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ABSTRACT1

Phylogenetic comparative methods (PCMs) are fundamental tools for understanding trait evolution2

across species. While linear models are widely used for continuous traits in ecology and evolu-3

tion, their application to discrete traits - particularly ordinal and nominal traits - remains limited.4

Researchers sometimes recategorise such traits into binary traits (0 or 1 data) to make them more5

manageable. However, this risks distorting the original data structure and meaning, potentially6

reducing the information it initially contained. This paper promotes the use of phylogenetic gener-7

alised linear mixed-effects models (PGLMMs) as a flexible framework for analysing the evolution8

of discrete traits. We introduce the theoretical foundations of PGLMMs and demonstrate how uni-9

variate and multivariate versions of binary PGLMMs, which might be more familiar to evolutionary10

biologists, can be conceptually extended to model ordinal and nominal traits. Specifically, we11

describe ordered and unordered multinomial PGLMMs for ordinal and nominal traits, respectively.12

We then explain how to interpret regression coefficients and (co)variance components, including13

associated statistics (e.g., phylogenetic heritability and correlation) from PGLMMs for discrete14

traits. Using real-world examples from avian datasets, we illustrate the practical implementation15

of PGLMMs to reveal evolutionary patterns in discrete traits. We also provide online tutorials to16

guide researchers through the application of these models using Bayesian implementations in R.17

By making complex models more accessible, we aim to facilitate a more precise and insightful18

understanding of the evolution and function of discrete traits, which has received relatively limited19

attention in evolutionary biology so far.20
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1 INTRODUCTION21

As children, while flipping through the pages of visual dictionaries, we may have wondered why22

Earth is home to such a vast diversity of living things. Today, it is estimated that at least 8.723

million species inhabit our planet, with new species continually being discovered (Mora et al.,24

2011; Scheffers et al., 2012). These extant species flourish in a wide range of environments and25

exhibit species-specific traits. They have evolved unique traits while adapting to their surrounding26

environment. Even limited to the avian class, species live in areas ranging from polar regions27

to deserts and also urban environments and have evolved specific characteristics, such as body28

shapes, foraging methods, and reproductive systems. Phylogenetic inertia or constraints, rooted29

in evolutionary history, as well as shared genetic background, can lead closely related species to30

show similar traits. At the same time, distantly related species may have convergent traits adapted31

to similar environments. Understanding the factors that influence the evolution of these traits32

and speciation is critically important in evolutionary biology and ecology - topics that have long33

fascinated researchers in these fields.34

However, until the 1980s, when Felsenstein (1985) published the first paper on phylogenetic35

comparative methods (PCMs), the evolution of organisms could not be tested using statistically36

formalised approaches. PCMs have rapidly advanced in recent years (Lynch, 1991; Pagel, 1997;37

Martins and Hansen, 1997; Housworth et al., 2004; Ives et al., 2007; Hadfield, 2010; Hadfield and38

Nakagawa, 2010; Felsenstein, 2012; O’Meara, 2012; Garamszegi, 2014; Cornwell and Nakagawa,39

2017; Harmon, 2018; Cornwallis and Griffin, 2024), offering powerful frameworks for revealing40

patterns and processes of organism evolution while accounting for phylogenetic non-independence41

among species (Felsenstein, 1985; Grafen, 1989; Martins and Hansen, 1997). By incorporating42

phylogenetic information, PCMs can estimate common ancestral states, speciation rates, and43

evolutionary relationships between various types of traits and related factors. Such traits encompass44

behavioural, ecological, morphological, and physiological characteristics and life histories, along45

with ecological and environmental factors, which are often evolutionary drivers of these traits (e.g.,46

Felsenstein, 1985).47

Two major classes of models dominate phylogenetic comparative methods (PCMs) for trait48

evolution: linear models and Markov models. Linear models, such as phylogenetic generalized49

least squares (PGLS) (Martins and Hansen, 1997; Pagel, 1997; Garland and Ives, 2000; Rohlf,50

2001), are commonly used to analyse continuous traits (e.g., body size, lifespan). These models51

offer considerable flexibility by allowing researchers to examine relationships between one or more52

response variables and explanatory variables, whether continuous or discrete (e.g., environmental53

factors, species-specific traits). By contrast, Markov models (e.g., the Mk model) (Pagel, 1994;54

Lewis, 2001) are predominantly used to model the evolution of discrete (categorical) traits (here55

defined to include binary, ordinal [ordered multinomial], and nominal [unordered multinomial]56

data, but excluding count [Poisson] data; see figure 1) and estimate the probabilities of transitioning57

between different trait states over evolutionary time.58

Yet, discrete response variables need not be confined to Markov models; linear models can59

also handle categorical outcomes (e.g., Grizzle et al., 1969; Anderson, 1984; Sloane and Morgan,60

1996). Binary traits, being a special case of discrete traits, have been frequently analysed via linear61

models and are widely familiar to evolutionary biologists. Nonetheless, the use of linear models62

for ordinal and nominal traits remains uncommon. This situation is likely due to challenges in both63

implementation and interpretation, stemming from the relative unfamiliarity of extending linear64

models to these types of data (i.e., ordinal and nominal traits). Despite these hurdles, one of the65
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greatest advantages of linear models is their unified framework, which can seamlessly accommodate66

both continuous and discrete traits. However, as far as we know, there is no accessible guide or67

tutorial to investigate ordinal and nominal traits under the linear model framework (cf. Hadfield and68

Nakagawa, 2010).69

To fill this gap, we demonstrate how linear models, particularly phylogenetic generalised linear70

mixed models (PGLMMs; Lynch, 1991; Housworth et al., 2004, Hadfield and Nakagawa, 2010),71

can be applied to study the evolution of discrete traits (see figure 1). PGLMMs are also well-suited72

for modelling data with varying levels of statistical non-independence, such as multiple observations73

per species by using random effects. Additionally, PGLMMs can accommodate multiple response74

variables (i.e., multiple traits), which can shed light on, for example, coevolution among traits.75

Importantly, Bayesian packages such as the brms package (Bürkner, 2017) and the MCMCglmm76

package (Hadfield, 2010; Hadfield and Nakagawa, 2010) make these models accessible for diverse77

research applications. Here, our focus is on ordinal and nominal traits, which have posed challenges78

due to the complexities in implementation and interpretation. We introduce the theoretical foundation79

of PGLMMs and then provide practical applications using real-world examples. Finally, we offer80

online tutorials (link) that guide users through implementing these models with Bayesian approaches81

in R. We aim to equip evolutionary biologists with a robust framework for analysing discrete traits.82

By combining theoretical foundations with practical applications, we will make complex models83

more accessible, thus supporting a more precise and insightful understanding of trait evolution84

studies.85

2 THEORY86

To build upon what evolutionary biologists are likely to be familiar with, we first describe PGLMMs87

for continuous traits (using the Gaussian link function; Hadfield, 2010; Ives and Helmus,2011;88

Pottier et al., 2024). By doing so, we introduce the concept of phylogenetic signal and heritability89

(note that these are not always interchangeable - for example, while Pagel’s λ can be interpreted90

as a measure of phylogenetic heritability, other metrics, such as Blomberg’s K (Blomberg et al.,91

2003), quantify different aspects of phylogenetic signal and do not directly reflect heritability).92

We also present the essential idea of univariate and multivariate (multi-response) models. The93

introduction of multivariate models is important since models for nominal traits inherently function94

as multivariate models. Then, we extend PGLMMs to discrete traits, including binary, ordinal, and95

nominal traits (using the probit and logit link functions). Here, we show how the PGLMM for binary96

traits, which might be more familiar to evolutionary biologists, provides a basis for the GLMMs97

for ordinal and nominal traits, which are less familiar to evolutionary biologists (figure 1). Finally,98

we also touch upon how to account for within-species variation in PGLMMs (i.e., replicates within99

species) as an area of future development (Cornwallis and Griffin, 2024).100

2.1 PGLMM for continuous traits101

The phylogenetic (linear) mixed-effects model (PMM) was first introduced by (Lynch, 1991) (note102

that a PMM is a PGLMM with the Gaussian link function). Despite its versatility, PMMs are103

less frequently used than popular PGLS (phylogenetic generalised least square) models (Martins104

and Hansen, 1997; Pagel, 1997; Garland and Ives, 2000; Rohlf, 2001). The PMM is a type of105

linear mixed-effects model that accounts for the non-independence of species due to their shared106

evolutionary history (i.e., phylogeny; Felsenstein, 1985; Grafen, 1989; Martins and Hansen, 1997).107

The simplest (univariate) PMM can be written as:108
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yi = β0 +ai + ei, (1)

ai = a ∼ N (0,σ2
a A), (2)

ei = e ∼ N (0,σ2
e I), (3)

where yi is the trait value of the ith species, β0 is the intercept (across-species overall mean), ai109

is the random effect of the ith species, ei is the residual error, a and e are vectors of random effects110

and residuals, respectively, the random effect ai is assumed to be normally distributed with a mean111

of zero and a variance-covariance of σ2
a A (where phylogenetic correlation matrix A is a square112

matrix derived from an ultra-metric phylogenetic tree where the distance from the root to every tip113

is the same, assuming a constant rate of evolution (Gavryushkin and Drummond, 2016)), and the114

residual error ei is assumed to be normally distributed with a mean of zero and a variance-covariance115

of σ2
e I (the identity matrix I is a square matrix with ones on the diagonal and zeros elsewhere). The116

variance component σ2
a shows how much of the variation is caused by phylogenetic signals (Pagel,117

1999; Freckleton et al., 2002). In contrast, σ2
e represents the variation that is not related to phylogeny.118

This could include factors like species-specific ecological differences (e.g., adaptations to their119

environment; σ2
e may also include measurement errors or variation within studies, but here, we120

assume it mainly reflects non-phylogenetic variation at the species level). Note that the construction121

of A can be adjusted according to the mode of evolution one assumes; usually, a linear decline of122

phylogenetic relationship (dependence) from the common ancestors (ancestral node) and extant123

species (tips) is assumed, and this is known as the Brownian model of evolution (Felsenstein, 1973,124

1985).125

Importantly, phylogenetic heritability (H2) can be calculated as the proportion of the total126

variance that is due to the variance associated with phylogeny:127

H2 =
σ2

a
σ2

a +σ2
e

(4)

The PMM can be extended to include fixed effects (e.g., other species-specific traits and environ-128

mental variables).129

yi = β0 +β1x1i + ...+βhxhi +ai + ei (5)

where x1i,x2i, ...xhi are the fixed effects (i.e., xhi is hth fixed effect of the ith species).130

Rather than fitting species traits as another fixed effect, we can fit it as another response using131

a multivariate PMM. A bivariate PMM can be written as (see Housworth et al., 2004; Adams and132

Collyer, 2024):133

yi =

(
y(1)i = β

(1)
0 +a(1)i + e(1)i

y(2)i = β
(2)
0 +a(2)i + e(2)i

)
, (6)
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where yi is a vector consisting of y(1)i and y(2)i which are two different traits (e.g., the body mass134

and wing length) of the ith species, respectively, β
(1)
0 and β

(2)
0 are the intercepts (across-species135

overall means), a(1)i and a(2)i are the phylogenetic effects of the ith species, and e(1)i and e(2)i are the136

residuals (assuming to be mostly non-phylogenetic effects).137

These phylogenetic effects are distributed as follows:138

(
a(1)i

a(2)i

)
=

(
a(1)

a(2)

)
∼ N

((
0
0

)
,Σa ⊗A

)
, (7)

Σa ⊗A =

(
σ2

a1A ρa12σa1σa2A
ρa12σa1σa2A σ2

a2A

)
, (8)

where Σa ⊗A is the variance-covariance matrix of the phylogenetic effects (the symbol ⊗139

denotes the Kronecker product), A is the phylogenetic correlation matrix, σ2
a1 and σ2

a2 are the140

variances of the phylogenetic effects of the first and second traits, respectively, and ρa12 is the141

correlation between the phylogenetic effects of the two traits. A positive ρa12 indicates that the142

traits have tended to evolve in the same direction due to shared evolutionary history (i.e., correlated143

phylogenetic effects). In contrast, a negative ρa12 indicates that the traits have evolved in opposite144

directions phylogenetically. It is important to mention that ρa12 refers specifically to phylogenetic145

correlations. We may find that overall correlations between traits differ if strong non-phylogenetic146

or residual effects obscure these phylogenetic patterns.147

Similarly, the residuals (non-phylogenetic effects) are distributed as follows:148 (
e(1)i

e(2)i

)
=

(
e(1)

e(2)

)
∼ N

((
0
0

)
,Σe ⊗ I

)
, (9)

Σe ⊗ I =
(

σ2
e1I ρe12σe1σe2I

ρe12σe1σe2I σ2
e2I

)
, (10)

where Σe ⊗ I is the variance-covariance matrix of the non-phylogenetic effects (residuals), σ2
e1149

and σ2
e2 are the variances of the residuals of the first and second traits, respectively, and ρe12 is the150

correlation between the non-phylogenetic effects of the two traits. Such a correlation can represent151

convergence or divergence due to ecological factors. For example, shared environmental pressures,152

such as temperature and precipitation, can drive traits toward similar adaptations, while predation or153

resource competition may lead to trait differentiation. Using 4, phylogenetic heritability (H2) can be154

obtained separately for the first and second traits.155

Also, as mentioned above, this bivariate model can be extended by including fixed effects (e.g.,156

other species traits and environmental variables).157

yi =

(
y(1)i = β

(1)
0 +β

(1)
1 x1i + ...+β

(1)
h xhi +a(1)i + e(1)i

y(2)i = β
(2)
0 +β

(2)
1 x1i + ...+β

(2)
h xhi +a(2)i + e(2)i

)
(11)
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2.2 PGLMM for discrete traits 1: binary traits158

The simplest phylogenetic generalised linear mixed-effects model (PGLMM) for binary traits can be159

written using either the logit or probit link functions (figure 2):160

yi ∼ Bernoulli(pi) = Binomial(1, pi) (12)

P(yi = 1) = pi = exp(li)/(1+ exp(li)) = logit−1(li) (13)

li = ln
(

pi

1− pi

)
(14)

P(yi = 1) = pi = Φ
−1(li) = probit−1(li) (15)

li = Φ(pi) (16)

li = β0 +ai (17)

where yi represents the binary trait value of the ith species, indicating whether a specific trait161

is present (e.g., maternal care). The probability of observing the trait, denoted as pi, follows a162

Bernoulli distribution, which is a special case of the binomial distribution with a size parameter of 1.163

The probability pi is transformed onto a latent scale using either a logit or probit link function. In the164

logit case, the transformation is defined as (13), where li is the latent linear predictor. Alternatively,165

in the probit case, the transformation uses the inverse cumulative distribution function Φ−1 of166

the standard normal distribution (14). The li is related to the probability pi and can be expressed167

differently depending on the link function used. In the logit case, li represents the log-odds ratio (14).168

In the probit case, li corresponds directly to the transformed probability, which is the cumulative169

standard normal probability for quantile pi (15). The li is modelled as a linear combination of170

the intercept β0 (the overall mean across species on the latent scale) and ai, which represents the171

phylogenetic effect of the ith species (17). The inverse transformations, logit−1 (also known as the172

inv-logit transformation) and Φ−1, are used to map the latent scale back to the probability scale.173

Note that this model lacks the residuals ei; this is because a Bernoulli distribution does not have any174

overdispersion, or errors are determined by an underlying distribution (Hadfield, 2010). Using this175

property, phylogenetic heritability (H2) can be calculated for binary traits as follows for the logit176

and probit link functions, respectively (Hadfield, 2010; Nakagawa and Schielzeth, 2010, 2013):177

H2 =
σ2

a
σ2

a +π2/3
(18)
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H2 =
σ2

a
σ2

a +1
(19)

where π2/3 is the variance for the logistic distribution while 1 is the variance for the standard178

normal distribution. As mentioned above, this model can be extended by including fixed effects:179

li = β0 +β1x1i + ...+βhxhi +ai. (20)

Also, this model can be extended to a bivariate model with fixed effects:180

li =

(
l(1)i = β

(1)
0 +β

(1)
1 x1i + ...+β

(1)
k xhi +a(1)i

l(2)i = β
(2)
0 +β

(2)
1 x1i + ...+β

(2)
k xhi +a(2)i

)
, (21)

where li is a vector consisting of l(1)i and l(2)i , which are the linear predictors of the first and181

second binary traits (e.g., the presence of maternal and paternal care), respectively, β
(1)
0 and β

(2)
0182

are the intercepts (across-species overall means), β
(1)
1 and β

(2)
1 are the fixed effects of the first and183

second traits, respectively, and a(1)i and a(2)i are the phylogenetic effects of the first and second traits,184

respectively and the phylogenetic effects are distributed as with 8 and 9.185

We note that binary traits can have a natural order (e.g., egg-laying vs live-born, solitary living186

vs social living) or can be two independent categories (e.g., sex or habitat). The point is that187

the PGLMM for binary traits can be considered as both the GLMM for ordinal traits (ordered188

multinomial traits) and the GLMM for nominal traits (unordered multinomial traits). Indeed, a189

binomial distribution is the simplest case of a multinomial distribution as well as a categorical190

distribution:191

yi ∼ Binomial(1, pi)↔ y′i ∼ Multinomial(1,(p1i, p2i))↔ y(k)i ∼ Categorical(p1i, p2i), (22)

where yi
′ is a multinomial distribution with two categories (yi

′ = (1,0) and yi
′ = (0,1) with the192

size of 1) y(k)i is a categorical distribution with k categories/levels and p1i and p2i are the probabilities193

of the first and second categories, respectively (i.e., p1i = 1− pi and p2i = pi; y(1)i = A ↔ yi
′ = (1,0)194

and p2i = pi and y(2)i = B ↔ yi
′ = (0,1); see also figure 2a). Each element of yi

′ corresponds to195

the probability of one of the two possible outcomes in the multinomial distribution. The linear196

predictors li, therefore, can be re-written for the logit and probit link functions, respectively:197

li = ln
(

pi

1− pi

)
= ln

(
p2i

p1i

)
, (23)

li = Φ(pi) = Φ(p2i) = Φ(1− p1i). (24)
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Also, for the logic and probit link functions, the probabilities (of a binary variable) can be198

re-written with pi being a vector of probabilities of the two categories for ith species, denoted as A199

and B, can be expressed as follows:200

pi =

(
P(y(1)i = A) = p1i = 1/(1+ exp(li)) = logit−1(−li)

P(y(2)i = B) = p2i = exp(li)/(1+ exp(li)) = logit−1(li)

)
, (25)

pi =

(
P(y(1)i = A) = p1i = Φ(c0 − li) = Φ(−li)

P(y(2)i = B) = p2i = 1−Φ(c0 − li) = Φ(li)

)
, (26)

where c0 is a cut-point (here defined as c0 = 0) used in ordinal models (which is explained in201

detail later).202

In the next two sections, we describe the PGLMM for ordinal and nominal traits by building up203

on the PGLMM for binary traits. It is important to note that, traditionally, the logit link function is204

more commonly used for nominal variables, while the probit link function is more commonly used205

for ordinal variables (Hadfield, 2015).206

2.3 PGLMM for discrete traits 2: ordinal traits207

Ordinal variables (e.g., plumage colour gradation, migration level, mating system, and social208

hierarchy) can be modelled as so-called “threshold models” with the probit link function, where209

thresholds are usually referred to as cut-points (figure 2b). Importantly, in such a model, latent210

values of the ordinal traits are assumed to be continuous following the standard normal distribution.211

Here, we define an ordinal trait with three levels, whose threshold model (ordered multinomial or212

categorical PGLMM) can be defined as:213

yi
′ ∼ Mulitnomial(1,(p1i, p2i, p3i))↔ y(k)i ∼ Categorical(p1i, p2i, p3i). (27)

where yi
′ is a vector of probabilities for ith species to belong to one of three levels (e.g., A,B214

and C; yi
′ = (1,0,0), yi

′ = (0,1,0) and yi
′ = (0,0,1)), p1i, p2i, and p3i are the probabilities of the215

three levels, respectively. The probabilities of the three levels are calculated as the cumulative216

probabilities of the standard normal distribution (Hadfield, 2015). Using these probabilities, the217

linear predictor li can be written as:218

pi =

 P(y(1)i = A) = p1i = Φ(c0 − li)
P(y(2)i = B) = p2i = Φ(c1 − li)−Φ(c0 − li)

P(y(3)i = C) = p3i = 1−Φ(c1 − li)

 (28)

li = β0 +ai + ei (29)

e ∼ N (0,I) (30)
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where p1
′ is a vector of probabilities for ith species to belong to one of three levels (e.g., A, B219

and C; p1
′ = (0.2,0.5,0.3)), c0 and c1 are cut-points (thresholds) that separate the three levels of220

the ordinal trait (e.g., whether a species is migratory, partially or not; colour gradients such as white,221

grey and black or yellow, orange and red) and these cut-points divide the continuous range of values222

(e.g., migration distances, colour gradients) into categories. For example, species with latent variable223

above c1 would belong to category C (0, 0, 1), species with latent variable between c0 and c1 would224

belong to category B (0, 1, 0), and those with latent variable below c0 would belong to category225

A (1, 0, 0). The probabilities of the three levels are calculated as the cumulative probabilities of226

the standard normal distribution(Hadfield, 2015). Note that the first category/level (here, A) is the227

reference level. In addition, unlike a binary GLMM (17), we have the residual variance, which228

is distributed with the mean of 0 and the variance of 1 (I, i.e., the standard normal distribution).229

Phylogenetic heritability on the latent scale can be obtained using 19 (but see for original scale230

calculation R package QGglmm; de Villemereuil et al., 2016).231

Extending this model to take an ordinal variable with four levels is not difficult:232

pi =


P(y(1)i = A) = p1i = Φ(c0 − li)

P(y(2)i = B) = p2i = Φ(c1 − li)−Φ(c0 − li)
P(y(3)i = C) = p3i = Φ(c2 − li)−Φ(c1 − li)

P(y(4)i = D) = p4i = 1−Φ(c2 − li)

 (31)

where c0, c1, and c2 are cut-points that separate the four levels of the ordinal trait (e.g., whether233

the plumage colours of a bird species are classified as yellow, light orange, orange, or red; figure234

2b). The probabilities of the four levels are calculated as the cumulative probabilities of the standard235

normal distribution (Hadfield, 2015; see also Box 2).236

This model can include fixed effects to explain variation in the response variable:237

li = β1xi...+βhxhi +ai + ei (32)

where li represents the linear predictor for species i. xhi represent hth explanatory variables associated238

with individual i, each with a corresponding regression coefficient βh . The term ai indicates the239

random effect specific to species i, and ei represents the residual variance, which is assumed to240

follow the standard normal distribution as in Equation 30. It combines the effects of explanatory241

variables and phylogenetic effects to produce a latent variable that determines the probability of yi242

categorising a specific ordinal category (here, A, B, C, or D). This formulation allows the model243

to account for both continuous variables (figure 3a) and categorical variables (figure 3b; with k-1244

dummy variables for k levels) as explanatory variables, making it versatile for analysing realistic245

data. Detailed guidance on applying this model and interpreting its results can be found in the246

section “3. worked examples” (3.1 ordinal model) and our online tutorial.247

2.4 PGLMM for discrete traits 3: nominal traits248

We use unordered multinomial PGLMM to model nominal traits. Multinomial (nominal) PGLMMs249

are multivariate (multi-response) models where with k levels (categories), a set of k− 1 binary250

PGLMMs are fitted (Agresti et al. (2000); Hadfield and Nakagawa (2010); figure 2c). Here, we251

define a nominal trait with four levels (e.g., B = blue, G = green, R = red, and W = white; figure 2c)252

whose multinomial model can be defined as (so comparable to running trivariate binary PGLMMs):253
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y(k)i ∼ Categorical(p1i, p2i, p3i, p4i). (33)

where y(k)i is the trait value of the ith species for the kth level (e.g., B = blue, G = green, R =254

red, and W = white), p1i, p2i, p3i, and p4i are the probabilities of the four levels, respectively. The255

probabilities of the four levels and the vector of associated three linear predictors (li
′
=(l(1)i , l(2)i , l(3)i ))256

are defined as follows:257

pi =


P(y(1)i = B) = p1i = 1/(1+ exp(l2i)+ exp(l3i)+ exp(l4i))

P(y(2)i = G) = p2i = exp(l2i)/(1+ exp(l2i)+ exp(l3i)+ exp(l4i))

P(y(3)i = R) = p3i = exp(l3i)/(1+ exp(l2i)+ exp(l3i)+ exp(l4i))

P(y(4)i = W) = p4i = exp(l4i)/(1+ exp(l2i)+ exp(l3i)+ exp(l4i))

 (34)

li =


l(1)i = ln

(
p2i
p1i

)
= β

(1)
0 +β

(1)
1 x1i + ...+β

(1)
h xhi +a(1)i

l(2)i = ln
(

p3i
p1i

)
= β

(2)
0 +β

(2)
1 x1i + ...+β

(2)
h xhi +a(2)i

l(3)i = ln
(

p4i
p1i

)
= β

(3)
0 +β

(3)
1 x1i + ...+β

(3)
h xhi +a(3)i

 , (35)

where pi is a vector of probabilities for the ith species (e.g., pi = (0.2,0.3,0.4,0.1)), li a vector258

consisting of l(1)i , l(2)i , and l(3)i , which are the linear (latent) transformation of the probability of259

the second, third and fourth traits in relation to the first trait (e.g., the probably of G = green in260

relation to reference category of B = blue), respectively, β
(1)
0 , β

(2)
0 , and β

(3)
0 are the intercepts of261

three models based on pair-wise comparisons (see also Appendix). The three phylogenetic effects262

a(1)i , a(2)i , and a(3)i are distributed as follows:263

a(1)i

a(2)i

a(3)i

=

a(1)

a(2)

a(3)

∼ N (0,Σa ⊗A) (36)

Σa ⊗A =

 σ2
a1A ρa12σa1σa2A ρa13σa1σa3A

ρa12σa1σa2A σ2
a2A ρa23σa2σa3A

ρa13σa1σa3A ρa23σa2σa3A σ2
a3A

 (37)

where Σa ⊗A is the variance-covariance matrix of the phylogenetic effects (the symbol ⊗264

denotes the Kronecker product), A is the phylogenetic correlation matrix, σ2
a1, σ2

a2, and σ2
a3 are265

the variances of the phylogenetic effects of the first, second, and third traits, respectively, and266

ρa12, ρa13, and ρa23 are the correlations between the phylogenetic effects of the three traits. For267

this model, one can obtain three heritability estimates (on the latent scale) for each phylogenetic268

variance component using 18. This allows the model to consider both continuous variables (figure269

3c) and categorical explanatory variables (figure 3d; with k-1 dummy variables for k levels). The270

effect of each explanatory variable on the response variable is evaluated by comparing the reference271

category with each non-reference category. You can find detailed guidance on applying this model272

and interpreting its results in the section “3. worked examples” (3.2 nominal model) and our online273

tutorial.274

10



2.5 PGLMM with non-phylogenetic species effect275

An increasing number of comparative datasets now include more than one individual per species;276

this is especially so for continuous traits (e.g., weight and height). Therefore, one can model the277

within-species effect into PGLMM. For the simplest such model with the Gaussian link function can278

be written as:279

yi j = β0 +ai + si + e j, (38)

si = s ∼ N (0,σ2
s I), (39)

e j = e ∼ N (0,σ2
e I), (40)

where yi j is the trait value of the jth individual of the ith species, β0 is the intercept (across-280

species overall mean), ai is the phylogenetic effect of the ith species, si is the non-phylogenetic281

effect of the ith species, and s is a vector of non-phylogenetic effects. ei is the within-species effect282

(residuals, which could include measurement errors), e is a vector of residuals, σ2
e is the variance of283

the residuals. I is the identity matrix and other symbols as above. The phylogenetic heritability (H2)284

can be obtained by the same formula (4).285

The bivariate version of this model can be written as:286

yij =

(
y(1)i j = β

(1)
0 +a(1)i + s(1)i + e(1)i j

y(2)i j = β
(2)
0 +a(2)i + s(2)i + e(2)i j

)
, (41)

(
s(1)

s(2)

)
∼ N

((
0
0

)
,Σs ⊗ I

)
, (42)

Σs ⊗ I =
(

σ2
s1

I ρs12σs1σs2I
ρs12σs1σs2I σ2

s2
I

)
, (43)

(
e(1)

e(2)

)
∼ N

((
0
0

)
,Σe ⊗ I

)
, (44)

Σe ⊗ I =
(

σ2
e1

I ρe12σe1σe2I
ρe12σe1σe2I σ2

e2
I

)
, (45)

where yij is a vector consisting of y(1)i j and y(2)i j , which are the trait values of the jth individual of287

the ith species for the first and second traits, respectively, β
(1)
0 and β

(2)
0 are the intercepts (across-288

species overall means), a(1)i and a(2)i are the phylogenetic effects of the ith species for the first289
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and second traits, respectively, s(1)i and s(2)i are the non-phylogenetic effects of the ith species for290

the first and second traits, respectively, e(1)j and e(2)j are the residuals (within-species effect) of291

the jth individual of the ith species for the first and second traits, respectively, e(1) and e(2) are292

vectors of residuals (within-species effects) for the first and second traits, respectively, Σe ⊗ I is the293

variance-covariance matrix of the within-species effect, and σ2
e is the variance of the residuals. Also,294

phylogenetic heritability (H2) can be obtained by the same formula (4; probably more accurately as295

the non-phylogenetic variance σs is directly estimated and not confounded by the within-species296

effect and other sources of variance).297

The equivalent bivariate binary PGLMM with fixed effects can be written as:298

lij =

(
l(1)i j = β

(1)
0 +β

(1)
1 x1i j + ...+β

(1)
h xhi j +a(1)i + s(1)i

l(2)i j = β
(2)
0 +β

(2)
1 x1i j + ...+β

(2)
h xhi j +a(2)i + s(2)i

)
, (46)

where lij is a vector consisting of l(1)i j and l(2)i j , which are the linear predictors of the jth individual299

of the ith species for the first and second binary traits, respectively. The fixed effects, x1i j and x2i j,300

correspond to the first and second traits at the individual level of the jth individual of the ith species.301

These fixed effects can be defined either at the species (between-species) level or the individual302

(within-species) level, depending on how the model is specified.303

Now, we can model the non-phylogenetic effects explicitly, as shown in 9, enabling the estimation304

of non-phylogenetic variances for the first and second binary traits (σ2
s1, σ2

s2), as well as non-305

phylogenetic correlations (ρs12). This approach can overcome limitations in earlier bivariate binary306

models (21), where such detailed modelling was not possible. Although already mentioned, it307

is important to understand that the positive values of phylogenetic correlation (ρa12) and non-308

phylogenetic correlation (ρs12) can indicate co-evolution and convergence, respectively, while309

negative values suggest evolutionary trade-offs and ecological divergence.310

Based on what was described above, one can extend ordered and unordered multinomial311

PGLMMs to include within-species variation. However, such datasets appear to be relatively312

uncommon in current comparative biology. Nonetheless, there are traits, such as colour and be-313

havioural polymorphisms within species, where this approach could be applied. Some examples of314

such PGLMMs are available in the online tutorials (link).315

3 WORKED EXAMPLES316

To demonstrate the application of the PGLMMs using Bayesian approaches, we present some317

examples using the MCMCglmm function from package MCMCglmm v.2.36 (Hadfield, 2010; Had-318

field and Nakagawa, 2010) and the brm function from brms v.2.21.0 (Bürkner, 2017) in R v.4.4.2319

(R Core Team, 2024) using real-world data. The dataset used here was sourced from AVONET320

(Tobias et al., 2022), a comprehensive global database of avian traits. To account for phylogenetic321

dependency, we incorporated ultrametric phylogenetic trees obtained from BirdTree.org (Jetz et al.,322

2012) as a random effect in our models. Our examples here cover ordinal and nominal models, and323

each example provides a summary of the key results. We also offer an online tutorial (link). that324

provides comprehensive details on the implementation of PGLMMs, using MCMCglmm and brms325

packages. This includes data preparation, model fitting, and diagnostic checks for both ordinal and326

nominal models, as well as Gaussian and binary models.327
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3.1 Ordinal (ordered multinomial) model328

We analysed the relationships between migration level (an ordinal response variable), body mass329

(a continuous predictor variable), and habitat density (a categorical predictor variable) across330

136 species of birds of prey (figure 4a). The migration level was categorised into three distinct331

levels: sedentary, partially migratory, and migratory. Adult body mass (average of two sexes) was332

included as a predictor variable to capture potential associations with migratory capacity, reflecting333

physiological and energetic constraints on long movement. Habitat density (dense, semi-open,334

open) was also considered, with species classified based on their predominant habitat type (detailed335

definitions of all variables can be found in Tobias et al., 2022).336

We used an intercept-only model to calculate the phylogenetic signal from the variance compo-337

nents because it provides an estimate of the variance attributable to phylogeny without the influence338

of additional explanatory variables. Phylogenetic heritability (aka phylogenetic signal), measured339

as the proportion of variance explained by the phylogenetic random effect, was estimated at 0.54340

(95% CI: 0.00, 0.81) in MCMCglmm and 0.42 (95% CI: 0.00, 0.84) in brms. These values suggest341

that closely related species exhibit more similar migratory behaviours than distantly related species,342

although non-phylogenetic factors also play a substantial role.343

Differences were observed in the threshold (cut-point) estimates between MCMCglmm and brms,344

arising from the packages’ distinct modelling frameworks (the true-intercept model in MCMCglmm345

and the zero-intercept model in brms; see Box 2 for a detailed explanation). In MCMCglmm, a346

single cut-point was estimated at 0.99 (95% CI: 0.66, 1.34) and model intercept (estimate = 0.32,347

95% CI (-0.80, 1.45)). In contrast, brms provided two cut-points as regression coefficients: -0.32348

(95% CI: -1.36, 0.61) and 0.66 (95% CI: 0.24, 1.75). These thresholds define cut-off points on349

an underlying continuous latent scale that determines observed ordinal categories (see the Theory350

section). Here, the migration level (sedentary, partially migratory, and migratory) is represented as351

a continuous latent variable. Species with a latent value below the first threshold are categorised352

as sedentary; those between the first and second thresholds are categorized as partially migratory;353

and values exceeding the second threshold correspond to migratory species. As explained in the354

Theory section (PGLMM for discrete traits 2: ordinal traits), these values can be used to calculate the355

proportion of species in each migration category by converting them into cumulative probabilities356

using the cumulative distribution function. The proportion in each category is determined by the357

difference between consecutive thresholds’ probabilities. For instance, we can obtain that 37.5%358

were sedentary, 37.5% were partially migratory, and 25.0% were migratory.359

We then assessed the effects of body mass and habitat density as explanatory variables. A slight360

negative effect of body mass on migration level was observed in both models (MCMCglmm: estimate361

= -0.233, 95% CI: -0.51, 0.02; brms: estimate = -0.26, 95% CI: -0.57, 0.02; figure 4a). These362

estimates suggest that larger species may exhibit lower migratory tendencies, although the effects363

are relatively modest and overlap with zero. As mentioned above, habitat density was categorised364

as dense (reference), open, and semi-open. Species living in open environments (e.g., grasslands)365

had a higher likelihood of being migratory compared to those in dense habitats (e.g., dense thickets)366

(MCMCglmm: estimate = 1.15, 95% CI: 0.52, 1.86; brms: estimate = 1.24, 95% CI: 0.57, 2.05;367

figure 4a). In contrast, species in semi-open environments (e.g., open shrublands) did not show368

a significant difference in migratory behaviour compared to those in dense habitats (MCMCglmm:369

estimate = 0.32, 95% CI: -0.26, 0.89; brms: estimate = 0.37, 95% CI: -0.20, 0.99; figure 4a).370
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3.2 Nominal (unordered multinomial) model371

We used the predominant locomotory niche of 173 thrush bird species data as the nominal response372

variable (figure 4b). This variable consists of three categories: ground-dwelling, perching, and373

generalist. The ground-dwelling category includes species that primarily spend their time on the374

ground, foraging by walking or hopping. The perching category refers to species that spend much375

of their time perched on raised surfaces, such as tree branches, rocks, buildings, posts, or wires.376

The generalist category includes species that do not predominantly fit into a single lifestyle and377

utilise a variety of niches. The explanatory variables include two models: the first uses tail length378

as a single predictor, and the second includes both tail length and diet as predictors. Tail length379

may be associated with manoeuvrability and locomotion strategies, which can vary across ground-380

dwelling, perching, and generalist lifestyles. Diet reflects foraging behaviour and habitat use, which381

can also be key factors shaping locomotory niches. Diet originally contained three categories382

(carnivore, herbivore, omnivore), but for ease of interpretation, it was recoded into a binary variable383

distinguishing between omnivores and non-omnivores (figure 4b). In our model, the “generalist”384

category is the reference category because it appears first alphabetically. When discrete (categorical)385

variables are included in a model, the reference category is usually the first alphabetical unless you386

expressly set another category as the reference.387

When the phylogenetic signal is strong, it indicates that closely related species are more likely388

to belong to the same trait category (for example, both being ground-dwelling). This suggests389

that the trait is relatively stable over evolutionary time and strongly influenced by phylogenetic390

history. Conversely, closely related species are less likely to share the same category when the391

phylogenetic signal is weak. They may fall into different categories (such as one species being392

ground-dwelling while another being perching). This implies that the trait changes frequently and393

is less constrained by phylogenetic relationships. The phylogenetic heritability, measured as the394

proportion of variance explained by the phylogenetic random effect, was estimated at 0.83 (95%395

CI:0.55, 0.91) in MCMCglmm and 0.96 (95% CI: 0.78, 0.99) in brms for perching. Ground-dwelling396

phylogenetic heritability was estimated at 0.83 (95% CI: 0.60, 0.92) in MCMCglmm and 0.97 (95%397

CI: 0.83, 1.00) in brms. These values suggest that the “perching” and “ground-dwelling” are398

both strongly influenced by phylogenetic relationships, indicating a high level of evolutionary399

conservatism. This implies that their distribution among species is not random. Phylogenetic400

correlation, which is a measure of the degree to which traits are correlated due to shared evolutionary401

history, was 0.06 (95% CI: -0.12, 0.12) in MCMCglmm and -0.27 (95% CI: -0.88, 0.50) in brms.402

The 95% CIs cross 0, so there was no statistically significant relationship between perching and403

ground-dwelling traits. A positive correlation would suggest that the evolution of one trait (perching)404

is associated with an increased likelihood of the evolution of the other trait (ground-dwelling),405

indicating that these traits may tend to evolve together. Conversely, a negative correlation would406

imply that a strong evolutionary tendency toward one trait (perching) reduces the likelihood of407

exhibiting the other trait (ground-dwelling), reflecting a potential evolutionary trade-off between the408

two traits.409

We examined the effects of tail length and diet (omnivorous vs. non-omnivorous) on primary410

avian lifestyles. Tail lengths were log-transformed and centred to facilitate interpretation. Results411

from both the MCMCglmm and brms models indicated that tail length did not significantly influence412

whether species were more likely to adopt perching or ground-dwelling lifestyles compared to413

generalists (perching - MCMCglmm: estimate = -0.21, 95%CI: -3.25, 2.85; brms: estimate = -0.88,414

95%CI: -4.83, 2.84 / ground-dwelling - MCMCglmm: estimate = -1.53, 95%CI: -4.25, 1.27; brms:415

estimate = -1.51, 95%CI: -5.43, 2.28; figure 4b). While omnivory did not have a statistically416
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significant impact on the likelihood of adopting a perching versus generalist lifestyle (MCMCglmm:417

estimates = -0.29, 95%CI: -1.55, 1.00; brms: estimate = 0.13, 95%CI: -1.54, 2.00; figure 4b),418

omnivorous species were more likely to exhibit diverse lifestyles, such as being generalists rather419

than ground-dwelling (MCMCglmm: estimates = -3.53, 95%CI: -4.86, -2.41; brms: estimate = -4.47,420

95%CI: -7.13, -2.70; figure 4b). This means that if a species is omnivorous, it is more likely to be421

generalist than ground-dwelling or perching.422

4 CONCLUSION423

Through this paper, we have provided a theoretical and practical overview of how to implement424

phylogenetic generalised linear mixed-effects models (PGLMMs) for discrete traits along with425

continuous counterparts. As far as we know, our work presents the first comprehensive introduction426

to PGLMMs for discrete traits, showing how binary PGLMMs act as bridges to other types of427

PGLMMs. Importantly, this theoretical introduction is complemented by an extensive online428

tutorial, which covers practical difficulties implementing such PGLMMs using Bayesian statistics,429

for example, 1) setting Bayesian priors, 2) checking MCMC chain convergence and mixing, 3)430

interpreting regression coefficients and (co)variance components, and 4) simulating toy datasets. We431

hope this paper demonstrates the utility and flexibility of linear models in analysing discrete traits432

and encourages their broader adoption in evolutionary and ecological studies.433

With the growth of open science, the rapid accumulation of data across biological disciplines434

has created both challenges and opportunities (e.g., Marx, 2013; Losos et al., 2013; Cushman, 2014;435

Pal et al., 2020). We can also combine existing research data to uncover new knowledge (e.g.,436

Gallagher et al., 2020). One of the challenges is effectively organising these immense datasets,437

which needs a proper understanding of appropriate statistical analyses and methodologies. Since438

Darwin introduced the theory of natural selection (Darwin, 1859), researchers have made remarkable439

progress in understanding and unravelling biological phenomena. However, significant gaps remain440

in our understanding of the ecology and evolution of living organisms, and many topics continue to441

be debated. We believe our work will help researchers handle their data more effectively, fostering442

further progress in evolutionary and ecological research.443
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Box 1: Glossary

Ancestral states
Ancestral states refer to the traits of organisms that existed in their common ancestors. We often use
it in the context of reconstructing the traits of an ancestral species based on the traits observed in
its living descendant species. For example, if we are studying the trait evolution of a certain family,
we may be interested in estimating what trait their common ancestral trait is. These estimated traits,
such as the plumage colour, diet, or habitat type, are the “ancestral states.”

Linear model
A linear (regression) model assumes a linear relationship between the response variable(s) and one
or more independent variables. The model relies on assumptions such as linearity, independence,
homoscedasticity, and normally distributed residuals. In more complex models, such as mixed-
effects models (also called hierarchical models), random effects are included to account for
variability not captured by the fixed effects. We can include that observations within specific groups
(e.g., individuals, locations, or time points) may vary in ways that are different from the overall
trend as the random effect. This allows the model to handle data that is organised into groups,
where we expect the data points within each group to be more similar to each other than to data
points from other groups. If the model does not include any explanatory variable, the model does
not explain y based on any predictors. The prediction of y is just the overall mean, with random
effects u j allowing for variations between groups or clusters (if using a mixed-effects model) and ε

accounting for individual random errors. This model is often called a null model and is used as a
baseline for comparing models that include explanatory variables.

Markov model
A Markov model is a mathematical framework used to describe systems that transition from one
state to another in a probabilistic manner that is based on the Markov Property. Markov Property
assumes that the future state depends only on the current state and not on the past events. Markov
models are widely used in various fields due to their versatility in modelling probabilistic systems
(simplifying complex systems while retaining useful predictive power). In evolutionary biology, the
Markov k-state model (Mk model) is popular and used in phylogenetics to describe the evolution of
discrete traits across a phylogenetic tree. The Mk model is commonly used to study the evolution
of discrete traits, such as the gain or loss of morphological features and the evolution of behavioural
traits. It assumes that trait changes occur according to a Markov process. The transition rates
at which changes occur between these states are modelled as a continuous-time process. All
states are equally likely to transition to another state unless otherwise specified. The process is
time-reversible, meaning the probability of transitioning from state A to state B over time is the
same as transitioning from state B to state A (under the same conditions).

Log odds-ratio
Log odds is the natural logarithm of the odds ratio, where the odds ratio represents the ratio of
the probability P of an event occurring to the probability 1-P of it not occurring. The relationship
between explanatory variables and probability is described as non-linear, making it difficult to
model using a simple linear relationship. Additionally, while probabilities are constrained to a
range of 0 to 1, linear predictors can take any value, creating a mismatch that must be addressed.
By using log odds, the odds are transformed into a scale ranging from −∞ to +∞, allowing for
the application of the linear framework (i.e., logistic regression). The log odds can then be back-
transformed using the logistic function, enabling the results to be interpreted as probabilities within
the range of 0 to 1.
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Phylogenetic heritability/phylogenetic signal
Phylogenetic signal shows statistical non-independence between trait values and their phylogeny
and indicates how closely related species resemble each other (e.g., Revell et al., 2008; Münkemüller
et al., 2012). A strong phylogenetic signal indicates that closely related species resemble each
other more than expected by chance, reflecting the influence of shared ancestors. Pagel’s λ , one of
the phylogenetic signal indices, is also interpreted as phylogenetic heritability.

Uni- and multivariate model (uni-response and multi-response variable models)
In our paper, we define the univariate model as a model with a single dependent variable based
on one or more independent variables, while the multivariate model is defined as the model
that includes multiple dependent variables simultaneously. Multivariate models can consider
correlations between dependent variables (detailed definitions of all variables can be found in
Tobias et al., 2022).

Phylogenetic variance-covariance matrix / phylogenetic correlation matrix
In the context of phylogenetic analysis, the variance-covariance matrix reflects how variables
of interest (e.g., traits or behaviours) vary and covary across species. The diagonal components
represent the variance of each variable, indicating the extent to which a variable deviates from
its mean across species. The off-diagonal components represent the covariance between pairs
of variables, showing how two variables co-vary across species. Covariance indicates both the
direction and strength of the relationship between two variables, but its value is influenced by the
units of measurement, making its magnitude scale-dependent. To remove this scale dependence,
covariance is standardised by dividing it by the product of the standard deviations of the two
variables (X and Y), resulting in the correlation coefficient (r). The correlation matrix contains
these correlation coefficients, with off-diagonal components indicating the relationship between
pairs of variables.

Probit and logit model
Probit model coefficients represent the effect that an independent variable has on a latent dependent
variable, which follows a standard normal distribution. This latent variable determines the proba-
bility that the observed dependent variable falls into a specific category. Logit model coefficients
describe the log odds, showing the effect that a one-unit increase in an independent variable has on
the probability that the dependent variable is classified into a specific category (as opposed to the
reference category). The logit model is widely used due to its simplicity of calculation and ease of
interpretation. Both models often give similar results, so you can use either one depending on the
context.

Link function and linear predictor
In GLMMs, the linear predictor (l) is the combination of fixed effects and random effects. The
link function can transform the expected value of the response variable to relate it to the linear
predictor. This allows GLMMs to model non-linear relationships between predictors and the
response variables. For example, when a response variable is binary traits, the link function can be
the logit or probit link function.
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Cumulative Distribution Function (CDF) and Probability Density Function (PDF)
A Probability Density Function (PDF) describes the probability distribution of continuous random
variables. It indicates the density of probability at different values. While the PDF itself does not
give the probability at a specific point, the probability over a range can be calculated by integrating
the PDF over that range. The total area under the PDF curve equals 1. A Cumulative Distribution
Function (CDF) gives the probability that a random variable takes a value less than or equal to a
given point. It represents the accumulated probability up to that point, ranging from 0 to 1. The
CDF can be derived by integrating the PDF.

Threshold model
The threshold regression model is used for binary or ordered response variables. The concept
behind the threshold model is that an unobserved continuous latent variable determines the observed
discrete (categorical) response variable based on whether it exceeds certain thresholds (cut-points).
The model assumes that y is a continuous latent variable, but the response variable y is observed in
discrete categories.

Latent variable (unobserved variable)
A latent variable (l) provides the link function (e.g., logit and probit) to the values of the response
variable (y). For example, when a response variable is a binary outcome, the latent variable is
determined by whether l exceeds a threshold. If l is under the threshold, then y = 1; if l is more
than the threshold, then y = 0.

Reference category/level (baseline category)
Both ordered or unordered variables include two or more categories (e.g., colour - blue, red,
white). The reference (baseline) category is used to compare with other categories and act as a
“reference.” In the regression model, the model estimates the coefficients as the difference between
the non-reference and reference categories.

Bayesian statistics (approaches)
Bayesian approach is a statistical method that combines prior knowledge (prior distribution) with
observed data (likelihood) to update beliefs and derive the posterior distribution of unknown
parameters in a model. The term “parameters” refers to the unknown values needed to define the
model’s structure, and the Bayesian approach seeks to estimate the probability distribution of these
parameters. Computational methods such as Markov Chain Monte Carlo (MCMC) are used to
incorporate uncertainty in the data. Bayesian estimation considers the entire distribution of the
parameter, allowing for the reflection of uncertainty in the parameter estimates.
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Box 2: Two ways of parametrising the ordinal (threshold) model The ordinal (threshold) model
has two different parametrisations, the true-intercept model and the zero-intercept model, with
different interpretations and implementations. For example, MCMCglmm uses the former, and brms
uses the latter. The true-intercept model always has the intercept of the regression model equal to
the mean of its probability density function (PDF). Zero is always the first cut-point in every model,
which is implicit. The intercept is always fixed at zero in the zero-intercept models, but the cut-points
differ between regression models. Figure B1 is a conceptual description of the difference between
the true- and zero-intercept models. The model has three category-ordered predictor variables (A, B,
and C). The latent variable is defined as li = b0 +ai, where b0 represents the intercept and ai means
the phylogenetic random effect, which determines the probability of each category. The blue-shaded
PDF illustrates the PDF of the latent variable distribution (i.e., the underlying distribution of the
response variable, not influenced by predictor variables). The warm-coloured areas indicate the
probability of the observed outcome y being categorised into A, B, or C, depending on where the
value of the latent variable l falls relative to the thresholds. The dark-yellow solid line describes
the intercept (b0), which is the mean of the latent distribution. The pink dashed lines represent the
thresholds (cut-points) that define the boundaries between categories A, B, and C. The true-intercept
model usually reports only the second cut-point, with the first cut-point set to 0 (e.g., MCMCglmm).
The single reported threshold (threshold1) can move and define the boundary between the second
and third categories. In contrast, the zero-intercept model (figure B1b) reported two cut-points
(outputted as intercepts in brms), with the model intercept fixed at 0. The two cut-points can move
and correspond to the thresholds between the first and second categories (threshold 0: A and B) and
between the second and third categories (threshold 1: B and C), respectively.
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5 FIGURE LEGENDS577

Figure 1. Conceptual diagram of relationships between different types of traits and phylogenetic578

mixed-effect models (PGLMMs). The figure demonstrates how organism traits can be categorised579

into continuous and discrete (categorical) traits, showing the relationships between the Gaussian580

model and discrete models within the framework of PGLMM. The binary model, as one of the581

discrete models, serves as a conceptual bridge between the Gaussian model and ordinal or nominal582

models. On the latent scale, the binary model closely aligns with the Gaussian model, reflecting583

their underlying similarity. It is worth noting that ordinal and nominal models can be understood as584

extensions of the binary model (for further details, refer to the main text). Notably, this paper does585

not deal with count data (e.g., frequencies of a certain behaviour, the number of certain morphologi-586

cal patterns), although such data can be considered as discrete traits. Yet, count data are usually not587

considered categorical traits.588

589

Figure 2. Overview of the discrete models. (a) Binary model. The binary model represents the590

simplest structure and serves as the foundation for more complex models such as (b) ordinal and591

(c) nominal models. In the binary model, two common link functions are used: the probit and592

the logit link functions. In the probit model (a: right), the probability density plot illustrates the593

distribution of the latent variable, which follows a standard normal distribution N(0,1). Most of the594

data lies within the range between -2 to 2. The curves labelled 0(A) and 1(B) represent cumulative595

probabilities calculated using the cumulative distribution function (CDF) of the normal distribution596

(Φ). Curve 0(A) indicates the probability that y belongs to the category “0 or A” (e.g., “non-white597

plumages or darker plumages”). Curve 1(B) indicates the probability that y belongs to category “1598

or B” (e.g., “white plumages or lighter plumages”). For binary data, the threshold is fixed at 0. The599

latent variable l determines the value of y; if l exceeds the threshold, y = 1, otherwise y = 0. In the600

logit model (a: left), the probability density plot shows the distribution of the latent variable (log601

odds), which follows a logistic distribution Logistic(0,π2/3). The majority of the data falls within602

the range between -6 to 6. The curves 0 (A) and 1 (B) represent cumulative probabilities calculated603

using the logistic cumulative distribution function (sigmoid function). The curve 0(A) indicates the604

probability that y belongs to the category “0 or A” (e.g., “non-white plumages or black plumages”).605

Curve 1(B) indicates the probability that y belongs to category “1 or B” (e.g., “white plumages”).606

Both models are capable of describing the binary data (0-1 data). However, binary data can also be607

treated as ordinal data, in which case an ordered multinomial model may be applied, or as nominal608

data, where an unordered multinomial model is suitable. (b) Ordered multinomial model. This model609

extends the binary framework to handle ordinal traits, such as plumage darkness, across multiple610

ordered categories. Here, examples with three categories (A < B < C) and four categories (A < B611

< C < D) are illustrated. The left density plots show the distributions of the latent variable. The612

grey distribution represents a standard normal distribution N(0,1), while the coloured distributions613

correspond to latent variable values associated with specific categories. The thresholds (c0, c1, and614

c2) divide the latent variable range, assigning observations to the appropriate categories. For exam-615

ple, in the 3-category case, latent variable l exceeds c1, placing it in category C. In the 4-category616

case, l lies between c1 and c2, placing it in category C. The cumulative probability curves, calculated617

using the CDF of the normal distribution (Φ), depict the probability of y falling into each category618

based on the l. These probabilities are derived using threshold values and the l. (c) Unordered619

multinomial model. This model is suited for nominal traits, such as plumage colour, across multiple620

unordered categories. Examples with three categories (B, G, R) and 4 categories (B, G, R, W) are621
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presented. Note that many statistical applications select the first category (alphabetically) as the622

reference category; here, category B is chosen. The plots are structured similarly to the binary logit623

model, with relative probabilities computed for each category compared to the reference category.624

In the 3-category case, the probabilities for R and G are expressed relative to B. In the 4-category625

case, the probabilities for R, G, and W are expressed relative to B. The overall probability of each626

category is obtained by rescaling the relative probabilities. For example, the probability of cate-627

gory G in four unordered multinomial traits is calculated as, P(G) = exp(l2i)
1+exp(l2i)+exp(l3i)+exp(l4i)

, where628

l2i, l3i, and l4i represent the latent variables corresponding to the categories G, R, and W, respectively.629

630

Figure 3. Conceptual summary of ordered multinomial and unordered multinomial regression631

models. The examples use body mass as a continuous explanatory variable and forest living status632

as a binary (discrete) explanatory variable for bird species. In (a) and (b), two horizontal lines633

mark the thresholds (c0 and c1) that divide categories A and B (threshold0) and categories B and634

C (threshold1). These categories, A, B, and C, correspond to the classification of plumage bright-635

ness, as seen in figure 2b. (a) illustrates that heavier bird species tend to have brighter plumages,636

suggesting a positive relationship between body mass and plumage colour intensity. This indicates637

that as body mass increases, so does the likelihood of a bird exhibiting a brighter plumage. In638

contrast, (b) shows that species inhabiting forested areas generally have duller plumages, which639

suggests a negative relationship between living environment and plumage brightness. The species640

living in forests are more likely to have less bright plumages compared to those in other habi-641

tats (not forest-living). In (c) and (d), the gradations in the illustrated probabilities of plumage642

colours. The marginal lines in these plots indicate a 50% probability, representing the point at643

which there is no clear trend in the plumage colours. The categories B, G, and R, which refer to644

different colour classifications, are aligned with figure 2c, where category B serves as the reference.645

(c) demonstrates that species with redder plumages tend to have a higher body mass than those646

with blue plumages. Conversely, species with green plumages are generally lighter in body mass647

than those with blue plumages. Finally, (d) illustrates the relationship between forest living and648

plumage colours, showing that forest species are more likely to exhibit green colours, not red colours.649

650

Figure 4. Visualisation of used datasets and posterior distributions of model parameters from651

ordered and unordered multinomial models (MCMCglmm and brms) in the worked example section.652

(a) ordered multinomial model. We used migration data (3 ordered category traits) as a response653

variable and body mass and habitat density as explanatory variables for 136 species of birds of prey.654

Body mass was log-transformed before analysis. The posterior distribution results show fixed effects,655

phylogenetic random effects, and thresholds. The differences in threshold estimates and the presence656

or absence of intercept between MCMCglmm and brms arise from different parametrisations (the657

true-intercept model and the zero-intercept model; see Box 2). In MCMCglmm, the first threshold658

is 0 (sedentary to partially migratory), and the second threshold (partially migratory to migratory)659

is shown as threshold 1. In brms, thresholds are described as intercepts: threshold1 (intercept1:660

sedentary to partially migratory) and threshold2 (intercept2: partially migratory to migratory). (b)661

unordered multinomial model. we used the lifestyle data (3 unordered category traits) as a response662

variable and tail length and presence or absence of omnivores as explanatory variables of thrushes663

173 species. The posterior distribution results represent point estimates and credible intervals for664

posterior distributions, categorised by fixed effects, phylogenetic random effects, and phylogenetic665

correlations. The unordered multinomial model in MCMCglmm shows results for phylogenetic666
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random effects and correlations after rescaling (refer to the main text and online tutorial for details).667

Regarding the graph of the phylogenetic random effect, please note that the x-axis scale differs668

between MCMCglmm and brms. In the online tutorial, we provide a clear explanation of the prior669

settings in the nominal model. You can also find the results of MCMCglmm using an uninformative670

prior. Thick horizontal lines represent 66% credible intervals, and thin horizontal lines illustrate671

95% credible intervals in both model results. The points in the centre of each thick line indicate the672

mean estimates.673

674

6 APPENDIX675

The multinomial model can be also parametrised in an alternative way, by using so called contrast676

matrix ∆ which defines the odds ratios by indicating a reference level within categories. In a general677

case with n+1 categories, with the first category being the reference, we have:678

∆ =

[
−1

′
n

In×n

]
(47)

For the case of a trait with four categories, this would result in:679

∆ =


−1 −1 −1
1 0 0
0 1 0
0 0 1

 (48)

This matrix can then be used to project the latent scale estimates into a space of probabilities680

defined on an n-dimensional simplex (a tetrahedron in the 3-dimensional case of 4 categories).681

∆∆
′
=


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 , (49)

(∆∆
′
)−1

∆ =


−1

4 −1
4 −1

4
3
4 −1

4 −1
4

−1
4

3
4 −1

4
−1

4 −1
4

3
4

 (50)

Such a projection results in values that (exponentiated) are proportional to probabilities of682

observing each of the n categories for a given row (case) of data. To get actual probabilities one683

would of course have to scale each resulting expectation by their sum (a sum-to-unity constraint):684

exp((∆∆
′
)−1

∆li) ∝ E(pi) . (51)
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It is easy to verify that this formulation yields the same final expressions of expected probabilities685

as simple calculations based on the arithmetic of odds rations. The non-normalised predictions on686

log scale are as follows:687

(∆∆
′
)−1

∆li =


−l2i−l3i−l4i

4
3l2i−l3i−l4i

4
−l2i+3l3i−l4i

4
−l2i−l3i+3l4i

4

 . (52)

The scaling term (sum of all exponentiated terms) is:688

exp(
−l2i − l3i − l4i

4
)+ exp(

3l2i − l3i − l4i

4
)+ exp(

−l2i +3l3i − l4i

4
)+

exp(
−l2i − l3i +3l4i

4
) = (exp(l2i)+ exp(l3i)+ exp(l4i)+1)exp(

−l2i − l3i − l4i

4
) .

(53)

Then we can verify, for category no. 1, that the final expected probability for the given case is:689

p1i =
exp(−l2i−l3i−l4i

4 )

(exp(l2i)+ exp(l3i)+ exp(l4i)+1)exp(−l2i−l3i−l4i
4 )

=

=
1

exp(l2i)+ exp(l3i)+ exp(l4i)+1
,

(54)

which is exactly equivalent to the probability in equation 34. Similarly, for category no. 2 (and690

by extension for the remaining ones), we have:691

p2i =
exp(3l2i−l3i−l4i

4 )

(exp(l2i)+ exp(l3i)+ exp(l4i)+1)exp(−l2i−l3i−l4i
4 )

=

=
exp(l2i)

exp(l2i)+ exp(l3i)+ exp(l4i)+1
.

(55)

30


	pglmm_tutorial_title.pdf
	pglmm_tutorial_main.pdf
	Introduction
	Theory
	PGLMM for continuous traits
	PGLMM for discrete traits 1: binary traits
	PGLMM for discrete traits 2: ordinal traits
	PGLMM for discrete traits 3: nominal traits
	PGLMM with non-phylogenetic species effect

	Worked examples
	Ordinal (ordered multinomial) model
	Nominal (unordered multinomial) model

	Conclusion
	References
	Figure legends
	Appendix


