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Abstract 68 

1. The private sector is increasingly aware of its dependence on biodiversity and the financial risks 69 

and opportunities involved. This has generated a lot of demand for investing in nature-positive 70 

solutions. There is an obvious and non-negotiable basis for such initiatives: biodiversity data. 71 

Without this data and the tools built from it, no actor can assess the effects on the ecosystems 72 

they rely on. We identify two key barriers to corporate biodiversity action: (1) lack of biodiversity 73 

data and (2) challenges with biodiversity data literacy, i.e. the domain knowledge necessary to 74 

apply data products for decision making in appropriate contexts. Building on this, we present an 75 

end-to-end framework mapping biodiversity data to data products and business use cases, to 76 

establish a shared language between business and biodiversity research. 77 

 78 

2. First, we provide examples of new technologies for generating biodiversity data at unprecedented 79 

scales, such as environmental DNA, computer vision and audio monitoring. We discuss the large 80 

amount of biodiversity data available in open databases, with a focus on the Global Biodiversity 81 

Information Facility (GBIF), including their origins, limitations, and biases. We highlight the one 82 

billion untapped primary biodiversity data points in natural history collections, and the 83 

opportunity to mobilise them into open databases using technology at relatively low cost. 84 

 85 

3. Second, we discuss biodiversity data products, focusing on the ability to interpret, communicate, 86 

and effectively apply biodiversity models, metrics, and tools in relevant contexts. We address the 87 

challenges posed by the complexity of biodiversity, the importance of its definitions, and the use 88 

of aggregated metrics for biodiversity and ecosystem services in reporting, including the role of 89 

nature tech. 90 

 91 



 

4. Third, we present the business case for investing in more and open biodiversity data, with 92 

examples of actions by companies and the finance sector. We also propose a mechanism to 93 

incentivise and reward direct investments in biodiversity data mobilisation. In conclusion, we call 94 

on businesses to prioritise financial investment in biodiversity data collection and mobilisation, to 95 

create better data products that can accelerate deployment of solutions to the biodiversity crisis. 96 

Key words 97 

Biodiversity data, Business and biodiversity, data mobilisation, financing biodiversity, Global 98 

Biodiversity Information Facility (GBIF), Natural History Collections, Nature Tech, Nature-based 99 

Solutions 100 

Introduction 101 

Biodiversity underpins essential ecosystem services that support our societies and economy (Díaz et al., 102 

2018; Mace et al., 2012). Its rapid decline due to human activities is pushing planetary boundaries 103 

(Steffen et al., 2015), already costing the global economy over $5 trillion annually (Ranger et al., 2023). 104 

The World Economic Forum and central banks recognise the risks of biodiversity loss, but the 2024 105 

Global Risks Report suggests these risks will only become serious in the next decade (WEF, 2024), 106 

downplaying urgency despite biodiversity loss being a current reality.  107 

 108 

Globally, both “hard” mandatory regulations and “soft” voluntary frameworks have been introduced to 109 

address concerns about biodiversity loss. The Kunming-Montreal Global Biodiversity Framework 110 

(GBF)(COP15, 2022) has emerged as a strong influence on companies, in the same way the Paris 111 

Agreement has shaped net-zero commitments in the context of greenhouse gas-emissions (Allen et al., 112 

2025). Target 15 of the GBF requires large companies and financial institutions to monitor, assess, and 113 



 

transparently disclose their biodiversity risks, dependencies, and impacts across operations, supply chains, 114 

and portfolios (COP15, 2022). Concurrently, the EU Corporate Sustainability Reporting Directive 115 

(CSRD) mandates environmental impact reporting for approximately 50,000 companies by 2025 (Faqih 116 

& Kramer, 2024). Market-led initiatives like the Taskforce on Nature-related Financial Disclosures 117 

(TNFD) are creating science-based frameworks for managing nature-related risks and opportunities, with 118 

substantial engagement from now over 500 organisations representing £17.7 trillion in assets (TNFD, 119 

2024).The Science Based Targets Network (SBTN), originally established to guide companies in 120 

addressing the climate crisis, is now including nature and biodiversity (SBTN, 2020). 121 

 122 

This emerging intersection of business and biodiversity has stirred both optimism (White et al., 2023) and 123 

concern (Smith et al., 2019). Among the sources of optimism is the hope that private sector interest in 124 

biodiversity could provide an opportunity to tackle the biodiversity crisis and deliver data-driven 125 

solutions to long-studied problems. However, there is also apprehension that corporate sustainability 126 

departments may adopt unscientific or oversimplified approaches, inadvertently harming the very 127 

ecosystems they aim to protect (Mair et al., 2024). For companies, integrating biodiversity into their 128 

reporting presents both challenges and opportunities. In the short term, companies must adapt quickly to 129 

comply with mandatory environmental reporting requirements (D’Amato et al., 2024). In the medium 130 

term, they face increasing pressure from investors and lenders who are focusing more and more on 131 

nature-related risks and sustainability metrics (Ingram et al., 2024). Companies that fail to meet these 132 

emerging standards may face reputational damage, higher financing costs, or reduced access to capital – 133 

whereas early adopters can gain competitive advantages (Kulionis et al., 2024). 134 

 135 

To meet these new requirements and capitalise on opportunities, businesses are investing in Nature-based 136 

Solutions (NbS), which is an umbrella term for working with nature to benefit biodiversity and people 137 

(Seddon et al., 2020). New markets for biodiversity credits are also emerging under NbS, raising concerns 138 

due to the way carbon credits evolved, and underscoring the pressing need for scientific credibility (Aide, 139 



 

2024; Swinfield et al., 2024). Simultaneously, there is rapid growth of the nature tech sector, referring to 140 

any technology that enables, accelerates, and scales businesses’ nature-positive transition (Goren, 2024). 141 

Technologies that deliver “nature intelligence” analytics and tools to clients include in-situ biodiversity 142 

measurement hardware and software-as-a-service (SaaS) platforms, which ingest data from open-access 143 

biodiversity databases. The nature tech sector saw investments exceed USD 2 billion in 2022 and a 144 

compound annual growth rate of 52% since 2018 (Evison et al., 2022). Unlike the standardised CO2-145 

equivalent metrics for carbon accounting, biodiversity’s inherent complexity has resulted in widespread 146 

confusion surrounding data, metrics, reporting, and valuation approaches for businesses (Jones & 147 

Solomon, 2013). 148 

 149 

To guide decision-making on both local and global scales, there is no substitute for reliable biodiversity 150 

data (Gerber & Iacona, 2024; Hawkins, 2024; Hobern et al., 2019; Mason Heberling et al., 2021; 151 

Musvuugwa et al., 2021). Without knowing current biodiversity trends and how specific actions impact 152 

biodiversity, we cannot make decisions that are truly “evidence-based”. Despite current biases, the 153 

economic value of open biodiversity data should not be ignored, as open data on platforms like GBIF 154 

generate €3 in direct benefits for users and up to €12 in societal returns for every €1 invested, extending 155 

to business benefits (Deloitte, 2023). Despite the critical value of information and data-driven solutions, 156 

there seems to be a lack of efforts to clearly define the challenges in the biodiversity data pipeline to 157 

create suitable data-derived products for integrating business and biodiversity (Panwar et al., 2023).  158 

 159 

The complexity of integrating biodiversity into business contexts is further heightened by its multifaceted 160 

nature, which encompasses genetic diversity, species diversity, and ecosystem diversity (CBD, 2011). 161 

While species serve as the most commonly used unit of biodiversity, impacts at one level may not reflect 162 

changes at another (Exposito-Alonso et al., 2022; Kahilainen et al., 2014). Even seemingly 163 

straightforward metrics like species richness do not always indicate better biodiversity outcomes 164 

(Hillebrand et al., 2018). Essential Biodiversity Variables (EBVs) are measurements for reporting and 165 



 

monitoring, developed to aid businesses in measuring biodiversity (Pereira et al., 2013), but are often 166 

based on top-down methods that rely on indirect or modeled data, which can be biased and incomplete 167 

(Granqvist et al., In prep.). Interpreting diversity patterns requires context, i.e. biodiversity data literacy. 168 

This complexity highlights the need for clear frameworks that can help businesses effectively integrate 169 

biodiversity considerations into their operations while maintaining scientific validity. 170 

 171 

Accounting for biodiversity is a process that should be grounded in established scientific methods and 172 

fieldwork (Hill et al., 2005). A bottom-up approach prioritising the collection of in-situ biodiversity data 173 

at the local scale is needed and necessary to derive other EBVs (Granqvist et al., In prep.). Transparent 174 

and regular biodiversity data collection, including baseline measurements and ongoing monitoring, are 175 

important for scrutinising biodiversity impacts and the direction of progress in stewardship (White et al., 176 

2023). Biodiversity data needs will vary by industry, with larger or more complex operations likely 177 

requiring a combination of data sources from field monitoring, satellite data, and open biodiversity data 178 

(see Case Study S1).  179 

 180 

Biodiversity monitoring is valuable but insufficient without broader ecological context. Around four out 181 

of five species globally remain undiscovered, even in well-studied regions (Mora et al., 2011; Stork, 182 

2018; Miraldo et al., 2024), highlighting critical gaps in our understanding of ecosystems. Alarmingly, 183 

despite the significant returns of investing in biodiversity data infrastructures (Deloitte, 2023), funding 184 

remains insufficient. Natural history collections and herbaria—the original biodiversity data 185 

infrastructures that house type and voucher specimens essential for confirming species identities, updating 186 

species red-list statuses, and advancing technologies such as eDNA—are closing due to short-sighted 187 

funding systems. These collections, which contain between 1.2 and 2.1 billion specimens worldwide, are 188 

inadequately represented in GBIF, with only around 200 million specimens currently included 189 

(Huybrechts et al., 2022). For plants and fungi alone, there are approximately 400 million specimens 190 

stored internationally across 3,000 herbaria, which have the potential to aid in advancing understanding of 191 



 

traits and predictive modeling, such as forecasting biodiversity under future climate change (Davis, 2023). 192 

The decline of these collections is a catastrophe for biodiversity, driving the silent extinction of both 193 

species and taxonomists (Löbl et al., 2023). We cannot expect to advance new technologies that collect 194 

large quantities of biodiversity data without supporting the taxonomic foundations from which they are 195 

built. Simultaneous investment towards mobilising both specimen- and observation-based primary 196 

biodiversity data is needed. Without this comprehensive, scientific approach, efforts to measure and 197 

implement biodiversity positive actions may be ineffective. 198 

 199 

The open biodiversity data on GBIF is expansive, however, it is biased geographically and taxonomically 200 

(Troudet et al., 2017), with currently around 65% representing birds, which only make up 0.5% of all 201 

species currently known to science (GBIF, 2025). Most other groups of species remain poorly 202 

represented, leading to our knowledge of biodiversity patterns and responses being mostly restricted to a 203 

few data-rich taxonomic groups. Similar biases exist in national databases, including in best-studied 204 

regions like Finland (Roslin & Laine, 2022). New technologies offer promising solutions, such as 205 

advances in environmental DNA (eDNA) (Deiner et al., 2021), species identification using computer 206 

vision (Beery, 2023), and acoustic monitoring (Buxton et al., 2018). These innovations are 207 

revolutionising biodiversity data collection (van Klink et al., 2022; Van Klink et al., 2024), reducing the 208 

time and expertise needed for species inventories (August et al., 2015).  209 

 210 

Using GBIF data without addressing its biases can lead to misleading conclusions (Boyd et al., 2023). 211 

This is particularly concerning for nature tech companies offering SaaS solutions that rely solely on open 212 

data for biodiversity analytics. Such practices risk leading to unsupported claims, harming biodiversity, 213 

disrupting ecosystems, compromising clients' operations, and eroding trust in biodiversity as a critical 214 

business issue. Acknowledging the local and global data biases, some initiatives are now warning 215 

companies about the “nature data gap” (Nature Tech Collective, 2024; TNFD, 2024). There is positive 216 

growing recognition that biodiversity impact reports must be validated with “ground-truthed” in-situ data 217 



 

collection (WWF, 2024) and enabling “nature intelligence” requires high quality biodiversity data 218 

(TNFD, 2024).  219 

 220 

In this perspective, we turn to first principles and present an end-to-end framework (Figure 1) that charts 221 

the journey from data to business use cases. First, we explore biodiversity data, focusing on methods for 222 

collecting primary biodiversity data using new technologies from the field and natural history collections. 223 

Second, we examine biodiversity data products and the methods used to derive them, presenting a non-224 

exhaustive set of quality markers these products should meet. Finally, we explore the business cases for 225 

biodiversity data, concentrating on impact and risk reporting, nature-based solutions, and sustainable 226 

ecosystem stewardship. We stress the need to prioritise biodiversity data collection and mobilisation, 227 

arguing that biodiversity data literacy is crucial for achieving biodiversity-positive outcomes. 228 

 229 

 230 

Figure 1. Framework for integrating business and biodiversity, grounded in data. This pipeline clarifies 231 

the steps to get from raw biodiversity data to business use cases. The process begins with biodiversity 232 

data (green), divided into three key components: (1) collection of primary biodiversity data from both the 233 

field and natural history collections using traditional and new technologies; (2) standardisation of this data 234 



 

in alignment with FAIR data principles and the biodiversity information standards (TDWG); and (3) 235 

mobilisation of these data into the Global Biodiversity Information Facility (GBIF), the world’s largest 236 

biodiversity data repository. The next step involves biodiversity data products (blue), where biodiversity 237 

experts translate raw data into (4) biodiversity metrics (e.g., EBVs); (5) data-driven and predictive 238 

models; and (6) data tools for users, which are iteratively updated as new data become available. This 239 

biodiversity expertise has traditionally been represented by academic research, consultancies, and public 240 

environmental agencies, but is increasingly adopted by the rapidly evolving nature-tech sector. Finally, 241 

business (yellow) represents the end-users of the data products (7). Important use cases for biodiversity 242 

data products include impact and risk reporting, investments in nature-based solutions (NbS) and 243 

monitoring of their outcomes, as well as  better management practices through ecosystem stewardship. 244 

There are two important feedback loops in the framework. First, businesses are encouraged to invest in 245 

data collection and mobilisation of these data to the public domain, to improve their reporting and 246 

operational management (8). Second, we propose a mechanism to incentivise direct  investment in 247 

biodiversity data mobilisation (9). This flow emphasises that biodiversity data is a central priority of the 248 

entire pipeline. Without high-quality biodiversity data, none of the subsequent steps are possible.   249 

An end-to-end framework from biodiversity data to 250 

business use cases  251 

1 Biodiversity data 252 

The big data revolution has led to a significant increase in biodiversity data (Bayraktarov et al., 2019; 253 

Musvuugwa et al., 2021), offering opportunities to fill data gaps related to taxa and geographical 254 

distributions (Troudet et al., 2017). Primary biodiversity data, or occurrence data, constitutes the majority 255 

of data published through GBIF (GBIF, 2024) and includes three key components: taxonomic level (e.g., 256 



 

species, genus), location, and date (Spear et al., 2023). Collecting both observation-based and specimen-257 

based primary biodiversity data (Figure 2) is essential to fill the biodiversity data gap, as it is foundational 258 

for quantifying abundance, understanding biodiversity patterns, mapping species distributions, assessing 259 

red list statuses, and temporal environmental change (GBIF, 2024).  260 

 261 

Figure 2. Pyramid diagram illustrating sources of primary biodiversity data showing that specimen-based 262 

data is foundational to observation-based data, which is foundational to integrated primary biodiversity 263 

data. (i) Specimen-based data: Derived from physical specimens in natural history collections, including 264 

image files, checklists, and archival materials; (ii) Observation-based data: Derived from traditional 265 

species inventories and technologies such as DNA methods, camera traps, audio recordings, and citizen 266 

science. DNA methods (eDNA and metabarcoding, metagenomics) overlap with both specimen and 267 



 

observation data, as they require physical sample collection to generate verifiable species names; and (iii) 268 

Mobilised primary biodiversity data: Integrated specimen- and observation-based data on open access 269 

biodiversity datasets, such as GBIF. 270 

 271 

New technologies offer scalable methods for collecting primary biodiversity data across ecosystems 272 

(Stephenson, 2020). For example, environmental DNA (eDNA) in combination with metabarcoding can 273 

identify species from samples like water, soil, or air (Deiner et al., 2021)(Case Study S1). These methods 274 

are well-suited for studying taxa with hidden diversity, such as fungi and insects, which are often 275 

challenging to access and/or difficult to identify. Using metabarcoding for biodiversity inventories has 276 

been estimated to complete the equivalent of 1,000 years of manual inventory work in just one year 277 

(Ronquist et al., 2020). Passive acoustic monitoring with autonomous sound recorders captures species 278 

sounds, monitoring birds, insects, amphibians, primates, bats, and even soil biodiversity through unique 279 

vibration patterns (Hildebrand et al., 2024; Hoefer et al., 2023; Robinson et al., 2024). AI pattern-280 

recognition techniques analyse sounds to identify species accurately and at scale, reducing human bias 281 

and enabling simultaneous data collection across multiple sites (Buxton et al., 2018). Cameras can capture 282 

species images over time, targeting specific taxa (Bjerge et al., 2021). A global camera network, akin to 283 

meteorological weather stations, could provide real-time biodiversity data (Steenweg et al., 2017). Citizen 284 

science projects such as iNaturalist use smartphone cameras and microphones to collect biodiversity data 285 

(August et al., 2015). In addition, images and audio files collected on their platform are used as training 286 

data to advance deep learning methods, including computer vision for species identification (Beery, 2023; 287 

Høye et al., 2021). Thermal, LIDAR, hyperspectral, multispectral, and RGB sensors can be attached to 288 

drones and unmanned aerial vehicles (UAVs). Thermal drones track species by detecting heat signatures 289 

(Larsen et al., 2023). LIDAR data from stationary devices, drones, or airplanes create 3D vegetation 290 

models, while hyperspectral sensors identify tree species by analysing light reflectance patterns. RGB 291 

drones, combined with AI, can now identify plants down to species level in some cases (Mäyrä et al., 292 

2021).  293 



 

 294 

Beyond generating new data from nature, digitisation technology and AI tools are turbo-charging 295 

biodiversity data collection from natural history collections and herbaria (Nelson & Ellis, 2019). High 296 

throughput specimen digitisation, such as Angled Label Image Capture and Extraction (ALICE), uses a 297 

multi-camera setup and an associated software processing pipeline, enabling the standardisation of 800 298 

specimens per day (Dupont & Price, 2019), and allowing data upload to GBIF for understudied and 299 

functionally important groups, such as ground beetles (Garner et al., 2024). Digitisation of 1 million 300 

herbarium specimens is estimated to take just 8 years, and hold great value for quantifying functional 301 

traits such as leaf mass per area, water-related traits, carbon fractions, and pigments, comparable to those 302 

obtained from fresh tissues (Davis, 2023). Named Entity Recognition (NER) is now used to identify and 303 

extract specimen identification, location, and date. Optical Character Recognition (OCR) is employed to 304 

convert text from images of specimen labels into machine-readable text, processing approximately 20,000 305 

herbarium specimens at an average rate of 20 labels per hour (Takano et al., 2024). It is rare to have the 306 

opportunity to travel back in time to fill biodiversity data gaps, but we can do so by collecting data from 307 

natural history collections. These specimen-based primary biodiversity data contribute to temporal 308 

predictive modeling and link historical specimens to modern technologies, such as DNA-based species 309 

identification. Despite advances in digitisation, valuable data remains un-digitised, requiring significant 310 

mobilisation efforts (Huybrechts et al., 2022). 311 

 312 

Consistent data standardisation is essential to ensure that biodiversity data collected from heterogeneous 313 

sources meet FAIR principles (Findable, Accessible, Interoperable, Reusable) and align with the Open 314 

Science Framework (Carroll et al., 2021; Wilkinson et al., 2016). The Biodiversity Information Standards 315 

(TDWG) develops and maintains standards for managing and sharing biodiversity data, curating and 316 

extending standards like Darwin Core (DwC). DwC ensures biodiversity data sharing by using 317 

standardised terms and vocabularies, with a namespace policy enabling universal understanding and 318 

making data machine-readable and interoperable. Extensions like the Humboldt Ecological Inventory 319 



 

manage ecological survey data, while the DiSSCo network standardises the aggregation and sharing of 320 

specimen-based data from natural history collections. However, big data integration faces limitations 321 

regarding metadata standards for cross-scale analysis (Maldonado et al., 2015; Wieczorek et al., 2012; 322 

Hardisty et al., 2022). Metadata standards define and manage data context, making their development 323 

vital for new technologies. For example, dnaDerivedData with MIxS (Minimum Information about any 324 

Sequence) offers guidelines on sample collection location, environmental context, DNA extraction 325 

methods, and sequencing techniques (Abarenkov et al., 2023). The Camera Trap Data Package (Camtrap 326 

DP) is a data exchange format for image data of larger animals such as mammals and birds (Bubnicki et 327 

al., 2023) currently being extended with controlled vocabularies to include broader taxonomic scope, 328 

including insects. Additionally, the Ecological Metadata Language (EML standard) provides detailed 329 

documentation of dataset characteristics for all types of biodiversity data. 330 

 331 

Despite progress in FAIR data standardisation, challenges persist, including duplication of data points, 332 

variable quality, and interoperability issues (Pyle et al., 2021). Taxonomic changes and errors, especially 333 

in valid names and classifications, can be addressed with a mix of automation and expert curation 334 

(ChecklistBank, 2025; Whitley et al., 2024). These advancements, along with new data collection 335 

technologies, make mobilised data accessible on platforms like GBIF, supporting efforts to bridge the 336 

biodiversity data gap. Biodiversity data mobilisation involves sharing FAIR data and ensuring it is open 337 

access. Despite consensus on the value of open data in biodiversity research, motivating data collectors to 338 

digitize and share their data remains challenging. Academic incentives for data sharing include DOI 339 

citations and data paper publications, while businesses are increasingly recognising the strategic value of 340 

mobilizing biodiversity data. Businesses become data publishers by sharing their data through the GBIF 341 

Integrated Publishing Toolkit (IPT) (see Case Study S2). To date, the business sector has contributed a 342 

mere 0.3% of the published records to GBIF. Publishing through a national GBIF node’s IPT is usually 343 

free of charge and enables data citation and impact tracking through assigned DOIs and UUIDs, 344 

monitored via GBIF’s literature tracking system (Figure 1(8))(Case Study S2).  345 



 

2 Biodiversity data products 346 

There is a growing demand to transform raw biodiversity data into metrics and data products that can  347 

cater to diverse use cases and needs across different industry sectors (Burgess et al., 2024). This task 348 

requires reducing the complexity of biodiversity into manageable metrics, which arguably is an exercise 349 

of great oversimplification, yet a necessary one. With this inherent constraint in mind, we reflect on 350 

several issues in the current state-of-the-art of biodiversity reporting and the underlying data-products. 351 

 352 

In the context of biodiversity impact reporting, data products that provide regional or global heatmaps of 353 

biodiversity metrics are in high demand, as they allow easy area-based calculation of biodiversity value 354 

and impact. One example of such a data product is the Biodiversity Intactness Index (BII, Newbold et al., 355 

2015; Phillips et al., 2021), which is proposed as a component indicator in the COP 16 draft of the GBF 356 

monitoring framework (CBD, 2024). Another example of a biodiversity model used in business context is 357 

GLOBIO (Schipper et al, 2020), also proposed as a GBF indicator (CBD, 2024). However, many of such 358 

global heat maps generated (Myers et al., 2000) are only weakly linked to the  evaluation of the  359 

biodiversity impact of specific decisions and actions. For biodiversity data products to be actionable in a 360 

corporate setting, they need to relate biodiversity impacts and risks to operational and financial decisions 361 

taken by companies, so that impact tradeoff analysis can be performed. Examples include spatial planning 362 

for forest and agricultural land management, deciding from which countries and regions to source 363 

materials and products, and investments into new factories and logistics facilities. A common 364 

denominator for many use cases is the urgent need for regional and local data and models (as opposed to 365 

global) to ensure high-quality analysis and drawing the right conclusions. 366 

 367 

While the BII and other similar data-products are being used for company impact assessment and 368 

reporting, a concern raised is that the underlying models are largely untested for their predictive 369 

performance and their agreement with other indicators of biodiversity impact (Martin et al., 2019, 370 



 

Nyström, 2024). We see a big risk that insufficiently tested data products provide the foundations for 371 

company impact reporting and nature investments, with potentially negative consequences. This problem 372 

is further exacerbated by the quickly developing nature tech market, driven by the demand for attractive, 373 

ready-to-use biodiversity solutions and data. The absence of a thorough quality-checking and peer-review 374 

process in this context lends reason for concern and makes it difficult for customers to distinguish 375 

between “snake-oil salesmen” with questionable data products and those built on solid foundations. 376 

However, as outlined above, even models and data products that have been reviewed by the academic 377 

peer-review process, risk being mis-applied for purposes they were not designed for. Part of the reason for 378 

this misapplication is a lack of guidance on the use of existing and emerging biodiversity data products 379 

and metrics, which we identify in this article as the challenge of biodiversity data literacy. 380 

 381 

To provide guidance to help businesses and other stakeholders to identify high-quality data products, 382 

which are often based on statistical/machine learning approaches, we have compiled a non-exhaustive set 383 

of quality markers that such products should exhibit. These recommendations broadly apply to both data 384 

products provided by academic groups and non-profit organisations, as well as nature tech solutions. 385 

 386 

● Out of sample testing and ground truthing: Predictive models should always be tested on data 387 

not used for model training, to approximate its performance when used in real-world applications. 388 

This tests the model’s ability to generalise patterns beyond its training data. Ideally, when making 389 

predictions on smaller scales, new measurement data can be collected and used for testing 390 

(ground-truthing). In cases where new  measurements are not possible, e.g. when working on very 391 

large scales, cross-validation can be used to simulate the application of the model on new data.  392 

This involves repeatedly splitting the data into training and test sets (cross-validation folds), and 393 

evaluating the performance on each test fold. Importantly, the evaluation should be based on the 394 

relevant prediction task to be tackled rather than generic considerations (Abrego & Ovaskainen, 395 

2023). It should also account for spatial and environmental dependencies in the data (Roberts et 396 



 

al, 2017). Such a cross-validation approach, if done correctly, will in principle provide similar 397 

indications of performance as “real” ground-truthing.  398 

 399 

● Local inference: The location of the training data should be disclosed. This is important as 400 

inferences should typically only be made within the given region or set of regions where the 401 

model was trained. Inferences outside of the training area can be highly problematic as they might 402 

miss different parts of the environmental, anthropogenic, and geographic variable space 403 

potentially leading to erroneous predictions. 404 

 405 

● Uncertainty quantification: Any data product based on model predictions should address the 406 

issue of uncertainty. Each predicted value needs to have an associated uncertainty measure, 407 

expressing how confident the model is in the prediction. This allows users to filter output data 408 

based on a required confidence threshold and also addresses the previously mentioned issue with 409 

spatial biases in the training data. For instance, regions that are poorly represented in the training 410 

data tend to be associated with higher uncertainty. Data products without accessible and 411 

transparent uncertainty estimation give a false sense of precision that is detrimental, and 412 

sometimes dangerous, for decision-making. 413 

 414 

● Transparency and limitations: All biodiversity data products should have a clear list of 415 

limitations to inform users about intended purpose, appropriate and non-recommended use cases, 416 

limitations of the underlying data in terms of taxonomic and spatial biases, as well as known 417 

cases or areas of poor performance and high uncertainty. The underlying training data should be 418 

accessible with an open license. While we acknowledge that nature tech companies need to 419 

safeguard code and certain data for competitive reasons, we strongly argue that any data products 420 

of academic or non-profit origin should have their data and code repositories publicly available. 421 

Without such access, there can be no real peer-review process. Nature tech solutions that rely on 422 



 

underlying scientific models should clearly disclose the sources (academic papers and code) and 423 

should ideally include a high-level documentation of the overall quantitative approach used.    424 

 425 

Despite best efforts regarding methodological considerations and quality assessments, data products are 426 

only as reliable as the data they are derived from. At present, the biggest bottleneck to better biodiversity 427 

models is arguably the lack of contextualised data, particularly in view of the vast taxonomic and spatial 428 

biases that exist. Closing the biodiversity data gaps is critical for enhancing the accuracy and reliability of 429 

biodiversity metrics. We argue that this can be achieved through significant financial investment in data 430 

collection and mobilisation. In the next section, we outline ways to incentivise companies to invest in 431 

large-scale biodiversity data generation and mobilisation, to support high-impact use cases. 432 

3 Business use cases and incentives for investing in biodiversity data 433 

Improved impact and risk reporting 434 

Businesses are facing mounting pressure to assess and disclose their biodiversity impacts and risks, from 435 

mandatory compliance under frameworks like the CSRD to voluntary reporting initiatives such as TNFD, 436 

which are becoming standard expectations for investors and lenders. With regulations like these, 437 

businesses must prepare to assess their biodiversity impacts and risks, requiring long-term investment 438 

towards biodiversity data. To meet compliance requirements for CSRD, companies set measurable, 439 

science-based biodiversity targets to track and improve their impact (ESRS E4, 2023). Some assessments 440 

will be needed at different scales, such as biodiversity impact assessments at the product level (life cycle 441 

analysis), requiring meaningful, decision-useful data that can withstand scrutiny from regulators, 442 

investors, and stakeholders. As we have outlined here, the biodiversity data gap and biases in GBIF 443 

reduce the ability for meaningful inference and puts operations and compliance at risk. This was further 444 

highlighted in TNFD’s 2023 scoping study, highlighting that the available “nature data” is outdated, 445 



 

inconsistent, and lacks the resolution required to inform confident decision-making (TNFD, 2023). With 446 

biodiversity data accessibility, quality, comparability, verifiability and assurability being key concerns of 447 

market participants, the TNFD proposes testing the efficacy of a “Nature Data Public Facility” to provide 448 

accessible, decision-useful nature data for corporate decision-making (TNFD, 2024), which, if approved, 449 

will continue to ingest biodiversity data from GBIF.  450 

 451 

Companies that proactively collect ground-truthed biodiversity data and publish it through GBIF can 452 

enhance their transparency and gain a competitive edge, as it serves as a compliance indicator for GBF 453 

Target 19 under the CBD (Figueira et al., 2023). Using GBIF metrics as KPIs (key performance 454 

indicators) in sustainability reports demonstrates a clear commitment to biodiversity disclosure, signaling 455 

accountability to investors and other stakeholders. For instance, TotalEnergies became a GBIF data 456 

publisher in 2019, sharing over 51,000 biodiversity records across three continents (see Case Study S2 – 457 

Figure S2). Publishing through GBIF increases reliability, corporate visibility and compliance reporting, 458 

as companies can use their published data to track progress against biodiversity targets and meet 459 

regulatory expectations. 460 

 461 

Both the CSRD and TNFD frameworks highlight the need for accessible, high-quality biodiversity data. 462 

Since TNFD’s proposed infrastructure will likely rely on platforms like GBIF, businesses and other 463 

investors publishing data on GBIF are not only meeting immediate compliance requirements but also 464 

build a temporal record of biodiversity action, preparing for future voluntary reporting needs. In the 465 

framework presented here (Figure 1), we outline the steps that can be taken to improve biodiversity data 466 

coverage on GBIF, highlighting data collection and mobilisation as priority areas where businesses can 467 

take impactful action.  468 



 

Nature-based solutions and sustainable ecosystem stewardship 469 

NbS includes a broad suite of interventions with nature-positive outcomes for businesses to demonstrate 470 

sustainable ecosystem stewardship both within company supply chains and through making biodiversity 471 

positive investments towards projects. The NbS interventions for sectors that directly depend on 472 

ecosystems within their supply chains increasingly use new technologies for continuous data collection 473 

and real-time analysis. This monitors biodiversity impacts and dependencies within the supply chain to 474 

aid in informed decision-making for sustainable practices. For example, regenerative farming practices 475 

must measure their biodiversity over time to claim biodiversity positive impacts on soil biodiversity, 476 

nutrient cycling, carbon sequestration, and water retention through practices like crop rotation and no-till 477 

farming (Case Study 1). For companies extracting natural resources, baseline biodiversity surveys prior to 478 

business operations are needed to quantify the change in biodiversity and assess the true environmental 479 

impact (Case study 2). More examples include ensuring marine biodiversity data are collected to identify 480 

needs for selective fishing; agroforestry to improve habitat heterogeneity in agricultural land to increase 481 

biodiversity and monitoring functionally important biodiversity, such as pollinators, introducing 482 

interventions to enhance ecosystem services through planting native flowers, reducing pesticide use to 483 

boost pollination and crop yields. Baseline biodiversity data and continuous monitoring within the supply 484 

chain enable long-term stewardship of natural capital by assessing the impacts of various management 485 

practices and forecasting possible risks associated with biodiversity loss, such as reduced carbon 486 

sequestration (Case Study 1). 487 

 488 

For NbS investments in biodiversity-positive projects beyond business supply chains, including market-489 

based instruments like biodiversity credits, offsets, subsidies, tradable permits, and payments for 490 

ecosystem services, which are continually evolving, biodiversity data is essential for monitoring, 491 

reporting, and verifying project impacts and contributions to natural capital. A data-driven “Internet of 492 

Things” for ecosystems could enable comprehensive monitoring and verification across taxa and 493 



 

environmental variables, ensuring the credibility and effectiveness of biodiversity-positive projects. 494 

Initiatives like mangrove restoration, biodiversity-friendly infrastructure (e.g., wildlife corridors), 495 

rewilding through native species reintroduction, and seagrass meadow restoration must prioritise 496 

monitoring biodiversity and ecosystem variables to ensure logical conclusions of its value. Requiring 497 

these projects to mobilise their biodiversity monitoring data to GBIF ensures accountability and 498 

reliability. For companies already engaged in NbS projects, including biodiversity credits, mobilising data 499 

to GBIF provides an opportunity to create publicly available biodiversity datasets, enhance transparency 500 

in their environmental efforts, and contribute to global biodiversity knowledge. 501 

 502 

With incentives for investing in NbS through supply chains and credit systems, and the recognition of the 503 

need to address the “nature data gap”, businesses and investors have a significant opportunity to require 504 

evidence of biodiversity data collection and mobilisation to open platforms like GBIF, showcasing 505 

responsibility in their portfolios while advancing meaningful ecosystem stewardship. 506 

Biodiversity data certification 507 

Building on the business use cases and incentives for investing in biodiversity data, we propose 508 

biodiversity data certification as a structured approach to quantify, validate, and showcase contributions 509 

to biodiversity data collection and mobilisation for quantifiable long-term impact (Figure 3). Many 510 

action-oriented initiatives, such as Business For Nature and Finance for Biodiversity, have emerged to 511 

raise awareness and secure private sector commitments towards financing biodiversity. In the end-to-end 512 

framework presented here (Figure 1), we propose two key feedback loops to support sustainable financing 513 

for primary biodiversity data collection and mobilisation from data providers. The first involves 514 

businesses collecting and mobilising their own data (Figure 1(8)); the second involves a biodiversity data 515 

facilitator, such as a not-for-profit organisation, helping to channel investment from businesses and other 516 

stakeholders to address data gaps and biases in global open biodiversity databases (Figure 1(9)). 517 

 518 



 

This proposed approach of an independent biodiversity data facilitator aligns financial investment with 519 

the goals of the GBF, offering a novel way to fund and manage biodiversity data for long-term impact. 520 

Businesses and other investors receive biodiversity data certifications, while data providers receive 521 

financing for contributing data to the public domain. The economic, societal, and business returns on 522 

investment in biodiversity data are manifold. However, there are currently no innovative financial 523 

incentives to collect and mobilise primary biodiversity data at scale. Sustainable financing is needed to 524 

support the collection, standardisation, and mobilisation of biodiversity data from both specimen-based 525 

and observation-based sources (Figure 2). Economic investment and return on investment can be tracked 526 

by the number of biodiversity data points shared with platforms like GBIF. The facilitator could apply 527 

domain knowledge to enable to target funding for data collection to fill the most important gaps in global 528 

biodiversity databases, for example by focusing on  understudied taxa, such as fungi or insects, which 529 

could have a significant impact on addressing the global biodiversity data gap by creating sustainable 530 

financial flows for data providers. Mobilising data onto GBIF ensures credibility, and that biodiversity 531 

information is available as a public good—accessible and regularly updated—serving as a valuable 532 

resource for businesses, policymakers, and conservation efforts (Figure 3). 533 



 

 534 

Figure 3. Innovative financing model for biodiversity data via a not-for-profit biodiversity data 535 

facilitator. Businesses and other investors (yellow) make financial investments towards data mobilisation 536 

through the biodiversity data facilitator (purple), which channels this investment into funds for partners 537 

that collect biodiversity data, advance data standards and mobilise biodiversity data onto GBIF. In return, 538 

businesses receive certification recognising their positive biodiversity actions. 539 

Summary and call-to-action 540 

The private sector faces an urgent challenge: understanding and managing biodiversity risks that directly 541 

impact business operations. While companies increasingly recognize their dependence on nature, two 542 



 

critical barriers persist - insufficient biodiversity data and limited data literacy. Recognising that positive 543 

biodiversity actions take time to show effects, biodiversity data collection and mobilisation should be 544 

prioritised. New technologies mean that we have the opportunity to prioritise the mobilisation of  both 545 

specimen- and observation-based primary biodiversity data. New technologies like environmental DNA 546 

and computer vision are providing unprecedented opportunities for data collection at scale, while vast 547 

untapped resources exist in natural history collections that have great potential in advancing predictive 548 

models. GBIF provides extensive open data, but businesses need better tools to interpret and apply this 549 

information effectively. Creating meaningful biodiversity data products requires bridging the gap between 550 

scientific expertise and corporate users through reliable metrics and models grounded in biodiversity data. 551 

We call on businesses and stakeholders to urgently invest in biodiversity data collection and mobilisation 552 

towards open data infrastructures like GBIF. Such investment is crucial for developing effective 553 

biodiversity models, metrics, and data products that enable informed decision-making and support 554 

biodiversity conservation efforts. With proper investment in data collection and analysis, companies can 555 

better assess their environmental impact, manage risks, and have a positive impact on biodiversity. 556 
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Supporting Information 892 

Case study S1. Biodiversity Data for Financial Metrics: MISTRA 893 

FinBio, Sweden 894 

 895 

Figure S1. Photo of Malaise traps in pilot fields, taken by E Granqvist May 2024.  896 

 897 

The “Biodiversity Data for Financial Metrics” work package connects biodiversity data to financial 898 

decision-making in the FinBio research program hosted at the Stockholm Resilience Centre (FinBio, 899 

2023). The overall program aims to support financial institutions in contributing to biodiversity and 900 

nature-positive outcomes. FinBio operates as a collaborative partnership between academic and financial 901 

institutions. The program brings together academic and impact partners to develop practical tools that 902 

guide investment decisions, promoting both the greening of finance and the financing of green initiatives 903 

that can be adopted throughout the financial sector. The program explores several key areas, and the 904 

“Biodiversity Data for Financial Metrics” work package focuses on the application of modern monitoring 905 

technologies such as environmental DNA (eDNA) and Earth Observations for assessing biodiversity 906 

impact. This includes methods for assessing Essential Biodiversity Variables (EBVs). The methodology 907 

encompasses eDNA collection from Malaise traps and soil samples, focusing on laboratory and 908 



 

bioinformatic protocols, accuracy measurements, and abundance estimation, with trend analyses covering 909 

a five-year period in Sweden. A pilot project within the work package involves collaboration with Svensk 910 

Kolinlagring, a non-profit organization launched in 2019 that connects stakeholders to increase soil health 911 

and carbon storage in Swedish agricultural soils. This organization currently works with approximately 40 912 

farms. The pilot project with FinBio focuses on measuring biodiversity in agricultural farmland targeting 913 

carbon sequestration, which the IPCC has identified as one of the most cost-effective and scalable climate 914 

action solutions. The pilot project aims to deliver several key outcomes, including biodiversity data from 915 

the agricultural sector using eDNA monitoring methods, analysis of biodiversity changes in carbon 916 

sequestration management systems, and the development of a biodiversity index for farmers. This index 917 

will serve as both a measurement tool and a component of potential business cases to attract investment in 918 

sustainable agricultural practices. Open data and open methods are core principles within the Biodiversity 919 

Data for Financial Metrics work package, and the collected pilot data will be shared via GBIF upon 920 

completion of the project.  921 

922 



 

Case study S2. Total Energies share biodiversity data on GBIF  923 

 924 

 925 

Figure S2. TotalEnergies data publisher metrics displayed on their GBIF publisher page, showcasing key 926 

performance indicators (KPIs) for company reporting. Metrics include: occurrences per kingdom, 927 

occurrences per year, occurrences per country or area, and occurrences per basis of record. These metrics 928 

provide insights into data distribution and can be used to evaluate the company's contribution to 929 

biodiversity monitoring. 930 



 

 931 

TotalEnergies, a global energy company operating in 120 countries, became a publisher of the Global 932 

Biodiversity Information Facility (GBIF) in 2018 to strengthen its efforts in biodiversity data sharing. The 933 

company committed to sharing biodiversity data collected through environmental impact assessments, 934 

including field surveys in remote and offshore locations, with both the scientific community and the 935 

public. By publishing its data to GBIF, TotalEnergies considers this a valuable contribution to global 936 

scientific research and international conservation efforts. The company employs a variety of data 937 

collection methods, such as sediment, soil, and water sampling, camera transects, and passive acoustic 938 

monitoring and opportunistic observations of marine megafauna and birds. This data encompasses 939 

hydrocarbons, metals, microbiology, and benthic fauna, helping to assess habitat sensitivity. 940 

TotalEnergies’ biodiversity data adheres to GBIF’s quality standards, following DarwinCore (DwC) 941 

standard and FAIR principles, and has committed to contribute data annually from a minimum of five 942 

projects or sites to GBIF, with regular reports on these contributions.  943 

 944 

Companies publish biodiversity data by establishing institutional agreements and complying with GBIF’s 945 

Data Publisher and Data User Agreements. Registration as a data publisher requires endorsement from a 946 

national GBIF node. The process typically involves collaboration with contractors and field technicians to 947 

ensure data and metadata quality. Companies must establish internal workflows, select and prepare 948 

biodiversity data according to the DwC, define access restrictions, and publish under a Creative 949 

Commons license. 950 

 951 

 952 

 953 

 954 

 955 


	Abstract
	Key words
	Introduction
	An end-to-end framework from biodiversity data to business use cases
	1 Biodiversity data
	2 Biodiversity data products
	3 Business use cases and incentives for investing in biodiversity data
	Improved impact and risk reporting
	Nature-based solutions and sustainable ecosystem stewardship
	Biodiversity data certification


	Summary and call-to-action
	References
	Case study S1. Biodiversity Data for Financial Metrics: MISTRA FinBio, Sweden
	Case study S2. Total Energies share biodiversity data on GBIF


