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Abstract 
Global biodiversity and ecosystem function are the result of complex networks of interactions 
and feedbacks between animals and their environments, which in turn are affected by the 
interactions and feedbacks between animals and the organisms they host. Understanding these 
complex networks, including the main drivers of and responses to ecological and environmental 
changes and their global implications, requires adopting a systems-based perspective. We 
advocate for this approach by characterizing a framework centered around bats, a 
globally-distributed mammalian order, and their dual roles as both inhabitants of ecosystems 
and as habitats themselves. Like other organisms, bats interact with habitats by providing 
ecosystem services that impact the survival and distribution of other species, and may be 
affected by such factors as land use change, climate change, fluctuations in food availability, 
and hunting pressure. Habitat conditions (e.g. food availability, temperature, etc.) can affect the 
physiological condition of individuals, which in turn can affect the prevalence and/or virulence of 
hosted organisms and potential pathogens (e.g. ectoparasites, bacteria, viruses, fungi, and 
protozoa). In addition, the interactions among individuals (e.g. co-roosting, migration, etc.) 
influence the habitat connectivity for their hosted organisms (e.g. opportunities for dispersal). 
Bats have a unique relationship with infectious disease, both biological and cultural. With this in 
mind, when applied to bats this framework has special importance to how we understand and 
apply the One Health concept, whereby healthy natural environments foster both human and 
animal health, which in turn also promotes healthy environments. By leveraging a hierarchical 
approach among these different levels of biological organization, we can arrive at a clearer 
picture of the specific threats facing bats—as well as the risk of pathogen spillover to humans 
and other domesticated and wild animals generated by disrupting this delicate balance—and 
identify possible measures to mitigate adverse impacts. Thus, to understand these complex 
interactions and their implications for conservation, ecosystem health, and human health, we 
need a new ecological framework that recognizes that changes in habitats not only affect 
macrofauna and the ecosystem services they provide, but also have the potential to cascade 
through the diversity and evolution of the organisms they host. This review provides a case 
study for the application of this framework, which is extensible to other organisms with their own 
unique relationships with habitats and as habitats.  
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1. INTRODUCTION 

 Biology is becoming more interdisciplinary as our understanding of the integrative 
relationships between biological systems and levels of organization grows. Darwin described a 
“Tangled Bank” of organisms that interact with and depend upon each other in complex ways 
(Darwin, 1859), ultimately resulting in observed patterns of global biodiversity. While Darwin 
recognized that these phenomena are governed by biological laws, we now seek to generate 
mechanistic explanations for the complex properties of hierarchical biological systems by 
understanding how these and other laws intersect and interact. The fields of systems biology 
and systems ecology, in which species and ecological interactions are thought of in terms of 
networks, provide a modern approach both to disentangle the “complex web of life” and to 
understand it holistically.  
 Given the inherent complexity of these relationships, one way of applying a systems 
approach is to use a single species or taxonomic group as a node and work to understand it at 
multiple scales of biological organization. Biologists are accustomed to viewing species as 
either residents of ecosystems, or as ecosystems themselves when the focus is on their 
interactions with the parasites and other organisms they host. By examining a single 
macrofaunal clade as a node, we can link the concepts, research systems, and innovations 
developed for studying the interactions of members of that clade with their habitats, with those 
concepts, research systems, and innovations developed for studying the organisms that use 
that clade as their hosts. In this review, we develop a framework in which a single cosmopolitan 
clade of mammals can be studied across these nested levels of organization, from the broader 
habitat, to the host animals, to the organisms they host. This framework provides new 
conceptual insights by bringing together empirical and theoretical work bridging levels of 
organization, and can serve as a foundation for a better understanding of synergistic 
interactions across levels of community organization.  

Different niche concepts reflect the differences in perspectives and approaches taken to 
study the biological context of species in ecosystems. A unified framework would incorporate all 
of these aspects as well as the ways in which changes at one level in the hierarchy may alter 
population and community dynamics as well as niches of organisms at other levels. For the 
purpose of this paper, “habitat” is defined as the collection of resources an organism or 
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population of organisms uses to survive, including physical surroundings (e.g. caves, structures, 
moisture, temperature), and biotic factors (e.g. food, interspecies competition, or host 
availability). The habitat is distinct from the overall environment by being species-specific, while 
the environment is the physical context in which habitats are formed. Habitats are also distinct 
from, though a part of, the species’ niche. A species’ multidimensional niche may be thought of 
as a hypervolume containing the set of conditions and resources needed for a species to 
persist, and is influenced by the habitat in which it lives, as well as the network of interactions a 
species has with other members of the community sharing a habitat (Grinnell, 1917; 
Hutchinson, 1957). This articulation does not acknowledge the bidirectional feedbacks between 
species and their habitats, while the Eltonian conception of the niche recognizes that species 
may also change their environments and thus, their habitats (Elton, 1927).  

Here, we synthesize current understanding of feedbacks and interactions across various 
biological levels. Bats (Order Chiroptera) provide a useful model system for illustrating this 
framework due to their wide distribution, incredible ecological diversity, and comparatively 
well-studied interactions with microbes and parasites. Our ability to study these aspects of 
biology has also increased exponentially thanks to technological advances including 
next-generation sequencing, computational modeling, and the ability to track individual animals 
over their lifetimes at both fine and broad spatial scales. We advocate for the development of 
study designs that integrate multiple organizational scales from the outset, rather than 
reconstructing these interactions from cross-sectional studies. We begin by reviewing existing 
knowledge on bidirectional feedbacks between bats and their respective habitats (Table 1). 
Next, we explore the concept of bats as habitats for other organisms. Given that the goal of this 
paper is to use bats as a model to demonstrate a systems framework that makes explicit 
connections between levels, and illustrates knowledge gaps within the system, we do not 
attempt to exhaustively list everything known about bats at all scales of biological organization. 
Finally, we use the “Bats in Habitats, Bats as Habitats” synthesis to highlight significant 
knowledge gaps in a systems framework and propose future research directions. The goal is to 
develop a framework generalized enough to be extensible to other biological systems. 
Ultimately, this approach aims to enhance our comprehension of the "Tangled Bank," elucidating 
underlying mechanisms and identifying threats to bats and other species with whom they 
interact. 

2. Bats in Habitats  

2.a. Habitat determines bat community composition and dispersal 

To understand the broadest level of organization, the level of a species' interactions with 
its habitat, it is useful to consider the species' multidimensional niche. The main drivers of 
species distributions vary depending on the spatial scale, species' traits, and evolutionary 
history. For example, at a coarse scale, bat richness is mainly affected by climate, while habitat 
structure tends to have an effect on a smaller scale (Estrada-Villegas, McGill & Kalko, 2012; 
Meramo et al., 2025). Both are impacted by the evolutionary history of the clade, for example 
through the opening of new feeding niches in Phyllostomidae (Potter et al., 2021; Hall et al., 
2021) or hybridization (e.g. Myotis; Foley et al., 2024). The effects of environmental gradients 
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such as latitude, precipitation, temperature, and elevation are correlated such that variation 
along each of these axes produces emergent properties that define ecosystems.  

Bat distribution and richness are influenced by these factors, with each species having a 
unique relationship to these variables that forms their multidimensional niche (Fig. 1). Generally, 
bat species richness increases toward the equator, where temperature and primary productivity 
are higher (Stevens, 2004). However, physiological limits on bat distributions vary significantly 
among species, making it difficult to establish definitive distribution rules (McNab, 1973; Dunbar 
& Brigham, 2010; Haarsma & Siepel, 2013; Becker et al., 2019). Elevational gradients are an 
illustrative example of this challenge: despite commonalities among mountain slopes at the 
same latitude (e.g. oxygen concentration and temperature), there is no clear pattern between 
species diversity and elevation. Bats’ sensitivity to temperature and humidity is related to their 
small size and high surface-to-volume ratio (McCain, 2007). Increasing temperatures can also 
indirectly promote bat richness by increasing food resource availability (i.e., fruit, nectar, and 
insects). This results in species richness and functional diversity varying in disparate ways along 
elevational gradients, related to relative humidity (McCain, 2007), temperature (Sivault et al., 
2023), water availability (Korine et al., 2016), food resource availability, and other factors. 
 At a smaller scale, habitat structure, including heterogeneity and canopy cover, can 
affect the occurrence of certain foraging guilds (e.g. open-space vs. edge-space foragers), due 
to echolocation and maneuverability challenges in cluttered environments (Denzinger & 
Schnitzler, 2013; Suarez-Rubio, Ille & Bruckner, 2018; Senawi & Kingston, 2019; Yoh et al., 
2020). Vegetation complexity and habitat/resource diversity locally enhance bat species 
richness, as spatially heterogeneous conditions provide a greater diversity of suitable niches 
(Aguirre, 2002; Zortéa & Alho, 2008; Pereira et al., 2009; Martins et al., 2022). Feedback 
between adaptations in wing morphology, echolocation, and vegetation affect foraging success 
(Norberg & Rayner, 1987; Jones et al., 2006; Denzinger et al., 2016). Moreover, roost 
availability is crucial to determining bat occurrences, sometimes even more so than availability 
of prey (Avila-Flores & Medellín, 2004; Voss et al., 2016; Suominen et al., 2023). Local resource 
availability is also an important determinant of bat occurrence, including for migratory species, 
which can be exposed to different resource regimes across their migration paths (Richter & 
Cumming, 2006; Flaquer et al., 2009). Simultaneously, bats are also important influencers of 
local resource availability for other organisms. 

2.b. Bat community composition impacts ecosystem structure and function 

As highlighted in Table 1, bats wield considerable influence on their own and other 
species' realized niches– the set of conditions actually used by an organism (Connell, 1961). 
For example, certain species of bats produce significant amounts of nitrogen, phosphorus, and 
potassium deposits in guano beneath their aggregations (Ferreira, 2019; Pimentel et al., 2022). 
The largest aggregations of living vertebrates are found in caves (Furey & Racey, 2016), with 
large bat colonies functioning as a sink for up to 39% of the total forest nitrogen budget in some 
regions (Lundberg, McFarlane & Van Rentergem, 2022). Bat guano affects many aspects of 
cave biogeochemistry, including the bioavailability of organic and inorganic nutrients, the 
physical cave structure, and the diversity of invertebrate communities in the caves (Ferreira, 
2019; Sakoui et al., 2020; Piló et al., 2023). Bat caves typically harbor great diversity and 
abundance of cave dwelling organisms, including some entirely dependent on the guano, known 
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as guanophiles (Ferreira, 2019). Furthermore, the heat from the guano fermentation process 
and the combined body heat of resident animals impact the cave microclimate (Mitchell, 1965).  

Apart from altering their physical and chemical habitats, bats also take part in biotic 
interactions that can play out at local, ecosystem, and evolutionary scales. Plant-visiting bats 
provide important ecological services by facilitating reproductive success and recruitment of new 
seedlings (Kunz et al., 2011; Aziz et al., 2021). As an example, 63% of the basal area of native 
woody plants in plots in Mauritius came from seeds dispersed by the threatened native flying 
fox, Pteropus niger (Florens et al., 2017). Indeed, pteropodid fruit bats are key to Pacific island 
flora due to long range dispersal of large seeded plants, although this relationship may break 
down at low population sizes (McConkey & Drake, 2006). Bats provide pollination services to 
more than 500 angiosperm species worldwide (Fleming, Geiselman & Kress, 2009), which is 
key to reproductive success and genetic exchange between plants and can drive plant evolution 
(Santana et al., 2021). Columnar cacti and agaves are dominant plant elements in arid and 
semi-arid habitats of the Americas, which rely heavily on bats for pollination and thus sexual 
reproduction (Kunz et al., 2011; Kasso & Balakrishnan, 2013). In Sulawesi, fruit bats are also 
the main pollinators of durian, estimated to contribute US$117/ha in economic value 
(Sheherazade, Ober & Tsang, 2019).  

Ecosystem services provided by bats are of particular importance in island systems, in 
which bats may constitute a large majority of the mammalian assemblage, in some cases being 
the only native mammals (Fleming & Racey, 2010). The high vagility of bats allows them to 
actively disperse to islands, including remote oceanic systems that do not have pre-existing 
biota. These ecosystem services are strongly related to the maintenance and stability of their 
ecosystems (Kingston, Florens & Vincenot, 2023). In concert with birds, bats play an important 
role as long-distance seed dispersers that promote island forest regeneration after significant 
loss due to natural disasters (Whittaker & Jones, 1994; Hjerpe, Hedenâs & Elmqvist, 2001; 
Scanlon et al., 2018). The plant species brought by bats to islands include many pioneering 
plant species (e.g. figs; Whittaker & Jones, 1994; Thornton et al., 2001; Oleksy et al., 2017) 
important to both primary and secondary succession. Some plants become wholly dependent 
on flying foxes (tribe Pteropodini sensu (Bergmans, 1997)) for dispersal in island systems 
despite these plant species being common in continental landscapes (Cox et al., 1991). 
Additionally, while doves and pigeons contribute to seed dispersal in Pacific island systems, 
flying foxes provide the main avenue of large seed dispersal (McConkey & Drake, 2015). In 
Tonga, the species diversity of plants consumed by pigeons is 40% less than bats, while on 
other islands, both contribute equally to seed dispersal but consume a different set of plant 
species (Meehan, McConkey & Drake, 2002; McConkey et al., 2004).     

However, not all bat-plant interactions are positive (Table 1); tent-making bats 
antagonistically affect some plants by damaging leaves to build temporary roosts, and Pteropus 
can cause similar damage on tree roosts when used consistently (Vardon et al., 1997). Other 
bats such as Centurio senex are seed predators that do not increase germination success 
(Nogueira & Peracchi, 2003; Rodríguez-Herrera, Rodríguez & Otárola, 2018). On the mutualistic 
side, even if bats are not directly using plant products, their presence alone can benefit plants. 
For example, the aerial pitcher plant Nepenthes rafflesiana gains a significant portion of its foliar 
nitrogen from the feces of Kerivoula hardwickii (Grafe et al., 2011). Trees that host bats are also 
known to benefit from the nutrients of their excrements (Duchamp, Sparks & Swihart, 2010; 
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Voigt, Borissov & Kelm, 2015). Thousands of these interactions occur at local scales across the 
globe; while it is beyond the scope of this review to cover them all exhaustively, other reviews 
(e.g. (Aziz et al., 2021; Ramírez-Fráncel et al., 2022; González-Gutiérrez et al., 2022) are useful 
starting points.  

The aggregate effect of each of these local interactions between bats and plants can 
have profound impacts on the structure of their habitats at the ecosystem scale (Fig. 1). For 
example, the functional extirpation of vertebrate seed dispersers (i.e., birds and bats) led to a 
reduction in seed bank richness in Guam compared to Saipan and Rota—where these 
dispersers still exist—suggesting that bats play a significant role in structuring plant communities 
(Wandrag et al., 2015). Across the tropics, ~80% of seed dispersal in general is performed by 
birds and bats (Howe & Smallwood, 1982). Bats produce dense and diverse seed shadows, and 
it appears that more diverse communities of frugivorous bats are linked to more diverse forests 
(Fleming & Heithaus, 1981; Muscarella & Fleming, 2007). However, there are important 
differences in the impacts of plant-visiting bats across the globe; for example, Neotropical fruit 
bats appear to be more specialized compared to Afrotropical bats (Dugger et al., 2019), but 
Afrotropical bats exert enormous influence on forests, forming aggregations of millions of 
individuals not seen in the Neotropics (Richter & Cumming, 2006). While it is clear that bats 
influence their habitats by changing vegetation, what is not clear is the impact that this 
aggregate of seemingly specific bat-plant interactions has on global rules of life, in other words, 
the integration of these multi-scale interactions. Are Afrotropical forests less diverse than the 
Neotropics because their seed dispersers are less specialized, because the dispersers are 
themselves less diverse, or for a completely unrelated reason? How does this filter down to 
bat-hosted organisms; do they show similar patterns of diversity across tropical environments? 
Our proposed framework would help to shed light on these complicated phenomena. 

Of around 1500 bat species recorded, about 70% are insectivorous (Kissling et al., 2014; 
Mammalian Diversity Database, 2024). This highlights the role of bat assemblages in arthropod 
regulation and their importance in food web dynamics, both in natural and in human-altered 
landscapes. Experimental exclusion of bats from plants in lowland tropical forests in Panama 
resulted in 209% more insect herbivory on plants, indicating that bats are important top-down 
regulators of ecological food webs (Kalka, Smith & Kalko, 2008; Puig-Montserrat et al., 2020; 
Tuneu-Corral et al., 2023). In North America, aerial insectivores were shown to consume at 
least 160 known agricultural pests and pathogen vectors, with similar results reported in Europe 
(Aizpurua et al., 2018; Maslo et al., 2022). For example, it is estimated that bats provide 
between $3.7–53 billion of direct insect pest control across the United States (Boyles et al., 
2011), and they have been shown to reduce crop damage resulting from pests and their 
associated microbes (Maine & Boyles, 2015).  

However, it is less clear if bats exert the same intensity of pressure on pathogen vectors 
such as mosquitoes as they do on agricultural pests. Much of the work in this vein has focused 
on mosquitoes as a major global pathogen vector, and in some cases there is conflicting 
evidence on whether bats consume enough mosquitoes to meaningfully affect mosquito 
population sizes (Wray et al., 2018; Puig-Montserrat et al., 2020). Interestingly, the presence of 
bats alone, regardless of the number of mosquitoes they actually consume, may be sufficient to 
alter mosquito oviposition, thereby decreasing populations (Reiskind & Wund, 2009). Bats could 
also regulate populations of insect vectors other than mosquitoes (Perea et al., 2024), but most 
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of these interactions have been poorly studied, and even less attention has been paid to the 
direct impacts of predation on pathogen vectors on infectious disease incidence.  

Bat diets nonetheless can strongly vary by species but also temporally and spatially, 
including following insect pulses and emergence, so disentangling the role of these factors in 
regulating insect populations is imperative (Vesterinen et al., 2018; O’Rourke et al., 2022). The 
consumption of insects has been hypothesized as a mechanism by which new parasites and 
microorganisms can colonize bats (Gibson et al., 2005; Hodo et al., 2016; Bennett et al., 2019; 
Rangel et al., 2019). Some efforts to document bat diets globally have been initiated and could 
fill in many knowledge gaps between diet and parasitism (see (Tuneu-Corral et al., 2023), but 
require further research effort. Without having detailed information about bat habitats and diets, 
we lack an important window into the diversity and mechanism of acquisition of bat-hosted 
organisms and the impacts of environmental change on food availability for bats. For example, 
the impacts of declining insect populations and diversity globally may vary depending on bat 
taxa, directly affecting the entire network of relationships between bats and their prey. This then 
would affect the populations of plants that the insects consume, with downstream impacts on 
the ecosystems that these plants contribute to. 

2.c. Effects of anthropogenic change on bats in habitats  

  In addition to biotic and abiotic interactions, and like most other animal and plant 
species, bats and their habitats are being increasingly modified by a third force: human activity 
(Table 1, Fig. 1). In the last few centuries, humans have shaped ecosystems so quickly and 
extensively that many species do not have time to adapt. Some examples of how humans are 
altering bat habitats at large include, but are not limited to, habitat loss and degradation (e.g. 
land use change, fragmentation, and encroachment). In particular, these modifications affect bat 
distributions by limiting food resources and roosting sites, and in some cases contribute to bat 
mortality directly or indirectly (e.g. via stress). Anthropogenic change to bat habitats that forces 
bats to alter their ecology has contributed to the spillover of lethal viruses from bats to humans 
(Eby et al., 2023). Our ability to predict how bats respond to these challenges is fundamentally 
constrained by our understanding of bat biology, especially as responses may be idiosyncratic 
among species. While an exhaustive treatise on the effect of anthropogenic change on bats and 
their habitats is beyond the scope of this review, interested readers should see “Bats in the 
Anthropocene” (Voigt & Kingston, 2016). 
 Habitat transformation can lead to reduced resource availability, contributing to reduced 
reproductive and survival rates of individual species, thus altering the ecosystem dynamics in 
which bats participate (Jones et al., 2009; Meyer, Stevens & Blackwood, 2016; Nurul-Ain, Rosli 
& Kingston, 2017). Human alteration of landscapes can have profound impacts on roost 
availability and increasing rates of land use change will overall reduce habitat availability 
(Gonçalves et al., 2021). In the Neotropics, roost specialists appear to be particularly vulnerable 
to habitat fragmentation compared to more generalist roosting species (Voss et al., 2016; 
Herrera et al., 2018). Similarly, in the Paleotropics, species that roost in forest structures 
(standing and fallen hollows, under leaves) are proving more vulnerable to forest loss than 
cave-dwelling species (Struebig et al., 2008; Huang et al., 2019). Despite this, disturbance at 
caves (limestone and phosphate mining, tourism, etc.) means many cave-dependent species 
may be living on borrowed time (Struebig et al., 2008; Phelps et al., 2016, 2018).  

9 

https://www.zotero.org/google-docs/?7PUuMA
https://www.zotero.org/google-docs/?azM8Y6
https://www.zotero.org/google-docs/?azM8Y6
https://www.zotero.org/google-docs/?9xxgaW
https://www.zotero.org/google-docs/?KXSDFL
https://www.zotero.org/google-docs/?i8A4vo
https://www.zotero.org/google-docs/?Tydijf
https://www.zotero.org/google-docs/?Tydijf
https://www.zotero.org/google-docs/?tEJr3q
https://www.zotero.org/google-docs/?qYjDgM
https://www.zotero.org/google-docs/?qYjDgM
https://www.zotero.org/google-docs/?HbqO1E
https://www.zotero.org/google-docs/?mnFJIU


 

Humans can also directly influence the availability and quality of bat food resources. 
Application of chemical pesticides is associated with a decrease in nocturnal insect diversity 
compared to organic farms, resulting in decreased bat activity (Wickramasinghe et al., 2004), 
and nectar-feeding bats are forced to change their feeding ecology to respond to agricultural 
replacement of native habitat (Eby et al., 2023). However organic farming on its own has been 
found to be insufficient to support bat biodiversity, with landscape features such as hedges and 
rivers playing a more important role (Froidevaux, Louboutin & Jones, 2017). Simulation of 
associations between bats and plant species in the Brazilian savannah also found that 
extinction of certain plant species would result in co-extinction of several bat species (Oliveira et 
al., 2019). However, not all bat species respond negatively to human activities; common 
vampire bat populations have expanded over the last century due to the presence of livestock in 
Central and South America (Becker et al., 2018). Some fruit-eating bats also show higher body 
condition and reproduction outside of protected areas, likely due to the increase in pioneer 
plants in disturbed habitats (Oliveira et al., 2017). Bats therefore appear to respond variably and 
in potentially location-, diet-, and species-specific ways to habitat loss and alteration.  

Urbanization and its consequences can impact where bats are found on the landscape 
(Moretto et al., 2023). Alteration of food and roosting resources can lead to bats abandoning 
parts of their previous range and moving into less suitable habitats (e.g. (Tait et al., 2014). The 
impacts of artificial light at night can vary with species biology, with some bat species taking 
advantage of the concentration of insects under lights, while more light-sensitive species are 
pushed into increasingly concentrated areas of dark refugia (Cravens & Boyles, 2019). 
Experimental and observational evidence also suggests that fruit-eating bats change their 
foraging behaviors to avoid illuminated plants (Lewanzik & Voigt, 2014). Current literature is 
equivocal about the extent and direction of the effect of artificial light on bat movement, including 
nightly foraging and migration (Rowse et al., 2016; Voigt et al., 2018). Land use change can 
also have variable impacts on bat occupancy and activity; most studies find evidence of lower 
bat occupancy and richness in monoculture habitats (e.g. oil palm, coffee, and eucalyptus 
plantations), but some species may be able to use agricultural habitats if vegetative complexity 
or patches of natural habitat are retained in the landscape (Numa, Verdú & Sánchez-Palomino, 
2005; Barlow et al., 2007; Wordley et al., 2015; Syafiq et al., 2016; Buchholz, Kelm & Ghanem, 
2021). Humans can also create new habitats for bats; many species aggregate in abandoned 
mines or buildings (van Schaik et al., 2015b; Moran et al., 2023), and this can even provide 
physiological advantages compared to natural roosts (Lausen & Barclay, 2006; Detweiler & 
Bernard, 2023). Bat traits such as geographic range, habitat preference, and diet can impact 
likelihood of anthropogenic roosting (Betke et al., 2024). The emerging pattern suggests that 
while changes in land cover and agricultural intensification overwhelmingly reduce bat diversity, 
responses vary among foraging and roosting ensembles, and even among species within these 
groups (Kingston, 2013; Wordley et al., 2015; Huang et al., 2019; da Costa & Ramos Pereira, 
2022). This variation in response again emphasizes a need to fill knowledge gaps on what 
individual species require to survive in the Anthropocene. 

Bat health and mortality, including infectious disease, may also be indirectly influenced 
by human activities that cause an increase in stress, or change how bats interact with other 
organisms. Habitat fragmentation and roost disturbance can leave bats to persist in suboptimal 
habitats, which results in elevated markers of physiological stress (Edson et al., 2015; Miguel et 
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al., 2019). On the converse, roosting in human-made structures may have no physiological 
costs, or actually improve survival and thermoregulation (Lausen & Barclay, 2006; Allen et al., 
2011). In addition, while higher cortisol levels are generally assumed to be deleterious, in some 
cases they may have negligible effects on overall bat physiology (Miguel et al., 2019). In other 
cases, chronic stress may lead to poorer health outcomes for bats, including lower white blood 
cell counts and decreased body mass (Seltmann et al., 2017b). The effects of stress can even 
influence the communities of organisms harbored by bats; flying foxes with higher markers of 
nutritional stress showed subsequently higher seropositivity of Hendra virus (Plowright et al., 
2008), and periods of food scarcity are related to elevated shedding pulses of Hendra virus 
(Becker et al., 2023). Habitat fragmentation is also associated with higher bacterial microbiome 
variation in vampire bats, which may indicate a destabilized microbial community (Ingala et al., 
2019). Whether this response is directly related to stress remains unknown. Overall, the 
interactions between bats, their habitat features, and the organisms they host are nuanced, with 
only a fraction of species and populations having been studied (Phelps & Kingston, 2018). 
Without a robust baseline of stress markers, physiological fitness, and microbial community 
members for all bat species, we are limited in our ability to understand thresholds that lead to 
worse health outcomes in each species (but see (Sandoval-Herrera et al., 2021; Sánchez et al., 
2024). 
 In addition to altering the resources bats need to live, humans can also directly impact 
bat populations through actions that increase mortality or decrease reproductive success. Two 
important ways that humans intentionally decrease bat survival are via bushmeat hunting and 
retaliatory killing. Bats are often taken as bushmeat in the Paleotropics, particularly in low 
income countries with high deforestation rates, suggesting that poverty is associated with bat 
bushmeat harvesting (Tanalgo et al., 2023). In other countries, people often have negative 
attitudes towards bats, supporting lethal control measures to limit their populations (Shapiro et 
al., 2020). However, culling of bats can have unwanted consequences. In Latin America, 
vampire bats are major reservoirs of rabies virus, but culling of vampire bats actually increases 
rabies virus transmission by altering the demographic structure and dispersal of populations 
(Streicker et al., 2012; Viana et al., 2023). Important services carried out only by bats, such as 
pollination and seed dispersal on islands, can also be disrupted following retaliatory culls due to 
commercial fruit damage by fruit bats (Oleksy et al., 2021). Unintentional killing of bats also 
impacts their populations; wind energy has been identified as an increasingly important threat to 
migratory bat species (Frick et al., 2017; Thaxter et al., 2017). Even mundane human activities, 
such as driving, can result in significant impacts on bat populations given the size of the human 
population and increasing number of vehicles in operation (Fensome & Mathews, 2016; 
Ramalho & Aguiar, 2020; Huang, Chen & Lin, 2021). Although the previously reviewed 
associations cover a wide range of bat biology as it relates to their habitats, ~18% of bat species 
are classified as “Data Deficient” by the International Union for Conservation of Nature and 
many others have not even been assessed, highlighting the need for more natural history 
studies to allow for predictive modeling of bat responses to anthropogenic change using the 
“Bats in/as Habitats” framework (Welch & Beaulieu, 2018; Frick, Kingston & Flanders, 2020). 
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3. Bats as Habitats  

The biology of bats makes them unique habitats for a variety of other organisms, from 
macroscopic parasites to microbial organisms from all domains of life (Table 1). Here, we define 
bat-hosted organisms to be any organism that lives in or on bats for a major part of its life cycle. 
In turn, the biology of bat-hosted organisms is constrained by host traits, while also influencing 
the biology of the hosts themselves (Fig. 2). A few attributes of bat-hosted organisms that can 
feed back on host biology are their mode of transmission, their ecological relationships with 
hosts (e.g. commensal, pathogenic, or mutualistic), and relationships with other organisms that 
share the same bat host (e.g. co-transmission). Because these relationships are nested and 
hierarchical, they not only feed back among themselves, but also can be modulated by changes 
at the habitat level. Synthesis across these levels of biological organization is poorly understood 
and a key research gap in both bat biology and global health; “Bats in/as Habitats” provides a 
framework for integrating bat-associated organisms into a holistic understanding of bat biology. 

3.a. Bat biology influences hosted organism communities 

Bat biology may influence hosted organisms in ways that are shared with other 
mammalian hosts, such as having high body temperature, fur, and non-nucleated blood. Some 
unusual aspects of bat biology compared to many other mammals are their cosmopolitan 
distribution and diversity, high vagility, long lifespans, use of heterothermy, and highly gregarious 
social systems. While we focus on the biology of bats in this review, it is important to note that 
other processes, such as conserved mammalian traits or overall taxonomic diversity, can also 
influence hosted organisms and have been reviewed elsewhere (Olival et al., 2017; Carlson et 
al., 2019; Shaw et al., 2020; Mollentze & Streicker, 2020). 

Bats are one of the most widely distributed and diverse groups of mammals on Earth, 
second only to rodents. At a broad scale, host taxonomic diversity is associated with higher 
diversity of zoonotic viruses, such that orders of mammals with more species harbor more 
zoonotic viruses (Mollentze & Streicker, 2020). However, there is often not a clear relationship 
between bat species identity and the organisms they host. While in other mammals the gut 
microbiome community reflects host phylogeny, in bats there is a stronger influence of diet and 
environment than host relatedness (Lutz et al., 2019; Dai et al., 2024). At finer scales, such as 
within a bat species or population, the relationships between host and hosted organism 
populations become more complex. In some cases, bat ectoparasite genetic population 
structure mirrors the genetic population structure of their bat hosts (Talbot et al., 2016; Pejić et 
al., 2022; McKee et al., 2024). In other systems, bat ectoparasites lack genetic population 
structure even when host populations display structure (e.g. (Olival et al., 2013; van Schaik et 
al., 2018). The converse—where bat ectoparasites display population structure not evident 
among their bat hosts—can also occur (Speer et al., 2019). Population-specific factors other 
than structure can also impact the organisms hosted by bats. Age structure, presence of 
anthropogenic food sources, and elevational gradients have also been shown to impact viral 
diversity, while in vampire bats, host genetic distances and colony size were found to have no 
effect (Bergner et al., 2020). The conflicting evidence presented here suggests that certain 
“rules” governing these networks are not obvious from studying singular host species, and 
would benefit from a unified framework (Fig. 2). 
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 Bats enjoy a cosmopolitan distribution in part because of their species diversity as well 
as their highly vagile nature. Bats are among the most mobile vertebrates on Earth, with some 
species embarking on long-distance migrations similar to those of whales or birds (Peel et al., 
2013; Welbergen et al., 2020; Hurme et al., 2022). As a result, bats have the ability to disperse 
their hosted organisms across a variety of biomes spread over large geographic scales. For 
example, some species have continental-scale migrations that have the potential to regularly 
move parasites over long distances (Popa-Lisseanu & Voigt, 2009; Peel et al., 2013; Cryan, 
Stricker & Wunder, 2014); however, even rare vagrants might introduce parasites to new regions 
(Hamilton et al., 2012). In addition to being able to move long distances, some bats form dense 
aggregations, while others roost in small groups or completely alone. This social behavior can 
have a strong impact on the sharing of hosted organisms, which has been extensively reviewed 
by (Webber & Willis, 2016). For example, co-roosting species in caves have a higher likelihood 
of pathogen sharing (Langwig et al., 2012; Willoughby et al., 2017). Ectoparasite prevalence 
and intensity can be affected by bat movement between summer and winter roosts, fall 
swarming behaviors, and formation of maternity colonies, which may in turn be mediated by 
anthropogenic change and climate variables, as discussed in section 4 (Webber, Czenze & 
Willis, 2015; Frank et al., 2016; van Schaik & Kerth, 2017).  

Traits of individual bat-hosted organisms may explain some of these patterns: for 
example, bat flies pupate in the roost and must locate an appropriate host within the roost after 
they emerge, while wing mites may rely more heavily on direct contact between bats to transfer 
between individual hosts (Pejić et al., 2022), and some mites may use bats phoretically to reach 
new flowering plants (Tschapka & Cunningham, 2004). It is hypothesized that aspects of host 
behavior, such as fission/fusion dynamics and roost switching, are a parasitism avoidance 
strategy that works by interrupting direct contact between hosts (Reckardt & Kerth, 2007; 
Webber & Willis, 2016). Bat behavior and social systems can therefore influence ectoparasite 
dispersal and population structure, with bat species that roost in larger groups, intermix between 
colonies, or disperse over longer distances typically associated with less population structure 
among their ectoparasites, while ectoparasites of solo-roosting bats that disperse over shorter 
distances may display more genetic diversity overall and stronger levels of genetic population 
differentiation (Bruyndonckx et al., 2009; van Schaik et al., 2014). This might make those 
parasites more vulnerable to changes in their hosts or broader habitats, but few studies 
synthesize this information to evaluate extinction risk to microbes or parasites (but see (Speer, 
Dheilly & Perkins, 2020). Finally, for more ubiquitous organisms such as bacteria, host 
gregariousness can have a homogenizing effect on the microbiome. Concerted changes in fur 
and skin microbiota in colonies as a whole over time are linked to close contact between 
individuals, genetic factors, and environmental factors such as diet and climate 
(Lemieux-Labonté et al., 2016; Avena et al., 2016; Winter et al., 2017; Kolodny et al., 2019; 
Speer et al., 2024). Bat dispersal thus impacts associated hosted organisms in specific ways 
that reflect the interaction between evolution, ecology, and behavior of bats and hosted 
organisms. 

In addition to being social, many bat species also have remarkably long lifespans. These 
long lives, an average of 3.5 times longer than non-flying placental mammals of similar body 
mass (Wilkinson & South, 2002), represent an opportunity for long-term colonization—and 
perhaps in situ evolution— not found in other small mammals (Hughes et al., 2018; Brook et al., 
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2023). A proposed explanation for such long lifespans is that this feature evolved as a 
consequence of the metabolic changes associated with powered flight; although the 
mechanisms are still unclear, there is a relationship between longevity and ability to fly in both 
birds and mammals (Healy et al., 2014). Other explanations, including predator release, are 
related to the evolution of flight but not necessarily as a physiological consequence 
(Brunet-Rossinni & Austad, 2004). For example, Mystacina tuberculata, endemic to New 
Zealand, frequently forages on the ground (Jones et al., 2003) in support of the predator release 
hypothesis for the evolution of flight. As another proposed consequence of the metabolic 
demands of flight, bats have co-evolved unique immune repertoires that enable them to 
asymptomatically host pathogens that would cause severe symptoms or death in other 
mammals (Brook & Dobson, 2015; Schountz et al., 2017). It was previously hypothesized that 
bats have daily metabolic patterns that mimic fever, which might allow them to better tolerate 
viruses (O’Shea et al., 2014), but current research suggests that viral tolerance is more likely a 
downstream effect of adaptations required for dealing with the metabolic stress of flight (Irving et 
al., 2021; Toshkova et al., 2024). These unique metabolic traits might be related, and may also 
allow bats to both host unique organisms and facilitate their evolution.  

Finally, while bats are warm-blooded, they vary their core body temperatures over daily 
and seasonal time periods, and some species may even modulate the size of digestive organs, 
representing a dynamic and potentially challenging environment for the organisms they host 
(McGuire, Fenton & Guglielmo, 2013; Carey & Assadi-Porter, 2017). This unique combination of 
traits is reflected in the identity and diversity of bat-associated organisms, but direct 
relationships between host traits and the survival or persistence of hosted organisms remains 
poorly studied. For example, seasonal physiological changes have been shown to alter the gut 
microbial community, and in turn might also alter the metabolic capacity of those microbes to 
depend less on carbohydrates consumed during active foraging and more on lipids mobilized 
from fat stores (Xiao et al., 2019; Liu et al., 2023). Conversely, the drastic shift in host 
environment during hibernation is associated with changes at the immunological and 
metabolomic level that might seasonally remodel the function or composition of the microbial 
community (Carey & Assadi-Porter, 2017). As one illustrative example, hibernation of several 
Neartic bat species slows rabies virus replication and allows “overwintering” of the infection 
(George et al., 2011; Davis et al., 2016). The impact of seasonality on bat-microorganism 
interactions remains unclear, and might have important immunological consequences that 
inform questions about longevity (Wilkinson & Adams, 2019). As the multitrophic interactions of 
bats, their environments, and the organisms they host remains to be explored for many taxa 
(van Schaik, Dekeukeleire & Kerth, 2015a; Haelewaters et al., 2021), further characterizing 
broader patterns in how bat-hosted organisms are constrained by host biology remains an 
important research priority amenable to study using the “Bats in/as Habitats” framework. While 
bats generally operate at the extreme edge of mammalian adaptation, the variation across bat 
species in vagility, lifespan, use of heterothermy, and gregariousness provides examples that 
also serve to illustrate how these traits in other mammals might influence the abilities of other 
species to host and share mammal-hosted organisms. 
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3.b. Hosted organisms influence bat health and survival 

Like other mammals, bats host a range of organisms, including pathogenic, beneficial, 
and facultative associates which variably impact host bat populations (Table 1). One trait that 
sets bats apart from other mammals is their extraordinary resistance to some types of parasites 
or pathogens that are highly virulent in other animals (e.g. filoviruses and henipaviruses; Field et 
al., 2011; Guito et al., 2021). This trait enables them to act as reservoirs of pathogens, such as 
RNA viruses (Vazquez and Lauterbur et al., 2024), rather than experiencing the population 
declines that these infections can precipitate in other animals. With limited exceptions, microbes 
are not a major cause of mortality in bats (O’Shea et al., 2016). The most notable exception is 
Pseudogymnoascus destructans, the causative fungal agent of white-nose syndrome (WNS), 
which has led to severe, sustained bat mortality in the United States and Canada. Since its 
emergence in North America in 2007, WNS has driven previously abundant bat species to the 
edge of extinction (Cheng et al., 2021; Hoyt, Kilpatrick & Langwig, 2021). Other types of 
endoparasites, including protozoan parasites and helminths, may induce bat mortality in cases 
of severe infection, but more often have sublethal effects. In most cases, ectoparasites do not 
cause bat mortality despite imposing energetic costs (Giorgi et al., 2001), but act as important 
vectors of viruses (Ramírez-Martínez et al., 2021), bacteria (McKee et al., 2021), and protozoa 
(Szentiványi et al., 2023) to their host bat species and potentially between bats and other 
animals (Szentiványi et al., 2024). One exception is the paralysis tick, Ixodes holocyclus, which 
has contributed to population declines in the spectacled flying fox (Pteropus conspicillatus), first 
noted in the 1980s following a mass bat mortality event in eastern Australia (Buettner et al., 
2013). The authors posited that a lack of native food sources drove a shift in the feeding 
ecology of P. conspicillatus towards invasive tobacco plants that supported greater infestation 
with paralysis ticks. In other mammals, ectoparasitism has been shown to impact 
environmental-scale processes by affecting host population size; for example, sarcoptic mange 
caused a dramatic population decline in the vicuña, restructuring trophic interactions and 
supplanting top-down effects by predators (Monk et al., 2022). The link between parasite-driven 
population declines in bats and ecosystem-scale processes has not been well-studied and 
potential future studies to establish this link are limited by a lack of information about the 
biodiversity, systematics, and host-specificity of bat ectoparasites. 
 In addition to hosting organisms with deleterious or neutral health impacts, bats also 
have a normal microbiota that support their nutrition and health. For example, fruit-, blood-, and 
meat-eating bats have gut microbiota members that supplement their specialized diets with 
missing nutrients (Zepeda Mendoza et al., 2018; Aizpurua et al., 2021; Ingala et al., 2021). 
Interestingly, these roles can be fulfilled by many microbes, suggesting that beneficial members 
may be highly interchangeable as long as they perform the same critical functions (Phillips et 
al., 2017; Song et al., 2019). Because bat microbiomes are often strongly linked to their local 
environment (Lutz et al., 2019; Víquez-R et al., 2021), it is essential to understand how 
perturbations in habitats may be reflected in the microbiota, especially if they disrupt beneficial 
functions contributed by these microbes. Further, there may be interactions among microbiota 
community members hosted by bats that can be mediated by the broader environment, such as 
the relationships of fungi from cave walls with bacterial and fungal microbiomes on bat skin 
(Ange-Stark et al., 2023; Speer et al., 2024). 
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Community-level interactions may involve ectoparasites hosting bacteria and viruses, 
interactions between microorganisms within the bat and ectoparasite hosts, and 
hyperparasitism (i.e., a parasite of a parasite). Ectoparasites themselves can be hosts to other 
organisms such as parasitic worms (e.g. filariae, helminths), protozoa (e.g. haemosporidian 
parasites, trypanosomes), bacteria (e.g. Bartonella spp.), viruses (e.g. Kanyawara virus) and 
fungi (e.g. Laboulbeniales) (Adam & Landau, 1973; Morse et al., 2012; Reeves et al., 2016; 
Goldberg et al., 2017; Abundes-Gallegos et al., 2018; Szentiványi et al., 2018). The infection of 
a parasite with a different parasitism is a common phenomenon in nature though still largely 
understudied (Parratt & Laine, 2016; Haelewaters et al., 2021). Infections with Laboulbeniales 
fungi or Polychromophilus parasites negatively impact the survival/lifespan of parasitic bat flies 
(Witsenburg, Schneider & Christe, 2015; Szentiványi et al., 2020). Additionally, bat 
ectoparasites can transmit some of these microorganisms to their host bats and thus serve as 
vectors in the life cycle of certain microorganisms (e.g. blood parasites in nycteribiid bat flies of 
miniopterid bat species) or as mechanical vectors whereby microorganisms are transferred to 
bats when insects are consumed (Adam & Landau, 1973; Tendu et al., 2022). Co-infections, 
simultaneous infections with multiple parasites in an individual host, are also common (Bordes & 
Morand, 2011; Szentiványi, Christe & Glaizot, 2019). Thus, bats are involved in multi-level 
parasitic systems and the ecology, behavior, and environment of bat species and their 
associated ectoparasites may shape these systems. Interactions among the trophic levels may 
be an important driver of microevolutionary processes (Szentiványi et al., 2019; Haelewaters et 
al., 2021), but these relationships need further investigation. 
 Interactions within a community of parasites and microorganisms exploiting the same 
host individual can be direct (e.g. competition for resources) or indirect (e.g. through 
immunological pathways; Pedersen & Fenton, 2007, 2019; Graham, 2008; Knowles et al., 2013; 
Hellard et al., 2015). For example, microbes may indirectly mediate host-parasite interactions 
(Speer, 2022); correlations have been found between the composition of bacterial communities 
on the skin of bats and the prevalence of dipteran ectoparasites (Lutz, Gilbert & Dick, 2022). 
Direct interactions can also occur; bat skin bacteria have been shown to have anti-fungal effects 
on the WNS pathogen, P. destructans (Lemieux-Labonté et al., 2017). Ectoparasites may also 
actively avoid feeding on hosts with higher hemoparasite loads as an adaptive response given 
the negative effects of hemoparasites on bat fly survival (Witsenburg et al., 2015). The result of 
these community-level interactions can be variable depending on whether the presence of one 
ectoparasite or microorganism affects the presence of other organisms (Hoarau, Mavingui & 
Lebarbenchon, 2020). However, without sufficient data on the microbiota and parasites hosted 
by bats, our understanding of these ecological relationships remains fundamentally limited.  

Coinfections may be the result of direct interactions between the co-hosted organisms, 
or they may be incidental owing to a shared preference for an environment inhabited by bats or 
by some behavior that facilitates cotransmission (Patterson, Dick & Dittmar, 2007; Zacks, 2008; 
Winter et al., 2017). If, for example, bat species in caves are common hosts of specific 
nycteribiid bat flies, they might also be common hosts of Polychromophilus (bat malaria) blood 
parasites. In contrast, tree-roosting bats may be less frequently parasitized by nycteribiids and 
therefore less common as hosts of Polychromophilus blood parasites (Sándor et al., 2021). 
While tree-roosting pteropodids have also been recorded to have nycteribiid flies, they typically 
have a lower fly load than cave-roosting pteropodids (Maa, 1962; Allison, 1987). In areas where 
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different bat species aggregate together, nycteribiid flies and the microorganisms they host 
could infect other bat species, depending on the host-specificity of the ectoparasite species 
(Bajić et al., 2023). Currently, it is difficult to tell whether coinfections are due to direct facilitation 
of one organism by another (either host–parasite or parasite–parasite), or whether organisms 
arrive at bat hosts due to broader factors in the environment. One such factor that may result in 
incidental coinfections relates back to bat vagility; a few studies in bats and birds suggest that 
rare malaria parasites may be spread to new hosts during migration events (Schaer et al., 2019; 
de Angeli Dutra et al., 2021; Sándor et al., 2021). The relative contributions of within-host 
interactions vs. between-host spread are unclear and merit further investigation under a unified 
framework. 

The existence of these community-level interactions within a single host individual, made 
more complex by the interactions of individual hosts with each other and their habitat, highlight 
the importance of regarding hosts as “habitats” for these communities of interacting organisms. 
This perspective of hosts as habitats opens the door more widely for exploring the impacts of 
host biology on hosted organism communities, and how environmentally-mediated changes to 
host biology can influence hosted organism communities and in turn their impact on host health. 
This is a required step for investigating the outside-in and inside-out feedbacks between 
environment, bat, and hosted organisms, as discussed further in section 4 below. 

3.c. Effects of anthropogenic change on bats as habitats 

 Anthropogenic change may directly impact bat-hosted organisms or be filtered through 
hosts, therefore having profound effects on these microbial and parasite communities, above 
and beyond the scale of natural change. These filtering mechanisms may include physiological 
stress to the hosts, changes to the hosts’ population structure and dispersal patterns, and 
changes in overall host community diversity at the landscape level.  
 Host-mediated effects have been commonly observed in bat systems, with notable case 
studies having explored the role of habitat disturbance in shaping bat stress physiology and/or 
immunity in ways that affect bat-hosted organisms (Table 1). For example, studies of 
Neotropical bat communities in Belize have suggested exposure to heavy metals such as 
mercury suppress host innate immunity, in most cases increase the prevalence of intracellular 
bacteria (i.e., Bartonella and hemotropic mycoplasmas) through weakened neutrophil response 
(Becker et al., 2021). Despite studies showing apparent correlations between environmental 
toxicants and the diversity of bat-hosted organisms (Korine et al., 2017; Mehl et al., 2021; 
Lobato-Bailón et al., 2023), direct impacts on parasites (i.e., not mediated by impacts on the 
host) are difficult to show and represent a significant knowledge gap (Fig. 3). Similarly, studies 
in Malaysia have found elevated measures of physiological stress and inflammation in 
Paleotropical bats roosting in disturbed habitats, which may manifest in shaping seasonal 
patterns of shedding for some (but not all) viruses (Seltmann et al., 2017b, 2017a). 
Anthropogenic stress can also compound normal seasonal stress due to migration, breeding, or 
hibernation. Furthermore, studies in Australia have shown that poor-quality urban and 
agricultural habitats occupied by flying foxes outside their typical range are associated with 
increased shedding of Hendra virus, with effects most pronounced in periods of additional 
physiological stress (e.g. winters following food shortage events; Becker et al., 2023; Eby et al., 
2023). 
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While direct anthropogenic disturbance can impact host stress, not all impacts on hosted 
organisms are the direct results of stress. In other cases, pressure from humans causes bats to 
alter patterns of dispersal or aggregation. For example, impacts on ectoparasite loads were 
found to be nuanced and context-specific, with cave complexity and population density of hosts 
interacting with disturbance (Phelps & Kingston, 2018). Intense disturbance of bats at caves 
(e.g. hunting, culling, intensive guano mining) can ultimately cause bats to abandon them as 
roosts (McCracken, 1986; Furey & Racey, 2016). In landscapes where suitable roosts are 
limited, this may increase aggregations at refugial roosts (those inaccessible to people), with 
consequences for transmission dynamics of host-associated microbes and parasites (Obitte, 
2023).  

Effects of anthropogenic change on bat-hosted organisms can also be detected at the 
coarsest scale—overall biodiversity loss. These effects are especially evident for habitat 
fragmentation and species loss from the landscape. For example, a study examining patterns in 
the microbiomes of bat flies in Brazil found that as habitat patch area decreased, the bacteria 
hosted by the bat flies demonstrated consistent, correlated changes in relative abundance. In 
contrast, microbiomes of bat flies in larger habitat patches showed heterogeneous associations 
(Speer et al., 2022). These findings suggest that network interactions may be shaped by factors 
two levels removed (first through the bat fly hosting the microbes, and then through the bat 
hosting the parasite). Additionally, high host diversity can decrease the risk of infectious 
diseases spreading within biological communities—a phenomenon called the “dilution effect” 
(Keesing, Holt & Ostfeld, 2006). An example of the dilution effect can be seen with Lyme 
disease; when ticks feed on a great diversity of mammals, not all of them will be competent 
hosts for Borrelia burgdorferi, thus “diluting” the infection risk exerted by highly competent hosts 
(LoGiudice et al., 2003; Keesing & Ostfeld, 2021). However, the dilution effect may be a 
phenomenon specific to particular types of host-pathogen interactions, and it is worth noting that 
tests of the dilution effect have very rarely been applied to bats and their hosted organisms 
(Cottontail, Wellinghausen & Kalko, 2009; Meyer et al., 2024). Rigorously testing the dilution 
effect would require investigating changes in host abundance, overall biodiversity change, and 
variation in host competence, which requires a cohesive and integrative framework that we 
advocate for here. In addition to species diversity, other types of diversity (functional, spatial, 
genetic, etc.) can also play a role in mediating bat/bat-hosted organism interactions, but are 
comparatively understudied (Naeem, Duffy & Zavaleta, 2012). 

Despite promising advances in understanding these processes, the mechanistic links 
between habitat disturbance, stress and immunity, and bat/bat-hosted organism interactions 
remain poorly understood, with a particular need to characterize the physiological changes in 
bats across habitats and over time (Gonzalez & Banerjee, 2022; Becker & Banerjee, 2023). In 
addition, there is a need to understand how disturbance influences bat movements and roosting 
ecology, as resultant changes to inter- and intra-specific interactions, primarily at roosts, can 
influence transmission dynamics and parasite cycles (Willoughby et al., 2017; McKee et al., 
2019; Simonis & Becker, 2023). Even indirect or infrequent interactions (e.g. sharing roosts at 
different times) can modify pathogen transition dynamics (Hoyt et al., 2018).  

These integrations of bats, their habitats, and their hosted organisms have salient 
implications for global health. Degraded habitats can increase direct interactions between bats 
and humans or their domestic animals, but can also foster indirect interactions by increasing 
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habitat sharing. Additionally, deforestation and land use change increase the contact area 
between bats and other organisms (Eby et al., 2023). Emerging evidence also suggests that the 
conversion of agricultural landscapes further feeds back by decreasing community diversity 
(e.g. monocultural plots), and that this has measurable changes in bat-hosted organism 
diversity (Alpízar et al., 2021). Declines in habitat quality via land conversion may intersect with 
downstream effects, such as altering contacts between bats and other species, but the 
combined effect of these parameters on pathogen spread represents an ongoing knowledge 
gap. 

4. A systems-based approach to complex interactions 

A systems-based approach is one in which species and ecological interactions are 
thought of in terms of networks and analyzed holistically instead of in the traditional biologically 
reductive scope. This approach provides a way to understand the mechanisms and drivers of 
the complex interactions that make up global biodiversity. Because the relationships among 
environment, macrofauna, and hosted organisms are nested and hierarchical, they not only feed 
back among themselves, but can be modulated by changes at every level. 

While bats may mediate the impact of the habitat on their hosted organisms and vice 
versa, it is also possible for changes at any of these levels to generate feedbacks that 
reverberate throughout the system (Fig 3). As cited previously, there are studies linking 
individual pieces of this network of interactions, but understanding these complex phenomena 
more broadly requires a systems-based approach. One way of thinking about relationships 
between bats, hosted organisms, and their environment is to consider bats as an extended 
phenotype for their hosted organisms, and those organisms as an extended phenotype of the 
bats. Another way is to think about individual bats as habitat patches, which requires 
considering metapopulation and metacommunity dynamics of the hosted organisms. As a 
hypothetical example, the environment can impact host stress responses (Seltmann et al., 
2017b), which can then change the composition of the gut microbiota (Stothart, Palme & 
Newman, 2019), which can then lead to decreased digestive efficiency (Aizpurua et al., 2021; 
Ingala et al., 2021), which ultimately may feed back on bat health vis-a-vis poorer body 
condition or immune response (Berman et al., 2023). The knock-on effects of declining bat 
health could have global consequences if they result in a decrease in important ecosystem 
services that bats render or increased spillover of potentially zoonotic pathogens. While there 
are individual studies that address one or perhaps a few of these levels of change, there is no 
one study that links all of these processes even in a single host species.  

While a large amount of research effort has been dedicated to studying individual 
elements of these interactions, important emergent properties will be lost unless the study is 
explicitly conceived as a network of interactions that is greater than the sum of its parts. The 
existence of both “missing links” and “forbidden links”, which are interactions that are not 
detected or do not occur, respectively, are important to understand, but not obvious unless the 
network is fully defined (Olesen et al., 2010; Jordano, 2016). For example, there are 
developmental, physical limitations on bat skulls that prevent them from having certain shapes 
and might restrict their evolvability (Sorensen et al., 2014). These “rules” are largely difficult to 
observe, but by using a network-level view, it may be possible to detect them through the shape 
and structure of the network. This kind of thinking has been applied to other ecological systems, 
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such as the ecological interactions of predators and prey on the Serengeti (Carroll, 2016), but 
has rarely been applied to the multi-tiered system of habitats, organisms, and the organisms 
they host.  

A key facet that differentiates this paradigm from typical predator-prey or plant-pollinator 
interactions is that we do not often consider predators or pollinators as “ecosystems” in their 
own right, but rather part of some larger ecosystem. The reason that we need to consider 
environment-macrofauna-hosted organism connections more explicitly is because the 
macrofauna at the center of the network have their own behaviors and physiologies that can be 
impacted in both a top-down and also bottom-up fashion. This review has uncovered some 
knowledge gaps that can only be addressed through a framework that considers bats both as 
organisms within habitats and as habitats themselves. Similar knowledge gaps exist for other 
taxa that might be placed as the node of such a framework.  

The basis of the mechanistic assembly in this system (e.g. genetics, physiology, 
development) is still poorly defined, and cannot be fully understood unless conceptualized as a 
network. In an applied sense, this limits our ability to make predictions about the system or its 
constituent parts. For example, how can we predict if rabies will become more widespread in 
Latin America after cutting down the Amazon rainforest if we do not understand the processes 
being impacted by this perturbation? If rabies transmission dynamics are a complex interplay 
among human activities, broader habitat quality, the intrinsic biology of bats, and functionality of 
beneficial microorganisms, then it will be difficult to make predictions about any of the links in 
that network if one does not fully sample all of the interactions among the constituent parts. To 
best study these knowledge gaps, it is thus necessary to incorporate the “Bats in/as Habitats” 
framework at the outset of study design.   

This framework is also useful for approaching questions about climate change and 
disease. While the One Health concept addresses the links between habitat quality and 
ecosystem health, it often falls short of determining mechanistic drivers that influence specific 
risk factors within the system. A few of these mechanistic limitations are identified in the 
literature, including the conflation of native habitat loss and resource provisioning under “habitat 
loss”, and lack of understanding of interactions among pathogens both within and between 
hosts (Kessler et al., 2018). Ultimately, a better understanding of mechanisms is what allows us 
to make better predictions. For example, the life cycles of bat-hosted organisms may mediate 
whether the effects of climate change are felt directly (e.g. parasites that spend time away from 
their host) or are mediated indirectly through the bat host (e.g. obligate intracellular viruses and 
bacteria). To date, no study integrates habitat disturbance with parasite ecology and host 
behavior to resolve these complex interactions, but such a study would shed light on the 
higher-order interactions between bats, their habitats, and the organisms they host (Gallana et 
al., 2013). 
 An important caveat to the predictive value of this framework is that it may be 
jeopardized by the instability of climate change. While many of the changes we present are 
incremental, repeated and/or severe climate perturbations may produce stochastic and 
non-linear responses that are difficult to predict based on the data we already have (Oliveira et 
al., 2022). Even if the current data are no longer useful for making predictions under these 
scenarios, the framework itself will remain useful as a conceptual basis for understanding the 
linkages that can be severed or altered under extreme climate conditions. 

20 

https://www.zotero.org/google-docs/?GT3mxx
https://www.zotero.org/google-docs/?yEPQEl
https://www.zotero.org/google-docs/?3aCBFH
https://www.zotero.org/google-docs/?3aCBFH
https://www.zotero.org/google-docs/?uQyCg2
https://www.zotero.org/google-docs/?uQyCg2


 

5. CONCLUSION 

Having a conceptual framework to understand complex networks of interactions is an 
increasingly important goal in scientific research (e.g. the U.S. National Science Foundation’s 
Big Ideas: “Rules of Life”, the “One Health” concept, the United Nations Quadripartite). 
Researchers tend to develop highly specialized areas of expertise, but the proposed framework 
calls upon a wide variety of expertise to elucidate the larger picture and make connections 
across biological scales. What we advocate for in this review is ultimately a more explicit 
connection between levels of biological organization and an expansion of the term “ecosystem” 
to include the nested interactions reviewed here. An additional element of complexity that could 
be integrated in such a framework is understanding the relationships of organisms that are 
directly dependent on other organisms, but are not necessarily directly hosted by them (e.g. 
guanophilic troglobionts that do not live on bats, but remain fully dependent on their existence). 
While we use bats as a model system to develop this framework, the end goal is a framework 
that is highly translational to other systems to predict risk factors and threats to other biological 
entities.  
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