *Zool J Linn Soc.*
628 2021 Sept;193(2):381–7.

630 39. Lalueza-Fox C. Museomics. *Curr Biol.* 2022 Nov;32(21):R1214–5.

631 40. Huybrechts P, Trekels M, Groom Q. How Much of Biodiversity is Represented in Collections:
632 A big data workflow of aggregated occurrence data. *Biodivers Inf Sci Stand* 6 E94279. 2022
633 Sept;6:e94279–.

634 41. Dupont S, Price B. ALICE, MALICE and VILE: High throughput insect specimen digitisation
635 using angled imaging techniques. *Biodivers Inf Sci Stand.* 2019 June;3.

636 42. Garner BH, Creedy TJ, Allan EL, Crowther R, Devenish E, Kokkini P, et al. The taxonomic
637 composition and chronology of a museum collection of Coleoptera revealed through large-scale
638 digitisation. *Front Ecol Evol.* 2024;12.

639 43. Takano A, Cole TCH, Konagai H. A novel automated label data extraction and data base
640 generation system from herbarium specimen images using OCR and NER. *Sci Rep.* 2024
641 Dec;14(1).

642 44. Davis CC. The herbarium of the future. *Trends Ecol Evol.* 2023 May;38(5):412–23.

643 45. Cano Á, Powell J, Aiello AS, Andersen HL, Arbour T, Balzer A, et al. Insights from a century
644 of data reveal global trends in ex situ living plant collections. *Nat Ecol Evol.* 2025 Jan 21;9(2):214–
645 24.

646 46. Evison W, Gill E, Moussa T, O'Brien D. A surge in nature tech investing [Internet]. Price-
647 Waterhouse Cooper (PwC); 2022. Available from:
648 <https://www.pwc.com/gx/en/services/sustainability/publications/surge-in-nature-tech-investing.html>

649

650 47. Ronquist F, Forshage M, Häggqvist S, Karlsson D, Hovmöller R, Bergsten J, et al. Completing
651 Linnaeus's inventory of the Swedish insect fauna: Only 5,000 species left? *PLOS ONE*.
652 2020;15(3):e0228561.

653 48. Hartig F, Abrego N, Bush A, Chase JM, Guillera-Arroita G, Leibold MA, et al. Novel
654 community data in ecology-properties and prospects. *Trends Ecol Evol*. 2024 Mar;39(3):280–93.

655 49. Hildebrand J, Wiggins S, Baumann-Pickering S, Frasier K, Roch MA. The past, present and
656 future of underwater passive acoustic monitoring. *J Acoust Soc Am*. 2024
657 Mar;155(3_Supplement):A96–A96.

658 50. Somervuo P, Roslin T, Fisher BL, Hardwick B, Kerdraon D, Raharinjanahary D, et al. Human
659 contributions to global soundscapes are less predictable than the acoustic rhythms of wildlife. *Nat
660 Ecol Evol*. 2025 Sept;9(9):1585–98.

661 51. Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, et al. Scaling-up
662 camera traps: monitoring the planet's biodiversity with networks of remote sensors. *Front Ecol
663 Environ*. 2017 Feb;15(1):26–34.

664 52. Bjerge K, Nielsen JB, Sepstrup MV, Helsing-Nielsen F, Høye TT. An Automated Light Trap to
665 Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning. 2021;
666 Available from: <https://doi.org/10.3390/s21020343>

667 53. Høye TT, Ärje J, Bjerge K, Hansen OLP, Iosifidis A, Leese F, et al. Deep learning and
668 computer vision will transform entomology. *Proc Natl Acad Sci U S A*. 2021
669 Jan;118(2):e2002545117.

670 54. August T, Harvey M, Lightfoot P, Kilbey D, Papadopoulos T, Jepson P. Emerging technologies
671 for biological recording. *Biol J Linn Soc*. 2015 July;115(3):731–49.

672 55. Beery SM. Where the Wild Things Are: Computer Vision for Global-Scale Biodiversity
673 Monitoring. 2023;

674 56. Mäyrä J, Keski-Saari S, Kivinen S, Tanhuanpää T, Hurskainen P, Kullberg P, et al. Tree
675 species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural
676 networks. *Remote Sens Environ*. 2021 Apr;256.

677 57. Larsen HL, Møller-Lassen K, Enevoldsen EME, Madsen SB, Obsen MT, Povlsen P, et al.
678 Drone with Mounted Thermal Infrared Cameras for Monitoring Terrestrial Mammals. *Drones*.
679 2023 Nov;7(11).

680 58. Chen H, Li M, Månefjord H, Travers P, Salvador J, Müller L, et al. Lidar as a potential tool for
681 monitoring migratory insects. *iScience*. 2024 May 17;27(5):109588.

682 59. Musvuugwa T, Dlomu MG, Adebawale A. Big Data in Biodiversity Science: A Framework for
683 Engagement. Vol. 9, *Technologies*. MDPI; 2021.

684 60. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR
685 Guiding Principles for scientific data management and stewardship. *Sci Data* 2016 31. 2016
686 Mar;3(1):1–9.

687 61. Carroll SR, Herczog E, Hudson M, Russell K, Stall S. Operationalizing the CARE and FAIR
688 Principles for Indigenous data futures. Vol. 8, *Scientific Data*. Nature Research; 2021.

689 62. Hardwick B, Kerdraon D, Rogers HMK, Raharinjanahary D, Rajoelison ET, Mononen T, et al.
690 LIFEPLAN: A worldwide biodiversity sampling design. *PLOS ONE*. 2024 Dec
691 31;19(12):e0313353.

692 63. Miraldo A, Sundh J, Iwaszkiewicz-Eggebrecht E, Buczek M, Goodsell R, Johansson H, et al.
693 Data of the Insect Biome Atlas: a metabarcoding survey of the terrestrial arthropods of Sweden
694 and Madagascar. *bioRxiv*. 2024 Nov;2024.10.24.619818.

695 64. Guilbault E, Sihvonen P, Suuronen A, Huikonen IM, Pöyry J, Laine AL, et al. Strong context
696 dependence in the relative importance of climate and habitat on nation-wide macro-moth
697 community changes. *J Anim Ecol*. 2025;94(10):1948–61.

698 65. Numminen E, Jokinen M, Lindén A, Vanhatalo J. Species ecology can bias population
699 estimates. *Biol Conserv*. 2023 July 1;283:110115.

700 66. Bowler DE, Boyd RJ, Callaghan CT, Robinson RA, Isaac NJB, Pocock MJO. Treating gaps and
701 biases in biodiversity data as a missing data problem. *Biol Rev*. 2025;100(1):50–67.

702 67. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, et al. Darwin Core: An
703 Evolving Community-Developed Biodiversity Data Standard. *PLOS ONE*. 2012 Jan;7(1):e29715.

704 68. Wieczorek JR, Robertson T, Zermoglio PF. Darwin Core Data Package: A Practical Evolution
705 to Support Richer, Deeper, and New Biodiversity Data Sharing. In: Biodiversity Information
706 Science and Standards [Internet]. Pensoft Publishers; 2025 [cited 2026 Jan 1]. p. e181043.
707 Available from: <https://biss.pensoft.net/article/181043/>

708 69. Sica YV, Hochachka WM, Stevenson RD, Ingenloff K, Zermoglio PF, Wieczorek J, et al.
709 Enabling ecological survey data integration with the Humboldt Extension to Darwin Core.
710 Ecography. 2025;n/a(n/a):e08223.

711 70. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum
712 information about a marker gene sequence (MIMARKS) and minimum information about any (x)
713 sequence (MIXS) specifications. Nat Biotechnol. 2011 May;29(5):415–20.

714 71. Bubnicki JW, Norton B, Baskauf SJ, Bruce T, Cagnacci F, Casaer J, et al. Camtrap DP: an open
715 standard for the FAIR exchange and archiving of camera trap data. Remote Sens Ecol Conserv.
716 2024 June;10(3):283–95.

717 72. TNFD. Findings of a high-level scoping study exploring the case for a global nature-related
718 public data facility [Internet]. 2023. Available from:
719 https://wedocs.unep.org/bitstream/handle/20.500.11822/41335/state_

720 73. Liu D. We must train specialists in botany and zoology — or risk more devastating
721 extinctions. Nature. 2024 Sept;633(8031):741.

722 74. Burgess ND, Ali N, Bedford J, Bhola N, Brooks S, Cierna A, et al. Global Metrics for
723 Terrestrial Biodiversity. Annu Rev Environ Resour. 2024 Oct;49(Volume 49, 2024):673–709.

724 75. Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, et al. Biodiversity
725 change is uncoupled from species richness trends: Consequences for conservation and
726 monitoring. J Appl Ecol. 2018 Jan;55(1):169–84.

727 76. Goodsell RM, Tack AJM, Ronquist F, van Dijk LJA, Iwaszkiewicz-Eggebrecht E, Miraldo A, et
728 al. Moving towards better risk assessment for invertebrate conservation. Ecography.
729 2025;2025(8):e07819.

730 77. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, et al. Essential
731 biodiversity variables. Science. 2013 Jan;339(6117):277–8.

732 78. Granqvist E, Goodsell RM, Töpel M, Ronquist F. The transformative potential of eDNA-based
733 biodiversity impact assessment. *Curr Opin Environ Sustain.* 2025 Apr 1;73:101517.

734 79. Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, et al. Global effects of land
735 use on local terrestrial biodiversity. *Nat* 2015 5207545. 2015 Apr;520(7545):45–50.

736 80. Phillips H, Palma AD, Gonzalez RE, Contu S. The Biodiversity Intactness Index - country,
737 region and global-level summaries for the year 1970 to 2050 under various scenarios. *Nat Hist*
738 *Mus Data Portal.* 2021 Oct;

739 81. Schipper AM, Hilbers JP, Meijer JR, Antão LH, Benítez-López A, de Jonge MMJ, et al.
740 Projecting terrestrial biodiversity intactness with GLOBIO 4. *Glob Change Biol.* 2020;26(2):760–
741 71.

742 82. CBD. Monitoring framework for the Kunming-Montreal Global Biodiversity Framework:
743 Sixteenth meeting Cali, Colombia, 21 October–1 November 2024 Agenda item 10 Mechanisms
744 for planning, monitoring, reporting and review. 2024; Available from:
745 <https://www.cbd.int/doc/c/5044/ea79/105d29801a3efae8df742c93/cop-16-l-26-en.pdf>

746 83. Myers N, Mittermeler RA, Mittermeler CG, Fonseca GABD, Kent J. Biodiversity hotspots for
747 conservation priorities. *Nat* 2000 4036772. 2000 Feb;403(6772):853–8.

748 84. Martin PA, Green RE, Balmford A. The biodiversity intactness index may underestimate
749 losses. *Nat Ecol Evol* 2019 36. 2019 May;3(6):862–3.

750 85. Nyström J. Large-scale biodiversity intactness estimation using Bayesian hierarchical models
751 [Internet] [PhD Thesis]. Uppsala University; 2024. Available from:
752 <https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-538994>

753 86. Garud R, Phillips N, Snihur Y, Thomas LDW, Zietsma C. Hype in entrepreneurial settings. *J*
754 *Bus Ventur.* 2026 Mar 1;41(2):106559.

755 87. Botella C, Joly A, Bonnet P, Munoz F, Monestiez P. Jointly estimating spatial sampling effort
756 and habitat suitability for multiple species from opportunistic presence-only data. *Methods Ecol*
757 *Evol.* 2021;12(5):933–45.

758 88. Ovaskainen O, Lauha P, Gordillo JL, Nokelainen O, Rahman AU, Souza AT, et al. Prototype
759 Biodiversity Digital Twin: Real-time bird monitoring with citizen-science data. *Res Ideas
760 Outcomes*. 2024 June 20;10:e125523.

761 89. Deloitte. Economic valuation and assessment of the impact of the GBIF network [Internet].
762 2023. Available from: <https://www.deloitte.com/au/en/services/economics/perspectives/total->
763 [economic-value-open-access-database-living-world.html](https://www.deloitte.com/au/en/services/economics/perspectives/total-economic-value-open-access-database-living-world.html)

764 90. Wilson E, Edwards L, Judge J, Johnson C, Stroud R, McLeod C, et al. A Review of the
765 Biological Recording Infrastructure in Scotland by the Scottish Biodiversity Information Forum:
766 Enabling Scotland to be a global leader for biodiversity [Internet]. Scottish Biodiversity
767 Information Forum (SBIF); 2018. Report No.: Report No. 1. Available from:
768 <https://nbn.org.uk/wp-content/uploads/2018/11/SBIF-Review-Final-Report-and->
769 [Recommendations.pdf](https://nbn.org.uk/wp-content/uploads/2018/11/SBIF-Review-Final-Report-and-Recommendations.pdf)

770 91. Kuyer J, Daniel R, Dewey N. MEDIN Cost Benefit Analysis. *Economics for the Environment
771 Consultancy Ltd (eftec) and ABPmer*; 2019.

772 92. Popov D, Roychoudhury P, Hardy H, Livermore L, Norris K. The Value of Digitising Natural
773 History Collections. *Res Ideas Outcomes* 7 E78844. 2021 Dec;7:e78844-.

774 93. Figueira R, Beja P, Villaverde C, Vega M, Cezón K, Messina T, et al. Guidance for private
775 companies to become data publishers through GBIF. 2020; Available from:
776 <https://doi.org/10.35035/doc-b8hq-me03>

777 94. Ostermann F, Willemen L, Paspaldzhiev I, Denitza P, Georgiev M. Guide on best practices
778 sharing biodiversity data for private companies [Internet]. *Biodiversita+*; 2025 [cited 2025 Dec
779 14]. Available from: <https://www.biodiversa.eu/2025/10/27/a-business-guide-to-sharing->
780 [biodiversity-data/](https://www.biodiversa.eu/2025/10/27/a-business-guide-to-sharing-biodiversity-data/)

781 95. Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, et al. A large-scale forest
782 fragmentation experiment: the Stability of Altered Forest Ecosystems Project. *Philos Trans R Soc
783 B Biol Sci*. 2011 Nov 27;366(1582):3292–302.

784 96. Barbier EB, Burgess JC, Dean TJ. How to pay for saving biodiversity. *Science*. 2018 May
785 4;360(6388):486–8.

786 97. TNC. Biodiversity Finance Trends 2025: Tracking trends towards financing the Kungming-
787 montreal Global Biodiversity Framework [Internet]. The Nature Conservancy; 2025. Available
788 from: <https://www.nature.org/content/dam/tnc/nature/en/documents/b/i/Biodiversity-Finance->
789 Trends-2025-Report.pdf

790 98. TNFD. Over 500 organisations and \$17.7 trillion AUM now committed to TNFD-aligned risk
791 management and corporate reporting [Internet]. <https://tnfd.global/over-500-organisations-and->
792 17-7-trillion-aum-now-committed-to-tnfd-aligned-risk-management-and-corporate-reporting/.
793 2024. Available from: <https://tnfd.global/over-500-organisations-and-17-7-trillion-aum-now->
794 committed-to-tnfd-aligned-risk-management-and-corporate-reporting/

795 99. Rose M. Business and biodiversity—a mutually profitable partnership. *Oryx*. 2000
796 Apr;34(2):83–4.

797 100. Cardinale BJ, Duffy JE, Schoonover R. Nature's role in national security. 2025 Nov 1
798 [cited 2025 Dec 31]; Available from: <https://eartharxiv.org/repository/view/10697/>